svjack's picture
Upload folder using huggingface_hub
13d3ba0

MNIST Examples for GGML

These are simple examples of how to use GGML for inferencing. The first example uses convolutional neural network (CNN), the second one uses fully connected neural network.

Building the examples

git clone https://github.com/ggerganov/ggml
cd ggml
mkdir build && cd build
cmake ..
make -j4 mnist-cnn mnist

MNIST with CNN

This implementation achieves ~99% accuracy on the MNIST test set.

Training the model

Use the mnist-cnn.py script to train the model and convert it to GGUF format:

$ python3 ../examples/mnist/mnist-cnn.py train mnist-cnn-model
...
Keras model saved to 'mnist-cnn-model'

Convert the model to GGUF format:

$ python3 ../examples/mnist/mnist-cnn.py convert mnist-cnn-model
...
Model converted and saved to 'mnist-cnn-model.gguf'

Running the example

$ ./bin/mnist-cnn mnist-cnn-model.gguf ../examples/mnist/models/mnist/t10k-images.idx3-ubyte
main: loaded model in     5.17 ms
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * * * _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * * * * * * _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ * * * * * _ _ _ * * _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ * _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ * * _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ * * _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ * * * * * _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ * * * * * * * * * _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ * * * * * * * * * * _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ * * * * * * _ _ * * * _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ * * * _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ * * * * * * * * * * _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ * * * * * * _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

ggml_graph_dump_dot: dot -Tpng mnist-cnn.dot -o mnist-cnn.dot.png && open mnist-cnn.dot.png
main: predicted digit is 8

Computation graph:

mnist dot

MNIST with fully connected network

A fully connected layer + relu, followed by a fully connected layer + softmax.

Training the Model

A Google Colab notebook for training a simple two-layer network to recognize digits is located here. You can use this to save a pytorch model to be converted to ggml format.

Colab

GGML "format" is whatever you choose for efficient loading. In our case, we just save the hyperparameters used plus the model weights and biases. Run convert-h5-to-ggml.py to convert your pytorch model. The output format is:

  • magic constant (int32)
  • repeated list of tensors
  • number of dimensions of tensor (int32)
  • tensor dimension (int32 repeated)
  • values of tensor (int32)

Run convert-h5-to-ggml.py mnist_model.state_dict where mnist_model.state_dict is the saved pytorch model from the Google Colab. For quickstart, it is included in the mnist/models directory.

mkdir -p models/mnist
python3 ../examples/mnist/convert-h5-to-ggml.py ../examples/mnist/models/mnist/mnist_model.state_dict

Running the example

./bin/mnist ./models/mnist/ggml-model-f32.bin ../examples/mnist/models/mnist/t10k-images.idx3-ubyte

Computation graph:

mnist dot

Web demo

The example can be compiled with Emscripten like this:

cd examples/mnist
emcc -I../../include -I../../include/ggml -I../../examples ../../src/ggml.c main.cpp -o web/mnist.js -s EXPORTED_FUNCTIONS='["_wasm_eval","_wasm_random_digit","_malloc","_free"]' -s EXPORTED_RUNTIME_METHODS='["ccall"]' -s ALLOW_MEMORY_GROWTH=1 --preload-file models/mnist

Online demo: https://mnist.ggerganov.com