Spaces:
Running
Running
metadata
title: Parakeet.js Demo
emoji: π¦
colorFrom: indigo
colorTo: blue
sdk: static
pinned: false
app_build_command: npm run build
app_file: build/index.html
license: mit
short_description: NVIDIA Parakeet speech recognition for the browser
models:
- istupakov/parakeet-tdt-0.6b-v2-onnx
tags:
- parakeet-js
- parakeet
- onnx
- webgpu
- asr
- istupakov/parakeet-tdt-0.6b-v2-onnx
custom_headers:
cross-origin-embedder-policy: require-corp
cross-origin-opener-policy: same-origin
cross-origin-resource-policy: cross-origin
π¦ Parakeet.js - HF Spaces Demo
NVIDIA Parakeet speech recognition for the browser using WebGPU/WASM
This demo showcases the parakeet.js library, which brings NVIDIA's Parakeet speech recognition models to the browser using ONNX Runtime Web with WebGPU and WASM backends.
π Features
- π₯οΈ Browser-based: Runs entirely in your browser - no server required
- β‘ WebGPU acceleration: Fast inference using WebGPU when available
- π§ WASM fallback: CPU-based inference using WebAssembly
- π± Multiple formats: Supports various audio formats (WAV, MP3, etc.)
- π― Real-time performance: Optimized for fast transcription
- π Performance metrics: Shows detailed timing information
- ποΈ Configurable: Adjustable quantization, preprocessing, and backend settings
π§ How to Use
- Click "Load Model" to download and initialize the speech recognition model
- Select your preferences:
- Backend: Choose WebGPU (faster) or WASM (more compatible)
- Quantization: fp32 (higher quality) or int8 (faster)
- Preprocessor: Different audio processing options
- Upload an audio file using the file input
- View the transcription in real-time with performance metrics
π¦ Integration
You can use parakeet.js in your own projects:
npm install parakeet.js onnxruntime-web
import { ParakeetModel, getParakeetModel } from 'parakeet.js';
// Load model from HuggingFace Hub
const modelUrls = await getParakeetModel('istupakov/parakeet-tdt-0.6b-v2-onnx');
const model = await ParakeetModel.fromUrls(modelUrls);
// Transcribe audio
const result = await model.transcribe(audioData, sampleRate);
console.log(result.utterance_text);
π Links
- π GitHub Repository - Source code and documentation
- π¦ npm Package - Install via npm
π§ Model Information
This demo uses the istupakov/parakeet-tdt-0.6b-v2-onnx model, which is an ONNX-converted version of NVIDIA's Parakeet speech recognition model optimized for browser deployment.
π‘ Technical Details
- Model Format: ONNX for cross-platform compatibility
- Backends: WebGPU (GPU acceleration) and WASM (CPU fallback)
- Quantization: Support for both fp32 and int8 precision
- Audio Processing: Built-in preprocessing for various audio formats
- Performance: Real-time factor (RTF) typically < 1.0x for fast transcription
Built with β€οΈ using React and deployed on Hugging Face Spaces