metadata
base_model: google/gemma-2-9b-it
library_name: peft
LoRA Adapter for SAE Introspection
This is a LoRA (Low-Rank Adaptation) adapter trained for SAE (Sparse Autoencoder) introspection tasks.
Base Model
- Base Model:
google/gemma-2-9b-it
- Adapter Type: LoRA
- Task: SAE Feature Introspection
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Load base model and tokenizer
base_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-9b-it")
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it")
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "thejaminator/gemma-hook-layer-0")
Training Details
This adapter was trained using the lightweight SAE introspection training script to help the model understand and explain SAE features through activation steering.