CodeLlama-Edge-1.5B / README.md
tommytracx's picture
Update README.md
bc1d25b verified
---
license: apache-2.0
tags:
- causal-lm
- code-generation
- edge-device
- quantized
- onnx
- gguf
- mobile
language:
- en
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: CodeLlama-Edge-1.5B
results: []
---
![license](https://img.shields.io/badge/license-Apache%202.0-blue.svg)
![model size](https://img.shields.io/badge/parameters-1.5B-green)
![quantized](https://img.shields.io/badge/format-GGUF%2FONNX%2FHF-yellow)
![optimized](https://img.shields.io/badge/optimized-for%20Edge%20Devices-orange)
[![Hugging Face Model](https://img.shields.io/badge/view_on-huggingface.co-blue?logo=huggingface)](https://huggingface.co/tommytracx/CodeLlama-Edge-1.5B)
# CodeLlama-Edge-1.5B
`CodeLlama-Edge-1.5B` is an edge-optimized variant of the CodeLlama series, designed to run efficiently on mobile and embedded devices using quantized or distilled formats.
## Model Description
- **Model Type**: Causal Language Model
- **Base Model**: CodeLlama
- **Optimizations**: Quantization-aware training, pruning, and edge-device compatibility
- **Parameters**: 1.5 Billion
- **Intended Use**: On-device coding assistance, embedded systems, low-power environments
## Features
- Token-efficient for code generation
- Ideal for IDEs, mobile apps, IoT dev tools
- Low memory and compute footprint
## Example Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tommytracx/CodeLlama-Edge-1.5B")
model = AutoModelForCausalLM.from_pretrained("tommytracx/CodeLlama-Edge-1.5B")
input_text = "def quicksort(arr):"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## License
Apache 2.0
## Author
- Maintained by: [tommytracx](https://huggingface.co/tommytracx)