lionelgarnier
cursor changes 2
98c7793
raw
history blame
7.19 kB
import gradio as gr
import numpy as np
import random
import os
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline
from huggingface_hub import login
hf_token = os.getenv("hf_token")
login(token=hf_token)
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
try:
text_gen_pipeline = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=2048, device=device)
except Exception as e:
text_gen_pipeline = None
print(f"Error loading text generation model: {e}")
def refine_prompt(prompt):
if text_gen_pipeline is None:
return "Text generation model is unavailable."
try:
messages = [
{"role": "system", "content": "You are a product designer. You will get a basic prompt of product request and you need to imagine a new product design to satisfy that need. Produce an extended description of product front view that will be used by Flux to generate a visual"},
{"role": "user", "content": prompt},
]
refined_prompt = text_gen_pipeline(messages)
return refined_prompt
except Exception as e:
return f"Error refining prompt: {str(e)}"
def validate_dimensions(width, height):
if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE:
return False, "Image dimensions too large"
return True, None
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
try:
progress(0, desc="Starting generation...")
# Validate that prompt is not empty
if not prompt or prompt.strip() == "":
return None, "Please provide a valid prompt."
# Validate width/height dimensions
is_valid, error_msg = validate_dimensions(width, height)
if not is_valid:
return None, error_msg
if randomize_seed:
seed = random.randint(0, MAX_SEED)
progress(0.2, desc="Setting up generator...")
generator = torch.Generator().manual_seed(seed)
progress(0.4, desc="Generating image...")
with torch.cuda.amp.autocast():
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
max_sequence_length=2048
).images[0]
torch.cuda.empty_cache() # Clean up GPU memory after generation
progress(1.0, desc="Done!")
return image, seed
except Exception as e:
return None, f"Error generating image: {str(e)}"
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
# Compute the model loading status message ahead of creating the Info component.
model_status = "Models loaded successfully!"
info = gr.Info(model_status)
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Text to Product
Using Mistral + Flux + Trellis
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
prompt_button = gr.Button("Refine prompt", scale=0)
refined_prompt = gr.Text(
label="Refined Prompt",
show_label=False,
max_lines=10,
placeholder="Prompt refined by Mistral",
container=False,
max_length=2048,
)
run_button = gr.Button("Create visual", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings Mistral", open=False):
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Accordion("Advanced Settings Flux", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[prompt_button.click, prompt.submit],
fn = refine_prompt,
inputs = [prompt],
outputs = [refined_prompt]
)
gr.on(
triggers=[run_button.click],
fn = infer,
inputs = [refined_prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [result, seed]
)
demo.launch()