File size: 26,808 Bytes
f18e2ca
cd40d80
330575e
4aa21d9
9f6f7ea
4aa21d9
 
 
 
 
 
 
 
 
 
 
b228ff5
c93c36d
28a1f20
 
 
4aa21d9
 
 
8777f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f27438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48b54cf
1f27438
 
 
 
 
 
48b54cf
1f27438
e060a36
1f27438
 
 
 
 
 
e060a36
1f27438
 
 
 
 
e060a36
1f27438
e060a36
1f27438
 
 
 
 
 
e060a36
1f27438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e060a36
1f27438
e060a36
1f27438
 
 
 
 
 
 
 
4aa21d9
c93c36d
1f27438
4aa21d9
1f27438
 
 
 
 
 
4aa21d9
1f27438
4aa21d9
5aeee71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaba916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f27438
 
 
 
4aa21d9
1f27438
4aa21d9
1f27438
 
 
 
 
 
 
4aa21d9
1f27438
 
 
4aa21d9
1f27438
 
 
 
 
 
 
28a1f20
8777f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14783cd
f18e2ca
c93c36d
 
8777f65
4aa21d9
 
 
8777f65
4aa21d9
 
8777f65
 
 
 
 
 
 
 
 
e060a36
 
8777f65
 
e060a36
c762e0c
8777f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa21d9
88c629f
4aa21d9
 
c93c36d
8777f65
 
 
 
 
 
 
 
 
 
 
4aa21d9
8777f65
994ef93
f18e2ca
8777f65
 
 
 
9f6f7ea
28a1f20
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
c33725f
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
from dotenv import load_dotenv
import heapq
from collections import Counter
import re
from io import BytesIO
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

#Load environment variables
load_dotenv()

import io
import contextlib
import traceback
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from smolagents import Tool, CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, HfApiModel


class CodeLlamaTool(Tool):
    name = "code_llama_tool"
    description = "Solves reasoning/code questions using Meta Code Llama 7B Instruct"

    inputs = {
        "question": {
            "type": "string",
            "description": "The question requiring code-based or reasoning-based solution"
        }
    }
    output_type = "string"

    def __init__(self):
        self.model_id = "codellama/CodeLlama-7b-Instruct-hf"
        token = os.getenv("HF_TOKEN")

        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, token=token)
        self.model = AutoModelForCausalLM.from_pretrained(
            self.model_id,
            device_map="auto",
            torch_dtype="auto",
            token=token
        )
        self.pipeline = pipeline(
            "text-generation",
            model=self.model,
            tokenizer=self.tokenizer,
            max_new_tokens=512,
            temperature=0.2,
            truncation=True
        )

    def forward(self, question: str) -> str:
        prompt = f"""You are an AI that uses Python code to answer questions.
Question: {question}
Instructions:
- If solving requires code, use a block like <tool>code</tool>.
- Always end with <final>FINAL ANSWER</final> containing the final number or string.
Example:
Question: What is 5 * sqrt(36)?
Answer:
<tool>
import math
print(5 * math.sqrt(36))
</tool>
<final>30.0</final>
Answer:"""

        response = self.pipeline(prompt)[0]["generated_text"]
        return self.parse_and_execute(response)

    def parse_and_execute(self, response: str) -> str:
        try:
            # Extract and run code if exists
            if "<tool>" in response and "</tool>" in response:
                code = response.split("<tool>")[1].split("</tool>")[0].strip()
                result = self._run_code(code)
                return f"FINAL ANSWER (code output): {result}"

            # Extract final result directly
            elif "<final>" in response and "</final>" in response:
                final = response.split("<final>")[1].split("</final>")[0].strip()
                return f"FINAL ANSWER: {final}"

            return f"Could not extract final answer.\n\n{response}"

        except Exception as e:
            return f"Error in parse_and_execute: {str(e)}\n\nFull response:\n{response}"

    def _run_code(self, code: str) -> str:
        buffer = io.StringIO()
        try:
            with contextlib.redirect_stdout(buffer):
                exec(code, {})
            return buffer.getvalue().strip()
        except Exception:
            return f"Error executing code:\n{traceback.format_exc()}"



from duckduckgo_search import DDGS
import wikipedia
import arxiv
from transformers import pipeline
import os
import re
import ast
import subprocess
import sys

# ===== Search Tools =====
class DuckDuckGoSearchTool:
    def __init__(self, max_results=3):
        self.description = "Search web using DuckDuckGo. Input: search query"
        self.max_results = max_results
        
    def run(self, query: str) -> str:
        try:
            with DDGS() as ddgs:
                results = [r for r in ddgs.text(query, max_results=self.max_results)]
                return "\n\n".join(
                    f"Title: {res['title']}\nURL: {res['href']}\nSnippet: {res['body']}" 
                    for res in results
                )
        except Exception as e:
            return f"Search error: {str(e)}"

class WikiSearchTool:
    def __init__(self, sentences=3):
        self.description = "Get Wikipedia summaries. Input: search phrase"
        self.sentences = sentences
        
    def run(self, query: str) -> str:
        try:
            return wikipedia.summary(query, sentences=self.sentences)
        except wikipedia.DisambiguationError as e:
            return f"Disambiguation error. Options: {', '.join(e.options[:5])}"
        except wikipedia.PageError:
            return "Page not found"
        except Exception as e:
            return f"Wikipedia error: {str(e)}"

class ArxivSearchTool:
    def __init__(self, max_results=3):
        self.description = "Search academic papers on arXiv. Input: search query"
        self.max_results = max_results
        
    def run(self, query: str) -> str:
        try:
            results = arxiv.Search(
                query=query, 
                max_results=self.max_results,
                sort_by=arxiv.SortCriterion.Relevance
            ).results()
            
            output = []
            for r in results:
                output.append(
                    f"Title: {r.title}\n"
                    f"Authors: {', '.join(a.name for a in r.authors)}\n"
                    f"Published: {r.published.strftime('%Y-%m-%d')}\n"
                    f"Summary: {r.summary[:250]}...\n"
                    f"URL: {r.entry_id}"
                )
            return "\n\n".join(output)
        except Exception as e:
            return f"arXiv error: {str(e)}"

# ===== QA Tools =====
class HuggingFaceDocumentQATool:
    def __init__(self):
        self.description = "Answer questions from documents. Input: 'document_text||question'"
        self.model = pipeline(
            'question-answering', 
            model='deepset/roberta-base-squad2',
            tokenizer='deepset/roberta-base-squad2'
        )
    
    def run(self, input_str: str) -> str:
        try:
            if '||' not in input_str:
                return "Invalid format. Use: 'document_text||question'"
                
            context, question = input_str.split('||', 1)
            result = self.model(question=question, context=context)
            return result['answer']
        except Exception as e:
            return f"QA error: {str(e)}"



from transformers import BlipProcessor, BlipForQuestionAnswering

class HuggingFaceImageQATool(Tool):
    name = "image_qa"
    description = "Answer questions about an image."
    inputs = {
        "image_path": {"type": "string", "description": "Path to image"},
        "question": {"type": "string", "description": "Question about the image"}
    }
    output_type = "string"

    def __init__(self):
        self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
        self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")

    def forward(self, image_path: str, question: str) -> str:
        image = Image.open(image_path)
        inputs = self.processor(image, question, return_tensors="pt")
        out = self.model.generate(**inputs)
        return self.processor.decode(out[0], skip_special_tokens=True)


from transformers import pipeline

class HuggingFaceTranslationTool(Tool):
    name = "translate"
    description = "Translate text from English to another language."
    inputs = {
        "text": {"type": "string", "description": "Text to translate"}
    }
    output_type = "string"

    def __init__(self):
        self.translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")

    def forward(self, text: str) -> str:
        return self.translator(text)[0]["translation_text"]


# ===== Code Execution =====
class PythonCodeExecutionTool:
    def __init__(self):
        self.description = "Execute Python code. Input: valid Python code"
        
    def run(self, code: str) -> str:
        try:
            # Isolate code in a clean environment
            env = {}
            exec(f"def __temp_func__():\n    {indent_code(code)}", env)
            output = env['__temp_func__']()
            return str(output)
        except Exception as e:
            return f"Execution error: {str(e)}"

def indent_code(code: str) -> str:
    """Add proper indentation for multiline code"""
    return '\n    '.join(code.splitlines())

# ===== Answer Formatting =====
class FinalAnswerTool:
    def __init__(self):
        self.description = "Format final answer. Input: answer content"
        
    def run(self, answer: str) -> str:
        return f"FINAL ANSWER: {answer}"

#from smolagents import Tool
#from langchain_community.document_loaders import WikipediaLoader

class WikiSearchTool(Tool):
    name = "wiki_search"
    description = "Search Wikipedia for a query and return up to 2 results."
    inputs = {
        "query": {"type": "string", "description": "The search term for Wikipedia."}
    }
    output_type = "string"

    def forward(self, query: str) -> str:
        search_docs = WikipediaLoader(query=query, load_max_docs=2).load()

        formatted_search_docs = "\n\n---\n\n".join(
            [
                f'<Document source="{doc.metadata.get("source", "Wikipedia")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
                for doc in search_docs
            ]
        )
        return formatted_search_docs

    


class StringReverseTool(Tool):
    name = "reverse_message"
    description = "When you received a strange text, try to reverse it and perform action described in reversed message."
    inputs = {
        "message": {
            "type": "string",
            "description": "A message, which looks like strange and can be reversed to get actions to execute."
        }
    }
    output_type = "string"

    def __init__(self):
        return

    def forward(self, message: str):
        return message[::-1]

class KeywordsExtractorTool(Tool):
    """Extracts top 5 keywords from a given text based on frequency."""

    name = "keywords_extractor"
    description = "This tool returns the 5 most frequent keywords occur in provided block of text."

    inputs = {
        "text": {
            "type": "string",
            "description": "Text to analyze for keywords.",
        }
    }
    output_type = "string"

    def forward(self, text: str) -> str:
        try:
            all_words = re.findall(r'\b\w+\b', text.lower())
            conjunctions = {'a', 'and', 'of', 'is', 'in', 'to', 'the'}
            filtered_words = []
            for w in all_words:
                if w not in conjunctions:
                    filtered_words.push(w)
            word_counts = Counter(filtered_words)
            k = 5
            return heapq.nlargest(k, word_counts.items(), key=lambda x: x[1])
        except Exception as e:
            return f"Error during extracting most common words: {e}"

@tool
def parse_excel_to_json(task_id: str) -> dict:
    """
    For a given task_id fetch and parse an Excel file and save parsed data in structured JSON file.
    Args:
        task_id: An task ID to fetch.
        
    Returns:
        {
            "task_id": str,
            "sheets": {
                "SheetName1": [ {col1: val1, col2: val2, ...}, ... ],
                ...
            },
            "status": "Success" | "Error"
        }
    """
    url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"

    try:
        response = requests.get(url, timeout=100)
        if response.status_code != 200:
            return {"task_id": task_id, "sheets": {}, "status": f"{response.status_code} - Failed"}

        xls_content = pd.ExcelFile(BytesIO(response.content))
        json_sheets = {}

        for sheet in xls_content.sheet_names:
            df = xls_content.parse(sheet)
            df = df.dropna(how="all")  
            rows = df.head(20).to_dict(orient="records")
            json_sheets[sheet] = rows

        return {
            "task_id": task_id,
            "sheets": json_sheets,
            "status": "Success"
        }

    except Exception as e:
        return {
            "task_id": task_id,
            "sheets": {},
            "status": f"Error in parsing Excel file: {str(e)}"
        }



class VideoTranscriptionTool(Tool):
    """Fetch transcripts from YouTube videos"""
    name = "transcript_video"
    description = "Fetch text transcript from YouTube movies with optional timestamps"
    inputs = {
        "url": {"type": "string", "description": "YouTube video URL or ID"},
        "include_timestamps": {"type": "boolean", "description": "If timestamps should be included in output", "nullable": True}
    }
    output_type = "string"

    def forward(self, url: str, include_timestamps: bool = False) -> str:

        if "youtube.com/watch" in url:
            video_id = url.split("v=")[1].split("&")[0]
        elif "youtu.be/" in url:
            video_id = url.split("youtu.be/")[1].split("?")[0]
        elif len(url.strip()) == 11:  # Direct ID
            video_id = url.strip()
        else:
            return f"YouTube URL or ID: {url} is invalid!"

        try:
            transcription = YouTubeTranscriptApi.get_transcript(video_id)

            if include_timestamps:
                formatted_transcription = []
                for part in transcription:
                    timestamp = f"{int(part['start']//60)}:{int(part['start']%60):02d}"
                    formatted_transcription.append(f"[{timestamp}] {part['text']}")
                return "\n".join(formatted_transcription)
            else:
                return " ".join([part['text'] for part in transcription])

        except Exception as e:
            return f"Error in extracting YouTube transcript: {str(e)}"

class BasicAgent:
    def __init__(self):
        token = os.environ.get("HF_API_TOKEN")
        model = HfApiModel(
            temperature=0.1,
            token=token
        )

        # Existing tools
        search_tool = DuckDuckGoSearchTool()
        wiki_search_tool = WikiSearchTool()
        str_reverse_tool = StringReverseTool()
        keywords_extract_tool = KeywordsExtractorTool()
        speech_to_text_tool = SpeechToTextTool()
        visit_webpage_tool = VisitWebpageTool()
        final_answer_tool = FinalAnswerTool()
        video_transcription_tool = VideoTranscriptionTool()

        # ✅ New Llama Tool
        code_llama_tool = CodeLlamaTool()
        arxiv_search_tool = ArxivSearchTool()
        doc_qa_tool = HuggingFaceDocumentQATool()
        image_qa_tool = HuggingFaceImageQATool()
        translation_tool = HuggingFaceTranslationTool()
        python_tool = PythonCodeExecutionTool()

        system_prompt = f"""
You are my general AI assistant. Your primary goal is to answer the user's question accurately and concisely.

Here's a detailed plan for answering:
1. **Understand the Question:** Carefully parse the question to identify key entities, relationships, and the type of information requested.
2. **Reasoning Steps (Chain-of-Thought):** Before attempting to answer, outline a step-by-step reasoning process. This helps in breaking down complex questions.
3. **Tool Selection and Usage:** Based on your reasoning, select the most appropriate tool(s) to gather information or perform operations.
   - Use `search_tool` (DuckDuckGoSearchTool) for general web searches.
   - Use `wiki_search_tool` for encyclopedic knowledge.
   - Use `arxiv_search_tool` for scientific papers.
   - Use `visit_webpage_tool` to read content from URLs found via search.
   - Use `doc_qa_tool` for answering questions about specific documents (if provided).
   - Use `image_qa_tool` for questions about images.
   - Use `translation_tool` for language translation.
   - Use `python_tool` or `code_llama_tool` for code generation, execution, or complex calculations/data manipulation.
   - Use `keywords_extract_tool` to identify important terms from text.
   - Use `str_reverse_tool` for string manipulation if needed (less common for Q&A).
   - Use `speech_to_text_tool` or `video_transcription_tool` if audio/video input is part of the question.
   - Use `parse_excel_to_json` if the question involves data from Excel.
4. **Information Synthesis:** Combine and process the information obtained from tools. Cross-reference if necessary to ensure accuracy.
5. **Formulate Final Answer:** Construct the final answer according to the specified format.

**Final Answer Format:**
Return your final answer in a single line, formatted as follows: "FINAL ANSWER: [YOUR FINAL ANSWER]".
[YOUR FINAL ANSWER] should be a number, a string, or a comma-separated list of numbers and/or strings, depending on the question.
- If the answer is a number, do not use commas or units (e.g., $, %) unless explicitly specified in the question.
- If the answer is a string, do not use articles (a, an, the) or common abbreviations (e.g., "NY" for "New York") unless specified. Write digits in plain text unless specified.
- If the answer is a comma-separated list, apply the above rules for each element based on whether it is a number or a string.
- If you cannot find a definitive answer, state "FINAL ANSWER: I don't know."

Let's think step by step.
"""
        self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + system_prompt

        self.agent = CodeAgent(
            model=model,
            tools=[
                search_tool, wiki_search_tool, str_reverse_tool,
                keywords_extract_tool, speech_to_text_tool,
                visit_webpage_tool, final_answer_tool,
                parse_excel_to_json, video_transcription_tool,
                arxiv_search_tool,
                doc_qa_tool, image_qa_tool,
                translation_tool, python_tool, 
                code_llama_tool  # 🔧 Add here
            ],
            add_base_tools=True
        )
        self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + system_prompt

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        answer = self.agent.run(question)
        print(f"Agent returning answer: {answer}")
        return answer


def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)