Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import os | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
from transformers import pipeline | |
from huggingface_hub import login | |
hf_token = os.getenv("hf_token") | |
login(token=hf_token) | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
try: | |
text_gen_pipeline = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=2048, device=device) | |
except Exception as e: | |
text_gen_pipeline = None | |
print(f"Error loading text generation model: {e}") | |
def refine_prompt(prompt): | |
if text_gen_pipeline is None: | |
return "Text generation model is unavailable." | |
try: | |
messages = [ | |
{"role": "system", "content": "You are a product designer. You will get a basic prompt of product request and you need to imagine a new product design to satisfy that need. Produce an extended description of product front view that will be used by Flux to generate a visual"}, | |
{"role": "user", "content": prompt}, | |
] | |
refined_prompt = text_gen_pipeline(messages) | |
return refined_prompt | |
except Exception as e: | |
return f"Error refining prompt: {str(e)}" | |
def validate_dimensions(width, height): | |
if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE: | |
return False, "Image dimensions too large" | |
return True, None | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
try: | |
progress(0, desc="Starting generation...") | |
# Validate that prompt is not empty | |
if not prompt or prompt.strip() == "": | |
return None, "Please provide a valid prompt." | |
# Validate width/height dimensions | |
is_valid, error_msg = validate_dimensions(width, height) | |
if not is_valid: | |
return None, error_msg | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
progress(0.2, desc="Setting up generator...") | |
generator = torch.Generator().manual_seed(seed) | |
progress(0.4, desc="Generating image...") | |
with torch.cuda.amp.autocast(): | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0, | |
max_sequence_length=2048 | |
).images[0] | |
torch.cuda.empty_cache() # Clean up GPU memory after generation | |
progress(1.0, desc="Done!") | |
return image, seed | |
except Exception as e: | |
return None, f"Error generating image: {str(e)}" | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
# Compute the model loading status message ahead of creating the Info component. | |
model_status = "Models loaded successfully!" | |
info = gr.Info(model_status) | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# Text to Product | |
Using Mistral + Flux + Trellis | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
prompt_button = gr.Button("Refine prompt", scale=0) | |
refined_prompt = gr.Text( | |
label="Refined Prompt", | |
show_label=False, | |
max_lines=10, | |
placeholder="Prompt refined by Mistral", | |
container=False, | |
max_length=2048, | |
) | |
run_button = gr.Button("Create visual", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings Mistral", open=False): | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
with gr.Accordion("Advanced Settings Flux", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
gr.Examples( | |
examples = examples, | |
fn = infer, | |
inputs = [prompt], | |
outputs = [result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[prompt_button.click, prompt.submit], | |
fn = refine_prompt, | |
inputs = [prompt], | |
outputs = [refined_prompt] | |
) | |
gr.on( | |
triggers=[run_button.click], | |
fn = infer, | |
inputs = [refined_prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.launch() |