base_model: google/gemma-2-9b-it | |
library_name: peft | |
# LoRA Adapter for SAE Introspection | |
This is a LoRA (Low-Rank Adaptation) adapter trained for SAE (Sparse Autoencoder) introspection tasks. | |
## Base Model | |
- **Base Model**: `google/gemma-2-9b-it` | |
- **Adapter Type**: LoRA | |
- **Task**: SAE Feature Introspection | |
## Usage | |
```python | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
# Load base model and tokenizer | |
base_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-9b-it") | |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it") | |
# Load LoRA adapter | |
model = PeftModel.from_pretrained(base_model, "thejaminator/gemma-hook-layer-0") | |
``` | |
## Training Details | |
This adapter was trained using the lightweight SAE introspection training script to help the model understand and explain SAE features through activation steering. | |