Spaces:
Running
Running
File size: 7,695 Bytes
1dfef0f 26f5620 03aebad 836d49c 26f5620 cd8de6f 26f5620 cd8de6f 26f5620 b0eca46 26f5620 87c8549 16c9822 037cb93 aaf11bc 9b810cb aaf11bc 9b810cb aaf11bc 03aebad 26f5620 037cb93 26f5620 037cb93 26f5620 7240bca 26f5620 7240bca 26f5620 7240bca 26f5620 1dfef0f 26f5620 9af2eae 26f5620 7240bca 26f5620 1dfef0f 26f5620 70f8384 9b810cb aaf11bc 9b810cb aaf11bc 9b810cb aaf11bc 9b810cb aaf11bc 9b810cb aaf11bc 9b810cb aaf11bc 9b810cb aaf11bc 9b810cb aaf11bc 9b810cb 1466462 aaf11bc 9b810cb aaf11bc 7ef81f0 45e2eff 94e7570 9b810cb 26f5620 bfee30e 26f5620 7240bca 26f5620 a52ceb6 26f5620 a1fdb15 26f5620 e844a7f a1fdb15 26f5620 cd8de6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# agent.py
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
from sentence_transformers import SentenceTransformer
from langchain.embeddings.base import Embeddings
from typing import List
import numpy as np
import pandas as pd
import uuid
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document
from langchain.agents import create_retriever_tool
from sentence_transformers import SentenceTransformer
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# -------------------------------
# Step 1: Load documents from CSV file (max 165 rows)
# -------------------------------
csv_file_path = "/home/wendy/Downloads/documents.csv" # Replace with your actual file path
df = pd.read_csv(csv_file_path).head(165)
# Check if 'content' column exists
assert 'content' in df.columns, "'content' column is required in the CSV file."
# Add 'id' and 'metadata' column
df['id'] = [str(uuid.uuid4()) for _ in range(len(df))]
if 'metadata' not in df.columns:
df['metadata'] = [{} for _ in range(len(df))]
else:
# If metadata is a JSON string, convert it to dict
import json
df['metadata'] = df['metadata'].apply(lambda x: json.loads(x) if isinstance(x, str) else x)
# Convert each row into a Document
docs = [
Document(page_content=row['content'], metadata={'id': row['id'], **row['metadata']})
for _, row in df.iterrows()
]
# -------------------------------
# Step 2: Set up HuggingFace Embeddings and FAISS VectorStore
# -------------------------------
# Initialize HuggingFace Embedding model
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
# Create FAISS VectorStore from documents
vector_store = FAISS.from_documents(docs, embedding_model)
# Save the FAISS index locally
vector_store.save_local("faiss_index")
#print("✅ FAISS index created and saved locally.")
# -------------------------------
# Step 3: Create Retriever Tool (for use in LangChain)
# -------------------------------
retriever = vector_store.as_retriever()
# Create the retriever tool
question_retriever_tool = create_retriever_tool(
retriever=retriever,
name="Question_Search",
description="A tool to retrieve documents related to a user's question."
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
# Build graph function
def build_graph(provider: str = "google"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
# Groq https://console.groq.com/docs/models
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "huggingface":
# TODO: Add huggingface endpoint
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
|