File size: 7,192 Bytes
5845270
e69d279
 
19bcaa7
aabfbe0
 
e69d279
6894e88
19bcaa7
 
76813dd
19bcaa7
08f5d28
07db937
e69d279
 
07db937
e69d279
 
 
98c7793
 
 
 
 
 
6894e88
98c7793
 
5428aaf
 
98c7793
5428aaf
 
98c7793
5428aaf
 
 
 
 
 
 
 
6894e88
e69d279
 
5428aaf
 
 
98c7793
 
 
 
 
 
 
 
 
5428aaf
 
 
 
 
 
 
 
 
98c7793
 
 
 
 
5428aaf
 
 
98c7793
 
5428aaf
 
 
 
e69d279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aabfbe0
98c7793
 
 
 
76813dd
e69d279
08f5d28
 
e69d279
 
 
aabfbe0
e69d279
 
 
 
 
 
 
 
6894e88
e69d279
08f5d28
 
 
 
 
cbb8f23
 
08f5d28
6894e88
 
 
08f5d28
e69d279
 
6894e88
08f5d28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e69d279
 
 
 
 
 
 
 
aabfbe0
e69d279
aabfbe0
 
e69d279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aabfbe0
 
e69d279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6894e88
 
 
 
 
 
 
 
e69d279
6894e88
e69d279
3114c99
e69d279
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import gradio as gr
import numpy as np
import random
import os
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline
from huggingface_hub import login

hf_token = os.getenv("hf_token")
login(token=hf_token)


dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

try:
    text_gen_pipeline = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=2048, device=device)
except Exception as e:
    text_gen_pipeline = None
    print(f"Error loading text generation model: {e}")

def refine_prompt(prompt):
    if text_gen_pipeline is None:
        return "Text generation model is unavailable."
    try:
        messages = [
            {"role": "system", "content": "You are a product designer. You will get a basic prompt of product request and you need to imagine a new product design to satisfy that need. Produce an extended description of product front view that will be used by Flux to generate a visual"},
            {"role": "user", "content": prompt},
        ]
        refined_prompt = text_gen_pipeline(messages)
        return refined_prompt
    except Exception as e:
        return f"Error refining prompt: {str(e)}"

def validate_dimensions(width, height):
    if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE:
        return False, "Image dimensions too large"
    return True, None

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    try:
        progress(0, desc="Starting generation...")
        
        # Validate that prompt is not empty
        if not prompt or prompt.strip() == "":
            return None, "Please provide a valid prompt."

        # Validate width/height dimensions
        is_valid, error_msg = validate_dimensions(width, height)
        if not is_valid:
            return None, error_msg

        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        
        progress(0.2, desc="Setting up generator...")
        generator = torch.Generator().manual_seed(seed)
        
        progress(0.4, desc="Generating image...")
        with torch.cuda.amp.autocast():
            image = pipe(
                    prompt=prompt, 
                    width=width,
                    height=height,
                    num_inference_steps=num_inference_steps, 
                    generator=generator,
                    guidance_scale=0.0,
                    max_sequence_length=2048
            ).images[0]

        torch.cuda.empty_cache()  # Clean up GPU memory after generation
        progress(1.0, desc="Done!")
        return image, seed
    except Exception as e:
        return None, f"Error generating image: {str(e)}"
 
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    # Compute the model loading status message ahead of creating the Info component.
    model_status = "Models loaded successfully!"

    info = gr.Info(model_status)

    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# Text to Product
        Using Mistral + Flux + Trellis
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            prompt_button = gr.Button("Refine prompt", scale=0)
        
        refined_prompt = gr.Text(
            label="Refined Prompt", 
            show_label=False,
            max_lines=10, 
            placeholder="Prompt refined by Mistral", 
            container=False,
            max_length=2048,
            )
        
        
        run_button = gr.Button("Create visual", scale=0)

        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings Mistral", open=False):
            gr.Slider(
                label="Temperature",
                value=0.9,
                minimum=0.0,
                maximum=1.0,
                step=0.05,
                interactive=True,
                info="Higher values produce more diverse outputs",
            ),
            gr.Slider(
                label="Max new tokens",
                value=256,
                minimum=0,
                maximum=1048,
                step=64,
                interactive=True,
                info="The maximum numbers of new tokens",
            ),
            gr.Slider(
                label="Top-p (nucleus sampling)",
                value=0.90,
                minimum=0.0,
                maximum=1,
                step=0.05,
                interactive=True,
                info="Higher values sample more low-probability tokens",
            ),
            gr.Slider(
                label="Repetition penalty",
                value=1.2,
                minimum=1.0,
                maximum=2.0,
                step=0.05,
                interactive=True,
                info="Penalize repeated tokens",
            )
        
        with gr.Accordion("Advanced Settings Flux", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )


    gr.on(
        triggers=[prompt_button.click, prompt.submit],
        fn = refine_prompt,
        inputs = [prompt],
        outputs = [refined_prompt]
    )

    gr.on(
        triggers=[run_button.click],
        fn = infer,
        inputs = [refined_prompt, seed, randomize_seed, width, height, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()