FinalTest / app.py
yoshizen's picture
Update app.py
0d32a9e verified
raw
history blame
23.1 kB
import re
import requests
import pandas as pd
import torch
import gradio as gr
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from typing import List, Dict, Any, Tuple, Optional
import json
import ast
import numpy as np
from PIL import Image, UnidentifiedImageError
import io
import base64
import logging
import time
import sys
# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("GAIA-Mastermind")
# Конфигурация
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MODEL_NAME = "google/flan-t5-large" # Упрощенная модель для CPU
API_RETRIES = 3
API_TIMEOUT = 45
# === ЯДРО СИСТЕМЫ ===
class GAIAThoughtProcessor:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"⚡ Инициализация GAIAThoughtProcessor на {self.device.upper()}")
try:
# Оптимизированная загрузка модели
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
self.model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_NAME,
device_map="auto" if torch.cuda.is_available() else None,
torch_dtype=torch.float16 if "cuda" in self.device else torch.float32,
low_cpu_mem_usage=True
).eval()
# Создаем пайплайн для генерации текста
self.text_generator = pipeline(
"text2text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=self.device,
max_new_tokens=256
)
logger.info("✅ GAIAThoughtProcessor готов")
except Exception as e:
logger.exception("Ошибка инициализации модели")
raise RuntimeError(f"Ошибка инициализации: {str(e)}")
def _math_solver(self, expression: str) -> str:
"""Безопасное вычисление математических выражений"""
try:
# Очистка выражения
clean_expr = re.sub(r"[^0-9+\-*/().^√π]", "", expression)
# Поддержка математических функций
context = {
"sqrt": np.sqrt,
"log": np.log,
"log10": np.log10,
"pi": np.pi,
"e": np.e,
"sin": np.sin,
"cos": np.cos,
"tan": np.tan
}
return str(eval(clean_expr, {"__builtins__": None}, context))
except Exception as e:
logger.error(f"Math error: {e}")
return f"Math Error: {str(e)}"
def _table_analyzer(self, table_data: str, query: str) -> str:
"""Анализ табличных данных"""
try:
# Автоопределение формата таблицы
if "\t" in table_data:
df = pd.read_csv(io.StringIO(table_data), sep="\t")
elif "," in table_data:
df = pd.read_csv(io.StringIO(table_data))
else:
df = pd.read_fwf(io.StringIO(table_data))
# Выполнение запросов
query = query.lower()
if "sum" in query:
return str(df.sum(numeric_only=True).to_dict())
elif "mean" in query:
return str(df.mean(numeric_only=True).to_dict())
elif "max" in query:
return str(df.max(numeric_only=True).to_dict())
elif "min" in query:
return str(df.min(numeric_only=True).to_dict())
elif "count" in query:
return str(df.count().to_dict())
else:
return df.describe().to_string()
except Exception as e:
logger.error(f"Table error: {e}")
return f"Table Error: {str(e)}"
def _text_processor(self, text: str, operation: str) -> str:
"""Операции с текстом"""
operation = operation.lower()
if operation == "reverse":
return text[::-1]
elif operation == "count_words":
return str(len(text.split()))
elif operation == "extract_numbers":
return ", ".join(re.findall(r"[-+]?\d*\.\d+|\d+", text))
elif operation == "uppercase":
return text.upper()
elif operation == "lowercase":
return text.lower()
else:
return f"Unsupported operation: {operation}"
def _image_processor(self, image_input: str) -> str:
"""Обработка изображений"""
try:
# Обработка URL
if image_input.startswith("http"):
response = requests.get(image_input, timeout=30)
response.raise_for_status()
img_data = response.content
img = Image.open(io.BytesIO(img_data))
# Обработка base64
elif image_input.startswith("data:image"):
header, data = image_input.split(",", 1)
img_data = base64.b64decode(data)
img = Image.open(io.BytesIO(img_data))
else:
return "Invalid image format"
# Базовый анализ изображения
description = (
f"Format: {img.format}, Size: {img.size}, "
f"Mode: {img.mode}"
)
return description
except (UnidentifiedImageError, requests.exceptions.RequestException) as e:
logger.error(f"Image processing error: {e}")
return f"Image Error: {str(e)}"
except Exception as e:
logger.exception("Unexpected image error")
return f"Unexpected Error: {str(e)}"
def _call_tool(self, tool_name: str, arguments: str) -> str:
"""Вызов инструмента по имени"""
try:
# Парсинг аргументов
args = [a.strip() for a in arguments.split(",")]
if tool_name == "math_solver":
return self._math_solver(args[0])
elif tool_name == "table_analyzer":
return self._table_analyzer(args[0], args[1])
elif tool_name == "text_processor":
return self._text_processor(args[0], args[1])
elif tool_name == "image_processor":
return self._image_processor(args[0])
else:
return f"Unknown tool: {tool_name}"
except Exception as e:
return f"Tool Error: {str(e)}"
def _generate_response(self, prompt: str) -> str:
"""Генерация ответа с помощью модели"""
try:
result = self.text_generator(
prompt,
max_new_tokens=256,
num_beams=3,
early_stopping=True,
temperature=0.01
)
return result[0]['generated_text']
except Exception as e:
logger.error(f"Generation error: {e}")
return f"Generation Error: {str(e)}"
finally:
# Очистка памяти GPU
if "cuda" in self.device:
torch.cuda.empty_cache()
def process_question(self, question: str, task_id: str) -> str:
"""Обработка вопроса с декомпозицией на шаги"""
try:
# Упрощенный промпт для CPU
prompt = f"Реши задачу шаг за шагом: {question}\n\nФинальный ответ:"
response = self._generate_response(prompt)
# Извлечение чистого ответа
if "final_answer" in response:
return json.dumps({"final_answer": response})
else:
return json.dumps({"final_answer": response.strip()})
except Exception as e:
logger.exception("Processing failed")
return json.dumps({
"task_id": task_id,
"error": str(e),
"final_answer": f"SYSTEM ERROR: {str(e)}"
})
# === СИСТЕМА ОЦЕНКИ ===
class GAIAEvaluationRunner:
def __init__(self, api_url: str = DEFAULT_API_URL):
self.api_url = api_url
self.questions_url = f"{api_url}/questions"
self.submit_url = f"{api_url}/submit"
self.session = requests.Session()
self.session.headers.update({
"Accept": "application/json",
"User-Agent": "GAIA-Mastermind/1.0",
"Content-Type": "application/json"
})
logger.info(f"🌐 Инициализирован GAIAEvaluationRunner для {api_url}")
def run_evaluation(self, agent, username: str, agent_code: str, progress=tqdm):
# Получение вопросов
questions, status = self._fetch_questions()
if status != "success":
# Возвращаем ошибку в понятном формате
error_df = pd.DataFrame([{
"Task ID": "ERROR",
"Question": status,
"Answer": "Не удалось получить вопросы",
"Status": "Failed"
}])
return status, 0, 0, error_df
# Обработка вопросов
results = []
answers = []
for i, q in enumerate(progress(questions, desc="🧠 Processing GAIA")):
try:
task_id = q.get("task_id", f"unknown_{i}")
json_response = agent.process_question(q["question"], task_id)
# Парсинг ответа
try:
response_obj = json.loads(json_response)
final_answer = response_obj.get("final_answer", "")
if not isinstance(final_answer, str):
final_answer = str(final_answer)
except json.JSONDecodeError:
final_answer = json_response
# Формирование ответа для GAIA API
answers.append({
"task_id": task_id,
"answer": final_answer[:500] # Ограничение длины
})
# Запись результатов
results.append({
"Task ID": task_id,
"Question": q["question"][:100] + "..." if len(q["question"]) > 100 else q["question"],
"Answer": final_answer[:100] + "..." if len(final_answer) > 100 else final_answer,
"Status": "Processed"
})
except Exception as e:
logger.error(f"Task {task_id} failed: {e}")
answers.append({
"task_id": task_id,
"answer": f"ERROR: {str(e)}"
})
results.append({
"Task ID": task_id,
"Question": "Error",
"Answer": f"ERROR: {str(e)}",
"Status": "Failed"
})
# Отправка ответов
try:
submission_result, score = self._submit_answers(username, agent_code, answers)
return submission_result, score, len(questions), pd.DataFrame(results)
except Exception as e:
error_message = f"Ошибка отправки: {str(e)}"
results.append({
"Task ID": "SUBMIT_ERROR",
"Question": error_message,
"Answer": "",
"Status": "Failed"
})
return error_message, 0, len(questions), pd.DataFrame(results)
def _fetch_questions(self) -> Tuple[list, str]:
"""Получение вопросов с API"""
for attempt in range(API_RETRIES):
try:
response = self.session.get(
self.questions_url,
timeout=API_TIMEOUT
)
if response.status_code == 200:
questions = response.json()
if not isinstance(questions, list):
return [], f"Неверный формат ответа: ожидался список, получен {type(questions)}"
# Добавление task_id если отсутствует
for q in questions:
q.setdefault("task_id", f"id_{hash(q['question']) % 100000}")
return questions, "success"
elif response.status_code == 429:
wait_time = 2 ** attempt # Экспоненциальная задержка
logger.warning(f"Rate limited, retrying in {wait_time}s...")
time.sleep(wait_time)
continue
else:
return [], f"Ошибка API: HTTP {response.status_code} - {response.text}"
except requests.exceptions.RequestException as e:
logger.error(f"Ошибка соединения: {e}")
return [], f"Ошибка сети: {str(e)}"
except Exception as e:
logger.error(f"Неожиданная ошибка: {e}")
return [], f"Неожиданная ошибка: {str(e)}"
return [], "API недоступен после попыток"
def _submit_answers(self, username: str, agent_code: str, answers: list) -> Tuple[str, int]:
"""Отправка ответов на сервер"""
payload = {
"username": username.strip(),
"agent_code": agent_code.strip(),
"answers": answers
}
for attempt in range(API_RETRIES):
try:
response = self.session.post(
self.submit_url,
json=payload,
timeout=API_TIMEOUT * 2
)
if response.status_code == 200:
result = response.json()
score = result.get("score", 0)
return result.get("message", "Ответы успешно отправлены"), score
elif response.status_code == 400:
error = response.json().get("error", "Неверный запрос")
logger.error(f"Ошибка валидации: {error}")
return f"Ошибка валидации: {error}", 0
elif response.status_code == 429:
wait_time = 5 * (attempt + 1)
logger.warning(f"Rate limited, retrying in {wait_time}s...")
time.sleep(wait_time)
continue
else:
return f"HTTP Ошибка {response.status_code} - {response.text}", 0
except requests.exceptions.RequestException as e:
logger.error(f"Ошибка отправки: {e}")
return f"Ошибка сети: {str(e)}", 0
except Exception as e:
logger.error(f"Неожиданная ошибка отправки: {e}")
return f"Неожиданная ошибка: {str(e)}", 0
return "Сбой отправки после попыток", 0
# === ИНТЕРФЕЙС GRADIO ===
def run_evaluation(username: str, agent_code: str, progress=gr.Progress()):
try:
progress(0, desc="⚡ Инициализация GAIA Mastermind...")
agent = GAIAThoughtProcessor()
progress(0.1, desc="🌐 Подключение к GAIA API...")
runner = GAIAEvaluationRunner()
# Получение вопросов
progress(0.2, desc="📡 Получение вопросов...")
questions, status = runner._fetch_questions()
if status != "success":
error_message = f"Ошибка: {status}"
error_df = pd.DataFrame([{
"Task ID": "ERROR",
"Question": error_message,
"Answer": "Не удалось получить вопросы",
"Status": "Failed"
}])
return error_message, 0, 0, error_df
total = len(questions)
if total == 0:
error_message = "Получено 0 вопросов"
error_df = pd.DataFrame([{
"Task ID": "ERROR",
"Question": error_message,
"Answer": "Нет данных",
"Status": "Failed"
}])
return error_message, 0, 0, error_df
# Обработка вопросов с прогрессом
results = []
answers = []
for i, q in enumerate(questions):
progress(i / total, desc=f"🧠 Обработка задачи {i+1}/{total}")
try:
task_id = q.get("task_id", f"unknown_{i}")
json_response = agent.process_question(q["question"], task_id)
# Парсинг ответа
try:
response_obj = json.loads(json_response)
final_answer = response_obj.get("final_answer", "")
except:
final_answer = json_response
answers.append({
"task_id": task_id,
"answer": str(final_answer)[:500]
})
results.append({
"Task ID": task_id,
"Question": q["question"][:100] + "..." if len(q["question"]) > 100 else q["question"],
"Answer": str(final_answer)[:100] + "..." if len(str(final_answer)) > 100 else str(final_answer),
"Status": "Processed"
})
except Exception as e:
logger.error(f"Task {task_id} failed: {e}")
answers.append({
"task_id": task_id,
"answer": f"ERROR: {str(e)}"
})
results.append({
"Task ID": task_id,
"Question": "Error",
"Answer": f"ERROR: {str(e)}",
"Status": "Failed"
})
# Отправка ответов
progress(0.9, desc="📤 Отправка результатов...")
submission_result, score = runner._submit_answers(username, agent_code, answers)
return submission_result, score, total, pd.DataFrame(results)
except Exception as e:
logger.exception("Critical error in run_evaluation")
error_message = f"Критическая ошибка: {str(e)}"
error_df = pd.DataFrame([{
"Task ID": "CRITICAL",
"Question": error_message,
"Answer": "См. логи",
"Status": "Failed"
}])
return error_message, 0, 0, error_df
# Создание интерфейса
with gr.Blocks(
title="🧠 GAIA Mastermind",
theme=gr.themes.Soft(),
css="""
.gradio-container {background: linear-gradient(135deg, #1a2a6c, #2c5364)}
.dark {color: #f0f0f0}
"""
) as demo:
gr.Markdown("""
<div style="text-align:center; background: linear-gradient(135deg, #0f2027, #203a43);
padding: 20px; border-radius: 15px; color: white; box-shadow: 0 10px 20px rgba(0,0,0,0.3);">
<h1>🧠 GAIA Mastermind</h1>
<h3>Многошаговое решение задач с декомпозицией</h3>
<p>Соответствует спецификации GAIA API</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🔐 Авторизация")
username = gr.Textbox(
label="HF Username",
value="yoshizen",
info="Ваше имя пользователя Hugging Face"
)
agent_code = gr.Textbox(
label="Agent Code",
value="https://huggingface.co/spaces/yoshizen/FinalTest",
info="URL вашего агента"
)
run_btn = gr.Button("🚀 Запустить оценку", variant="primary", scale=1)
gr.Markdown("### ⚙️ Статус системы")
sys_info = gr.Textbox(label="Системная информация", interactive=False, value="")
with gr.Column(scale=2):
gr.Markdown("### 📊 Результаты GAIA")
with gr.Row():
result_output = gr.Textbox(
label="Статус отправки",
interactive=False,
max_lines=3
)
correct_output = gr.Number(
label="✅ Правильные ответы",
interactive=False
)
total_output = gr.Number(
label="📚 Всего вопросов",
interactive=False
)
# Упрощенный Dataframe
results_table = gr.Dataframe(
label="🔍 Детализация ответов",
headers=["Task ID", "Question", "Answer", "Status"],
interactive=False
)
# Системная информация
def get_system_info():
device = "GPU ✅" if torch.cuda.is_available() else "CPU ⚠️"
return f"Device: {device} | Model: {MODEL_NAME} | API: {DEFAULT_API_URL}"
demo.load(get_system_info, inputs=None, outputs=sys_info)
run_btn.click(
fn=run_evaluation,
inputs=[username, agent_code],
outputs=[result_output, correct_output, total_output, results_table],
concurrency_limit=1,
show_progress="minimal"
)
if __name__ == "__main__":
demo.queue(max_size=5).launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
debug=True # Включение детального лога
)