AmanSengar's picture
Create README.md
4405582 verified
**🧠 SMSDetection-DistilBERT-SMS**
A DistilBERT-based binary classifier fine-tuned on the SMS Spam Collection dataset. It classifies messages as either **spam** or **ham** (not spam). This model is suitable for real-world applications like mobile SMS spam filters, automated customer message triage, and telecom fraud detection.
---
✨ **Model Highlights**
- πŸ“Œ Based on `distilbert-base-uncased`
- πŸ” Fine-tuned on the SMS Spam Collection dataset
- ⚑ Supports binary classification: Spam vs Not Spam
- πŸ’Ύ Lightweight and optimized for both CPU and GPU environments
---
🧠 Intended Uses
- βœ… Mobile SMS spam filtering
- βœ… Telecom customer service automation
- βœ… Fraudulent message detection
- βœ… User inbox categorization
- βœ… Regulatory compliance monitoring
---
- 🚫 Limitations
- ❌ Trained on English SMS messages only
- ❌ May underperform on emails, social media texts, or non-English content
- ❌ Not designed for multilingual datasets
- ❌ Slight performance dip expected for long messages (>128 tokens)
---
πŸ‹οΈβ€β™‚οΈ Training Details
| Field | Value |
| -------------- | ------------------------------ |
| **Base Model** | `distilbert-base-uncased` |
| **Dataset** |SMS Spam Collection (UCI) |
| **Framework** | PyTorch with πŸ€— Transformers |
| **Epochs** | 3 |
| **Batch Size** | 16 |
| **Max Length** | 128 tokens |
| **Optimizer** | AdamW |
| **Loss** | CrossEntropyLoss (token-level) |
| **Device** | Trained on CUDA-enabled GPU |
---
πŸ“Š Evaluation Metrics
| Metric | Score |
| ----------------------------------------------- | ----- |
| Accuracy | 0.99 |
| F1-Score | 0.96 |
| Precision | 0.98 |
| Recall | 0.93 |
---
---
πŸš€ Usage
```python
from transformers import BertTokenizerFast, BertForTokenClassification
from transformers import pipeline
import torch
model_name = "AventIQ-AI/SMS-Spam-Detection-Model"
tokenizer = BertTokenizerFast.from_pretrained(model_name)
model = BertForTokenClassification.from_pretrained(model_name)
model.eval()
# Inference
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def predict_sms(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted = torch.argmax(logits, dim=1).item()
return "spam" if predicted == 1 else "ham"
# Test example
print(predict_sms("You've won $1,000,000! Call now to claim your prize!"))
```
---
- 🧩 Quantization
- Post-training static quantization applied using PyTorch to reduce model size and accelerate inference on edge devices.
----
πŸ—‚ Repository Structure
```
.
β”œβ”€β”€ model/ # Quantized model files
β”œβ”€β”€ tokenizer_config/ # Tokenizer and vocab files
β”œβ”€β”€ model.safensors/ # Fine-tuned model in safetensors format
β”œβ”€β”€ README.md # Model card
```
---
🀝 Contributing
Open to improvements and feedback! Feel free to submit a pull request or open an issue if you find any bugs or want to enhance the model.