Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import os | |
from langchain_community.document_loaders import DataFrameLoader | |
from langchain_community.embeddings import SentenceTransformerEmbeddings | |
from langchain_community.vectorstores import Chroma | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_openai import ChatOpenAI | |
from dotenv import load_dotenv | |
# --- 1. Page Configuration --- | |
st.set_page_config( | |
page_title="Quranic Insight AI", | |
page_icon="🕋", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# --- 2. Custom CSS for Theming and Design --- | |
st.markdown(""" | |
<style> | |
@import url('https://fonts.googleapis.com/css2?family=Merriweather:wght@300;400;700&family=Amiri&display=swap'); | |
/* Main background with geometric pattern */ | |
.stApp { | |
background-color: #1a1a1a; /* Dark Charcoal */ | |
background-image: linear-gradient(315deg, rgba(255, 255, 255, 0.02) 25%, transparent 25%), | |
linear-gradient(45deg, rgba(255, 255, 255, 0.02) 25%, transparent 25%); | |
background-size: 20px 20px; | |
color: #e0e0e0; /* Off-white text */ | |
} | |
/* Main title font and color */ | |
h1 { | |
font-family: 'Amiri', serif; | |
color: #d4af37; /* Soft Gold */ | |
text-align: center; | |
padding-top: 2rem; | |
} | |
/* Subtitle style */ | |
.subtitle { | |
font-family: 'Merriweather', serif; | |
color: #b0b0b0; | |
text-align: center; | |
font-size: 1.1rem; | |
} | |
/* Sidebar styling */ | |
.st-emotion-cache-16txtl3 { | |
background-color: #212121; | |
} | |
/* Chat message styling */ | |
.st-emotion-cache-1c7y2kd { /* Chat message container */ | |
background-color: rgba(42, 42, 42, 0.8); | |
border: 1px solid #d4af37; | |
border-radius: 12px; | |
margin-bottom: 1rem; | |
} | |
/* Input box styling */ | |
.st-emotion-cache-1jicfl2 { | |
background-color: #2a2a2a; | |
} | |
/* Output formatting improvements */ | |
.stMarkdown h3 { | |
color: #50c878; /* Mint Green for headings */ | |
border-bottom: 2px solid #d4af37; | |
padding-bottom: 5px; | |
} | |
.stMarkdown blockquote { | |
background-color: rgba(212, 175, 55, 0.1); | |
border-left: 5px solid #d4af37; | |
padding: 0.5rem 1rem; | |
margin-left: 0; | |
border-radius: 5px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# --- 3. Cached Functions for Heavy Lifting --- | |
def load_rag_chain(): | |
load_dotenv() | |
llm = ChatOpenAI(model="gpt-4o", temperature=0.1) | |
embeddings = SentenceTransformerEmbeddings(model_name="paraphrase-multilingual-mpnet-base-v2") | |
csv_filename = 'quran_multilingual_data.csv' | |
if not os.path.exists(csv_filename): | |
st.error(f"CRITICAL ERROR: The data file '{csv_filename}' was not found.") | |
st.stop() | |
df = pd.read_csv(csv_filename) | |
df.fillna("", inplace=True) | |
df['page_content'] = "Reference: " + df['reference'].astype(str) + "\n" + \ | |
"Urdu Translation 1: " + df['translation_maududi'] + "\n" + \ | |
"Urdu Translation 2: " + df['translation_qadri'] + "\n" + \ | |
"English Translation: " + df['translation_english'] | |
loader = DataFrameLoader(df, page_content_column='page_content') | |
documents = loader.load() | |
persist_directory = "./quran_multilingual_db" | |
if os.path.exists(persist_directory): | |
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings) | |
else: | |
with st.spinner("Creating new multilingual database. This might take a few minutes..."): | |
vectorstore = Chroma.from_documents(documents, embeddings, persist_directory=persist_directory) | |
retriever = vectorstore.as_retriever(search_kwargs={'k': 7}) | |
# --- New and Improved Prompt Template for Better Formatting --- | |
prompt_template = """ | |
You are an expert and respectful Quranic Assistant. Your task is to follow a strict, step-by-step process to answer the user's question based ONLY on the context, using precise Markdown formatting. | |
**Your Thought Process (Follow these steps internally):** | |
1. **Step 1: Identify Language.** Analyze the user's `Question` to determine if it is in English or Roman Urdu. This decision is critical and will control the language of your entire response. | |
2. **Step 2: Synthesize a Summary.** Based on the language identified in Step 1, carefully read the user's question and understand it and then read the `Context` and formulate a 3-4 line summary that directly answers the `Question`. | |
3. **Step 3: Format Detailed Points.** Create a numbered list of key points from the `Context`. For each point, you must follow these sub-rules precisely: | |
- **Sub-rule 3a:** If the identified language was English, you MUST use the "English Translation" from the context for the `Translation:` field. | |
- **Sub-rule 3b:** If the identified language was Roman Urdu, you MUST use one of the "Urdu Translation" texts from the context for the `Translation:` field. | |
- **Sub-rule 3c:** The `Explanation:` must be in the same language as the `Question`. | |
--- | |
### Detailed Points | |
(Create a numbered list of key points below.) | |
1. **Translation:** | |
> (The appropriate translation text goes here, inside a blockquote.) | |
**Reference:** `[The verse reference, e.g., 2:153]` | |
**Explanation:** (Your 1-2 line explanation for this point goes here.) | |
2. **Translation:** | |
> (The second translation text goes here.) | |
**Reference:** `[The second verse reference]` | |
**Explanation:** (The explanation for the second point.) | |
(and so on...Try to give as much points as you can generate) | |
**Context from Database:** | |
{context} | |
**User's Question:** | |
{question} | |
**Your Final Answer (Strictly follow the Markdown format above):** | |
""" | |
prompt = ChatPromptTemplate.from_template(prompt_template) | |
rag_chain = ( | |
{"context": retriever, "question": RunnablePassthrough()} | |
| prompt | |
| llm | |
| StrOutputParser() | |
) | |
return rag_chain | |
# --- 4. Main App Interface --- | |
# Load the RAG chain (fast due to caching) | |
rag_chain = load_rag_chain() | |
# Sidebar for information | |
with st.sidebar: | |
st.title("About Quranic Insight AI") | |
st.markdown(""" | |
This is an AI-powered assistant designed to help you explore the teachings of the Holy Quran. | |
**How it works:** | |
1. Ask a question in English or Roman Urdu. | |
2. The AI searches through multiple translations of the Quran to find the most relevant verses. | |
3. It then uses a powerful language model to generate a structured and informative answer based on those verses. | |
**Data Sources:** | |
- Arabic Text: Tanzil.net | |
- Urdu Translations: Maududi & Tahir-ul-Qadri | |
- English Translation: Abdullah Yusuf Ali | |
""") | |
st.info("This is an experimental AI project. Always consult with a qualified Islamic scholar for definitive religious guidance.") | |
# Main page title | |
st.title("Quranic Insight AI | قرآنی معاون") | |
st.markdown("<p class='subtitle'>Your AI assistant for exploring the Quran</p>", unsafe_allow_html=True) | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [{"role": "assistant", "content": "As-salamu alaykum! How can I help you explore the Quran today?"}] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input("Ask a question about the Quran..."): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
with st.spinner("Analyzing verses..."): | |
response = rag_chain.invoke(prompt) | |
st.markdown(response, unsafe_allow_html=True) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) |