Spaces:
Running
Running
title: Parakeet.js Demo | |
emoji: π¦ | |
colorFrom: indigo | |
colorTo: blue | |
sdk: static | |
pinned: false | |
app_build_command: npm run build | |
app_file: build/index.html | |
license: mit | |
short_description: NVIDIA Parakeet speech recognition for the browser | |
models: | |
- istupakov/parakeet-tdt-0.6b-v2-onnx | |
tags: | |
- parakeet-js | |
- parakeet | |
- onnx | |
- webgpu | |
- asr | |
- istupakov/parakeet-tdt-0.6b-v2-onnx | |
custom_headers: | |
cross-origin-embedder-policy: require-corp | |
cross-origin-opener-policy: same-origin | |
cross-origin-resource-policy: cross-origin | |
# π¦ Parakeet.js - HF Spaces Demo | |
> **NVIDIA Parakeet speech recognition for the browser using WebGPU/WASM** | |
This demo showcases the **[parakeet.js](https://www.npmjs.com/package/parakeet.js)** library, which brings NVIDIA's Parakeet speech recognition models to the browser using ONNX Runtime Web with WebGPU and WASM backends. | |
## π Features | |
- **π₯οΈ Browser-based**: Runs entirely in your browser - no server required | |
- **β‘ WebGPU acceleration**: Fast inference using WebGPU when available | |
- **π§ WASM fallback**: CPU-based inference using WebAssembly | |
- **π± Multiple formats**: Supports various audio formats (WAV, MP3, etc.) | |
- **π― Real-time performance**: Optimized for fast transcription | |
- **π Performance metrics**: Shows detailed timing information | |
- **ποΈ Configurable**: Adjustable quantization, preprocessing, and backend settings | |
## π§ How to Use | |
1. **Click "Load Model"** to download and initialize the speech recognition model | |
2. **Select your preferences**: | |
- **Backend**: Choose WebGPU (faster) or WASM (more compatible) | |
- **Quantization**: fp32 (higher quality) or int8 (faster) | |
- **Preprocessor**: Different audio processing options | |
3. **Upload an audio file** using the file input | |
4. **View the transcription** in real-time with performance metrics | |
## π¦ Integration | |
You can use parakeet.js in your own projects: | |
```bash | |
npm install parakeet.js onnxruntime-web | |
``` | |
```javascript | |
import { ParakeetModel, getParakeetModel } from 'parakeet.js'; | |
// Load model from HuggingFace Hub | |
const modelUrls = await getParakeetModel('istupakov/parakeet-tdt-0.6b-v2-onnx'); | |
const model = await ParakeetModel.fromUrls(modelUrls); | |
// Transcribe audio | |
const result = await model.transcribe(audioData, sampleRate); | |
console.log(result.utterance_text); | |
``` | |
## π Links | |
- **π [GitHub Repository](https://github.com/ysdede/parakeet.js)** - Source code and documentation | |
- **π¦ [npm Package](https://www.npmjs.com/package/parakeet.js)** - Install via npm | |
## π§ Model Information | |
This demo uses the **istupakov/parakeet-tdt-0.6b-v2-onnx** model, which is an ONNX-converted version of NVIDIA's Parakeet speech recognition model optimized for browser deployment. | |
## π‘ Technical Details | |
- **Model Format**: ONNX for cross-platform compatibility | |
- **Backends**: WebGPU (GPU acceleration) and WASM (CPU fallback) | |
- **Quantization**: Support for both fp32 and int8 precision | |
- **Audio Processing**: Built-in preprocessing for various audio formats | |
- **Performance**: Real-time factor (RTF) typically < 1.0x for fast transcription | |
--- | |
*Built with β€οΈ using React and deployed on Hugging Face Spaces* |