Spaces:
Sleeping
Sleeping
File size: 18,077 Bytes
f18e2ca cd40d80 330575e 4aa21d9 9f6f7ea 4aa21d9 b228ff5 c93c36d 28a1f20 4aa21d9 415844f 40de8fd 415844f 5b9bc91 b678e6b 5b9bc91 415844f 8777f65 415844f e060a36 415844f c93c36d 415844f eaba916 415844f eaba916 415844f 4aa21d9 1f27438 4aa21d9 415844f 8777f65 415844f 8777f65 415844f d2e0bae 415844f d2e0bae 770fff9 40de8fd 1b2bf09 d2e0bae 40de8fd d2e0bae 40de8fd d2e0bae 415844f 40de8fd 415844f d2e0bae 40de8fd d2e0bae 415844f d2e0bae 415844f d2e0bae 415844f 40de8fd 415844f d2e0bae 415844f d2e0bae 415844f d2e0bae 40de8fd 8777f65 415844f 8777f65 415844f 8777f65 415844f 8777f65 415844f 8777f65 415844f 8777f65 415844f 8777f65 415844f 14783cd f18e2ca 415844f f8fb884 3d99e57 f18e2ca 55ec576 5b9bc91 e677952 5b9bc91 3d99e57 5b9bc91 55ec576 5b9bc91 3d99e57 55ec576 5b9bc91 9f6f7ea 28a1f20 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 c33725f 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
from dotenv import load_dotenv
import heapq
from collections import Counter
import re
from io import BytesIO
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
#Load environment variables
load_dotenv()
from langgraph.graph import END, StateGraph
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain_core.tools import tool
from typing import Dict, List, TypedDict, Annotated
import operator
from langchain_community.llms import HuggingFaceHub
from langchain_community.chat_models import ChatHuggingFace
from langchain.schema import HumanMessage # Or your framework's equivalent
def init_state(question: str):
return {
"question": question,
"history": [HumanMessage(content=question)],
"context": {} # <- Add this line
}
# ====== Tool Definitions ======
@tool
def duckduckgo_search(query: str) -> str:
"""Search web using DuckDuckGo. Returns top 3 results."""
from duckduckgo_search import DDGS
with DDGS() as ddgs:
return "\n\n".join(
f"Title: {res['title']}\nURL: {res['href']}\nSnippet: {res['body']}"
for res in ddgs.text(query, max_results=3)
)
@tool
def wikipedia_search(query: str) -> str:
"""Get Wikipedia summaries. Returns first 3 sentences."""
import wikipedia
try:
return wikipedia.summary(query, sentences=3)
except wikipedia.DisambiguationError as e:
return f"Disambiguation options: {', '.join(e.options[:3])}"
except wikipedia.PageError:
return "Page not found"
@tool
def arxiv_search(query: str) -> str:
"""Search academic papers on arXiv. Returns top 3 results."""
import arxiv
results = arxiv.Search(
query=query,
max_results=3,
sort_by=arxiv.SortCriterion.Relevance
).results()
return "\n\n".join(
f"Title: {r.title}\nAuthors: {', '.join(a.name for a in r.authors)}\n"
f"Published: {r.published.strftime('%Y-%m-%d')}\nSummary: {r.summary[:250]}..."
for r in results
)
@tool
def document_qa(input_str: str) -> str:
"""Answer questions from documents. Input format: 'document_text||question'"""
from transformers import pipeline
if '||' not in input_str:
return "Invalid format. Use: 'document_text||question'"
context, question = input_str.split('||', 1)
qa_model = pipeline('question-answering', model='deepset/roberta-base-squad2')
return qa_model(question=question, context=context)['answer']
@tool
def python_execution(code: str) -> str:
"""Execute Python code and return output."""
try:
# Create isolated environment
env = {}
exec(f"def __exec_fn__():\n {indent_code(code)}\nresult = __exec_fn__()", env)
return str(env.get('result', 'No output'))
except Exception as e:
return f"Error: {str(e)}"
def indent_code(code: str) -> str:
return '\n '.join(code.splitlines())
# ====== Agent State ======
class AgentState(TypedDict):
question: str
history: Annotated[List[Dict], operator.add]
context: str
reasoning: str
iterations: int
# ====== Graph Components ======
def init_state(question: str) -> AgentState:
return {
"question": question,
"history": [],
"context": f"User question: {question}",
"reasoning": "",
"iterations": 0
}
def should_continue(state: AgentState) -> str:
"""Determine if agent should continue or finish"""
last_msg = state['history'][-1]
# Stop conditions
if state['iterations'] >= 5:
return "end"
if "FINAL ANSWER:" in last_msg.get('content', ''):
return "end"
if last_msg['role'] == 'tool':
return "reason"
return "continue"
def reasoning_node(state: AgentState) -> AgentState:
import os
from langchain.schema import HumanMessage, AIMessage
from langchain_community.chat_models import ChatHuggingFace
from langchain.prompts import ChatPromptTemplate
from langchain_community.llms import HuggingFaceHub
# Ensure token is available
token = os.environ.get("HF_TOKEN")
if not token:
raise ValueError("Hugging Face API token not found in environment variables")
# Defensive: Ensure valid history
if not state["history"] or not isinstance(state["history"][-1], HumanMessage):
state["history"].append(HumanMessage(content="Continue."))
# Create the LLM
llm = HuggingFaceHub(
repo_id="HuggingFaceH4/zephyr-7b-beta",
huggingfacehub_api_token=token,
model_kwargs={"temperature": 0.1, "max_new_tokens": 500}
)
chat_model = ChatHuggingFace(llm=llm)
# Build prompt
prompt = ChatPromptTemplate.from_messages([
("system", (
"You're an expert problem solver. Analyze the question, select the best tool, "
"and provide reasoning. Available tools: duckduckgo_search, wikipedia_search, "
"arxiv_search, document_qa, python_execution.\n\n"
"Current Context:\n{context}\n\n"
"Reasoning Steps:\n{reasoning}\n\n"
"Response Format:\nReasoning: [Your analysis]\nAction: [Tool name OR 'Final Answer']\n"
"Action Input: [Input for tool OR final response]"
)),
*state['history']
])
chain = prompt | chat_model
response = chain.invoke({
"context": state['context'],
"reasoning": state['reasoning'],
"question": state['question']
})
content = response.content
reasoning, action, action_input = parse_agent_response(content)
state['history'].append(AIMessage(content=content))
state['reasoning'] += f"\nStep {state['iterations']+1}: {reasoning}"
state['iterations'] += 1
if "final answer" in action.lower():
state['history'].append(AIMessage(content=f"FINAL ANSWER: {action_input}"))
else:
# Save action tool call in context instead of history
state['context']['current_tool'] = {
"tool": action,
"input": action_input
}
return state
def tool_node(state: AgentState) -> AgentState:
"""Execute selected tool and update state"""
last_action = state['history'][-1]
tool_name = last_action['tool']
tool_input = last_action['input']
# Tool mapping
tools = {
"duckduckgo_search": duckduckgo_search,
"wikipedia_search": wikipedia_search,
"arxiv_search": arxiv_search,
"document_qa": document_qa,
"python_execution": python_execution
}
# Execute tool
tool_result = tools[tool_name].invoke(tool_input)
# Update state
state['history'].append(ToolMessage(
content=tool_result,
tool_call_id=tool_name
))
state['context'] = f"Tool Result ({tool_name}): {tool_result}"
state['iterations'] += 1
return state
def parse_agent_response(response: str) -> tuple:
"""Extract reasoning, action, and input from response"""
reasoning = response.split("Reasoning:")[1].split("Action:")[0].strip()
action_part = response.split("Action:")[1].strip()
if "Action Input:" in action_part:
action, action_input = action_part.split("Action Input:", 1)
action = action.strip()
action_input = action_input.strip()
else:
action = action_part
action_input = ""
return reasoning, action, action_input
# ====== Agent Graph ======
def create_agent_workflow():
workflow = StateGraph(AgentState)
# Define nodes
workflow.add_node("reason", reasoning_node)
workflow.add_node("action", tool_node)
# Set entry point
workflow.set_entry_point("reason")
# Define edges
workflow.add_conditional_edges(
"reason",
should_continue,
{
"continue": "action",
"reason": "reason",
"end": END
}
)
workflow.add_edge("action", "reason")
return workflow.compile()
# ====== Agent Interface ======
class BasicAgent:
def __init__(self):
self.workflow = create_agent_workflow()
self.tools = [
duckduckgo_search,
wikipedia_search,
arxiv_search,
document_qa,
python_execution
]
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:50]}{'...' if len(question) > 50 else ''}")
# Ensure proper HumanMessage in history
state = init_state(question)
final_state = self.workflow.invoke(state)
print(f"Final state keys: {list(final_state.keys())}")
if 'history' in final_state:
print(f"History length: {len(final_state['history'])}")
for i, msg in enumerate(final_state['history']):
print(f"Message {i}: {type(msg).__name__} - {msg.content[:100]}...")
for msg in reversed(final_state['history']):
if isinstance(msg, AIMessage) and "FINAL ANSWER:" in msg.content:
answer = msg.content.split("FINAL ANSWER:")[1].strip()
print(f"Agent returning answer: {answer}")
return answer
raise ValueError("No FINAL ANSWER found in agent history.")
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |