|
--- |
|
license: apache-2.0 |
|
tags: |
|
- causal-lm |
|
- code-generation |
|
- edge-device |
|
- quantized |
|
- onnx |
|
- gguf |
|
- mobile |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: CodeLlama-Edge-1.5B |
|
results: [] |
|
--- |
|
 |
|
 |
|
 |
|
 |
|
[](https://huggingface.co/tommytracx/CodeLlama-Edge-1.5B) |
|
# CodeLlama-Edge-1.5B |
|
|
|
`CodeLlama-Edge-1.5B` is an edge-optimized variant of the CodeLlama series, designed to run efficiently on mobile and embedded devices using quantized or distilled formats. |
|
|
|
## Model Description |
|
|
|
- **Model Type**: Causal Language Model |
|
- **Base Model**: CodeLlama |
|
- **Optimizations**: Quantization-aware training, pruning, and edge-device compatibility |
|
- **Parameters**: 1.5 Billion |
|
- **Intended Use**: On-device coding assistance, embedded systems, low-power environments |
|
|
|
## Features |
|
|
|
- Token-efficient for code generation |
|
- Ideal for IDEs, mobile apps, IoT dev tools |
|
- Low memory and compute footprint |
|
|
|
## Example Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("tommytracx/CodeLlama-Edge-1.5B") |
|
model = AutoModelForCausalLM.from_pretrained("tommytracx/CodeLlama-Edge-1.5B") |
|
|
|
input_text = "def quicksort(arr):" |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=64) |
|
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## License |
|
|
|
Apache 2.0 |
|
|
|
## Author |
|
|
|
- Maintained by: [tommytracx](https://huggingface.co/tommytracx) |
|
|