Spaces:
Sleeping
Sleeping
File size: 11,127 Bytes
bc6cd18 bdfc440 bc6cd18 43b1849 bc6cd18 43b1849 bc6cd18 a85a496 bc6cd18 43b1849 bc6cd18 66be7dd 8ece6c4 bc6cd18 66be7dd bc6cd18 66be7dd bc6cd18 8193bd7 66be7dd 8ece6c4 66be7dd bdfc440 af85bba bdfc440 8ece6c4 66be7dd 8ece6c4 ac01980 8ece6c4 8193bd7 8ece6c4 8193bd7 8ece6c4 8193bd7 8ece6c4 43b1849 bc6cd18 af85bba 66be7dd bc6cd18 2d88615 66be7dd 2d88615 8ece6c4 2d88615 ac01980 66be7dd ac01980 5bacccd 6c1d7d9 66be7dd a4166cb c985904 ee953c5 66be7dd 23838aa ee953c5 6c1d7d9 8ece6c4 0f6f202 8ece6c4 371a532 c985904 8ece6c4 c985904 8ece6c4 0f6f202 c985904 8ece6c4 23838aa c985904 bdfc440 8ece6c4 c985904 8ece6c4 af85bba 8ece6c4 af85bba 8ece6c4 af85bba 2f9f7a7 ac01980 d77f034 bc6cd18 8ece6c4 a711e94 bdfc440 8ece6c4 a711e94 2d88615 d77f034 2d88615 66be7dd 7838f2e bc6cd18 2d88615 d77f034 8ece6c4 2d88615 d77f034 66be7dd d77f034 6c1d7d9 a711e94 bc6cd18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
import json
import random
import shutil
import tempfile
import time
from urllib.parse import urlparse
import cv2
import numpy as np
from PIL import Image
import gradio as gr
from roboflow import Roboflow
def parse_roboflow_url(url: str):
parsed = urlparse(url)
parts = parsed.path.strip('/').split('/')
workspace = parts[0]
project = parts[1]
try:
version = int(parts[-1])
except ValueError:
version = int(parts[-2])
return workspace, project, version
def convert_seg_to_bbox(api_key: str, dataset_url: str):
"""
1) Download segmentation dataset from Roboflow
2) Detect JSON‑vs‑mask export
3) Convert each mask/polygon to its bounding box (YOLO format)
4) Preserve original train/valid/test splits
5) Return before/after visuals + (dataset_path, detection_slug)
"""
rf = Roboflow(api_key=api_key)
ws, proj_name, ver = parse_roboflow_url(dataset_url)
version_obj = rf.workspace(ws).project(proj_name).version(ver)
dataset = version_obj.download("coco-segmentation")
root = dataset.location
# scan for any .json files
all_json = []
for dp, _, files in os.walk(root):
for f in files:
if f.lower().endswith(".json"):
all_json.append(os.path.join(dp, f))
if len(all_json) >= 3 and any("train" in os.path.basename(p).lower() for p in all_json):
# --- COCO‑JSON export branch ---
# locate train/valid/test JSONs
json_splits = {}
for path in all_json:
fn = os.path.basename(path).lower()
if "train" in fn:
json_splits["train"] = path
elif "val" in fn or "valid" in fn:
json_splits["valid"] = path
elif "test" in fn:
json_splits["test"] = path
if any(s not in json_splits for s in ("train", "valid", "test")):
raise RuntimeError(f"Missing one of train/valid/test JSONs: {json_splits}")
# build category → index from train.json
train_coco = json.load(open(json_splits["train"], "r"))
cat_ids = sorted(c["id"] for c in train_coco.get("categories", []))
id2idx = {cid: i for i, cid in enumerate(cat_ids)}
# aggregate images_info & annotations
images_info = {}
annos = {}
for split, jf in json_splits.items():
coco = json.load(open(jf, "r"))
for img in coco["images"]:
images_info[img["id"]] = img
for a in coco["annotations"]:
xs = a["segmentation"][0][0::2]
ys = a["segmentation"][0][1::2]
xmin, xmax = min(xs), max(xs)
ymin, ymax = min(ys), max(ys)
w, h = xmax - xmin, ymax - ymin
cx, cy = xmin + w/2, ymin + h/2
iw = images_info[a["image_id"]]["width"]
ih = images_info[a["image_id"]]["height"]
line = (
f"{id2idx[a['category_id']]} "
f"{cx/iw:.6f} {cy/ih:.6f} {w/iw:.6f} {h/ih:.6f}"
)
annos.setdefault(a["image_id"], []).append(line)
# build filename → path map
name2id = {img["file_name"]: img["id"] for img in images_info.values()}
filemap = {
f: os.path.join(dp, f)
for dp, _, files in os.walk(root)
for f in files
if f in name2id
}
# write out per‑split folders
out_root = tempfile.mkdtemp(prefix="yolov8_")
for split in ("train", "valid", "test"):
coco = json.load(open(json_splits[split], "r"))
img_dir = os.path.join(out_root, split, "images")
lbl_dir = os.path.join(out_root, split, "labels")
os.makedirs(img_dir, exist_ok=True)
os.makedirs(lbl_dir, exist_ok=True)
for img in coco["images"]:
fn = img["file_name"]
src = filemap[fn]
dst = os.path.join(img_dir, fn)
txtp = os.path.join(lbl_dir, fn.rsplit(".", 1)[0] + ".txt")
shutil.copy(src, dst)
with open(txtp, "w") as f:
f.write("\n".join(annos.get(img["id"], [])))
else:
# --- Segmentation‐Masks export branch ---
splits = ["train", "valid", "test"]
# detect masks subfolder name
mask_names = ("masks", "mask", "labels")
out_root = tempfile.mkdtemp(prefix="yolov8_")
for split in splits:
img_dir_src = os.path.join(root, split, "images")
# find which subdir holds the PNG masks
mdir = None
for m in mask_names:
candidate = os.path.join(root, split, m)
if os.path.isdir(candidate):
mdir = candidate
break
if mdir is None:
raise RuntimeError(f"No masks folder found under {split}/ (checked {mask_names})")
img_dir_dst = os.path.join(out_root, split, "images")
lbl_dir_dst = os.path.join(out_root, split, "labels")
os.makedirs(img_dir_dst, exist_ok=True)
os.makedirs(lbl_dir_dst, exist_ok=True)
for fn in os.listdir(img_dir_src):
if not fn.lower().endswith((".jpg", ".png")):
continue
src_img = os.path.join(img_dir_src, fn)
src_mask = os.path.join(mdir, fn)
img = cv2.imread(src_img)
h, w = img.shape[:2]
# read mask & binarize
mask = cv2.imread(src_mask, cv2.IMREAD_GRAYSCALE)
_, binm = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
ys, xs = np.nonzero(binm)
if len(xs) == 0:
lines = []
else:
xmin, xmax = xs.min(), xs.max()
ymin, ymax = ys.min(), ys.max()
bw, bh = xmax - xmin, ymax - ymin
cx, cy = xmin + bw/2, ymin + bh/2
# assume single class → index 0
lines = [f"0 {cx/w:.6f} {cy/h:.6f} {bw/w:.6f} {bh/h:.6f}"]
# copy image + write YOLO text
dst_img = os.path.join(img_dir_dst, fn)
dst_txt = os.path.join(lbl_dir_dst, fn.rsplit(".",1)[0] + ".txt")
shutil.copy(src_img, dst_img)
with open(dst_txt, "w") as f:
f.write("\n".join(lines))
# --- prepare before/after galleries (random sample across out_root) ---
before, after = [], []
all_imgs = []
for split in ("train","valid","test"):
for fn in os.listdir(os.path.join(out_root, split, "images")):
path = os.path.join(out_root, split, "images", fn)
all_imgs.append(path)
sample = random.sample(all_imgs, min(5, len(all_imgs)))
for img_path in sample:
fn = os.path.basename(img_path)
img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
# draw mask outline if available (JSON branch) else read mask again
seg_vis = img.copy()
box_vis = img.copy()
# overlay all .txt bboxes
txtp = img_path.replace("/images/", "/labels/").rsplit(".",1)[0] + ".txt"
w, h = img.shape[1], img.shape[0]
for line in open(txtp):
_, cxn, cyn, wnorm, hnorm = map(float, line.split())
bw, bh = int(wnorm * w), int(hnorm * h)
x0 = int(cxn * w - bw/2)
y0 = int(cyn * h - bh/2)
cv2.rectangle(box_vis, (x0,y0), (x0+bw, y0+bh), (0,255,0), 2)
before.append(Image.fromarray(seg_vis))
after.append(Image.fromarray(box_vis))
detection_slug = proj_name + "-detection"
return before, after, out_root, detection_slug
def upload_and_train_detection(
api_key: str,
detection_slug: str,
dataset_path: str,
project_license: str = "MIT",
project_type: str = "object-detection"
):
rf = Roboflow(api_key=api_key)
ws = rf.workspace()
# get or create project
try:
proj = ws.project(detection_slug)
except Exception as e:
if "does not exist" in str(e).lower():
proj = ws.create_project(
detection_slug,
annotation=project_type,
project_type=project_type,
project_license=project_license
)
else:
raise
# upload and kick off train
_, real_slug = proj.id.rsplit("/", 1)
ws.upload_dataset(dataset_path, real_slug,
project_license=project_license,
project_type=project_type)
try:
version_num = proj.generate_version(settings={"augmentation":{}, "preprocessing":{}})
except RuntimeError as e:
msg = str(e).lower()
if "unsupported request" in msg or "does not exist" in msg:
# slug bump fallback
new_slug = real_slug + "-v2"
proj = ws.create_project(
new_slug, annotation=project_type,
project_type=project_type,
project_license=project_license
)
ws.upload_dataset(dataset_path, new_slug,
project_license=project_license,
project_type=project_type)
version_num = proj.generate_version(settings={"augmentation":{}, "preprocessing":{}})
else:
raise
# wait for generation then train
for _ in range(20):
try:
model = proj.version(str(version_num)).train()
break
except RuntimeError as e:
if "still generating" in str(e).lower():
time.sleep(5)
continue
else:
raise
else:
raise RuntimeError("Version generation timed out, try again later.")
return f"{model['base_url']}{model['id']}?api_key={api_key}"
# --- Gradio UI ---
with gr.Blocks() as app:
gr.Markdown("## 🔄 Seg→BBox + Auto‑Upload/Train")
api_input = gr.Textbox(label="Roboflow API Key", type="password")
url_input = gr.Textbox(label="Segmentation Dataset URL")
run_btn = gr.Button("Convert to BBoxes")
before_g = gr.Gallery(columns=5, label="Before")
after_g = gr.Gallery(columns=5, label="After")
ds_state = gr.Textbox(visible=False, label="Dataset Path")
slug_state= gr.Textbox(visible=False, label="Detection Slug")
run_btn.click(
convert_seg_to_bbox,
inputs=[api_input, url_input],
outputs=[before_g, after_g, ds_state, slug_state]
)
gr.Markdown("## 🚀 Upload & Train Detection Model")
train_btn = gr.Button("Upload & Train")
url_out = gr.Textbox(label="Hosted Model URL")
train_btn.click(
upload_and_train_detection,
inputs=[api_input, slug_state, ds_state],
outputs=[url_out]
)
if __name__ == "__main__":
app.launch()
|