FinalTest / app.py
yoshizen's picture
Update app.py
71c05d4 verified
raw
history blame
9.55 kB
import os
import json
import time
import torch
import requests
import gradio as gr
import pandas as pd
from typing import List, Dict, Any, Optional, Union, Callable, Tuple
from agent import EnhancedGAIAAgent # Импорт из отдельного файла
# Константы
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_RETRIES = 3
RETRY_DELAY = 5
class EvaluationRunner:
"""Обрабатывает процесс оценки: получение вопросов, запуск агента, отправку ответов"""
def __init__(self, api_url=DEFAULT_API_URL):
self.api_url = api_url
self.questions_url = f"{api_url}/questions"
self.submit_url = f"{api_url}/submit"
self.results_url = f"{api_url}/results"
self.correct_answers = 0
self.total_questions = 0
def run_evaluation(self,
agent: Callable[[str], str],
username: str,
agent_code: str) -> tuple[str, pd.DataFrame]:
# Получаем вопросы
questions_data = self._fetch_questions()
if isinstance(questions_data, str): # Сообщение об ошибке
return questions_data, None
# Запускаем агента на всех вопросах
results_log, answers_payload = self._run_agent_on_questions(agent, questions_data)
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Отправляем ответы
submission_result = self._submit_answers(username, agent_code, answers_payload)
# Проверяем результаты
self._check_results(username)
self.print_evaluation_summary(username)
return submission_result, pd.DataFrame(results_log)
def _fetch_questions(self) -> Union[List[Dict[str, Any]], str]:
try:
response = requests.get(self.questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format."
self.total_questions = len(questions_data)
print(f"Successfully fetched {self.total_questions} questions.")
return questions_data
except Exception as e:
return f"Error fetching questions: {e}"
def _run_agent_on_questions(self,
agent: Any,
questions_data: List[Dict[str, Any]]) -> tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
json_response = agent(question_text, task_id)
response_obj = json.loads(json_response)
submitted_answer = response_obj.get("final_answer", "")
answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
"Full Response": json_response
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
return results_log, answers_payload
def _submit_answers(self,
username: str,
agent_code: str,
answers_payload: List[Dict[str, Any]]) -> str:
submission_data = {
"username": username.strip(),
"agent_code": agent_code.strip(), # Ключевое исправление: agent_code вместо agent_code_url
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers to: {self.submit_url}")
print("Submission data:", json.dumps(submission_data, indent=2))
for attempt in range(1, MAX_RETRIES + 1):
try:
response = requests.post(
self.submit_url,
json=submission_data,
headers={"Content-Type": "application/json"},
timeout=30
)
response.raise_for_status()
try:
result = response.json()
if "message" in result:
return result["message"]
return "Evaluation submitted successfully"
except:
return f"Submission successful, but response was not JSON: {response.text}"
except Exception as e:
print(f"Submission attempt {attempt} failed: {e}")
time.sleep(RETRY_DELAY)
return "Error submitting answers after multiple attempts"
def _check_results(self, username: str) -> None:
try:
results_url = f"{self.results_url}?username={username}"
response = requests.get(results_url, timeout=15)
if response.status_code == 200:
data = response.json()
if isinstance(data, dict) and "score" in data:
self.correct_answers = int(data["score"])
except Exception as e:
print(f"Error checking results: {e}")
def get_correct_answers_count(self) -> int:
return self.correct_answers
def get_total_questions_count(self) -> int:
return self.total_questions
def print_evaluation_summary(self, username: str) -> None:
print("\n===== EVALUATION SUMMARY =====")
print(f"User: {username}")
print(f"Overall Score: {self.correct_answers}/{self.total_questions}")
print("=============================\n")
def run_evaluation(username: str,
agent_code: str, # Исправлено имя параметра
model_name: str = "google/flan-t5-base",
use_cache: bool = False) -> Tuple[str, int, int, str, str, str]: # Кэш отключен по умолчанию
start_time = time.time()
# Инициализируем агента
agent = EnhancedGAIAAgent(model_name=model_name, use_cache=use_cache)
# Инициализируем runner
runner = EvaluationRunner(api_url=DEFAULT_API_URL)
# Запускаем оценку
result, results_log = runner.run_evaluation(agent, username, agent_code)
# Вычисляем время выполнения
elapsed_time = time.time() - start_time
elapsed_time_str = f"{elapsed_time:.2f} seconds"
# Формируем URL результатов
results_url = f"{DEFAULT_API_URL}/results?username={username}"
cache_status = "Cache enabled and used" if use_cache else "Cache disabled"
return (
result,
runner.get_correct_answers_count(),
runner.get_total_questions_count(),
elapsed_time_str,
results_url,
cache_status
)
def create_gradio_interface():
with gr.Blocks(title="GAIA Agent Evaluation") as demo:
gr.Markdown("# GAIA Agent Evaluation")
with gr.Row():
with gr.Column():
username = gr.Textbox(label="Hugging Face Username")
agent_code = gr.Textbox(label="Agent Code", lines=2, placeholder="Your agent code here")
model_name = gr.Dropdown(
label="Model",
choices=["google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large"],
value="google/flan-t5-base"
)
use_cache = gr.Checkbox(label="Use Answer Cache", value=False)
run_button = gr.Button("Run Evaluation & Submit All Answers")
with gr.Column():
result_text = gr.Textbox(label="Result", lines=2)
correct_answers = gr.Number(label="Correct Answers")
total_questions = gr.Number(label="Total Questions")
elapsed_time = gr.Textbox(label="Elapsed Time")
results_url = gr.Textbox(label="Results URL")
cache_status = gr.Textbox(label="Cache Status")
run_button.click(
fn=run_evaluation,
inputs=[username, agent_code, model_name, use_cache],
outputs=[
result_text,
correct_answers,
total_questions,
elapsed_time,
results_url,
cache_status
]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True)