neural-os / main.py
yuntian-deng's picture
Update main.py
e5c7a80
raw
history blame
8.53 kB
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from typing import List, Tuple
import numpy as np
from PIL import Image, ImageDraw
import base64
import io
import asyncio
from utils import initialize_model, sample_frame
import torch
import os
import time
DEBUG = True
app = FastAPI()
# Mount the static directory to serve HTML, JavaScript, and CSS files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Serve the index.html file at the root URL
@app.get("/")
async def get():
return HTMLResponse(open("static/index.html").read())
def generate_random_image(width: int, height: int) -> np.ndarray:
return np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
def draw_trace(image: np.ndarray, previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
pil_image = Image.fromarray(image)
draw = ImageDraw.Draw(pil_image)
for i, (action_type, position) in enumerate(previous_actions):
color = (255, 0, 0) if action_type == "move" else (0, 255, 0)
x, y = position
if DEBUG:
x = x * 256 / 1024
y = y * 256 / 1024
draw.ellipse([x-2, y-2, x+2, y+2], fill=color)
if i > 0:
#prev_x, prev_y = previous_actions[i-1][1]
draw.line([prev_x, prev_y, x, y], fill=color, width=1)
prev_x, prev_y = x, y
return np.array(pil_image)
# Initialize the model at the start of your application
model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
def load_initial_images(width, height):
initial_images = []
for i in range(7):
initial_images.append(np.zeros((height, width, 3), dtype=np.uint8))
#image_path = f"image_{i}.png"
#if os.path.exists(image_path):
# img = Image.open(image_path).resize((width, height))
# initial_images.append(np.array(img))
#else:
# print(f"Warning: {image_path} not found. Using blank image instead.")
# initial_images.append(np.zeros((height, width, 3), dtype=np.uint8))
return initial_images
def normalize_images(images, target_range=(-1, 1)):
images = np.stack(images).astype(np.float32)
if target_range == (-1, 1):
return images / 127.5 - 1
elif target_range == (0, 1):
return images / 255.0
else:
raise ValueError(f"Unsupported target range: {target_range}")
def denormalize_image(image, source_range=(-1, 1)):
if source_range == (-1, 1):
return ((image + 1) * 127.5).clip(0, 255).astype(np.uint8)
elif source_range == (0, 1):
return (image * 255).clip(0, 255).astype(np.uint8)
else:
raise ValueError(f"Unsupported source range: {source_range}")
def predict_next_frame(previous_frames: List[np.ndarray], previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
width, height = 256, 256
initial_images = load_initial_images(width, height)
# Prepare the image sequence for the model
image_sequence = previous_frames[-7:] # Take the last 7 frames
while len(image_sequence) < 7:
image_sequence.insert(0, initial_images[len(image_sequence)])
# Convert the image sequence to a tensor and concatenate in the channel dimension
image_sequence_tensor = torch.from_numpy(normalize_images(image_sequence, target_range=(-1, 1)))
image_sequence_tensor = image_sequence_tensor.to(device)
# Prepare the prompt based on the previous actions
action_descriptions = []
initial_actions = ['901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '921:604']
initial_actions = ['0:0'] * 7
def unnorm_coords(x, y):
return int(x), int(y) #int(x - (1920 - 256) / 2), int(y - (1080 - 256) / 2)
# Process initial actions if there are not enough previous actions
while len(previous_actions) < 8:
x, y = map(int, initial_actions.pop(0).split(':'))
previous_actions.insert(0, ("move", unnorm_coords(x, y)))
prev_x = 0
prev_y = 0
for action_type, pos in previous_actions: #[-8:]:
if action_type == "move":
x, y = pos
norm_x = int(round(x / 256 * 1024)) #x + (1920 - 256) / 2
norm_y = int(round(y / 256 * 640)) #y + (1080 - 256) / 2
if DEBUG:
norm_x = x
norm_y = y
action_descriptions.append(f"{(norm_x-prev_x):.0f}~{(norm_y-prev_y):.0f}")
prev_x = norm_x
prev_y = norm_y
elif action_type == "left_click":
action_descriptions.append("left_click")
elif action_type == "right_click":
action_descriptions.append("right_click")
prompt = " ".join(action_descriptions[-8:])
print(prompt)
# Generate the next frame
new_frame = sample_frame(model, prompt, image_sequence_tensor)
# Convert the generated frame to the correct format
new_frame = new_frame.transpose(1, 2, 0)
print (new_frame.max(), new_frame.min())
new_frame_denormalized = denormalize_image(new_frame, source_range=(-1, 1))
# Draw the trace of previous actions
new_frame_with_trace = draw_trace(new_frame_denormalized, previous_actions)
return new_frame_with_trace, new_frame_denormalized
# WebSocket endpoint for continuous user interaction
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
client_id = id(websocket) # Use a unique identifier for each connection
print(f"New WebSocket connection: {client_id}")
await websocket.accept()
previous_frames = []
previous_actions = []
positions = ['496~61', '815~335', '815~335', '815~335', '787~342', '749~345', '749~345', '703~346', '703~346', '654~347', '604~349', '604~349', '555~353', '509~357', '509~357']
positions = ['815~335', '787~342', '787~342', '749~345', '703~346', '703~346', '654~347', '654~347', '604~349', '555~353', '555~353', '509~357', '509~357', '468~362', '431~368', '431~368']
try:
while True:
try:
# Receive user input with a timeout
data = await asyncio.wait_for(websocket.receive_json(), timeout=90.0)
if data.get("type") == "heartbeat":
await websocket.send_json({"type": "heartbeat_response"})
continue
action_type = data.get("action_type")
mouse_position = data.get("mouse_position")
# Store the actions
if DEBUG:
position = positions[0]
positions = positions[1:]
mouse_position = position.split('~')
mouse_position = [int(item) for item in mouse_position]
previous_actions.append((action_type, mouse_position))
# Log the start time
start_time = time.time()
# Predict the next frame based on the previous frames and actions
next_frame, next_frame_append = predict_next_frame(previous_frames, previous_actions)
previous_frames.append(next_frame_append)
# Convert the numpy array to a base64 encoded image
img = Image.fromarray(next_frame)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Log the processing time
processing_time = time.time() - start_time
print(f"Frame processing time: {processing_time:.2f} seconds")
# Send the generated frame back to the client
await websocket.send_json({"image": img_str})
except asyncio.TimeoutError:
print("WebSocket connection timed out")
break
except WebSocketDisconnect:
print("WebSocket disconnected")
break
except Exception as e:
print(f"Error in WebSocket connection {client_id}: {e}")
finally:
print(f"WebSocket connection closed: {client_id}")
# Remove the explicit websocket.close() call here