Spaces:
Running
Running
# agent.py | |
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.document_loaders import ArxivLoader | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain.tools.retriever import create_retriever_tool | |
from supabase.client import Client, create_client | |
from sentence_transformers import SentenceTransformer | |
from langchain.embeddings.base import Embeddings | |
from typing import List | |
import numpy as np | |
import pandas as pd | |
import uuid | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.schema import Document | |
from langchain.agents import create_retriever_tool | |
from sentence_transformers import SentenceTransformer | |
load_dotenv() | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a - b | |
def divide(a: int, b: int) -> int: | |
"""Divide two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Get the modulus of two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a % b | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a query and return maximum 2 results. | |
Args: | |
query: The search query.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"wiki_results": formatted_search_docs} | |
def web_search(query: str) -> str: | |
"""Search Tavily for a query and return maximum 3 results. | |
Args: | |
query: The search query.""" | |
search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"web_results": formatted_search_docs} | |
def arvix_search(query: str) -> str: | |
"""Search Arxiv for a query and return maximum 3 result. | |
Args: | |
query: The search query.""" | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"arvix_results": formatted_search_docs} | |
# load the system prompt from the file | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# System message | |
sys_msg = SystemMessage(content=system_prompt) | |
# ------------------------------- | |
# Step 1: Load documents from CSV file (max 165 rows) | |
# ------------------------------- | |
csv_file_path = "/home/wendy/Downloads/documents.csv" # Replace with your actual file path | |
df = pd.read_csv(csv_file_path).head(165) | |
# Check if 'content' column exists | |
assert 'content' in df.columns, "'content' column is required in the CSV file." | |
# Add 'id' and 'metadata' column | |
df['id'] = [str(uuid.uuid4()) for _ in range(len(df))] | |
if 'metadata' not in df.columns: | |
df['metadata'] = [{} for _ in range(len(df))] | |
else: | |
# If metadata is a JSON string, convert it to dict | |
import json | |
df['metadata'] = df['metadata'].apply(lambda x: json.loads(x) if isinstance(x, str) else x) | |
# Convert each row into a Document | |
docs = [ | |
Document(page_content=row['content'], metadata={'id': row['id'], **row['metadata']}) | |
for _, row in df.iterrows() | |
] | |
# ------------------------------- | |
# Step 2: Set up HuggingFace Embeddings and FAISS VectorStore | |
# ------------------------------- | |
# Initialize HuggingFace Embedding model | |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
# Create FAISS VectorStore from documents | |
vector_store = FAISS.from_documents(docs, embedding_model) | |
# Save the FAISS index locally | |
vector_store.save_local("faiss_index") | |
#print("✅ FAISS index created and saved locally.") | |
# ------------------------------- | |
# Step 3: Create Retriever Tool (for use in LangChain) | |
# ------------------------------- | |
retriever = vector_store.as_retriever() | |
# Create the retriever tool | |
question_retriever_tool = create_retriever_tool( | |
retriever=retriever, | |
name="Question_Search", | |
description="A tool to retrieve documents related to a user's question." | |
) | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
wiki_search, | |
web_search, | |
arvix_search, | |
] | |
# Build graph function | |
def build_graph(provider: str = "google"): | |
"""Build the graph""" | |
# Load environment variables from .env file | |
if provider == "google": | |
# Google Gemini | |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
elif provider == "groq": | |
# Groq https://console.groq.com/docs/models | |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it | |
elif provider == "huggingface": | |
# TODO: Add huggingface endpoint | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", | |
temperature=0, | |
), | |
) | |
else: | |
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
# Bind tools to LLM | |
llm_with_tools = llm.bind_tools(tools) | |
# Node | |
def assistant(state: MessagesState): | |
"""Assistant node""" | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
def retriever(state: MessagesState): | |
"""Retriever node""" | |
similar_question = vector_store.similarity_search(state["messages"][0].content) | |
example_msg = HumanMessage( | |
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", | |
) | |
return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.add_edge(START, "retriever") | |
builder.add_edge("retriever", "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
tools_condition, | |
) | |
builder.add_edge("tools", "assistant") | |
# Compile graph | |
return builder.compile() | |