File size: 23,073 Bytes
6a2aeb0
 
 
 
 
 
ecb4e3d
737fe0e
 
 
 
 
 
 
 
 
ecb4e3d
737fe0e
 
 
 
6a2aeb0
 
 
0d32a9e
737fe0e
 
6a2aeb0
e4abfe8
737fe0e
 
ecb4e3d
 
 
0d32a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737fe0e
 
 
 
 
 
ecb4e3d
737fe0e
 
 
 
 
 
 
 
 
 
 
 
ecb4e3d
737fe0e
 
 
ecb4e3d
737fe0e
ecb4e3d
737fe0e
 
 
 
 
 
6a2aeb0
ecb4e3d
 
 
737fe0e
ecb4e3d
737fe0e
ecb4e3d
737fe0e
ecb4e3d
737fe0e
ecb4e3d
737fe0e
 
ecb4e3d
737fe0e
ecb4e3d
737fe0e
 
 
ecb4e3d
737fe0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecb4e3d
737fe0e
 
 
 
 
 
 
 
 
 
 
 
 
 
865c342
ecb4e3d
737fe0e
 
0d32a9e
737fe0e
 
 
ecb4e3d
737fe0e
ebc1313
737fe0e
 
ebc1313
ecb4e3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737fe0e
ecb4e3d
737fe0e
0d32a9e
 
 
737fe0e
 
0d32a9e
 
737fe0e
0d32a9e
737fe0e
 
 
 
 
 
 
6a2aeb0
ecb4e3d
737fe0e
6a2aeb0
 
 
 
737fe0e
 
 
 
 
 
ecb4e3d
737fe0e
865c342
6a2aeb0
737fe0e
 
0d32a9e
 
 
 
 
 
 
 
6a2aeb0
 
 
 
737fe0e
6a2aeb0
737fe0e
 
6a2aeb0
ecb4e3d
737fe0e
 
 
 
 
 
 
 
ecb4e3d
6a2aeb0
737fe0e
ecb4e3d
6a2aeb0
 
737fe0e
6a2aeb0
737fe0e
0d32a9e
 
737fe0e
6a2aeb0
 
ecb4e3d
737fe0e
 
 
 
6a2aeb0
737fe0e
6a2aeb0
737fe0e
 
6a2aeb0
 
 
0d32a9e
 
 
 
 
 
 
 
 
 
 
 
ebc1313
737fe0e
ecb4e3d
0d32a9e
737fe0e
 
 
 
 
 
 
 
 
0d32a9e
737fe0e
ecb4e3d
737fe0e
 
 
 
 
0d32a9e
 
 
737fe0e
 
 
0d32a9e
737fe0e
0d32a9e
 
 
737fe0e
0d32a9e
 
737fe0e
0d32a9e
af37df4
737fe0e
ecb4e3d
737fe0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d32a9e
737fe0e
 
0d32a9e
 
 
737fe0e
 
0d32a9e
 
 
737fe0e
 
 
0d32a9e
737fe0e
0d32a9e
 
 
737fe0e
0d32a9e
 
737fe0e
0d32a9e
737fe0e
ecb4e3d
865c342
737fe0e
0d32a9e
737fe0e
0d32a9e
 
 
 
 
 
 
 
 
 
 
 
 
ecb4e3d
0d32a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737fe0e
0d32a9e
 
 
 
 
 
 
 
 
 
af37df4
ecb4e3d
737fe0e
 
 
 
 
 
 
 
 
 
 
 
ecb4e3d
 
737fe0e
 
6a2aeb0
 
865c342
 
737fe0e
 
 
 
 
 
 
 
 
 
 
 
 
ecb4e3d
737fe0e
865c342
737fe0e
865c342
737fe0e
 
 
 
 
 
 
 
 
 
 
 
 
 
0d32a9e
e4abfe8
 
 
b8312c7
e4abfe8
737fe0e
 
 
ecb4e3d
 
737fe0e
 
 
6a2aeb0
 
 
865c342
737fe0e
ecb4e3d
6a2aeb0
ec14f23
6a2aeb0
ecb4e3d
865c342
 
737fe0e
 
0d32a9e
865c342
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import re
import requests
import pandas as pd
import torch
import gradio as gr
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from typing import List, Dict, Any, Tuple, Optional
import json
import ast
import numpy as np
from PIL import Image, UnidentifiedImageError
import io
import base64
import logging
import time
import sys

# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("GAIA-Mastermind")

# Конфигурация
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MODEL_NAME = "google/flan-t5-large"  # Упрощенная модель для CPU
API_RETRIES = 3
API_TIMEOUT = 45

# === ЯДРО СИСТЕМЫ ===
class GAIAThoughtProcessor:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        logger.info(f"⚡ Инициализация GAIAThoughtProcessor на {self.device.upper()}")
        
        try:
            # Оптимизированная загрузка модели
            self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
            self.model = AutoModelForSeq2SeqLM.from_pretrained(
                MODEL_NAME,
                device_map="auto" if torch.cuda.is_available() else None,
                torch_dtype=torch.float16 if "cuda" in self.device else torch.float32,
                low_cpu_mem_usage=True
            ).eval()
            
            # Создаем пайплайн для генерации текста
            self.text_generator = pipeline(
                "text2text-generation",
                model=self.model,
                tokenizer=self.tokenizer,
                device=self.device,
                max_new_tokens=256
            )
            
            logger.info("✅ GAIAThoughtProcessor готов")
        except Exception as e:
            logger.exception("Ошибка инициализации модели")
            raise RuntimeError(f"Ошибка инициализации: {str(e)}")

    def _math_solver(self, expression: str) -> str:
        """Безопасное вычисление математических выражений"""
        try:
            # Очистка выражения
            clean_expr = re.sub(r"[^0-9+\-*/().^√π]", "", expression)
            # Поддержка математических функций
            context = {
                "sqrt": np.sqrt,
                "log": np.log,
                "log10": np.log10,
                "pi": np.pi,
                "e": np.e,
                "sin": np.sin,
                "cos": np.cos,
                "tan": np.tan
            }
            return str(eval(clean_expr, {"__builtins__": None}, context))
        except Exception as e:
            logger.error(f"Math error: {e}")
            return f"Math Error: {str(e)}"

    def _table_analyzer(self, table_data: str, query: str) -> str:
        """Анализ табличных данных"""
        try:
            # Автоопределение формата таблицы
            if "\t" in table_data:
                df = pd.read_csv(io.StringIO(table_data), sep="\t")
            elif "," in table_data:
                df = pd.read_csv(io.StringIO(table_data))
            else:
                df = pd.read_fwf(io.StringIO(table_data))
            
            # Выполнение запросов
            query = query.lower()
            if "sum" in query:
                return str(df.sum(numeric_only=True).to_dict())
            elif "mean" in query:
                return str(df.mean(numeric_only=True).to_dict())
            elif "max" in query:
                return str(df.max(numeric_only=True).to_dict())
            elif "min" in query:
                return str(df.min(numeric_only=True).to_dict())
            elif "count" in query:
                return str(df.count().to_dict())
            else:
                return df.describe().to_string()
        except Exception as e:
            logger.error(f"Table error: {e}")
            return f"Table Error: {str(e)}"

    def _text_processor(self, text: str, operation: str) -> str:
        """Операции с текстом"""
        operation = operation.lower()
        if operation == "reverse":
            return text[::-1]
        elif operation == "count_words":
            return str(len(text.split()))
        elif operation == "extract_numbers":
            return ", ".join(re.findall(r"[-+]?\d*\.\d+|\d+", text))
        elif operation == "uppercase":
            return text.upper()
        elif operation == "lowercase":
            return text.lower()
        else:
            return f"Unsupported operation: {operation}"

    def _image_processor(self, image_input: str) -> str:
        """Обработка изображений"""
        try:
            # Обработка URL
            if image_input.startswith("http"):
                response = requests.get(image_input, timeout=30)
                response.raise_for_status()
                img_data = response.content
                img = Image.open(io.BytesIO(img_data))
            # Обработка base64
            elif image_input.startswith("data:image"):
                header, data = image_input.split(",", 1)
                img_data = base64.b64decode(data)
                img = Image.open(io.BytesIO(img_data))
            else:
                return "Invalid image format"
            
            # Базовый анализ изображения
            description = (
                f"Format: {img.format}, Size: {img.size}, "
                f"Mode: {img.mode}"
            )
            return description
        except (UnidentifiedImageError, requests.exceptions.RequestException) as e:
            logger.error(f"Image processing error: {e}")
            return f"Image Error: {str(e)}"
        except Exception as e:
            logger.exception("Unexpected image error")
            return f"Unexpected Error: {str(e)}"

    def _call_tool(self, tool_name: str, arguments: str) -> str:
        """Вызов инструмента по имени"""
        try:
            # Парсинг аргументов
            args = [a.strip() for a in arguments.split(",")]
            
            if tool_name == "math_solver":
                return self._math_solver(args[0])
            elif tool_name == "table_analyzer":
                return self._table_analyzer(args[0], args[1])
            elif tool_name == "text_processor":
                return self._text_processor(args[0], args[1])
            elif tool_name == "image_processor":
                return self._image_processor(args[0])
            else:
                return f"Unknown tool: {tool_name}"
        except Exception as e:
            return f"Tool Error: {str(e)}"

    def _generate_response(self, prompt: str) -> str:
        """Генерация ответа с помощью модели"""
        try:
            result = self.text_generator(
                prompt,
                max_new_tokens=256,
                num_beams=3,
                early_stopping=True,
                temperature=0.01
            )
            return result[0]['generated_text']
        except Exception as e:
            logger.error(f"Generation error: {e}")
            return f"Generation Error: {str(e)}"
        finally:
            # Очистка памяти GPU
            if "cuda" in self.device:
                torch.cuda.empty_cache()

    def process_question(self, question: str, task_id: str) -> str:
        """Обработка вопроса с декомпозицией на шаги"""
        try:
            # Упрощенный промпт для CPU
            prompt = f"Реши задачу шаг за шагом: {question}\n\nФинальный ответ:"
            response = self._generate_response(prompt)
            
            # Извлечение чистого ответа
            if "final_answer" in response:
                return json.dumps({"final_answer": response})
            else:
                return json.dumps({"final_answer": response.strip()})
        except Exception as e:
            logger.exception("Processing failed")
            return json.dumps({
                "task_id": task_id,
                "error": str(e),
                "final_answer": f"SYSTEM ERROR: {str(e)}"
            })

# === СИСТЕМА ОЦЕНКИ ===
class GAIAEvaluationRunner:
    def __init__(self, api_url: str = DEFAULT_API_URL):
        self.api_url = api_url
        self.questions_url = f"{api_url}/questions"
        self.submit_url = f"{api_url}/submit"
        self.session = requests.Session()
        self.session.headers.update({
            "Accept": "application/json",
            "User-Agent": "GAIA-Mastermind/1.0",
            "Content-Type": "application/json"
        })
        logger.info(f"🌐 Инициализирован GAIAEvaluationRunner для {api_url}")

    def run_evaluation(self, agent, username: str, agent_code: str, progress=tqdm):
        # Получение вопросов
        questions, status = self._fetch_questions()
        if status != "success":
            # Возвращаем ошибку в понятном формате
            error_df = pd.DataFrame([{
                "Task ID": "ERROR",
                "Question": status,
                "Answer": "Не удалось получить вопросы",
                "Status": "Failed"
            }])
            return status, 0, 0, error_df
        
        # Обработка вопросов
        results = []
        answers = []
        for i, q in enumerate(progress(questions, desc="🧠 Processing GAIA")):
            try:
                task_id = q.get("task_id", f"unknown_{i}")
                json_response = agent.process_question(q["question"], task_id)
                
                # Парсинг ответа
                try:
                    response_obj = json.loads(json_response)
                    final_answer = response_obj.get("final_answer", "")
                    if not isinstance(final_answer, str):
                        final_answer = str(final_answer)
                except json.JSONDecodeError:
                    final_answer = json_response
                
                # Формирование ответа для GAIA API
                answers.append({
                    "task_id": task_id,
                    "answer": final_answer[:500]  # Ограничение длины
                })
                
                # Запись результатов
                results.append({
                    "Task ID": task_id,
                    "Question": q["question"][:100] + "..." if len(q["question"]) > 100 else q["question"],
                    "Answer": final_answer[:100] + "..." if len(final_answer) > 100 else final_answer,
                    "Status": "Processed"
                })
            except Exception as e:
                logger.error(f"Task {task_id} failed: {e}")
                answers.append({
                    "task_id": task_id,
                    "answer": f"ERROR: {str(e)}"
                })
                results.append({
                    "Task ID": task_id,
                    "Question": "Error",
                    "Answer": f"ERROR: {str(e)}",
                    "Status": "Failed"
                })
        
        # Отправка ответов
        try:
            submission_result, score = self._submit_answers(username, agent_code, answers)
            return submission_result, score, len(questions), pd.DataFrame(results)
        except Exception as e:
            error_message = f"Ошибка отправки: {str(e)}"
            results.append({
                "Task ID": "SUBMIT_ERROR",
                "Question": error_message,
                "Answer": "",
                "Status": "Failed"
            })
            return error_message, 0, len(questions), pd.DataFrame(results)

    def _fetch_questions(self) -> Tuple[list, str]:
        """Получение вопросов с API"""
        for attempt in range(API_RETRIES):
            try:
                response = self.session.get(
                    self.questions_url,
                    timeout=API_TIMEOUT
                )
                
                if response.status_code == 200:
                    questions = response.json()
                    if not isinstance(questions, list):
                        return [], f"Неверный формат ответа: ожидался список, получен {type(questions)}"
                    
                    # Добавление task_id если отсутствует
                    for q in questions:
                        q.setdefault("task_id", f"id_{hash(q['question']) % 100000}")
                    return questions, "success"
                
                elif response.status_code == 429:
                    wait_time = 2 ** attempt  # Экспоненциальная задержка
                    logger.warning(f"Rate limited, retrying in {wait_time}s...")
                    time.sleep(wait_time)
                    continue
                    
                else:
                    return [], f"Ошибка API: HTTP {response.status_code} - {response.text}"
                    
            except requests.exceptions.RequestException as e:
                logger.error(f"Ошибка соединения: {e}")
                return [], f"Ошибка сети: {str(e)}"
            except Exception as e:
                logger.error(f"Неожиданная ошибка: {e}")
                return [], f"Неожиданная ошибка: {str(e)}"
        
        return [], "API недоступен после попыток"

    def _submit_answers(self, username: str, agent_code: str, answers: list) -> Tuple[str, int]:
        """Отправка ответов на сервер"""
        payload = {
            "username": username.strip(),
            "agent_code": agent_code.strip(),
            "answers": answers
        }
        
        for attempt in range(API_RETRIES):
            try:
                response = self.session.post(
                    self.submit_url,
                    json=payload,
                    timeout=API_TIMEOUT * 2
                )
                
                if response.status_code == 200:
                    result = response.json()
                    score = result.get("score", 0)
                    return result.get("message", "Ответы успешно отправлены"), score
                    
                elif response.status_code == 400:
                    error = response.json().get("error", "Неверный запрос")
                    logger.error(f"Ошибка валидации: {error}")
                    return f"Ошибка валидации: {error}", 0
                    
                elif response.status_code == 429:
                    wait_time = 5 * (attempt + 1)
                    logger.warning(f"Rate limited, retrying in {wait_time}s...")
                    time.sleep(wait_time)
                    continue
                    
                else:
                    return f"HTTP Ошибка {response.status_code} - {response.text}", 0
                    
            except requests.exceptions.RequestException as e:
                logger.error(f"Ошибка отправки: {e}")
                return f"Ошибка сети: {str(e)}", 0
            except Exception as e:
                logger.error(f"Неожиданная ошибка отправки: {e}")
                return f"Неожиданная ошибка: {str(e)}", 0
        
        return "Сбой отправки после попыток", 0

# === ИНТЕРФЕЙС GRADIO ===
def run_evaluation(username: str, agent_code: str, progress=gr.Progress()):
    try:
        progress(0, desc="⚡ Инициализация GAIA Mastermind...")
        agent = GAIAThoughtProcessor()
        
        progress(0.1, desc="🌐 Подключение к GAIA API...")
        runner = GAIAEvaluationRunner()
        
        # Получение вопросов
        progress(0.2, desc="📡 Получение вопросов...")
        questions, status = runner._fetch_questions()
        if status != "success":
            error_message = f"Ошибка: {status}"
            error_df = pd.DataFrame([{
                "Task ID": "ERROR",
                "Question": error_message,
                "Answer": "Не удалось получить вопросы",
                "Status": "Failed"
            }])
            return error_message, 0, 0, error_df
        
        total = len(questions)
        if total == 0:
            error_message = "Получено 0 вопросов"
            error_df = pd.DataFrame([{
                "Task ID": "ERROR",
                "Question": error_message,
                "Answer": "Нет данных",
                "Status": "Failed"
            }])
            return error_message, 0, 0, error_df
        
        # Обработка вопросов с прогрессом
        results = []
        answers = []
        
        for i, q in enumerate(questions):
            progress(i / total, desc=f"🧠 Обработка задачи {i+1}/{total}")
            try:
                task_id = q.get("task_id", f"unknown_{i}")
                json_response = agent.process_question(q["question"], task_id)
                
                # Парсинг ответа
                try:
                    response_obj = json.loads(json_response)
                    final_answer = response_obj.get("final_answer", "")
                except:
                    final_answer = json_response
                
                answers.append({
                    "task_id": task_id,
                    "answer": str(final_answer)[:500]
                })
                
                results.append({
                    "Task ID": task_id,
                    "Question": q["question"][:100] + "..." if len(q["question"]) > 100 else q["question"],
                    "Answer": str(final_answer)[:100] + "..." if len(str(final_answer)) > 100 else str(final_answer),
                    "Status": "Processed"
                })
            except Exception as e:
                logger.error(f"Task {task_id} failed: {e}")
                answers.append({
                    "task_id": task_id,
                    "answer": f"ERROR: {str(e)}"
                })
                results.append({
                    "Task ID": task_id,
                    "Question": "Error",
                    "Answer": f"ERROR: {str(e)}",
                    "Status": "Failed"
                })
        
        # Отправка ответов
        progress(0.9, desc="📤 Отправка результатов...")
        submission_result, score = runner._submit_answers(username, agent_code, answers)
        return submission_result, score, total, pd.DataFrame(results)
    
    except Exception as e:
        logger.exception("Critical error in run_evaluation")
        error_message = f"Критическая ошибка: {str(e)}"
        error_df = pd.DataFrame([{
            "Task ID": "CRITICAL",
            "Question": error_message,
            "Answer": "См. логи",
            "Status": "Failed"
        }])
        return error_message, 0, 0, error_df

# Создание интерфейса
with gr.Blocks(
    title="🧠 GAIA Mastermind", 
    theme=gr.themes.Soft(),
    css="""
    .gradio-container {background: linear-gradient(135deg, #1a2a6c, #2c5364)}
    .dark {color: #f0f0f0}
    """
) as demo:
    gr.Markdown("""
    <div style="text-align:center; background: linear-gradient(135deg, #0f2027, #203a43); 
                padding: 20px; border-radius: 15px; color: white; box-shadow: 0 10px 20px rgba(0,0,0,0.3);">
        <h1>🧠 GAIA Mastermind</h1>
        <h3>Многошаговое решение задач с декомпозицией</h3>
        <p>Соответствует спецификации GAIA API</p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### 🔐 Авторизация")
            username = gr.Textbox(
                label="HF Username", 
                value="yoshizen",
                info="Ваше имя пользователя Hugging Face"
            )
            agent_code = gr.Textbox(
                label="Agent Code", 
                value="https://huggingface.co/spaces/yoshizen/FinalTest",
                info="URL вашего агента"
            )
            run_btn = gr.Button("🚀 Запустить оценку", variant="primary", scale=1)
            
            gr.Markdown("### ⚙️ Статус системы")
            sys_info = gr.Textbox(label="Системная информация", interactive=False, value="")
            
        with gr.Column(scale=2):
            gr.Markdown("### 📊 Результаты GAIA")
            with gr.Row():
                result_output = gr.Textbox(
                    label="Статус отправки", 
                    interactive=False,
                    max_lines=3
                )
                correct_output = gr.Number(
                    label="✅ Правильные ответы", 
                    interactive=False
                )
                total_output = gr.Number(
                    label="📚 Всего вопросов", 
                    interactive=False
                )
            
            # Упрощенный Dataframe
            results_table = gr.Dataframe(
                label="🔍 Детализация ответов",
                headers=["Task ID", "Question", "Answer", "Status"],
                interactive=False
            )
    
    # Системная информация
    def get_system_info():
        device = "GPU ✅" if torch.cuda.is_available() else "CPU ⚠️"
        return f"Device: {device} | Model: {MODEL_NAME} | API: {DEFAULT_API_URL}"
    
    demo.load(get_system_info, inputs=None, outputs=sys_info)
    
    run_btn.click(
        fn=run_evaluation,
        inputs=[username, agent_code],
        outputs=[result_output, correct_output, total_output, results_table],
        concurrency_limit=1,
        show_progress="minimal"
    )

if __name__ == "__main__":
    demo.queue(max_size=5).launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        debug=True  # Включение детального лога
    )