Unnamed: 0
int64 0
2.93k
| code
stringlengths 101
62.2k
| docs
stringlengths 51
10.7k
| doc_len
int64 4
1.74k
| words
int64 4
4.82k
| lang
stringclasses 1
value | prompt
stringlengths 320
71.2k
|
---|---|---|---|---|---|---|
1,300 | def monthdays2calendar(self, year, month):
days = list(self.itermonthdays2(year, month))
return [ days[i:i+7] for i in range(0, len(days), 7) ]
|
Return a matrix representing a month's calendar.
Each row represents a week; week entries are
(day number, weekday number) tuples. Day numbers outside this month
are zero.
| 27 | 18 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def monthdays2calendar(self, year, month):
days = list(self.itermonthdays2(year, month))
return [ days[i:i+7] for i in range(0, len(days), 7) ]
```
###Assistant :
Return a matrix representing a month's calendar.
Each row represents a week; week entries are
(day number, weekday number) tuples. Day numbers outside this month
are zero.
|
1,301 | async def predict_with_route(self, route_path, *args, **kwargs):
if route_path not in self.dags:
raise RayServeException(f"{route_path} does not exist in dags routes")
return await self.dags[route_path].remote(*args, **kwargs)
| Perform inference directly without HTTP for multi dags. | 8 | 23 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
async def predict_with_route(self, route_path, *args, **kwargs):
if route_path not in self.dags:
raise RayServeException(f"{route_path} does not exist in dags routes")
return await self.dags[route_path].remote(*args, **kwargs)
```
###Assistant : Perform inference directly without HTTP for multi dags.
|
1,302 | def should_recover(self):
return (
self.num_failures < self.max_failures
or self.max_failures < 0
or (
self.num_failures == self.max_failures
and self.num_restore_failures
< int(os.environ.get("TUNE_RESTORE_RETRY_NUM", 0))
)
)
| Returns whether the trial qualifies for retrying.
This is if the trial has not failed more than max_failures. Note this
may return true even when there is no checkpoint, either because
`self.checkpoint_freq` is `0` or because the trial failed before
a checkpoint has been made.
| 45 | 23 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def should_recover(self):
return (
self.num_failures < self.max_failures
or self.max_failures < 0
or (
self.num_failures == self.max_failures
and self.num_restore_failures
< int(os.environ.get("TUNE_RESTORE_RETRY_NUM", 0))
)
)
```
###Assistant : Returns whether the trial qualifies for retrying.
This is if the trial has not failed more than max_failures. Note this
may return true even when there is no checkpoint, either because
`self.checkpoint_freq` is `0` or because the trial failed before
a checkpoint has been made.
|
1,303 | def test_change_root_page_locale_on_locale_deletion(self):
# change 'real' pages first
Page.objects.filter(depth__gt=1).update(
locale=Locale.objects.get(language_code="fr")
)
self.assertEqual(Page.get_first_root_node().locale.language_code, "en")
Locale.objects.get(language_code="en").delete()
self.assertEqual(Page.get_first_root_node().locale.language_code, "fr")
|
On deleting the locale used for the root page (but no 'real' pages), the
root page should be reassigned to a new locale (the default one, if possible)
| 28 | 15 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_change_root_page_locale_on_locale_deletion(self):
# change 'real' pages first
Page.objects.filter(depth__gt=1).update(
locale=Locale.objects.get(language_code="fr")
)
self.assertEqual(Page.get_first_root_node().locale.language_code, "en")
Locale.objects.get(language_code="en").delete()
self.assertEqual(Page.get_first_root_node().locale.language_code, "fr")
```
###Assistant :
On deleting the locale used for the root page (but no 'real' pages), the
root page should be reassigned to a new locale (the default one, if possible)
|
1,304 | def _proc_pax(self, tarfile):
# Read the header information.
buf = tarfile.fileobj.read(self._block(self.size))
# A pax header stores supplemental information for either
# the following file (extended) or all following files
# (global).
if self.type == XGLTYPE:
pax_headers = tarfile.pax_headers
else:
pax_headers = tarfile.pax_headers.copy()
# Check if the pax header contains a hdrcharset field. This tells us
# the encoding of the path, linkpath, uname and gname fields. Normally,
# these fields are UTF-8 encoded but since POSIX.1-2008 tar
# implementations are allowed to store them as raw binary strings if
# the translation to UTF-8 fails.
match = re.search(br"\d+ hdrcharset=([^\n]+)\n", buf)
if match is not None:
pax_headers["hdrcharset"] = match.group(1).decode("utf8")
# For the time being, we don't care about anything other than "BINARY".
# The only other value that is currently allowed by the standard is
# "ISO-IR 10646 2000 UTF-8" in other words UTF-8.
hdrcharset = pax_headers.get("hdrcharset")
if hdrcharset == "BINARY":
encoding = tarfile.encoding
else:
encoding = "utf8"
# Parse pax header information. A record looks like that:
# "%d %s=%s\n" % (length, keyword, value). length is the size
# of the complete record including the length field itself and
# the newline. keyword and value are both UTF-8 encoded strings.
regex = re.compile(br"(\d+) ([^=]+)=")
pos = 0
while True:
match = regex.match(buf, pos)
if not match:
break
length, keyword = match.groups()
length = int(length)
value = buf[match.end(2) + 1:match.start(1) + length - 1]
# Normally, we could just use "utf8" as the encoding and "strict"
# as the error handler, but we better not take the risk. For
# example, GNU tar <= 1.23 is known to store filenames it cannot
# translate to UTF-8 as raw strings (unfortunately without a
# hdrcharset=BINARY header).
# We first try the strict standard encoding, and if that fails we
# fall back on the user's encoding and error handler.
keyword = self._decode_pax_field(keyword, "utf8", "utf8",
tarfile.errors)
if keyword in PAX_NAME_FIELDS:
value = self._decode_pax_field(value, encoding, tarfile.encoding,
tarfile.errors)
else:
value = self._decode_pax_field(value, "utf8", "utf8",
tarfile.errors)
pax_headers[keyword] = value
pos += length
# Fetch the next header.
try:
next = self.fromtarfile(tarfile)
except HeaderError:
raise SubsequentHeaderError("missing or bad subsequent header")
# Process GNU sparse information.
if "GNU.sparse.map" in pax_headers:
# GNU extended sparse format version 0.1.
self._proc_gnusparse_01(next, pax_headers)
elif "GNU.sparse.size" in pax_headers:
# GNU extended sparse format version 0.0.
self._proc_gnusparse_00(next, pax_headers, buf)
elif pax_headers.get("GNU.sparse.major") == "1" and pax_headers.get("GNU.sparse.minor") == "0":
# GNU extended sparse format version 1.0.
self._proc_gnusparse_10(next, pax_headers, tarfile)
if self.type in (XHDTYPE, SOLARIS_XHDTYPE):
# Patch the TarInfo object with the extended header info.
next._apply_pax_info(pax_headers, tarfile.encoding, tarfile.errors)
next.offset = self.offset
if "size" in pax_headers:
# If the extended header replaces the size field,
# we need to recalculate the offset where the next
# header starts.
offset = next.offset_data
if next.isreg() or next.type not in SUPPORTED_TYPES:
offset += next._block(next.size)
tarfile.offset = offset
return next
| Process an extended or global header as described in
POSIX.1-2008.
| 10 | 468 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _proc_pax(self, tarfile):
# Read the header information.
buf = tarfile.fileobj.read(self._block(self.size))
# A pax header stores supplemental information for either
# the following file (extended) or all following files
# (global).
if self.type == XGLTYPE:
pax_headers = tarfile.pax_headers
else:
pax_headers = tarfile.pax_headers.copy()
# Check if the pax header contains a hdrcharset field. This tells us
# the encoding of the path, linkpath, uname and gname fields. Normally,
# these fields are UTF-8 encoded but since POSIX.1-2008 tar
# implementations are allowed to store them as raw binary strings if
# the translation to UTF-8 fails.
match = re.search(br"\d+ hdrcharset=([^\n]+)\n", buf)
if match is not None:
pax_headers["hdrcharset"] = match.group(1).decode("utf8")
# For the time being, we don't care about anything other than "BINARY".
# The only other value that is currently allowed by the standard is
# "ISO-IR 10646 2000 UTF-8" in other words UTF-8.
hdrcharset = pax_headers.get("hdrcharset")
if hdrcharset == "BINARY":
encoding = tarfile.encoding
else:
encoding = "utf8"
# Parse pax header information. A record looks like that:
# "%d %s=%s\n" % (length, keyword, value). length is the size
# of the complete record including the length field itself and
# the newline. keyword and value are both UTF-8 encoded strings.
regex = re.compile(br"(\d+) ([^=]+)=")
pos = 0
while True:
match = regex.match(buf, pos)
if not match:
break
length, keyword = match.groups()
length = int(length)
value = buf[match.end(2) + 1:match.start(1) + length - 1]
# Normally, we could just use "utf8" as the encoding and "strict"
# as the error handler, but we better not take the risk. For
# example, GNU tar <= 1.23 is known to store filenames it cannot
# translate to UTF-8 as raw strings (unfortunately without a
# hdrcharset=BINARY header).
# We first try the strict standard encoding, and if that fails we
# fall back on the user's encoding and error handler.
keyword = self._decode_pax_field(keyword, "utf8", "utf8",
tarfile.errors)
if keyword in PAX_NAME_FIELDS:
value = self._decode_pax_field(value, encoding, tarfile.encoding,
tarfile.errors)
else:
value = self._decode_pax_field(value, "utf8", "utf8",
tarfile.errors)
pax_headers[keyword] = value
pos += length
# Fetch the next header.
try:
next = self.fromtarfile(tarfile)
except HeaderError:
raise SubsequentHeaderError("missing or bad subsequent header")
# Process GNU sparse information.
if "GNU.sparse.map" in pax_headers:
# GNU extended sparse format version 0.1.
self._proc_gnusparse_01(next, pax_headers)
elif "GNU.sparse.size" in pax_headers:
# GNU extended sparse format version 0.0.
self._proc_gnusparse_00(next, pax_headers, buf)
elif pax_headers.get("GNU.sparse.major") == "1" and pax_headers.get("GNU.sparse.minor") == "0":
# GNU extended sparse format version 1.0.
self._proc_gnusparse_10(next, pax_headers, tarfile)
if self.type in (XHDTYPE, SOLARIS_XHDTYPE):
# Patch the TarInfo object with the extended header info.
next._apply_pax_info(pax_headers, tarfile.encoding, tarfile.errors)
next.offset = self.offset
if "size" in pax_headers:
# If the extended header replaces the size field,
# we need to recalculate the offset where the next
# header starts.
offset = next.offset_data
if next.isreg() or next.type not in SUPPORTED_TYPES:
offset += next._block(next.size)
tarfile.offset = offset
return next
```
###Assistant : Process an extended or global header as described in
POSIX.1-2008.
|
1,305 | def get_global_params():
GlobalParams = namedtuple('GlobalParams', [
'drop_connect_rate', 'width_coefficient', 'depth_coefficient',
'depth_divisor', 'image_size'
])
global_params = GlobalParams(
drop_connect_rate=0.3,
width_coefficient=1.2,
depth_coefficient=1.4,
depth_divisor=8,
image_size=64)
return global_params
|
The fllowing are efficientnetb3's arch superparams, but to fit for scene
text recognition task, the resolution(image_size) here is changed
from 300 to 64.
| 23 | 22 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_global_params():
GlobalParams = namedtuple('GlobalParams', [
'drop_connect_rate', 'width_coefficient', 'depth_coefficient',
'depth_divisor', 'image_size'
])
global_params = GlobalParams(
drop_connect_rate=0.3,
width_coefficient=1.2,
depth_coefficient=1.4,
depth_divisor=8,
image_size=64)
return global_params
```
###Assistant :
The fllowing are efficientnetb3's arch superparams, but to fit for scene
text recognition task, the resolution(image_size) here is changed
from 300 to 64.
|
1,306 | def _create_closed(cls, vertices):
v = _to_unmasked_float_array(vertices)
return cls(np.concatenate([v, v[:1]]), closed=True)
|
Create a closed polygonal path going through *vertices*.
Unlike ``Path(..., closed=True)``, *vertices* should **not** end with
an entry for the CLOSEPATH; this entry is added by `._create_closed`.
| 27 | 10 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _create_closed(cls, vertices):
v = _to_unmasked_float_array(vertices)
return cls(np.concatenate([v, v[:1]]), closed=True)
```
###Assistant :
Create a closed polygonal path going through *vertices*.
Unlike ``Path(..., closed=True)``, *vertices* should **not** end with
an entry for the CLOSEPATH; this entry is added by `._create_closed`.
|
1,307 | def test_predict_proba(loss, global_random_seed):
n_samples = 20
y_true, raw_prediction = random_y_true_raw_prediction(
loss=loss,
n_samples=n_samples,
y_bound=(-100, 100),
raw_bound=(-5, 5),
seed=global_random_seed,
)
if hasattr(loss, "predict_proba"):
proba = loss.predict_proba(raw_prediction)
assert proba.shape == (n_samples, loss.n_classes)
assert np.sum(proba, axis=1) == approx(1, rel=1e-11)
if hasattr(loss, "gradient_proba"):
for grad, proba in (
(None, None),
(None, np.empty_like(raw_prediction)),
(np.empty_like(raw_prediction), None),
(np.empty_like(raw_prediction), np.empty_like(raw_prediction)),
):
grad, proba = loss.gradient_proba(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=None,
gradient_out=grad,
proba_out=proba,
)
assert proba.shape == (n_samples, loss.n_classes)
assert np.sum(proba, axis=1) == approx(1, rel=1e-11)
assert_allclose(
grad,
loss.gradient(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=None,
gradient_out=None,
),
)
@pytest.mark.parametrize("loss", ALL_LOSSES)
@pytest.mark.parametrize("sample_weight", [None, "range"])
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
@pytest.mark.parametrize("order", ("C", "F")) | Test that predict_proba and gradient_proba work as expected. | 8 | 93 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_predict_proba(loss, global_random_seed):
n_samples = 20
y_true, raw_prediction = random_y_true_raw_prediction(
loss=loss,
n_samples=n_samples,
y_bound=(-100, 100),
raw_bound=(-5, 5),
seed=global_random_seed,
)
if hasattr(loss, "predict_proba"):
proba = loss.predict_proba(raw_prediction)
assert proba.shape == (n_samples, loss.n_classes)
assert np.sum(proba, axis=1) == approx(1, rel=1e-11)
if hasattr(loss, "gradient_proba"):
for grad, proba in (
(None, None),
(None, np.empty_like(raw_prediction)),
(np.empty_like(raw_prediction), None),
(np.empty_like(raw_prediction), np.empty_like(raw_prediction)),
):
grad, proba = loss.gradient_proba(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=None,
gradient_out=grad,
proba_out=proba,
)
assert proba.shape == (n_samples, loss.n_classes)
assert np.sum(proba, axis=1) == approx(1, rel=1e-11)
assert_allclose(
grad,
loss.gradient(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=None,
gradient_out=None,
),
)
@pytest.mark.parametrize("loss", ALL_LOSSES)
@pytest.mark.parametrize("sample_weight", [None, "range"])
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
@pytest.mark.parametrize("order", ("C", "F"))
```
###Assistant : Test that predict_proba and gradient_proba work as expected.
|
1,308 | def get_late_shipments(scorecard):
return get_total_shipments(scorecard) - get_on_time_shipments(scorecard)
| Gets the number of late shipments (counting each item) in the period (based on Purchase Receipts vs POs) | 18 | 6 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_late_shipments(scorecard):
return get_total_shipments(scorecard) - get_on_time_shipments(scorecard)
```
###Assistant : Gets the number of late shipments (counting each item) in the period (based on Purchase Receipts vs POs)
|
1,309 | def eval_loss(self, targets, predictions):
eval_loss = 0
for of_name, of_obj in self.output_features.items():
of_eval_loss = of_obj.eval_loss(targets[of_name], predictions[of_name])
eval_loss += of_obj.loss["weight"] * of_eval_loss
additional_loss = 0
additional_losses = self.losses()
if additional_losses:
additional_loss = torch.sum(torch.stack(additional_losses)) # other losses
return eval_loss, additional_loss
| Computes all evaluation losses for the model given targets and predictions.
Args:
targets: A dictionary of target names to target tensors.
predictions: A dictionary of output names to output tensors.
Returns:
A tuple of loss values for eval losses and additional losses.
| 42 | 38 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def eval_loss(self, targets, predictions):
eval_loss = 0
for of_name, of_obj in self.output_features.items():
of_eval_loss = of_obj.eval_loss(targets[of_name], predictions[of_name])
eval_loss += of_obj.loss["weight"] * of_eval_loss
additional_loss = 0
additional_losses = self.losses()
if additional_losses:
additional_loss = torch.sum(torch.stack(additional_losses)) # other losses
return eval_loss, additional_loss
```
###Assistant : Computes all evaluation losses for the model given targets and predictions.
Args:
targets: A dictionary of target names to target tensors.
predictions: A dictionary of output names to output tensors.
Returns:
A tuple of loss values for eval losses and additional losses.
|
1,310 | def partition_query(self, query, limit, offset):
return (
(
f"SELECT * FROM ({query}) AS _ ORDER BY(SELECT NULL)"
+ f" OFFSET {offset} ROWS FETCH NEXT {limit} ROWS ONLY"
)
if self._dialect_is_microsoft_sql()
else f"SELECT * FROM ({query}) LIMIT {limit} OFFSET {offset}"
)
|
Get a query that partitions the original `query`.
Parameters
----------
query : str
The SQL query to get a partition.
limit : int
The size of the partition.
offset : int
Where the partition begins.
Returns
-------
str
| 38 | 40 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def partition_query(self, query, limit, offset):
return (
(
f"SELECT * FROM ({query}) AS _ ORDER BY(SELECT NULL)"
+ f" OFFSET {offset} ROWS FETCH NEXT {limit} ROWS ONLY"
)
if self._dialect_is_microsoft_sql()
else f"SELECT * FROM ({query}) LIMIT {limit} OFFSET {offset}"
)
```
###Assistant :
Get a query that partitions the original `query`.
Parameters
----------
query : str
The SQL query to get a partition.
limit : int
The size of the partition.
offset : int
Where the partition begins.
Returns
-------
str
|
1,311 | def test_parameter_ends_with__in__or__isnull(self):
# When it ends with '__in' -----------------------------------------
modeladmin = DecadeFilterBookAdminParameterEndsWith__In(Book, site)
request = self.request_factory.get("/", {"decade__in": "the 90s"})
request.user = self.alfred
changelist = modeladmin.get_changelist_instance(request)
# Make sure the correct queryset is returned
queryset = changelist.get_queryset(request)
self.assertEqual(list(queryset), [self.bio_book])
# Make sure the correct choice is selected
filterspec = changelist.get_filters(request)[0][0]
self.assertEqual(filterspec.title, "publication decade")
choices = list(filterspec.choices(changelist))
self.assertEqual(choices[2]["display"], "the 1990's")
self.assertIs(choices[2]["selected"], True)
self.assertEqual(choices[2]["query_string"], "?decade__in=the+90s")
# When it ends with '__isnull' ---------------------------------------
modeladmin = DecadeFilterBookAdminParameterEndsWith__Isnull(Book, site)
request = self.request_factory.get("/", {"decade__isnull": "the 90s"})
request.user = self.alfred
changelist = modeladmin.get_changelist_instance(request)
# Make sure the correct queryset is returned
queryset = changelist.get_queryset(request)
self.assertEqual(list(queryset), [self.bio_book])
# Make sure the correct choice is selected
filterspec = changelist.get_filters(request)[0][0]
self.assertEqual(filterspec.title, "publication decade")
choices = list(filterspec.choices(changelist))
self.assertEqual(choices[2]["display"], "the 1990's")
self.assertIs(choices[2]["selected"], True)
self.assertEqual(choices[2]["query_string"], "?decade__isnull=the+90s")
|
A SimpleListFilter's parameter name is not mistaken for a model field
if it ends with '__isnull' or '__in' (#17091).
| 19 | 122 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_parameter_ends_with__in__or__isnull(self):
# When it ends with '__in' -----------------------------------------
modeladmin = DecadeFilterBookAdminParameterEndsWith__In(Book, site)
request = self.request_factory.get("/", {"decade__in": "the 90s"})
request.user = self.alfred
changelist = modeladmin.get_changelist_instance(request)
# Make sure the correct queryset is returned
queryset = changelist.get_queryset(request)
self.assertEqual(list(queryset), [self.bio_book])
# Make sure the correct choice is selected
filterspec = changelist.get_filters(request)[0][0]
self.assertEqual(filterspec.title, "publication decade")
choices = list(filterspec.choices(changelist))
self.assertEqual(choices[2]["display"], "the 1990's")
self.assertIs(choices[2]["selected"], True)
self.assertEqual(choices[2]["query_string"], "?decade__in=the+90s")
# When it ends with '__isnull' ---------------------------------------
modeladmin = DecadeFilterBookAdminParameterEndsWith__Isnull(Book, site)
request = self.request_factory.get("/", {"decade__isnull": "the 90s"})
request.user = self.alfred
changelist = modeladmin.get_changelist_instance(request)
# Make sure the correct queryset is returned
queryset = changelist.get_queryset(request)
self.assertEqual(list(queryset), [self.bio_book])
# Make sure the correct choice is selected
filterspec = changelist.get_filters(request)[0][0]
self.assertEqual(filterspec.title, "publication decade")
choices = list(filterspec.choices(changelist))
self.assertEqual(choices[2]["display"], "the 1990's")
self.assertIs(choices[2]["selected"], True)
self.assertEqual(choices[2]["query_string"], "?decade__isnull=the+90s")
```
###Assistant :
A SimpleListFilter's parameter name is not mistaken for a model field
if it ends with '__isnull' or '__in' (#17091).
|
1,312 | def v4_int_to_packed(address):
try:
return address.to_bytes(4, 'big')
except OverflowError:
raise ValueError("Address negative or too large for IPv4")
| Represent an address as 4 packed bytes in network (big-endian) order.
Args:
address: An integer representation of an IPv4 IP address.
Returns:
The integer address packed as 4 bytes in network (big-endian) order.
Raises:
ValueError: If the integer is negative or too large to be an
IPv4 IP address.
| 49 | 16 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def v4_int_to_packed(address):
try:
return address.to_bytes(4, 'big')
except OverflowError:
raise ValueError("Address negative or too large for IPv4")
```
###Assistant : Represent an address as 4 packed bytes in network (big-endian) order.
Args:
address: An integer representation of an IPv4 IP address.
Returns:
The integer address packed as 4 bytes in network (big-endian) order.
Raises:
ValueError: If the integer is negative or too large to be an
IPv4 IP address.
|
1,313 | def test_delete_alias_not_allowed(self) -> None:
self._create_alias(self.admin_user)
self.get_failure(
self.handler.delete_association(
create_requester(self.test_user), self.room_alias
),
synapse.api.errors.AuthError,
)
| A user that doesn't meet the expected guidelines cannot delete an alias. | 12 | 12 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_delete_alias_not_allowed(self) -> None:
self._create_alias(self.admin_user)
self.get_failure(
self.handler.delete_association(
create_requester(self.test_user), self.room_alias
),
synapse.api.errors.AuthError,
)
```
###Assistant : A user that doesn't meet the expected guidelines cannot delete an alias.
|
1,314 | def trigintegrate(f, x, conds='piecewise'):
pat, a, n, m = _pat_sincos(x)
f = f.rewrite('sincos')
M = f.match(pat)
if M is None:
return
n, m = M[n], M[m]
if n.is_zero and m.is_zero:
return x
zz = x if n.is_zero else S.Zero
a = M[a]
if n.is_odd or m.is_odd:
u = _u
n_, m_ = n.is_odd, m.is_odd
# take smallest n or m -- to choose simplest substitution
if n_ and m_:
# Make sure to choose the positive one
# otherwise an incorrect integral can occur.
if n < 0 and m > 0:
m_ = True
n_ = False
elif m < 0 and n > 0:
n_ = True
m_ = False
# Both are negative so choose the smallest n or m
# in absolute value for simplest substitution.
elif (n < 0 and m < 0):
n_ = n > m
m_ = not (n > m)
# Both n and m are odd and positive
else:
n_ = (n < m) # NB: careful here, one of the
m_ = not (n < m) # conditions *must* be true
# n m u=C (n-1)/2 m
# S(x) * C(x) dx --> -(1-u^2) * u du
if n_:
ff = -(1 - u**2)**((n - 1)/2) * u**m
uu = cos(a*x)
# n m u=S n (m-1)/2
# S(x) * C(x) dx --> u * (1-u^2) du
elif m_:
ff = u**n * (1 - u**2)**((m - 1)/2)
uu = sin(a*x)
fi = integrate(ff, u) # XXX cyclic deps
fx = fi.subs(u, uu)
if conds == 'piecewise':
return Piecewise((fx / a, Ne(a, 0)), (zz, True))
return fx / a
# n & m are both even
#
# 2k 2m 2l 2l
# we transform S (x) * C (x) into terms with only S (x) or C (x)
#
# example:
# 100 4 100 2 2 100 4 2
# S (x) * C (x) = S (x) * (1-S (x)) = S (x) * (1 + S (x) - 2*S (x))
#
# 104 102 100
# = S (x) - 2*S (x) + S (x)
# 2k
# then S is integrated with recursive formula
# take largest n or m -- to choose simplest substitution
n_ = (Abs(n) > Abs(m))
m_ = (Abs(m) > Abs(n))
res = S.Zero
if n_:
# 2k 2 k i 2i
# C = (1 - S ) = sum(i, (-) * B(k, i) * S )
if m > 0:
for i in range(0, m//2 + 1):
res += (S.NegativeOne**i * binomial(m//2, i) *
_sin_pow_integrate(n + 2*i, x))
elif m == 0:
res = _sin_pow_integrate(n, x)
else:
# m < 0 , |n| > |m|
# /
# |
# | m n
# | cos (x) sin (x) dx =
# |
# |
#/
# /
# |
# -1 m+1 n-1 n - 1 | m+2 n-2
# ________ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# |
# m + 1 m + 1 |
# /
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
Rational(n - 1, m + 1) *
trigintegrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
elif m_:
# 2k 2 k i 2i
# S = (1 - C ) = sum(i, (-) * B(k, i) * C )
if n > 0:
# / /
# | |
# | m n | -m n
# | cos (x)*sin (x) dx or | cos (x) * sin (x) dx
# | |
# / /
#
# |m| > |n| ; m, n >0 ; m, n belong to Z - {0}
# n 2
# sin (x) term is expanded here in terms of cos (x),
# and then integrated.
#
for i in range(0, n//2 + 1):
res += (S.NegativeOne**i * binomial(n//2, i) *
_cos_pow_integrate(m + 2*i, x))
elif n == 0:
# /
# |
# | 1
# | _ _ _
# | m
# | cos (x)
# /
#
res = _cos_pow_integrate(m, x)
else:
# n < 0 , |m| > |n|
# /
# |
# | m n
# | cos (x) sin (x) dx =
# |
# |
#/
# /
# |
# 1 m-1 n+1 m - 1 | m-2 n+2
# _______ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# |
# n + 1 n + 1 |
# /
res = (Rational(1, n + 1) * cos(x)**(m - 1)*sin(x)**(n + 1) +
Rational(m - 1, n + 1) *
trigintegrate(cos(x)**(m - 2)*sin(x)**(n + 2), x))
else:
if m == n:
##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
res = integrate((sin(2*x)*S.Half)**m, x)
elif (m == -n):
if n < 0:
# Same as the scheme described above.
# the function argument to integrate in the end will
# be 1, this cannot be integrated by trigintegrate.
# Hence use sympy.integrals.integrate.
res = (Rational(1, n + 1) * cos(x)**(m - 1) * sin(x)**(n + 1) +
Rational(m - 1, n + 1) *
integrate(cos(x)**(m - 2) * sin(x)**(n + 2), x))
else:
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
Rational(n - 1, m + 1) *
integrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
if conds == 'piecewise':
return Piecewise((res.subs(x, a*x) / a, Ne(a, 0)), (zz, True))
return res.subs(x, a*x) / a
|
Integrate f = Mul(trig) over x.
Examples
========
>>> from sympy import sin, cos, tan, sec
>>> from sympy.integrals.trigonometry import trigintegrate
>>> from sympy.abc import x
>>> trigintegrate(sin(x)*cos(x), x)
sin(x)**2/2
>>> trigintegrate(sin(x)**2, x)
x/2 - sin(x)*cos(x)/2
>>> trigintegrate(tan(x)*sec(x), x)
1/cos(x)
>>> trigintegrate(sin(x)*tan(x), x)
-log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)
References
==========
.. [1] http://en.wikibooks.org/wiki/Calculus/Integration_techniques
See Also
========
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
| 62 | 909 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def trigintegrate(f, x, conds='piecewise'):
pat, a, n, m = _pat_sincos(x)
f = f.rewrite('sincos')
M = f.match(pat)
if M is None:
return
n, m = M[n], M[m]
if n.is_zero and m.is_zero:
return x
zz = x if n.is_zero else S.Zero
a = M[a]
if n.is_odd or m.is_odd:
u = _u
n_, m_ = n.is_odd, m.is_odd
# take smallest n or m -- to choose simplest substitution
if n_ and m_:
# Make sure to choose the positive one
# otherwise an incorrect integral can occur.
if n < 0 and m > 0:
m_ = True
n_ = False
elif m < 0 and n > 0:
n_ = True
m_ = False
# Both are negative so choose the smallest n or m
# in absolute value for simplest substitution.
elif (n < 0 and m < 0):
n_ = n > m
m_ = not (n > m)
# Both n and m are odd and positive
else:
n_ = (n < m) # NB: careful here, one of the
m_ = not (n < m) # conditions *must* be true
# n m u=C (n-1)/2 m
# S(x) * C(x) dx --> -(1-u^2) * u du
if n_:
ff = -(1 - u**2)**((n - 1)/2) * u**m
uu = cos(a*x)
# n m u=S n (m-1)/2
# S(x) * C(x) dx --> u * (1-u^2) du
elif m_:
ff = u**n * (1 - u**2)**((m - 1)/2)
uu = sin(a*x)
fi = integrate(ff, u) # XXX cyclic deps
fx = fi.subs(u, uu)
if conds == 'piecewise':
return Piecewise((fx / a, Ne(a, 0)), (zz, True))
return fx / a
# n & m are both even
#
# 2k 2m 2l 2l
# we transform S (x) * C (x) into terms with only S (x) or C (x)
#
# example:
# 100 4 100 2 2 100 4 2
# S (x) * C (x) = S (x) * (1-S (x)) = S (x) * (1 + S (x) - 2*S (x))
#
# 104 102 100
# = S (x) - 2*S (x) + S (x)
# 2k
# then S is integrated with recursive formula
# take largest n or m -- to choose simplest substitution
n_ = (Abs(n) > Abs(m))
m_ = (Abs(m) > Abs(n))
res = S.Zero
if n_:
# 2k 2 k i 2i
# C = (1 - S ) = sum(i, (-) * B(k, i) * S )
if m > 0:
for i in range(0, m//2 + 1):
res += (S.NegativeOne**i * binomial(m//2, i) *
_sin_pow_integrate(n + 2*i, x))
elif m == 0:
res = _sin_pow_integrate(n, x)
else:
# m < 0 , |n| > |m|
# /
# |
# | m n
# | cos (x) sin (x) dx =
# |
# |
#/
# /
# |
# -1 m+1 n-1 n - 1 | m+2 n-2
# ________ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# |
# m + 1 m + 1 |
# /
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
Rational(n - 1, m + 1) *
trigintegrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
elif m_:
# 2k 2 k i 2i
# S = (1 - C ) = sum(i, (-) * B(k, i) * C )
if n > 0:
# / /
# | |
# | m n | -m n
# | cos (x)*sin (x) dx or | cos (x) * sin (x) dx
# | |
# / /
#
# |m| > |n| ; m, n >0 ; m, n belong to Z - {0}
# n 2
# sin (x) term is expanded here in terms of cos (x),
# and then integrated.
#
for i in range(0, n//2 + 1):
res += (S.NegativeOne**i * binomial(n//2, i) *
_cos_pow_integrate(m + 2*i, x))
elif n == 0:
# /
# |
# | 1
# | _ _ _
# | m
# | cos (x)
# /
#
res = _cos_pow_integrate(m, x)
else:
# n < 0 , |m| > |n|
# /
# |
# | m n
# | cos (x) sin (x) dx =
# |
# |
#/
# /
# |
# 1 m-1 n+1 m - 1 | m-2 n+2
# _______ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# |
# n + 1 n + 1 |
# /
res = (Rational(1, n + 1) * cos(x)**(m - 1)*sin(x)**(n + 1) +
Rational(m - 1, n + 1) *
trigintegrate(cos(x)**(m - 2)*sin(x)**(n + 2), x))
else:
if m == n:
##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
res = integrate((sin(2*x)*S.Half)**m, x)
elif (m == -n):
if n < 0:
# Same as the scheme described above.
# the function argument to integrate in the end will
# be 1, this cannot be integrated by trigintegrate.
# Hence use sympy.integrals.integrate.
res = (Rational(1, n + 1) * cos(x)**(m - 1) * sin(x)**(n + 1) +
Rational(m - 1, n + 1) *
integrate(cos(x)**(m - 2) * sin(x)**(n + 2), x))
else:
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
Rational(n - 1, m + 1) *
integrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
if conds == 'piecewise':
return Piecewise((res.subs(x, a*x) / a, Ne(a, 0)), (zz, True))
return res.subs(x, a*x) / a
```
###Assistant :
Integrate f = Mul(trig) over x.
Examples
========
>>> from sympy import sin, cos, tan, sec
>>> from sympy.integrals.trigonometry import trigintegrate
>>> from sympy.abc import x
>>> trigintegrate(sin(x)*cos(x), x)
sin(x)**2/2
>>> trigintegrate(sin(x)**2, x)
x/2 - sin(x)*cos(x)/2
>>> trigintegrate(tan(x)*sec(x), x)
1/cos(x)
>>> trigintegrate(sin(x)*tan(x), x)
-log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)
References
==========
.. [1] http://en.wikibooks.org/wiki/Calculus/Integration_techniques
See Also
========
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
|
1,315 | def get_pywin32_module_file_attribute(module_name):
from PyInstaller.utils.win32 import winutils
module = winutils.import_pywin32_module(module_name)
return module.__file__
|
Get the absolute path of the PyWin32 DLL specific to the PyWin32 module with the passed name.
On import, each PyWin32 module:
* Imports a DLL specific to that module.
* Overwrites the values of all module attributes with values specific to that DLL. This includes that module's
`__file__` attribute, which then provides the absolute path of that DLL.
This function safely imports that module in a PyWin32-aware subprocess and returns the value of that module's
`__file__` attribute.
Parameters
----------
module_name : str
Fully-qualified name of that module.
Returns
----------
str
Absolute path of that DLL.
See Also
----------
`PyInstaller.utils.win32.winutils.import_pywin32_module()`
For further details.
| 103 | 11 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_pywin32_module_file_attribute(module_name):
from PyInstaller.utils.win32 import winutils
module = winutils.import_pywin32_module(module_name)
return module.__file__
```
###Assistant :
Get the absolute path of the PyWin32 DLL specific to the PyWin32 module with the passed name.
On import, each PyWin32 module:
* Imports a DLL specific to that module.
* Overwrites the values of all module attributes with values specific to that DLL. This includes that module's
`__file__` attribute, which then provides the absolute path of that DLL.
This function safely imports that module in a PyWin32-aware subprocess and returns the value of that module's
`__file__` attribute.
Parameters
----------
module_name : str
Fully-qualified name of that module.
Returns
----------
str
Absolute path of that DLL.
See Also
----------
`PyInstaller.utils.win32.winutils.import_pywin32_module()`
For further details.
|
1,316 | def render_warning(self, message):
context = {"error": message}
return render_to_response("sentry/pipeline-provider-error.html", context, self.request)
| For situations when we want to display an error without triggering an issue | 13 | 11 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def render_warning(self, message):
context = {"error": message}
return render_to_response("sentry/pipeline-provider-error.html", context, self.request)
```
###Assistant : For situations when we want to display an error without triggering an issue
|
1,317 | def test_context_filter_not_labels(self) -> None:
event_id = self._send_labelled_messages_in_room()
channel = self.make_request(
"GET",
"/rooms/%s/context/%s?filter=%s"
% (self.room_id, event_id, json.dumps(self.FILTER_NOT_LABELS)),
access_token=self.tok,
)
self.assertEqual(channel.code, 200, channel.result)
events_before = channel.json_body["events_before"]
self.assertEqual(
len(events_before), 1, [event["content"] for event in events_before]
)
self.assertEqual(
events_before[0]["content"]["body"], "without label", events_before[0]
)
events_after = channel.json_body["events_after"]
self.assertEqual(
len(events_after), 2, [event["content"] for event in events_after]
)
self.assertEqual(
events_after[0]["content"]["body"], "with wrong label", events_after[0]
)
self.assertEqual(
events_after[1]["content"]["body"], "with two wrong labels", events_after[1]
)
| Test that we can filter by the absence of a label on a /context request. | 15 | 66 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_context_filter_not_labels(self) -> None:
event_id = self._send_labelled_messages_in_room()
channel = self.make_request(
"GET",
"/rooms/%s/context/%s?filter=%s"
% (self.room_id, event_id, json.dumps(self.FILTER_NOT_LABELS)),
access_token=self.tok,
)
self.assertEqual(channel.code, 200, channel.result)
events_before = channel.json_body["events_before"]
self.assertEqual(
len(events_before), 1, [event["content"] for event in events_before]
)
self.assertEqual(
events_before[0]["content"]["body"], "without label", events_before[0]
)
events_after = channel.json_body["events_after"]
self.assertEqual(
len(events_after), 2, [event["content"] for event in events_after]
)
self.assertEqual(
events_after[0]["content"]["body"], "with wrong label", events_after[0]
)
self.assertEqual(
events_after[1]["content"]["body"], "with two wrong labels", events_after[1]
)
```
###Assistant : Test that we can filter by the absence of a label on a /context request.
|
1,318 | def _consistent_PT(u, v, graph_params, state_params):
G1, G2 = graph_params.G1, graph_params.G2
mapping, reverse_mapping = state_params.mapping, state_params.reverse_mapping
for neighbor in G1[u]:
if neighbor in mapping:
if G1.number_of_edges(u, neighbor) != G2.number_of_edges(
v, mapping[neighbor]
):
return False
for neighbor in G2[v]:
if neighbor in reverse_mapping:
if G1.number_of_edges(u, reverse_mapping[neighbor]) != G2.number_of_edges(
v, neighbor
):
return False
return True
| Checks the consistency of extending the mapping using the current node pair.
Parameters
----------
u, v: Graph node
The two candidate nodes being examined.
graph_params: namedtuple
Contains all the Graph-related parameters:
G1,G2: NetworkX Graph or MultiGraph instances.
The two graphs to check for isomorphism or monomorphism
G1_labels,G2_labels: dict
The label of every node in G1 and G2 respectively
state_params: namedtuple
Contains all the State-related parameters:
mapping: dict
The mapping as extended so far. Maps nodes of G1 to nodes of G2
reverse_mapping: dict
The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed
T1, T2: set
Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are
neighbors of nodes that are.
T1_out, T2_out: set
Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti
Returns
-------
True if the pair passes all the consistency checks successfully. False otherwise.
| 162 | 53 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _consistent_PT(u, v, graph_params, state_params):
G1, G2 = graph_params.G1, graph_params.G2
mapping, reverse_mapping = state_params.mapping, state_params.reverse_mapping
for neighbor in G1[u]:
if neighbor in mapping:
if G1.number_of_edges(u, neighbor) != G2.number_of_edges(
v, mapping[neighbor]
):
return False
for neighbor in G2[v]:
if neighbor in reverse_mapping:
if G1.number_of_edges(u, reverse_mapping[neighbor]) != G2.number_of_edges(
v, neighbor
):
return False
return True
```
###Assistant : Checks the consistency of extending the mapping using the current node pair.
Parameters
----------
u, v: Graph node
The two candidate nodes being examined.
graph_params: namedtuple
Contains all the Graph-related parameters:
G1,G2: NetworkX Graph or MultiGraph instances.
The two graphs to check for isomorphism or monomorphism
G1_labels,G2_labels: dict
The label of every node in G1 and G2 respectively
state_params: namedtuple
Contains all the State-related parameters:
mapping: dict
The mapping as extended so far. Maps nodes of G1 to nodes of G2
reverse_mapping: dict
The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed
T1, T2: set
Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are
neighbors of nodes that are.
T1_out, T2_out: set
Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti
Returns
-------
True if the pair passes all the consistency checks successfully. False otherwise.
|
1,319 | def get_variant_values_for(items):
attribute_map = {}
for attr in frappe.db.sql(
% ", ".join(["%s"] * len(items)),
tuple(items),
as_dict=1,
):
attribute_map.setdefault(attr["parent"], {})
attribute_map[attr["parent"]].update({attr["attribute"]: attr["attribute_value"]})
return attribute_map
| Returns variant values for items.select parent, attribute, attribute_value
from `tabItem Variant Attribute` where parent in (%s)
| 16 | 23 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_variant_values_for(items):
attribute_map = {}
for attr in frappe.db.sql(
% ", ".join(["%s"] * len(items)),
tuple(items),
as_dict=1,
):
attribute_map.setdefault(attr["parent"], {})
attribute_map[attr["parent"]].update({attr["attribute"]: attr["attribute_value"]})
return attribute_map
```
###Assistant : Returns variant values for items.select parent, attribute, attribute_value
from `tabItem Variant Attribute` where parent in (%s)
|
1,320 | def test_edit_post_locked_by_self(self):
# Lock the snippet
self.lock_snippet(self.user)
# Try to edit the snippet
response = self.client.post(
self.get_url("edit"),
{"text": "Edited while locked"},
follow=True,
)
self.refresh_snippet()
# Should not show error message
self.assertNotContains(
response,
f"The {self.model_name} could not be saved as it is locked",
)
# Check that the snippet is still locked
self.assertTrue(self.snippet.locked)
# Check that the snippet is edited
self.assertEqual(self.snippet.text, "Edited while locked")
| A user can edit a snippet that is locked by themselves. | 11 | 63 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_edit_post_locked_by_self(self):
# Lock the snippet
self.lock_snippet(self.user)
# Try to edit the snippet
response = self.client.post(
self.get_url("edit"),
{"text": "Edited while locked"},
follow=True,
)
self.refresh_snippet()
# Should not show error message
self.assertNotContains(
response,
f"The {self.model_name} could not be saved as it is locked",
)
# Check that the snippet is still locked
self.assertTrue(self.snippet.locked)
# Check that the snippet is edited
self.assertEqual(self.snippet.text, "Edited while locked")
```
###Assistant : A user can edit a snippet that is locked by themselves.
|
1,321 | def update_metrics(self, targets, predictions):
for of_name, of_obj in self.output_features.items():
of_obj.update_metrics(targets[of_name], predictions[of_name])
eval_loss, additional_losses = self.eval_loss(targets, predictions)
self.eval_loss_metric.update(eval_loss)
self.eval_additional_losses_metrics.update(additional_losses)
| Updates the model's metrics given targets and predictions. | 8 | 18 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def update_metrics(self, targets, predictions):
for of_name, of_obj in self.output_features.items():
of_obj.update_metrics(targets[of_name], predictions[of_name])
eval_loss, additional_losses = self.eval_loss(targets, predictions)
self.eval_loss_metric.update(eval_loss)
self.eval_additional_losses_metrics.update(additional_losses)
```
###Assistant : Updates the model's metrics given targets and predictions.
|
1,322 | def tick_right(self):
label = True
if 'label1On' in self._major_tick_kw:
label = (self._major_tick_kw['label1On']
or self._major_tick_kw['label2On'])
self.set_ticks_position('right')
# if labels were turned off before this was called
# leave them off
self.set_tick_params(which='both', labelright=label)
|
Move ticks and ticklabels (if present) to the right of the Axes.
| 12 | 31 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def tick_right(self):
label = True
if 'label1On' in self._major_tick_kw:
label = (self._major_tick_kw['label1On']
or self._major_tick_kw['label2On'])
self.set_ticks_position('right')
# if labels were turned off before this was called
# leave them off
self.set_tick_params(which='both', labelright=label)
```
###Assistant :
Move ticks and ticklabels (if present) to the right of the Axes.
|
1,323 | def test_show_message_twice(view, info1, info2, count):
view.show_message(info1)
view.show_message(info2)
assert len(view._messages) == count
| Show the exact same message twice -> only one should be shown. | 12 | 11 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_show_message_twice(view, info1, info2, count):
view.show_message(info1)
view.show_message(info2)
assert len(view._messages) == count
```
###Assistant : Show the exact same message twice -> only one should be shown.
|
1,324 | def __call__(self, bboxes1, bboxes2, mode='iou', is_aligned=False):
bboxes1 = get_box_tensor(bboxes1)
bboxes2 = get_box_tensor(bboxes2)
assert bboxes1.size(-1) in [0, 4, 5]
assert bboxes2.size(-1) in [0, 4, 5]
if bboxes2.size(-1) == 5:
bboxes2 = bboxes2[..., :4]
if bboxes1.size(-1) == 5:
bboxes1 = bboxes1[..., :4]
if self.dtype == 'fp16':
# change tensor type to save cpu and cuda memory and keep speed
bboxes1 = cast_tensor_type(bboxes1, self.scale, self.dtype)
bboxes2 = cast_tensor_type(bboxes2, self.scale, self.dtype)
overlaps = bbox_overlaps(bboxes1, bboxes2, mode, is_aligned)
if not overlaps.is_cuda and overlaps.dtype == torch.float16:
# resume cpu float32
overlaps = overlaps.float()
return overlaps
return bbox_overlaps(bboxes1, bboxes2, mode, is_aligned)
| Calculate IoU between 2D bboxes.
Args:
bboxes1 (Tensor or :obj:`BaseBoxes`): bboxes have shape (m, 4)
in <x1, y1, x2, y2> format, or shape (m, 5) in <x1, y1, x2,
y2, score> format.
bboxes2 (Tensor or :obj:`BaseBoxes`): bboxes have shape (m, 4)
in <x1, y1, x2, y2> format, shape (m, 5) in <x1, y1, x2, y2,
score> format, or be empty. If ``is_aligned `` is ``True``,
then m and n must be equal.
mode (str): "iou" (intersection over union), "iof" (intersection
over foreground), or "giou" (generalized intersection over
union).
is_aligned (bool, optional): If True, then m and n must be equal.
Default False.
Returns:
Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,)
| 115 | 94 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def __call__(self, bboxes1, bboxes2, mode='iou', is_aligned=False):
bboxes1 = get_box_tensor(bboxes1)
bboxes2 = get_box_tensor(bboxes2)
assert bboxes1.size(-1) in [0, 4, 5]
assert bboxes2.size(-1) in [0, 4, 5]
if bboxes2.size(-1) == 5:
bboxes2 = bboxes2[..., :4]
if bboxes1.size(-1) == 5:
bboxes1 = bboxes1[..., :4]
if self.dtype == 'fp16':
# change tensor type to save cpu and cuda memory and keep speed
bboxes1 = cast_tensor_type(bboxes1, self.scale, self.dtype)
bboxes2 = cast_tensor_type(bboxes2, self.scale, self.dtype)
overlaps = bbox_overlaps(bboxes1, bboxes2, mode, is_aligned)
if not overlaps.is_cuda and overlaps.dtype == torch.float16:
# resume cpu float32
overlaps = overlaps.float()
return overlaps
return bbox_overlaps(bboxes1, bboxes2, mode, is_aligned)
```
###Assistant : Calculate IoU between 2D bboxes.
Args:
bboxes1 (Tensor or :obj:`BaseBoxes`): bboxes have shape (m, 4)
in <x1, y1, x2, y2> format, or shape (m, 5) in <x1, y1, x2,
y2, score> format.
bboxes2 (Tensor or :obj:`BaseBoxes`): bboxes have shape (m, 4)
in <x1, y1, x2, y2> format, shape (m, 5) in <x1, y1, x2, y2,
score> format, or be empty. If ``is_aligned `` is ``True``,
then m and n must be equal.
mode (str): "iou" (intersection over union), "iof" (intersection
over foreground), or "giou" (generalized intersection over
union).
is_aligned (bool, optional): If True, then m and n must be equal.
Default False.
Returns:
Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,)
|
1,325 | def binning(self) -> List[List[str]]:
return self._binning_linear_threshold(multiplier=100)
| Create bins to split linearly from the lowest to the highest sample value
Returns
-------
list
List of bins of filenames
| 21 | 6 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def binning(self) -> List[List[str]]:
return self._binning_linear_threshold(multiplier=100)
```
###Assistant : Create bins to split linearly from the lowest to the highest sample value
Returns
-------
list
List of bins of filenames
|
1,326 | def connect(self, publish_port, connect_callback=None, disconnect_callback=None):
raise NotImplementedError
|
Create a network connection to the the PublishServer or broker.
| 10 | 7 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def connect(self, publish_port, connect_callback=None, disconnect_callback=None):
raise NotImplementedError
```
###Assistant :
Create a network connection to the the PublishServer or broker.
|
1,327 | def contains(self, g):
if not isinstance(g, FreeGroupElement):
return False
elif self != g.group:
return False
else:
return True
| Tests if Free Group element ``g`` belong to self, ``G``.
In mathematical terms any linear combination of generators
of a Free Group is contained in it.
Examples
========
>>> from sympy.combinatorics import free_group
>>> f, x, y, z = free_group("x y z")
>>> f.contains(x**3*y**2)
True
| 45 | 18 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def contains(self, g):
if not isinstance(g, FreeGroupElement):
return False
elif self != g.group:
return False
else:
return True
```
###Assistant : Tests if Free Group element ``g`` belong to self, ``G``.
In mathematical terms any linear combination of generators
of a Free Group is contained in it.
Examples
========
>>> from sympy.combinatorics import free_group
>>> f, x, y, z = free_group("x y z")
>>> f.contains(x**3*y**2)
True
|
1,328 | def get_pledged_security_qty(loan):
current_pledges = {}
unpledges = frappe._dict(
frappe.db.sql(
,
(loan),
)
)
pledges = frappe._dict(
frappe.db.sql(
,
(loan),
)
)
for security, qty in pledges.items():
current_pledges.setdefault(security, qty)
current_pledges[security] -= unpledges.get(security, 0.0)
return current_pledges
|
SELECT u.loan_security, sum(u.qty) as qty
FROM `tabLoan Security Unpledge` up, `tabUnpledge` u
WHERE up.loan = %s
AND u.parent = up.name
AND up.status = 'Approved'
GROUP BY u.loan_security
SELECT p.loan_security, sum(p.qty) as qty
FROM `tabLoan Security Pledge` lp, `tabPledge`p
WHERE lp.loan = %s
AND p.parent = lp.name
AND lp.status = 'Pledged'
GROUP BY p.loan_security
| 53 | 34 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_pledged_security_qty(loan):
current_pledges = {}
unpledges = frappe._dict(
frappe.db.sql(
,
(loan),
)
)
pledges = frappe._dict(
frappe.db.sql(
,
(loan),
)
)
for security, qty in pledges.items():
current_pledges.setdefault(security, qty)
current_pledges[security] -= unpledges.get(security, 0.0)
return current_pledges
```
###Assistant :
SELECT u.loan_security, sum(u.qty) as qty
FROM `tabLoan Security Unpledge` up, `tabUnpledge` u
WHERE up.loan = %s
AND u.parent = up.name
AND up.status = 'Approved'
GROUP BY u.loan_security
SELECT p.loan_security, sum(p.qty) as qty
FROM `tabLoan Security Pledge` lp, `tabPledge`p
WHERE lp.loan = %s
AND p.parent = lp.name
AND lp.status = 'Pledged'
GROUP BY p.loan_security
|
1,329 | def get_select(self):
select = []
klass_info = None
annotations = {}
select_idx = 0
for alias, (sql, params) in self.query.extra_select.items():
annotations[alias] = select_idx
select.append((RawSQL(sql, params), alias))
select_idx += 1
assert not (self.query.select and self.query.default_cols)
if self.query.default_cols:
cols = self.get_default_columns()
else:
# self.query.select is a special case. These columns never go to
# any model.
cols = self.query.select
if cols:
select_list = []
for col in cols:
select_list.append(select_idx)
select.append((col, None))
select_idx += 1
klass_info = {
"model": self.query.model,
"select_fields": select_list,
}
for alias, annotation in self.query.annotation_select.items():
annotations[alias] = select_idx
select.append((annotation, alias))
select_idx += 1
if self.query.select_related:
related_klass_infos = self.get_related_selections(select)
klass_info["related_klass_infos"] = related_klass_infos
|
Return three values:
- a list of 3-tuples of (expression, (sql, params), alias)
- a klass_info structure,
- a dictionary of annotations
The (sql, params) is what the expression will produce, and alias is the
"AS alias" for the column (possibly None).
The klass_info structure contains the following information:
- The base model of the query.
- Which columns for that model are present in the query (by
position of the select clause).
- related_klass_infos: [f, klass_info] to descent into
The annotations is a dictionary of {'attname': column position} values.
| 90 | 101 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_select(self):
select = []
klass_info = None
annotations = {}
select_idx = 0
for alias, (sql, params) in self.query.extra_select.items():
annotations[alias] = select_idx
select.append((RawSQL(sql, params), alias))
select_idx += 1
assert not (self.query.select and self.query.default_cols)
if self.query.default_cols:
cols = self.get_default_columns()
else:
# self.query.select is a special case. These columns never go to
# any model.
cols = self.query.select
if cols:
select_list = []
for col in cols:
select_list.append(select_idx)
select.append((col, None))
select_idx += 1
klass_info = {
"model": self.query.model,
"select_fields": select_list,
}
for alias, annotation in self.query.annotation_select.items():
annotations[alias] = select_idx
select.append((annotation, alias))
select_idx += 1
if self.query.select_related:
related_klass_infos = self.get_related_selections(select)
klass_info["related_klass_infos"] = related_klass_infos
```
###Assistant :
Return three values:
- a list of 3-tuples of (expression, (sql, params), alias)
- a klass_info structure,
- a dictionary of annotations
The (sql, params) is what the expression will produce, and alias is the
"AS alias" for the column (possibly None).
The klass_info structure contains the following information:
- The base model of the query.
- Which columns for that model are present in the query (by
position of the select clause).
- related_klass_infos: [f, klass_info] to descent into
The annotations is a dictionary of {'attname': column position} values.
|
1,330 | def set_module_collection_mode(self, name, mode):
if name is None:
name = self.__name__
if mode is None:
self._module_collection_mode.pop(name)
else:
self._module_collection_mode[name] = mode
| "
Set the package/module collection mode for the specified module
name. If `name` is `None`, the hooked module/package name is used.
Valid values for `mode` are: `'pyc'`, `'py'`, and `None`.
| 30 | 20 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def set_module_collection_mode(self, name, mode):
if name is None:
name = self.__name__
if mode is None:
self._module_collection_mode.pop(name)
else:
self._module_collection_mode[name] = mode
```
###Assistant : "
Set the package/module collection mode for the specified module
name. If `name` is `None`, the hooked module/package name is used.
Valid values for `mode` are: `'pyc'`, `'py'`, and `None`.
|
1,331 | def write_file (filename, contents):
f = open(filename, "w")
try:
for line in contents:
f.write(line + "\n")
finally:
f.close()
| Create a file with the specified name and write 'contents' (a
sequence of strings without line terminators) to it.
| 19 | 18 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def write_file (filename, contents):
f = open(filename, "w")
try:
for line in contents:
f.write(line + "\n")
finally:
f.close()
```
###Assistant : Create a file with the specified name and write 'contents' (a
sequence of strings without line terminators) to it.
|
1,332 | async def test_flow_run_policy_is_backwards_compatible(self):
empty_new_policy = schemas.core.FlowRunPolicy()
# should not raise an error
self.OldFlowRunPolicy(**empty_new_policy.dict())
|
In version 2.1.1 and prior, the FlowRunPolicy schema required two properties,
`max_retries` and `retry_delay_seconds`. These properties are deprecated.
This test ensures old clients can load new FlowRunPolicySchemas. It can be removed
when the corresponding properties are removed.
| 37 | 13 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
async def test_flow_run_policy_is_backwards_compatible(self):
empty_new_policy = schemas.core.FlowRunPolicy()
# should not raise an error
self.OldFlowRunPolicy(**empty_new_policy.dict())
```
###Assistant :
In version 2.1.1 and prior, the FlowRunPolicy schema required two properties,
`max_retries` and `retry_delay_seconds`. These properties are deprecated.
This test ensures old clients can load new FlowRunPolicySchemas. It can be removed
when the corresponding properties are removed.
|
1,333 | def test_help_text_examples_are_contextualized():
rendered_inline = render(spacing_invalid_value("padding", "inline"))
assert "widget.styles.padding" in rendered_inline
rendered_css = render(spacing_invalid_value("padding", "css"))
assert "padding:" in rendered_css
| Ensure that if the user is using CSS, they see CSS-specific examples
and if they're using inline styles they see inline-specific examples. | 22 | 18 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_help_text_examples_are_contextualized():
rendered_inline = render(spacing_invalid_value("padding", "inline"))
assert "widget.styles.padding" in rendered_inline
rendered_css = render(spacing_invalid_value("padding", "css"))
assert "padding:" in rendered_css
```
###Assistant : Ensure that if the user is using CSS, they see CSS-specific examples
and if they're using inline styles they see inline-specific examples.
|
1,334 | def test_reverse_proxy(tctx, keep_host_header):
server = Placeholder(Server)
tctx.options.mode = "reverse:http://localhost:8000"
tctx.options.connection_strategy = "lazy"
tctx.options.keep_host_header = keep_host_header
assert (
Playbook(modes.ReverseProxy(tctx), hooks=False)
>> DataReceived(
tctx.client, b"GET /foo HTTP/1.1\r\n" b"Host: example.com\r\n\r\n"
)
<< NextLayerHook(Placeholder(NextLayer))
>> reply_next_layer(lambda ctx: http.HttpLayer(ctx, HTTPMode.transparent))
<< OpenConnection(server)
>> reply(None)
<< SendData(
server,
b"GET /foo HTTP/1.1\r\n"
b"Host: "
+ (b"example.com" if keep_host_header else b"localhost:8000")
+ b"\r\n\r\n",
)
>> DataReceived(server, b"HTTP/1.1 200 OK\r\nContent-Length: 0\r\n\r\n")
<< SendData(tctx.client, b"HTTP/1.1 200 OK\r\nContent-Length: 0\r\n\r\n")
)
assert server().address == ("localhost", 8000)
@pytest.mark.parametrize("patch", [True, False])
@pytest.mark.parametrize("connection_strategy", ["eager", "lazy"]) | Test mitmproxy in reverse proxy mode.
- make sure that we connect to the right host
- make sure that we respect keep_host_header
- make sure that we include non-standard ports in the host header (#4280)
| 36 | 80 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_reverse_proxy(tctx, keep_host_header):
server = Placeholder(Server)
tctx.options.mode = "reverse:http://localhost:8000"
tctx.options.connection_strategy = "lazy"
tctx.options.keep_host_header = keep_host_header
assert (
Playbook(modes.ReverseProxy(tctx), hooks=False)
>> DataReceived(
tctx.client, b"GET /foo HTTP/1.1\r\n" b"Host: example.com\r\n\r\n"
)
<< NextLayerHook(Placeholder(NextLayer))
>> reply_next_layer(lambda ctx: http.HttpLayer(ctx, HTTPMode.transparent))
<< OpenConnection(server)
>> reply(None)
<< SendData(
server,
b"GET /foo HTTP/1.1\r\n"
b"Host: "
+ (b"example.com" if keep_host_header else b"localhost:8000")
+ b"\r\n\r\n",
)
>> DataReceived(server, b"HTTP/1.1 200 OK\r\nContent-Length: 0\r\n\r\n")
<< SendData(tctx.client, b"HTTP/1.1 200 OK\r\nContent-Length: 0\r\n\r\n")
)
assert server().address == ("localhost", 8000)
@pytest.mark.parametrize("patch", [True, False])
@pytest.mark.parametrize("connection_strategy", ["eager", "lazy"])
```
###Assistant : Test mitmproxy in reverse proxy mode.
- make sure that we connect to the right host
- make sure that we respect keep_host_header
- make sure that we include non-standard ports in the host header (#4280)
|
1,335 | def _check_filter_horizontal(self, obj):
if not isinstance(obj.filter_horizontal, (list, tuple)):
return must_be(
"a list or tuple", option="filter_horizontal", obj=obj, id="admin.E018"
)
else:
return list(
chain.from_iterable(
self._check_filter_item(
obj, field_name, "filter_horizontal[%d]" % index
)
for index, field_name in enumerate(obj.filter_horizontal)
)
)
| Check that filter_horizontal is a sequence of field names. | 9 | 36 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _check_filter_horizontal(self, obj):
if not isinstance(obj.filter_horizontal, (list, tuple)):
return must_be(
"a list or tuple", option="filter_horizontal", obj=obj, id="admin.E018"
)
else:
return list(
chain.from_iterable(
self._check_filter_item(
obj, field_name, "filter_horizontal[%d]" % index
)
for index, field_name in enumerate(obj.filter_horizontal)
)
)
```
###Assistant : Check that filter_horizontal is a sequence of field names.
|
1,336 | def poly_intersection(poly_det, poly_gt):
assert isinstance(poly_det, plg.Polygon)
assert isinstance(poly_gt, plg.Polygon)
poly_inter = poly_det & poly_gt
if len(poly_inter) == 0:
return 0, poly_inter
return poly_inter.area(), poly_inter
| Calculate the intersection area between two polygon.
Args:
poly_det (Polygon): A polygon predicted by detector.
poly_gt (Polygon): A gt polygon.
Returns:
intersection_area (float): The intersection area between two polygons.
| 29 | 24 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def poly_intersection(poly_det, poly_gt):
assert isinstance(poly_det, plg.Polygon)
assert isinstance(poly_gt, plg.Polygon)
poly_inter = poly_det & poly_gt
if len(poly_inter) == 0:
return 0, poly_inter
return poly_inter.area(), poly_inter
```
###Assistant : Calculate the intersection area between two polygon.
Args:
poly_det (Polygon): A polygon predicted by detector.
poly_gt (Polygon): A gt polygon.
Returns:
intersection_area (float): The intersection area between two polygons.
|
1,337 | def size(self) -> int:
return sum(len(x.data) for x in [*self.answers, *self.authorities, *self.additionals])
| Returns the cumulative data size of all resource record sections. | 10 | 12 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def size(self) -> int:
return sum(len(x.data) for x in [*self.answers, *self.authorities, *self.additionals])
```
###Assistant : Returns the cumulative data size of all resource record sections.
|
1,338 | async def get_job_submission_info(self):
jobs = {}
fetched_jobs = await self._job_info_client.get_all_jobs()
for (
job_submission_id,
job_info,
) in fetched_jobs.items():
if job_info is not None:
entry = {
"job_submission_id": job_submission_id,
"status": job_info.status,
"message": job_info.message,
"error_type": job_info.error_type,
"start_time": job_info.start_time,
"end_time": job_info.end_time,
"metadata": job_info.metadata,
"runtime_env": job_info.runtime_env,
"entrypoint": job_info.entrypoint,
}
jobs[job_submission_id] = entry
return jobs
| Info for Ray job submission. Here a job can have 0 or many drivers. | 14 | 49 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
async def get_job_submission_info(self):
jobs = {}
fetched_jobs = await self._job_info_client.get_all_jobs()
for (
job_submission_id,
job_info,
) in fetched_jobs.items():
if job_info is not None:
entry = {
"job_submission_id": job_submission_id,
"status": job_info.status,
"message": job_info.message,
"error_type": job_info.error_type,
"start_time": job_info.start_time,
"end_time": job_info.end_time,
"metadata": job_info.metadata,
"runtime_env": job_info.runtime_env,
"entrypoint": job_info.entrypoint,
}
jobs[job_submission_id] = entry
return jobs
```
###Assistant : Info for Ray job submission. Here a job can have 0 or many drivers.
|
1,339 | def _gen_sieve_array(M, factor_base):
sieve_array = [0]*(2*M + 1)
for factor in factor_base:
if factor.soln1 is None: #The prime does not divides a
continue
for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
if factor.prime == 2:
continue
#if prime is 2 then sieve only with soln_1_p
for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
return sieve_array
| Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
that does not divide the coefficient `a` we add log_p over the sieve_array
such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i`
is an integer. When p = 2 then log_p is only added using
``-M <= soln1 + i*p <= M``.
Parameters
==========
M : sieve interval
factor_base : factor_base primes
| 74 | 65 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _gen_sieve_array(M, factor_base):
sieve_array = [0]*(2*M + 1)
for factor in factor_base:
if factor.soln1 is None: #The prime does not divides a
continue
for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
if factor.prime == 2:
continue
#if prime is 2 then sieve only with soln_1_p
for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
return sieve_array
```
###Assistant : Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
that does not divide the coefficient `a` we add log_p over the sieve_array
such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i`
is an integer. When p = 2 then log_p is only added using
``-M <= soln1 + i*p <= M``.
Parameters
==========
M : sieve interval
factor_base : factor_base primes
|
1,340 | def rescue_docarray():
try:
import docarray as docarray
__docarray_version__ = docarray.__version__
except AttributeError:
# Being here means docarray is not installed correctly, attempt to reinstall it
# as recommended by pip https://pip.pypa.io/en/latest/user_guide/#using-pip-from-your-program
import subprocess
subprocess.check_call(
[sys.executable, '-m', 'pip', 'uninstall', '--yes', 'docarray']
)
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'docarray'])
| Upgrading from 2.x to 3.x is broken (https://github.com/jina-ai/jina/issues/4194)
This function checks if docarray is broken and if so attempts to rescue it
| 22 | 46 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def rescue_docarray():
try:
import docarray as docarray
__docarray_version__ = docarray.__version__
except AttributeError:
# Being here means docarray is not installed correctly, attempt to reinstall it
# as recommended by pip https://pip.pypa.io/en/latest/user_guide/#using-pip-from-your-program
import subprocess
subprocess.check_call(
[sys.executable, '-m', 'pip', 'uninstall', '--yes', 'docarray']
)
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'docarray'])
```
###Assistant : Upgrading from 2.x to 3.x is broken (https://github.com/jina-ai/jina/issues/4194)
This function checks if docarray is broken and if so attempts to rescue it
|
1,341 | def transform(self, X):
msg = (
"%(name)s is not fitted. Call fit to set the parameters before"
" calling transform"
)
check_is_fitted(self, msg=msg)
X = self._validate_data(X, accept_sparse="csr", reset=False)
check_non_negative(X, "X in AdditiveChi2Sampler.transform")
sparse = sp.issparse(X)
# zeroth component
# 1/cosh = sech
# cosh(0) = 1.0
transf = self._transform_sparse if sparse else self._transform_dense
return transf(X)
| Apply approximate feature map to X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Returns
-------
X_new : {ndarray, sparse matrix}, \
shape = (n_samples, n_features * (2*sample_steps - 1))
Whether the return value is an array or sparse matrix depends on
the type of the input X.
| 66 | 55 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def transform(self, X):
msg = (
"%(name)s is not fitted. Call fit to set the parameters before"
" calling transform"
)
check_is_fitted(self, msg=msg)
X = self._validate_data(X, accept_sparse="csr", reset=False)
check_non_negative(X, "X in AdditiveChi2Sampler.transform")
sparse = sp.issparse(X)
# zeroth component
# 1/cosh = sech
# cosh(0) = 1.0
transf = self._transform_sparse if sparse else self._transform_dense
return transf(X)
```
###Assistant : Apply approximate feature map to X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Returns
-------
X_new : {ndarray, sparse matrix}, \
shape = (n_samples, n_features * (2*sample_steps - 1))
Whether the return value is an array or sparse matrix depends on
the type of the input X.
|
1,342 | def get_repository_root(cls, location):
# type: (str) -> Optional[str]
if cls.is_repository_directory(location):
return location
return None
|
Return the "root" (top-level) directory controlled by the vcs,
or `None` if the directory is not in any.
It is meant to be overridden to implement smarter detection
mechanisms for specific vcs.
This can do more than is_repository_directory() alone. For
example, the Git override checks that Git is actually available.
| 50 | 14 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_repository_root(cls, location):
# type: (str) -> Optional[str]
if cls.is_repository_directory(location):
return location
return None
```
###Assistant :
Return the "root" (top-level) directory controlled by the vcs,
or `None` if the directory is not in any.
It is meant to be overridden to implement smarter detection
mechanisms for specific vcs.
This can do more than is_repository_directory() alone. For
example, the Git override checks that Git is actually available.
|
1,343 | def test_it_should_not_read_quotes_stream_if_it_does_not_exist_in_client(oauth_config, configured_catalog):
source = SourceHubspot()
all_records = list(source.read(logger, config=oauth_config, catalog=configured_catalog, state=None))
records = [record for record in all_records if record.type == Type.RECORD]
assert not records
|
If 'quotes' stream is not in the client, it should skip it.
| 12 | 26 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_it_should_not_read_quotes_stream_if_it_does_not_exist_in_client(oauth_config, configured_catalog):
source = SourceHubspot()
all_records = list(source.read(logger, config=oauth_config, catalog=configured_catalog, state=None))
records = [record for record in all_records if record.type == Type.RECORD]
assert not records
```
###Assistant :
If 'quotes' stream is not in the client, it should skip it.
|
1,344 | def get_conda_env_dir(env_name):
conda_prefix = os.environ.get("CONDA_PREFIX")
if conda_prefix is None:
# The caller is neither in a conda env or in (base) env. This is rare
# because by default, new terminals start in (base), but we can still
# support this case.
conda_exe = os.environ.get("CONDA_EXE")
if conda_exe is None:
raise ValueError(
"Cannot find environment variables set by conda. "
"Please verify conda is installed."
)
# Example: CONDA_EXE=$HOME/anaconda3/bin/python
# Strip out /bin/python by going up two parent directories.
conda_prefix = str(Path(conda_exe).parent.parent)
# There are two cases:
# 1. We are in a conda (base) env: CONDA_DEFAULT_ENV=base and
# CONDA_PREFIX=$HOME/anaconda3
# 2. We are in a user-created conda env: CONDA_DEFAULT_ENV=$env_name and
# CONDA_PREFIX=$HOME/anaconda3/envs/$current_env_name
if os.environ.get("CONDA_DEFAULT_ENV") == "base":
# Caller's curent environment is (base).
# Not recommended by conda, but we can still support it.
if env_name == "base":
# Desired environment is (base), located at e.g. $HOME/anaconda3
env_dir = conda_prefix
else:
# Desired environment is user-created, e.g.
# $HOME/anaconda3/envs/$env_name
env_dir = os.path.join(conda_prefix, "envs", env_name)
else:
# Now `conda_prefix` should be something like
# $HOME/anaconda3/envs/$current_env_name
# We want to replace the last component with the desired env name.
conda_envs_dir = os.path.split(conda_prefix)[0]
env_dir = os.path.join(conda_envs_dir, env_name)
if not os.path.isdir(env_dir):
raise ValueError(
"conda env "
+ env_name
+ " not found in conda envs directory. Run `conda env list` to "
+ "verify the name is correct."
)
return env_dir
| Find and validate the conda directory for a given conda environment.
For example, given the environment name `tf1`, this function checks
the existence of the corresponding conda directory, e.g.
`/Users/scaly/anaconda3/envs/tf1`, and returns it.
| 33 | 226 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_conda_env_dir(env_name):
conda_prefix = os.environ.get("CONDA_PREFIX")
if conda_prefix is None:
# The caller is neither in a conda env or in (base) env. This is rare
# because by default, new terminals start in (base), but we can still
# support this case.
conda_exe = os.environ.get("CONDA_EXE")
if conda_exe is None:
raise ValueError(
"Cannot find environment variables set by conda. "
"Please verify conda is installed."
)
# Example: CONDA_EXE=$HOME/anaconda3/bin/python
# Strip out /bin/python by going up two parent directories.
conda_prefix = str(Path(conda_exe).parent.parent)
# There are two cases:
# 1. We are in a conda (base) env: CONDA_DEFAULT_ENV=base and
# CONDA_PREFIX=$HOME/anaconda3
# 2. We are in a user-created conda env: CONDA_DEFAULT_ENV=$env_name and
# CONDA_PREFIX=$HOME/anaconda3/envs/$current_env_name
if os.environ.get("CONDA_DEFAULT_ENV") == "base":
# Caller's curent environment is (base).
# Not recommended by conda, but we can still support it.
if env_name == "base":
# Desired environment is (base), located at e.g. $HOME/anaconda3
env_dir = conda_prefix
else:
# Desired environment is user-created, e.g.
# $HOME/anaconda3/envs/$env_name
env_dir = os.path.join(conda_prefix, "envs", env_name)
else:
# Now `conda_prefix` should be something like
# $HOME/anaconda3/envs/$current_env_name
# We want to replace the last component with the desired env name.
conda_envs_dir = os.path.split(conda_prefix)[0]
env_dir = os.path.join(conda_envs_dir, env_name)
if not os.path.isdir(env_dir):
raise ValueError(
"conda env "
+ env_name
+ " not found in conda envs directory. Run `conda env list` to "
+ "verify the name is correct."
)
return env_dir
```
###Assistant : Find and validate the conda directory for a given conda environment.
For example, given the environment name `tf1`, this function checks
the existence of the corresponding conda directory, e.g.
`/Users/scaly/anaconda3/envs/tf1`, and returns it.
|
1,345 | async def test_switch_change_outlet_state(hass, utcnow):
helper = await setup_test_component(hass, create_switch_service)
await hass.services.async_call(
"switch", "turn_on", {"entity_id": "switch.testdevice"}, blocking=True
)
helper.async_assert_service_values(
ServicesTypes.OUTLET,
{
CharacteristicsTypes.ON: 1,
},
)
await hass.services.async_call(
"switch", "turn_off", {"entity_id": "switch.testdevice"}, blocking=True
)
helper.async_assert_service_values(
ServicesTypes.OUTLET,
{
CharacteristicsTypes.ON: 0,
},
)
| Test that we can turn a HomeKit outlet on and off again. | 12 | 39 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
async def test_switch_change_outlet_state(hass, utcnow):
helper = await setup_test_component(hass, create_switch_service)
await hass.services.async_call(
"switch", "turn_on", {"entity_id": "switch.testdevice"}, blocking=True
)
helper.async_assert_service_values(
ServicesTypes.OUTLET,
{
CharacteristicsTypes.ON: 1,
},
)
await hass.services.async_call(
"switch", "turn_off", {"entity_id": "switch.testdevice"}, blocking=True
)
helper.async_assert_service_values(
ServicesTypes.OUTLET,
{
CharacteristicsTypes.ON: 0,
},
)
```
###Assistant : Test that we can turn a HomeKit outlet on and off again.
|
1,346 | def _update_label_position(self, renderer):
if not self._autolabelpos:
return
# get bounding boxes for this axis and any siblings
# that have been set by `fig.align_xlabels()`
bboxes, bboxes2 = self._get_tick_boxes_siblings(renderer=renderer)
x, y = self.label.get_position()
if self.label_position == 'bottom':
try:
spine = self.axes.spines['bottom']
spinebbox = spine.get_window_extent()
except KeyError:
# use axes if spine doesn't exist
spinebbox = self.axes.bbox
bbox = mtransforms.Bbox.union(bboxes + [spinebbox])
bottom = bbox.y0
self.label.set_position(
(x, bottom - self.labelpad * self.figure.dpi / 72)
)
else:
try:
spine = self.axes.spines['top']
spinebbox = spine.get_window_extent()
except KeyError:
# use axes if spine doesn't exist
spinebbox = self.axes.bbox
bbox = mtransforms.Bbox.union(bboxes2 + [spinebbox])
top = bbox.y1
self.label.set_position(
(x, top + self.labelpad * self.figure.dpi / 72)
)
|
Update the label position based on the bounding box enclosing
all the ticklabels and axis spine
| 16 | 111 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _update_label_position(self, renderer):
if not self._autolabelpos:
return
# get bounding boxes for this axis and any siblings
# that have been set by `fig.align_xlabels()`
bboxes, bboxes2 = self._get_tick_boxes_siblings(renderer=renderer)
x, y = self.label.get_position()
if self.label_position == 'bottom':
try:
spine = self.axes.spines['bottom']
spinebbox = spine.get_window_extent()
except KeyError:
# use axes if spine doesn't exist
spinebbox = self.axes.bbox
bbox = mtransforms.Bbox.union(bboxes + [spinebbox])
bottom = bbox.y0
self.label.set_position(
(x, bottom - self.labelpad * self.figure.dpi / 72)
)
else:
try:
spine = self.axes.spines['top']
spinebbox = spine.get_window_extent()
except KeyError:
# use axes if spine doesn't exist
spinebbox = self.axes.bbox
bbox = mtransforms.Bbox.union(bboxes2 + [spinebbox])
top = bbox.y1
self.label.set_position(
(x, top + self.labelpad * self.figure.dpi / 72)
)
```
###Assistant :
Update the label position based on the bounding box enclosing
all the ticklabels and axis spine
|
1,347 | def poly_union(poly_det, poly_gt):
assert isinstance(poly_det, plg.Polygon)
assert isinstance(poly_gt, plg.Polygon)
area_det = poly_det.area()
area_gt = poly_gt.area()
area_inters, _ = poly_intersection(poly_det, poly_gt)
return area_det + area_gt - area_inters
| Calculate the union area between two polygon.
Args:
poly_det (Polygon): A polygon predicted by detector.
poly_gt (Polygon): A gt polygon.
Returns:
union_area (float): The union area between two polygons.
| 29 | 26 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def poly_union(poly_det, poly_gt):
assert isinstance(poly_det, plg.Polygon)
assert isinstance(poly_gt, plg.Polygon)
area_det = poly_det.area()
area_gt = poly_gt.area()
area_inters, _ = poly_intersection(poly_det, poly_gt)
return area_det + area_gt - area_inters
```
###Assistant : Calculate the union area between two polygon.
Args:
poly_det (Polygon): A polygon predicted by detector.
poly_gt (Polygon): A gt polygon.
Returns:
union_area (float): The union area between two polygons.
|
1,348 | def test_whitelist_idna_result(self) -> None:
config: JsonDict = {
"federation_certificate_verification_whitelist": [
"example.com",
"*.xn--eckwd4c7c.xn--zckzah",
]
}
t = TestConfig()
t.tls.read_config(config, config_dir_path="", data_dir_path="")
cf = FederationPolicyForHTTPS(cast(HomeServerConfig, t))
# Not in the whitelist
opts = cf.get_options(b"notexample.com")
assert isinstance(opts, SSLClientConnectionCreator)
self.assertTrue(opts._verifier._verify_certs)
# Caught by the wildcard
opts = cf.get_options(idna.encode("テスト.ドメイン.テスト"))
assert isinstance(opts, SSLClientConnectionCreator)
self.assertFalse(opts._verifier._verify_certs)
|
The federation certificate whitelist will match on IDNA encoded names.
| 10 | 48 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_whitelist_idna_result(self) -> None:
config: JsonDict = {
"federation_certificate_verification_whitelist": [
"example.com",
"*.xn--eckwd4c7c.xn--zckzah",
]
}
t = TestConfig()
t.tls.read_config(config, config_dir_path="", data_dir_path="")
cf = FederationPolicyForHTTPS(cast(HomeServerConfig, t))
# Not in the whitelist
opts = cf.get_options(b"notexample.com")
assert isinstance(opts, SSLClientConnectionCreator)
self.assertTrue(opts._verifier._verify_certs)
# Caught by the wildcard
opts = cf.get_options(idna.encode("テスト.ドメイン.テスト"))
assert isinstance(opts, SSLClientConnectionCreator)
self.assertFalse(opts._verifier._verify_certs)
```
###Assistant :
The federation certificate whitelist will match on IDNA encoded names.
|
1,349 | def simple_test_rpn(self, x, img_metas):
rpn_outs = self(x)
proposal_list = self.get_results(*rpn_outs, img_metas=img_metas)
return proposal_list
| Test without augmentation, only for ``RPNHead`` and its variants,
e.g., ``GARPNHead``, etc.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
img_metas (list[dict]): Meta info of each image.
Returns:
list[Tensor]: Proposals of each image, each item has shape (n, 5),
where 5 represent (tl_x, tl_y, br_x, br_y, score).
| 51 | 13 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def simple_test_rpn(self, x, img_metas):
rpn_outs = self(x)
proposal_list = self.get_results(*rpn_outs, img_metas=img_metas)
return proposal_list
```
###Assistant : Test without augmentation, only for ``RPNHead`` and its variants,
e.g., ``GARPNHead``, etc.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
img_metas (list[dict]): Meta info of each image.
Returns:
list[Tensor]: Proposals of each image, each item has shape (n, 5),
where 5 represent (tl_x, tl_y, br_x, br_y, score).
|
1,350 | def _get_tick_boxes_siblings(self, renderer):
# Get the Grouper keeping track of x or y label groups for this figure.
axis_names = [
name for name, axis in self.axes._get_axis_map().items()
if name in self.figure._align_label_groups and axis is self]
if len(axis_names) != 1:
return [], []
axis_name, = axis_names
grouper = self.figure._align_label_groups[axis_name]
bboxes = []
bboxes2 = []
# If we want to align labels from other Axes:
for ax in grouper.get_siblings(self.axes):
axis = getattr(ax, f"{axis_name}axis")
ticks_to_draw = axis._update_ticks()
tlb, tlb2 = axis._get_ticklabel_bboxes(ticks_to_draw, renderer)
bboxes.extend(tlb)
bboxes2.extend(tlb2)
return bboxes, bboxes2
|
Get the bounding boxes for this `.axis` and its siblings
as set by `.Figure.align_xlabels` or `.Figure.align_ylabels`.
By default it just gets bboxes for self.
| 24 | 85 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _get_tick_boxes_siblings(self, renderer):
# Get the Grouper keeping track of x or y label groups for this figure.
axis_names = [
name for name, axis in self.axes._get_axis_map().items()
if name in self.figure._align_label_groups and axis is self]
if len(axis_names) != 1:
return [], []
axis_name, = axis_names
grouper = self.figure._align_label_groups[axis_name]
bboxes = []
bboxes2 = []
# If we want to align labels from other Axes:
for ax in grouper.get_siblings(self.axes):
axis = getattr(ax, f"{axis_name}axis")
ticks_to_draw = axis._update_ticks()
tlb, tlb2 = axis._get_ticklabel_bboxes(ticks_to_draw, renderer)
bboxes.extend(tlb)
bboxes2.extend(tlb2)
return bboxes, bboxes2
```
###Assistant :
Get the bounding boxes for this `.axis` and its siblings
as set by `.Figure.align_xlabels` or `.Figure.align_ylabels`.
By default it just gets bboxes for self.
|
1,351 | def default(method):
method._is_default = True # pylint: disable=protected-access
return method
| Decorates a method to detect overrides in subclasses. | 8 | 10 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def default(method):
method._is_default = True # pylint: disable=protected-access
return method
```
###Assistant : Decorates a method to detect overrides in subclasses.
|
1,352 | def test_help_tooltip(self):
st.camera_input("the label", help="help_label")
c = self.get_delta_from_queue().new_element.camera_input
self.assertEqual(c.help, "help_label")
| Test that it can be called using a string for type parameter. | 12 | 10 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_help_tooltip(self):
st.camera_input("the label", help="help_label")
c = self.get_delta_from_queue().new_element.camera_input
self.assertEqual(c.help, "help_label")
```
###Assistant : Test that it can be called using a string for type parameter.
|
1,353 | async def test_multiple_event_images(hass, auth):
subscriber = await async_setup_camera(hass, DEVICE_TRAITS, auth=auth)
assert len(hass.states.async_all()) == 1
assert hass.states.get("camera.my_camera")
event_timestamp = utcnow()
await subscriber.async_receive_event(
make_motion_event(event_session_id="event-session-1", timestamp=event_timestamp)
)
await hass.async_block_till_done()
auth.responses = [
# Fake response from API that returns url image
aiohttp.web.json_response(GENERATE_IMAGE_URL_RESPONSE),
# Fake response for the image content fetch
aiohttp.web.Response(body=IMAGE_BYTES_FROM_EVENT),
# Image is refetched after being cleared by expiration alarm
aiohttp.web.json_response(GENERATE_IMAGE_URL_RESPONSE),
aiohttp.web.Response(body=b"updated image bytes"),
]
image = await async_get_image(hass)
assert image.content == IMAGE_BYTES_FROM_EVENT
next_event_timestamp = event_timestamp + datetime.timedelta(seconds=25)
await subscriber.async_receive_event(
make_motion_event(
event_id="updated-event-id",
event_session_id="event-session-2",
timestamp=next_event_timestamp,
)
)
await hass.async_block_till_done()
image = await async_get_image(hass)
assert image.content == b"updated image bytes"
| Test fallback for an event event image that has been cleaned up on expiration. | 14 | 96 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
async def test_multiple_event_images(hass, auth):
subscriber = await async_setup_camera(hass, DEVICE_TRAITS, auth=auth)
assert len(hass.states.async_all()) == 1
assert hass.states.get("camera.my_camera")
event_timestamp = utcnow()
await subscriber.async_receive_event(
make_motion_event(event_session_id="event-session-1", timestamp=event_timestamp)
)
await hass.async_block_till_done()
auth.responses = [
# Fake response from API that returns url image
aiohttp.web.json_response(GENERATE_IMAGE_URL_RESPONSE),
# Fake response for the image content fetch
aiohttp.web.Response(body=IMAGE_BYTES_FROM_EVENT),
# Image is refetched after being cleared by expiration alarm
aiohttp.web.json_response(GENERATE_IMAGE_URL_RESPONSE),
aiohttp.web.Response(body=b"updated image bytes"),
]
image = await async_get_image(hass)
assert image.content == IMAGE_BYTES_FROM_EVENT
next_event_timestamp = event_timestamp + datetime.timedelta(seconds=25)
await subscriber.async_receive_event(
make_motion_event(
event_id="updated-event-id",
event_session_id="event-session-2",
timestamp=next_event_timestamp,
)
)
await hass.async_block_till_done()
image = await async_get_image(hass)
assert image.content == b"updated image bytes"
```
###Assistant : Test fallback for an event event image that has been cleaned up on expiration.
|
1,354 | def test_delete_same_room_twice(self) -> None:
body = {"new_room_user_id": self.admin_user}
# first call to delete room
# and do not wait for finish the task
first_channel = self.make_request(
"DELETE",
self.url.encode("ascii"),
content=body,
access_token=self.admin_user_tok,
await_result=False,
)
# second call to delete room
second_channel = self.make_request(
"DELETE",
self.url.encode("ascii"),
content=body,
access_token=self.admin_user_tok,
)
self.assertEqual(
HTTPStatus.BAD_REQUEST, second_channel.code, msg=second_channel.json_body
)
self.assertEqual(Codes.UNKNOWN, second_channel.json_body["errcode"])
self.assertEqual(
f"History purge already in progress for {self.room_id}",
second_channel.json_body["error"],
)
# get result of first call
first_channel.await_result()
self.assertEqual(200, first_channel.code, msg=first_channel.json_body)
self.assertIn("delete_id", first_channel.json_body)
# check status after finish the task
self._test_result(
first_channel.json_body["delete_id"],
self.other_user,
expect_new_room=True,
)
| Test that the call for delete a room at second time gives an exception. | 14 | 87 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_delete_same_room_twice(self) -> None:
body = {"new_room_user_id": self.admin_user}
# first call to delete room
# and do not wait for finish the task
first_channel = self.make_request(
"DELETE",
self.url.encode("ascii"),
content=body,
access_token=self.admin_user_tok,
await_result=False,
)
# second call to delete room
second_channel = self.make_request(
"DELETE",
self.url.encode("ascii"),
content=body,
access_token=self.admin_user_tok,
)
self.assertEqual(
HTTPStatus.BAD_REQUEST, second_channel.code, msg=second_channel.json_body
)
self.assertEqual(Codes.UNKNOWN, second_channel.json_body["errcode"])
self.assertEqual(
f"History purge already in progress for {self.room_id}",
second_channel.json_body["error"],
)
# get result of first call
first_channel.await_result()
self.assertEqual(200, first_channel.code, msg=first_channel.json_body)
self.assertIn("delete_id", first_channel.json_body)
# check status after finish the task
self._test_result(
first_channel.json_body["delete_id"],
self.other_user,
expect_new_room=True,
)
```
###Assistant : Test that the call for delete a room at second time gives an exception.
|
1,355 | async def _async_refresh_device_detail_by_ids(self, device_ids_list):
for device_id in device_ids_list:
try:
await self._async_refresh_device_detail_by_id(device_id)
except asyncio.TimeoutError:
_LOGGER.warning(
"Timed out calling august api during refresh of device: %s",
device_id,
)
except (ClientResponseError, CannotConnect) as err:
_LOGGER.warning(
"Error from august api during refresh of device: %s",
device_id,
exc_info=err,
)
| Refresh each device in sequence.
This used to be a gather but it was less reliable with august's
recent api changes.
The august api has been timing out for some devices so
we want the ones that it isn't timing out for to keep working.
| 45 | 44 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
async def _async_refresh_device_detail_by_ids(self, device_ids_list):
for device_id in device_ids_list:
try:
await self._async_refresh_device_detail_by_id(device_id)
except asyncio.TimeoutError:
_LOGGER.warning(
"Timed out calling august api during refresh of device: %s",
device_id,
)
except (ClientResponseError, CannotConnect) as err:
_LOGGER.warning(
"Error from august api during refresh of device: %s",
device_id,
exc_info=err,
)
```
###Assistant : Refresh each device in sequence.
This used to be a gather but it was less reliable with august's
recent api changes.
The august api has been timing out for some devices so
we want the ones that it isn't timing out for to keep working.
|
1,356 | def masks_to_boxes(masks):
if masks.size == 0:
return np.zeros((0, 4))
h, w = masks.shape[-2:]
y = np.arange(0, h, dtype=np.float32)
x = np.arange(0, w, dtype=np.float32)
# see https://github.com/pytorch/pytorch/issues/50276
y, x = np.meshgrid(y, x, indexing="ij")
x_mask = masks * np.expand_dims(x, axis=0)
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
x_min = x.filled(fill_value=1e8)
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
y_mask = masks * np.expand_dims(y, axis=0)
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
y_min = y.filled(fill_value=1e8)
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
return np.stack([x_min, y_min, x_max, y_max], 1)
# Copied from transformers.models.detr.feature_extraction_detr.rgb_to_id |
Compute the bounding boxes around the provided panoptic segmentation masks.
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
Returns a [N, 4] tensor, with the boxes in corner (xyxy) format.
| 44 | 86 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def masks_to_boxes(masks):
if masks.size == 0:
return np.zeros((0, 4))
h, w = masks.shape[-2:]
y = np.arange(0, h, dtype=np.float32)
x = np.arange(0, w, dtype=np.float32)
# see https://github.com/pytorch/pytorch/issues/50276
y, x = np.meshgrid(y, x, indexing="ij")
x_mask = masks * np.expand_dims(x, axis=0)
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
x_min = x.filled(fill_value=1e8)
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
y_mask = masks * np.expand_dims(y, axis=0)
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
y_min = y.filled(fill_value=1e8)
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
return np.stack([x_min, y_min, x_max, y_max], 1)
# Copied from transformers.models.detr.feature_extraction_detr.rgb_to_id
```
###Assistant :
Compute the bounding boxes around the provided panoptic segmentation masks.
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
Returns a [N, 4] tensor, with the boxes in corner (xyxy) format.
|
1,357 | def _roots_with_zeros(p, num_leading_zeros):
# Avoid lapack errors when p is all zero
p = _where(len(p) == num_leading_zeros, 1.0, p)
# Roll any leading zeros to the end & compute the roots
roots = _roots_no_zeros(roll(p, -num_leading_zeros))
# Sort zero roots to the end.
roots = lax.sort_key_val(roots == 0, roots)[1]
# Set roots associated with num_leading_zeros to NaN
return _where(arange(roots.size) < roots.size - num_leading_zeros, roots, complex(np.nan, np.nan))
@_wraps(np.roots, lax_description=,
extra_params=) | \
Unlike the numpy version of this function, the JAX version returns the roots in
a complex array regardless of the values of the roots. Additionally, the jax
version of this function adds the ``strip_zeros`` function which must be set to
False for the function to be compatible with JIT and other JAX transformations.
With ``strip_zeros=False``, if your coefficients have leading zeros, the
roots will be padded with NaN values:
>>> coeffs = jnp.array([0, 1, 2])
# The default behavior matches numpy and strips leading zeros:
>>> jnp.roots(coeffs)
DeviceArray([-2.+0.j], dtype=complex64)
# With strip_zeros=False, extra roots are set to NaN:
>>> jnp.roots(coeffs, strip_zeros=False)
DeviceArray([-2. +0.j, nan+nanj], dtype=complex64)
strip_zeros : bool, default=True
If set to True, then leading zeros in the coefficients will be stripped, similar
to :func:`numpy.roots`. If set to False, leading zeros will not be stripped, and
undefined roots will be represented by NaN values in the function output.
``strip_zeros`` must be set to ``False`` for the function to be compatible with
:func:`jax.jit` and other JAX transformations.
| 167 | 68 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _roots_with_zeros(p, num_leading_zeros):
# Avoid lapack errors when p is all zero
p = _where(len(p) == num_leading_zeros, 1.0, p)
# Roll any leading zeros to the end & compute the roots
roots = _roots_no_zeros(roll(p, -num_leading_zeros))
# Sort zero roots to the end.
roots = lax.sort_key_val(roots == 0, roots)[1]
# Set roots associated with num_leading_zeros to NaN
return _where(arange(roots.size) < roots.size - num_leading_zeros, roots, complex(np.nan, np.nan))
@_wraps(np.roots, lax_description=,
extra_params=)
```
###Assistant : \
Unlike the numpy version of this function, the JAX version returns the roots in
a complex array regardless of the values of the roots. Additionally, the jax
version of this function adds the ``strip_zeros`` function which must be set to
False for the function to be compatible with JIT and other JAX transformations.
With ``strip_zeros=False``, if your coefficients have leading zeros, the
roots will be padded with NaN values:
>>> coeffs = jnp.array([0, 1, 2])
# The default behavior matches numpy and strips leading zeros:
>>> jnp.roots(coeffs)
DeviceArray([-2.+0.j], dtype=complex64)
# With strip_zeros=False, extra roots are set to NaN:
>>> jnp.roots(coeffs, strip_zeros=False)
DeviceArray([-2. +0.j, nan+nanj], dtype=complex64)
strip_zeros : bool, default=True
If set to True, then leading zeros in the coefficients will be stripped, similar
to :func:`numpy.roots`. If set to False, leading zeros will not be stripped, and
undefined roots will be represented by NaN values in the function output.
``strip_zeros`` must be set to ``False`` for the function to be compatible with
:func:`jax.jit` and other JAX transformations.
|
1,358 | def port_monitoring(self) -> int:
if GATEWAY_NAME in self._deployment_nodes:
return self[GATEWAY_NAME].args.port_monitoring
else:
return self._common_kwargs.get(
'port_monitoring', __default_port_monitoring__
)
| Return if the monitoring is enabled
.. # noqa: DAR201
| 10 | 16 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def port_monitoring(self) -> int:
if GATEWAY_NAME in self._deployment_nodes:
return self[GATEWAY_NAME].args.port_monitoring
else:
return self._common_kwargs.get(
'port_monitoring', __default_port_monitoring__
)
```
###Assistant : Return if the monitoring is enabled
.. # noqa: DAR201
|
1,359 | def autodiscover_modules(*args, **kwargs):
from django.apps import apps
register_to = kwargs.get("register_to")
for app_config in apps.get_app_configs():
for module_to_search in args:
# Attempt to import the app's module.
try:
if register_to:
before_import_registry = copy.copy(register_to._registry)
import_module("%s.%s" % (app_config.name, module_to_search))
except Exception:
# Reset the registry to the state before the last import
# as this import will have to reoccur on the next request and
# this could raise NotRegistered and AlreadyRegistered
# exceptions (see #8245).
if register_to:
register_to._registry = before_import_registry
# Decide whether to bubble up this error. If the app just
# doesn't have the module in question, we can ignore the error
# attempting to import it, otherwise we want it to bubble up.
if module_has_submodule(app_config.module, module_to_search):
raise
|
Auto-discover INSTALLED_APPS modules and fail silently when
not present. This forces an import on them to register any admin bits they
may want.
You may provide a register_to keyword parameter as a way to access a
registry. This register_to object must have a _registry instance variable
to access it.
| 49 | 117 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def autodiscover_modules(*args, **kwargs):
from django.apps import apps
register_to = kwargs.get("register_to")
for app_config in apps.get_app_configs():
for module_to_search in args:
# Attempt to import the app's module.
try:
if register_to:
before_import_registry = copy.copy(register_to._registry)
import_module("%s.%s" % (app_config.name, module_to_search))
except Exception:
# Reset the registry to the state before the last import
# as this import will have to reoccur on the next request and
# this could raise NotRegistered and AlreadyRegistered
# exceptions (see #8245).
if register_to:
register_to._registry = before_import_registry
# Decide whether to bubble up this error. If the app just
# doesn't have the module in question, we can ignore the error
# attempting to import it, otherwise we want it to bubble up.
if module_has_submodule(app_config.module, module_to_search):
raise
```
###Assistant :
Auto-discover INSTALLED_APPS modules and fail silently when
not present. This forces an import on them to register any admin bits they
may want.
You may provide a register_to keyword parameter as a way to access a
registry. This register_to object must have a _registry instance variable
to access it.
|
1,360 | def ensure_future(coro_or_future, *, loop=None):
return _ensure_future(coro_or_future, loop=loop)
| Wrap a coroutine or an awaitable in a future.
If the argument is a Future, it is returned directly.
| 19 | 7 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def ensure_future(coro_or_future, *, loop=None):
return _ensure_future(coro_or_future, loop=loop)
```
###Assistant : Wrap a coroutine or an awaitable in a future.
If the argument is a Future, it is returned directly.
|
1,361 | def getpalette(self, rawmode="RGB"):
self.load()
try:
mode = self.im.getpalettemode()
except ValueError:
return None # no palette
if rawmode is None:
rawmode = mode
return list(self.im.getpalette(mode, rawmode))
|
Returns the image palette as a list.
:param rawmode: The mode in which to return the palette. ``None`` will
return the palette in its current mode.
:returns: A list of color values [r, g, b, ...], or None if the
image has no palette.
| 44 | 25 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def getpalette(self, rawmode="RGB"):
self.load()
try:
mode = self.im.getpalettemode()
except ValueError:
return None # no palette
if rawmode is None:
rawmode = mode
return list(self.im.getpalette(mode, rawmode))
```
###Assistant :
Returns the image palette as a list.
:param rawmode: The mode in which to return the palette. ``None`` will
return the palette in its current mode.
:returns: A list of color values [r, g, b, ...], or None if the
image has no palette.
|
1,362 | def last_executor(self):
if len(self.proto_wo_data.routes) > 0:
return self.proto_wo_data.routes[-1].executor
|
Returns the name of the last Executor that has processed this Request
:return: the name of the last Executor that processed this Request
| 23 | 8 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def last_executor(self):
if len(self.proto_wo_data.routes) > 0:
return self.proto_wo_data.routes[-1].executor
```
###Assistant :
Returns the name of the last Executor that has processed this Request
:return: the name of the last Executor that processed this Request
|
1,363 | def custom_generator_multi_io_temporal(self, sample_weights=None):
batch_size = 3
num_samples = 3
iteration = 0
while True:
batch_index = iteration * batch_size % num_samples
iteration += 1
start = batch_index
end = start + batch_size
x = [self.x[start:end], self.x[start:end]]
y = [self.y1[start:end], self.y2[start:end]]
if sample_weights:
sw = tf.nest.map_structure(
lambda w: w[start:end], sample_weights
)
else:
sw = None
yield x, y, sw
| Generator for getting data for temporal multi io model.
Args:
sample_weights: List of sample_weights.
Yields:
Tuple of inputs, label, sample weights data.
| 22 | 58 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def custom_generator_multi_io_temporal(self, sample_weights=None):
batch_size = 3
num_samples = 3
iteration = 0
while True:
batch_index = iteration * batch_size % num_samples
iteration += 1
start = batch_index
end = start + batch_size
x = [self.x[start:end], self.x[start:end]]
y = [self.y1[start:end], self.y2[start:end]]
if sample_weights:
sw = tf.nest.map_structure(
lambda w: w[start:end], sample_weights
)
else:
sw = None
yield x, y, sw
```
###Assistant : Generator for getting data for temporal multi io model.
Args:
sample_weights: List of sample_weights.
Yields:
Tuple of inputs, label, sample weights data.
|
1,364 | def _just_docs(self):
try:
for child in self.ast.body:
if not isinstance(child, ast.Assign):
# allow string constant expressions (these are docstrings)
if isinstance(child, ast.Expr) and isinstance(child.value, ast.Constant) and isinstance(child.value.value, str):
continue
# allowed from __future__ imports
if isinstance(child, ast.ImportFrom) and child.module == '__future__':
for future_import in child.names:
if future_import.name not in self.ACCEPTLIST_FUTURE_IMPORTS:
break
else:
continue
return False
return True
except AttributeError:
return False
| Module can contain just docs and from __future__ boilerplate
| 9 | 61 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _just_docs(self):
try:
for child in self.ast.body:
if not isinstance(child, ast.Assign):
# allow string constant expressions (these are docstrings)
if isinstance(child, ast.Expr) and isinstance(child.value, ast.Constant) and isinstance(child.value.value, str):
continue
# allowed from __future__ imports
if isinstance(child, ast.ImportFrom) and child.module == '__future__':
for future_import in child.names:
if future_import.name not in self.ACCEPTLIST_FUTURE_IMPORTS:
break
else:
continue
return False
return True
except AttributeError:
return False
```
###Assistant : Module can contain just docs and from __future__ boilerplate
|
1,365 | def response_validator(self) -> RequestValidator:
self.check_reload()
assert self._response_validator is not None
return self._response_validator
| Reload the OpenAPI file if it has been modified after the last time
it was read, and then return the openapi_core validator object. Similar
to preceding functions. Used for proper access to OpenAPI objects.
| 34 | 12 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def response_validator(self) -> RequestValidator:
self.check_reload()
assert self._response_validator is not None
return self._response_validator
```
###Assistant : Reload the OpenAPI file if it has been modified after the last time
it was read, and then return the openapi_core validator object. Similar
to preceding functions. Used for proper access to OpenAPI objects.
|
1,366 | def roots(p, *, strip_zeros=True):
# ported from https://github.com/numpy/numpy/blob/v1.17.0/numpy/lib/polynomial.py#L168-L251
p = atleast_1d(p)
if p.ndim != 1:
raise ValueError("Input must be a rank-1 array.")
# strip_zeros=False is unsafe because leading zeros aren't removed
if not strip_zeros:
if p.size > 1:
return _roots_no_zeros(p)
else:
return array([])
if all(p == 0):
return array([])
# factor out trivial roots
start, end = _nonzero_range(p)
# number of trailing zeros = number of roots at 0
trailing_zeros = p.size - end
# strip leading and trailing zeros
p = p[start:end]
if p.size < 2:
return zeros(trailing_zeros, p.dtype)
else:
roots = _roots_no_zeros(p)
# combine roots and zero roots
roots = hstack((roots, zeros(trailing_zeros, p.dtype)))
return roots
_POLYFIT_DOC =
@_wraps(np.polyfit, lax_description=_POLYFIT_DOC)
@partial(jit, static_argnames=('deg', 'rcond', 'full', 'cov')) | \
Unlike NumPy's implementation of polyfit, :py:func:`jax.numpy.polyfit` will not warn on rank reduction, which indicates an ill conditioned matrix
Also, it works best on rcond <= 10e-3 values.
| 28 | 116 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def roots(p, *, strip_zeros=True):
# ported from https://github.com/numpy/numpy/blob/v1.17.0/numpy/lib/polynomial.py#L168-L251
p = atleast_1d(p)
if p.ndim != 1:
raise ValueError("Input must be a rank-1 array.")
# strip_zeros=False is unsafe because leading zeros aren't removed
if not strip_zeros:
if p.size > 1:
return _roots_no_zeros(p)
else:
return array([])
if all(p == 0):
return array([])
# factor out trivial roots
start, end = _nonzero_range(p)
# number of trailing zeros = number of roots at 0
trailing_zeros = p.size - end
# strip leading and trailing zeros
p = p[start:end]
if p.size < 2:
return zeros(trailing_zeros, p.dtype)
else:
roots = _roots_no_zeros(p)
# combine roots and zero roots
roots = hstack((roots, zeros(trailing_zeros, p.dtype)))
return roots
_POLYFIT_DOC =
@_wraps(np.polyfit, lax_description=_POLYFIT_DOC)
@partial(jit, static_argnames=('deg', 'rcond', 'full', 'cov'))
```
###Assistant : \
Unlike NumPy's implementation of polyfit, :py:func:`jax.numpy.polyfit` will not warn on rank reduction, which indicates an ill conditioned matrix
Also, it works best on rcond <= 10e-3 values.
|
1,367 | def _storage_path(self, local_path):
rel_local_path = os.path.relpath(local_path, self.logdir)
return os.path.join(self.remote_checkpoint_dir, rel_local_path)
| Converts a `local_path` to be based off of
`self.remote_checkpoint_dir`. | 9 | 10 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _storage_path(self, local_path):
rel_local_path = os.path.relpath(local_path, self.logdir)
return os.path.join(self.remote_checkpoint_dir, rel_local_path)
```
###Assistant : Converts a `local_path` to be based off of
`self.remote_checkpoint_dir`.
|
1,368 | def get_time_since_last_update(self) -> float:
return time.time() - self.last_update_time
| How much time has passed since the last call to update. | 11 | 8 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_time_since_last_update(self) -> float:
return time.time() - self.last_update_time
```
###Assistant : How much time has passed since the last call to update.
|
1,369 | def train_fixbn(self, mode=True, freeze_bn=True, freeze_bn_affine=False):
r
super(DeepLabv3_plus, self).train(mode)
if freeze_bn:
print("Freezing Mean/Var of BatchNorm2D.")
if freeze_bn_affine:
print("Freezing Weight/Bias of BatchNorm2D.")
if freeze_bn:
for m in self.xception_features.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
if freeze_bn_affine:
m.weight.requires_grad = False
m.bias.requires_grad = False
# for m in self.aspp1.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.aspp2.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.aspp3.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.aspp4.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.global_avg_pool.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.concat_projection_bn1.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.feature_projection_bn1.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
| Sets the module in training mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
Returns:
Module: self
| 38 | 192 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def train_fixbn(self, mode=True, freeze_bn=True, freeze_bn_affine=False):
r
super(DeepLabv3_plus, self).train(mode)
if freeze_bn:
print("Freezing Mean/Var of BatchNorm2D.")
if freeze_bn_affine:
print("Freezing Weight/Bias of BatchNorm2D.")
if freeze_bn:
for m in self.xception_features.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
if freeze_bn_affine:
m.weight.requires_grad = False
m.bias.requires_grad = False
# for m in self.aspp1.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.aspp2.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.aspp3.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.aspp4.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.global_avg_pool.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.concat_projection_bn1.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
# for m in self.feature_projection_bn1.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
# if freeze_bn_affine:
# m.weight.requires_grad = False
# m.bias.requires_grad = False
```
###Assistant : Sets the module in training mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
Returns:
Module: self
|
1,370 | def assert_params_all_zeros(module) -> bool:
weight_data = module.weight.data
is_weight_zero = weight_data.allclose(
weight_data.new_zeros(weight_data.size()))
if hasattr(module, 'bias') and module.bias is not None:
bias_data = module.bias.data
is_bias_zero = bias_data.allclose(
bias_data.new_zeros(bias_data.size()))
else:
is_bias_zero = True
return is_weight_zero and is_bias_zero
| Check if the parameters of the module is all zeros.
Args:
module (nn.Module): The module to be checked.
Returns:
bool: Whether the parameters of the module is all zeros.
| 29 | 34 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def assert_params_all_zeros(module) -> bool:
weight_data = module.weight.data
is_weight_zero = weight_data.allclose(
weight_data.new_zeros(weight_data.size()))
if hasattr(module, 'bias') and module.bias is not None:
bias_data = module.bias.data
is_bias_zero = bias_data.allclose(
bias_data.new_zeros(bias_data.size()))
else:
is_bias_zero = True
return is_weight_zero and is_bias_zero
```
###Assistant : Check if the parameters of the module is all zeros.
Args:
module (nn.Module): The module to be checked.
Returns:
bool: Whether the parameters of the module is all zeros.
|
1,371 | def cleanup_state(self):
# type: () -> None
for f in self.cleanup_functions:
if not callable(f):
continue
try:
if not f(self.socket, self.configuration):
log_automotive.info(
"Cleanup function %s failed", repr(f))
except (OSError, ValueError, Scapy_Exception) as e:
log_automotive.critical("Exception during cleanup: %s", e)
self.cleanup_functions = list()
|
Executes all collected cleanup functions from a traversed path
:return: None
| 11 | 40 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def cleanup_state(self):
# type: () -> None
for f in self.cleanup_functions:
if not callable(f):
continue
try:
if not f(self.socket, self.configuration):
log_automotive.info(
"Cleanup function %s failed", repr(f))
except (OSError, ValueError, Scapy_Exception) as e:
log_automotive.critical("Exception during cleanup: %s", e)
self.cleanup_functions = list()
```
###Assistant :
Executes all collected cleanup functions from a traversed path
:return: None
|
1,372 | def test_model_with_two_tabbed_panels_only(self):
Publisher.settings_panels = [FieldPanel("name")]
Publisher.promote_panels = [FieldPanel("headquartered_in")]
warning_1 = checks.Warning(
"Publisher.promote_panels will have no effect on modeladmin editing",
hint=,
obj=Publisher,
id="wagtailadmin.W002",
)
warning_2 = checks.Warning(
"Publisher.settings_panels will have no effect on modeladmin editing",
hint=,
obj=Publisher,
id="wagtailadmin.W002",
)
checks_results = self.get_checks_result()
self.assertIn(warning_1, checks_results)
self.assertIn(warning_2, checks_results)
# clean up for future checks
delattr(Publisher, "settings_panels")
delattr(Publisher, "promote_panels")
| Ensure that Publisher uses `panels` instead of `promote_panels`\
or set up an `edit_handler` if you want a tabbed editing interface.
There are no default tabs on non-Page models so there will be no\
Promote tab for the promote_panels to render in.Ensure that Publisher uses `panels` instead of `settings_panels`\
or set up an `edit_handler` if you want a tabbed editing interface.
There are no default tabs on non-Page models so there will be no\
Settings tab for the settings_panels to render in. | 81 | 55 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_model_with_two_tabbed_panels_only(self):
Publisher.settings_panels = [FieldPanel("name")]
Publisher.promote_panels = [FieldPanel("headquartered_in")]
warning_1 = checks.Warning(
"Publisher.promote_panels will have no effect on modeladmin editing",
hint=,
obj=Publisher,
id="wagtailadmin.W002",
)
warning_2 = checks.Warning(
"Publisher.settings_panels will have no effect on modeladmin editing",
hint=,
obj=Publisher,
id="wagtailadmin.W002",
)
checks_results = self.get_checks_result()
self.assertIn(warning_1, checks_results)
self.assertIn(warning_2, checks_results)
# clean up for future checks
delattr(Publisher, "settings_panels")
delattr(Publisher, "promote_panels")
```
###Assistant : Ensure that Publisher uses `panels` instead of `promote_panels`\
or set up an `edit_handler` if you want a tabbed editing interface.
There are no default tabs on non-Page models so there will be no\
Promote tab for the promote_panels to render in.Ensure that Publisher uses `panels` instead of `settings_panels`\
or set up an `edit_handler` if you want a tabbed editing interface.
There are no default tabs on non-Page models so there will be no\
Settings tab for the settings_panels to render in.
|
1,373 | def get_builtin_layer(class_name):
if not hasattr(LOCAL, "ALL_OBJECTS"):
populate_deserializable_objects()
return LOCAL.ALL_OBJECTS.get(class_name)
| Returns class if `class_name` is registered, else returns None. | 9 | 9 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_builtin_layer(class_name):
if not hasattr(LOCAL, "ALL_OBJECTS"):
populate_deserializable_objects()
return LOCAL.ALL_OBJECTS.get(class_name)
```
###Assistant : Returns class if `class_name` is registered, else returns None.
|
1,374 | def abelian_invariants(self):
if self.is_trivial:
return []
gns = self.generators
inv = []
G = self
H = G.derived_subgroup()
Hgens = H.generators
for p in primefactors(G.order()):
ranks = []
while True:
pows = []
for g in gns:
elm = g**p
if not H.contains(elm):
pows.append(elm)
K = PermutationGroup(Hgens + pows) if pows else H
r = G.order()//K.order()
G = K
gns = pows
if r == 1:
break
ranks.append(multiplicity(p, r))
if ranks:
pows = [1]*ranks[0]
for i in ranks:
for j in range(0, i):
pows[j] = pows[j]*p
inv.extend(pows)
inv.sort()
return inv
|
Returns the abelian invariants for the given group.
Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to
the direct product of finitely many nontrivial cyclic groups of
prime-power order.
Explanation
===========
The prime-powers that occur as the orders of the factors are uniquely
determined by G. More precisely, the primes that occur in the orders of the
factors in any such decomposition of ``G`` are exactly the primes that divide
``|G|`` and for any such prime ``p``, if the orders of the factors that are
p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``,
then the orders of the factors that are p-groups in any such decomposition of ``G``
are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``.
The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken
for all primes that divide ``|G|`` are called the invariants of the nontrivial
group ``G`` as suggested in ([14], p. 542).
Notes
=====
We adopt the convention that the invariants of a trivial group are [].
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.abelian_invariants()
[2]
>>> from sympy.combinatorics import CyclicGroup
>>> G = CyclicGroup(7)
>>> G.abelian_invariants()
[7]
| 212 | 90 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def abelian_invariants(self):
if self.is_trivial:
return []
gns = self.generators
inv = []
G = self
H = G.derived_subgroup()
Hgens = H.generators
for p in primefactors(G.order()):
ranks = []
while True:
pows = []
for g in gns:
elm = g**p
if not H.contains(elm):
pows.append(elm)
K = PermutationGroup(Hgens + pows) if pows else H
r = G.order()//K.order()
G = K
gns = pows
if r == 1:
break
ranks.append(multiplicity(p, r))
if ranks:
pows = [1]*ranks[0]
for i in ranks:
for j in range(0, i):
pows[j] = pows[j]*p
inv.extend(pows)
inv.sort()
return inv
```
###Assistant :
Returns the abelian invariants for the given group.
Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to
the direct product of finitely many nontrivial cyclic groups of
prime-power order.
Explanation
===========
The prime-powers that occur as the orders of the factors are uniquely
determined by G. More precisely, the primes that occur in the orders of the
factors in any such decomposition of ``G`` are exactly the primes that divide
``|G|`` and for any such prime ``p``, if the orders of the factors that are
p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``,
then the orders of the factors that are p-groups in any such decomposition of ``G``
are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``.
The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken
for all primes that divide ``|G|`` are called the invariants of the nontrivial
group ``G`` as suggested in ([14], p. 542).
Notes
=====
We adopt the convention that the invariants of a trivial group are [].
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.abelian_invariants()
[2]
>>> from sympy.combinatorics import CyclicGroup
>>> G = CyclicGroup(7)
>>> G.abelian_invariants()
[7]
|
1,375 | def clone_graph_nodes(inputs, outputs):
nodes_to_clone = find_nodes_by_inputs_and_outputs(inputs, outputs)
cloned_inputs = []
cloned_outputs = []
# We not only need to create copies of Nodes (mimic the calls), also need to
# clone keras_tensors to avoid the override of _keras_history attached on the
# keras_tensor. The following dict is used to track any keras tensor we cloned
# The key is the string ID of the original keras tensor, and value is the
# cloned keras_tensor instance.
kt_id_mapping = {}
for kt_input in tf.nest.flatten(inputs):
if kt_input.node.is_input:
# For any existing keras_tensor from tf.keras.Input, we leave them as is.
cloned_inputs.append(kt_input)
kt_id_mapping[id(kt_input)] = kt_input
else:
# We need to create a new tf.keras.Input for any intermediate keras_tensor
cpy = _clone_keras_tensor(kt_input)
cloned_input = input_layer_module.Input(tensor=cpy)
cloned_inputs.append(cloned_input)
kt_id_mapping[id(kt_input)] = cloned_input
cloned_inputs = tf.nest.pack_sequence_as(inputs, cloned_inputs)
for kt_output in tf.nest.flatten(outputs):
cpy = _clone_keras_tensor(kt_output)
# We reuse the _keras_history here, which contains the old information. It
# is used in the Node constructor to check if the tensor "is_keras_tensor()"
# The history will be override by the Node constructor anyway for the
# corresponding layer output anyway.
cpy._keras_history = (
kt_output._keras_history
) # pylint: disable=protected-access
cloned_outputs.append(cpy)
kt_id_mapping[id(kt_output)] = cpy
cloned_outputs = tf.nest.pack_sequence_as(outputs, cloned_outputs)
for node in nodes_to_clone:
# Clone any keras_tensors to avoid override of _keras_history
# Or reuse an existing keras_tensor if it has already been cloned.
output_copy = clone_keras_tensors(node.output_tensors, kt_id_mapping)
call_args_copy = clone_keras_tensors(node.call_args, kt_id_mapping)
call_kwargs_copy = clone_keras_tensors(node.call_kwargs, kt_id_mapping)
# Creating new nodes based on the existing node information.
# Node wires itself to inbound and outbound layers.
# The Node constructor actually updates this layer's self._inbound_nodes,
# sets _keras_history on the outputs, and adds itself to the
# `_outbound_nodes` of the layers that produced the inputs to this
# layer call.
node_module.Node(
node.layer,
call_args=call_args_copy,
call_kwargs=call_kwargs_copy,
outputs=output_copy,
)
return cloned_inputs, cloned_outputs
| Clone the `Node` between the inputs and output tensors.
This function is used to create a new functional model from any intermediate
keras tensors. The clone of the nodes mimic the behavior of reconstructing the
functional graph network by re-executing all the __call__ methods. The cloned
nodes will be appended to the layers.
Note that a new tf.keras.Inputs will be created for any items in the `inputs`
Args:
inputs: A nested structure of keras_tensors.
outputs: A nested structure of keras_tensors.
Returns:
A pair of inputs and outputs, with cloned keras_tensors. They can be used to
create a new functional model.
| 100 | 292 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def clone_graph_nodes(inputs, outputs):
nodes_to_clone = find_nodes_by_inputs_and_outputs(inputs, outputs)
cloned_inputs = []
cloned_outputs = []
# We not only need to create copies of Nodes (mimic the calls), also need to
# clone keras_tensors to avoid the override of _keras_history attached on the
# keras_tensor. The following dict is used to track any keras tensor we cloned
# The key is the string ID of the original keras tensor, and value is the
# cloned keras_tensor instance.
kt_id_mapping = {}
for kt_input in tf.nest.flatten(inputs):
if kt_input.node.is_input:
# For any existing keras_tensor from tf.keras.Input, we leave them as is.
cloned_inputs.append(kt_input)
kt_id_mapping[id(kt_input)] = kt_input
else:
# We need to create a new tf.keras.Input for any intermediate keras_tensor
cpy = _clone_keras_tensor(kt_input)
cloned_input = input_layer_module.Input(tensor=cpy)
cloned_inputs.append(cloned_input)
kt_id_mapping[id(kt_input)] = cloned_input
cloned_inputs = tf.nest.pack_sequence_as(inputs, cloned_inputs)
for kt_output in tf.nest.flatten(outputs):
cpy = _clone_keras_tensor(kt_output)
# We reuse the _keras_history here, which contains the old information. It
# is used in the Node constructor to check if the tensor "is_keras_tensor()"
# The history will be override by the Node constructor anyway for the
# corresponding layer output anyway.
cpy._keras_history = (
kt_output._keras_history
) # pylint: disable=protected-access
cloned_outputs.append(cpy)
kt_id_mapping[id(kt_output)] = cpy
cloned_outputs = tf.nest.pack_sequence_as(outputs, cloned_outputs)
for node in nodes_to_clone:
# Clone any keras_tensors to avoid override of _keras_history
# Or reuse an existing keras_tensor if it has already been cloned.
output_copy = clone_keras_tensors(node.output_tensors, kt_id_mapping)
call_args_copy = clone_keras_tensors(node.call_args, kt_id_mapping)
call_kwargs_copy = clone_keras_tensors(node.call_kwargs, kt_id_mapping)
# Creating new nodes based on the existing node information.
# Node wires itself to inbound and outbound layers.
# The Node constructor actually updates this layer's self._inbound_nodes,
# sets _keras_history on the outputs, and adds itself to the
# `_outbound_nodes` of the layers that produced the inputs to this
# layer call.
node_module.Node(
node.layer,
call_args=call_args_copy,
call_kwargs=call_kwargs_copy,
outputs=output_copy,
)
return cloned_inputs, cloned_outputs
```
###Assistant : Clone the `Node` between the inputs and output tensors.
This function is used to create a new functional model from any intermediate
keras tensors. The clone of the nodes mimic the behavior of reconstructing the
functional graph network by re-executing all the __call__ methods. The cloned
nodes will be appended to the layers.
Note that a new tf.keras.Inputs will be created for any items in the `inputs`
Args:
inputs: A nested structure of keras_tensors.
outputs: A nested structure of keras_tensors.
Returns:
A pair of inputs and outputs, with cloned keras_tensors. They can be used to
create a new functional model.
|
1,376 | def parallel_axis(self, point, frame=None):
# circular import issue
from sympy.physics.mechanics.functions import inertia_of_point_mass
if frame is None:
frame = self.frame
return self.central_inertia.express(frame) + inertia_of_point_mass(
self.mass, self.masscenter.pos_from(point), frame)
| Returns the inertia dyadic of the body with respect to another
point.
Parameters
==========
point : sympy.physics.vector.Point
The point to express the inertia dyadic about.
frame : sympy.physics.vector.ReferenceFrame
The reference frame used to construct the dyadic.
Returns
=======
inertia : sympy.physics.vector.Dyadic
The inertia dyadic of the rigid body expressed about the provided
point.
| 53 | 26 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def parallel_axis(self, point, frame=None):
# circular import issue
from sympy.physics.mechanics.functions import inertia_of_point_mass
if frame is None:
frame = self.frame
return self.central_inertia.express(frame) + inertia_of_point_mass(
self.mass, self.masscenter.pos_from(point), frame)
```
###Assistant : Returns the inertia dyadic of the body with respect to another
point.
Parameters
==========
point : sympy.physics.vector.Point
The point to express the inertia dyadic about.
frame : sympy.physics.vector.ReferenceFrame
The reference frame used to construct the dyadic.
Returns
=======
inertia : sympy.physics.vector.Dyadic
The inertia dyadic of the rigid body expressed about the provided
point.
|
1,377 | def test_class_weight_does_not_contains_more_classses():
tree = DecisionTreeClassifier(class_weight={0: 1, 1: 10, 2: 20})
# Does not raise
tree.fit([[0, 0, 1], [1, 0, 1], [1, 2, 0]], [0, 0, 1])
| Check that class_weight can contain more labels than in y.
Non-regression test for #22413
| 14 | 26 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_class_weight_does_not_contains_more_classses():
tree = DecisionTreeClassifier(class_weight={0: 1, 1: 10, 2: 20})
# Does not raise
tree.fit([[0, 0, 1], [1, 0, 1], [1, 2, 0]], [0, 0, 1])
```
###Assistant : Check that class_weight can contain more labels than in y.
Non-regression test for #22413
|
1,378 | def parse(self, state): # type: (ParserState) -> str
if state.mode == ParserMode.PARSE:
path = AnyParser().parse(state)
if not os.path.isfile(path):
raise ParserError(f'Not a file: {path}')
else:
path = ''
with state.delimit(PATH_DELIMITER, required=False) as boundary: # type: ParserBoundary
while boundary.ready:
directory = path or '.'
try:
with os.scandir(directory) as scan: # type: t.Iterator[os.DirEntry]
choices = [f'{item.name}{PATH_DELIMITER}' if item.is_dir() else item.name for item in scan]
except OSError:
choices = []
if not path:
choices.append(PATH_DELIMITER) # allow absolute paths
choices.append('../') # suggest relative paths
part = RelativePathNameParser(choices).parse(state)
path += f'{part}{boundary.match or ""}'
return path
| Parse the input from the given state and return the result. | 11 | 89 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def parse(self, state): # type: (ParserState) -> str
if state.mode == ParserMode.PARSE:
path = AnyParser().parse(state)
if not os.path.isfile(path):
raise ParserError(f'Not a file: {path}')
else:
path = ''
with state.delimit(PATH_DELIMITER, required=False) as boundary: # type: ParserBoundary
while boundary.ready:
directory = path or '.'
try:
with os.scandir(directory) as scan: # type: t.Iterator[os.DirEntry]
choices = [f'{item.name}{PATH_DELIMITER}' if item.is_dir() else item.name for item in scan]
except OSError:
choices = []
if not path:
choices.append(PATH_DELIMITER) # allow absolute paths
choices.append('../') # suggest relative paths
part = RelativePathNameParser(choices).parse(state)
path += f'{part}{boundary.match or ""}'
return path
```
###Assistant : Parse the input from the given state and return the result.
|
1,379 | def layout(self) -> Layout:
# self.log("I", self._inline_styles)
# self.log("C", self._css_styles)
# self.log("S", self.styles)
assert self.styles.layout
return self.styles.layout
# @layout.setter
# def layout(self, new_value: Layout) -> None:
#
# self.styles.layout = new_value
| Convenience property for accessing ``self.styles.layout``.
Returns: The Layout associated with this view
Convenience property setter for setting ``view.styles.layout``.
# Args:
# new_value:
# Returns:
# None
# | 27 | 31 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def layout(self) -> Layout:
# self.log("I", self._inline_styles)
# self.log("C", self._css_styles)
# self.log("S", self.styles)
assert self.styles.layout
return self.styles.layout
# @layout.setter
# def layout(self, new_value: Layout) -> None:
#
# self.styles.layout = new_value
```
###Assistant : Convenience property for accessing ``self.styles.layout``.
Returns: The Layout associated with this view
Convenience property setter for setting ``view.styles.layout``.
# Args:
# new_value:
# Returns:
# None
#
|
1,380 | def timeout_message(self, message):
future = self.send_future_map.pop(message, None)
# In a race condition the message might have been sent by the time
# we're timing it out. Make sure the future is not None
if future is not None:
del self.send_timeout_map[message]
if future.attempts < future.tries:
future.attempts += 1
log.info(
"SaltReqTimeoutError, retrying. (%s/%s)",
future.attempts,
future.tries,
)
self.send(
message,
timeout=future.timeout,
tries=future.tries,
future=future,
)
else:
future.set_exception(SaltReqTimeoutError("Message timed out"))
|
Handle a message timeout by removing it from the sending queue
and informing the caller
:raises: SaltReqTimeoutError
| 17 | 64 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def timeout_message(self, message):
future = self.send_future_map.pop(message, None)
# In a race condition the message might have been sent by the time
# we're timing it out. Make sure the future is not None
if future is not None:
del self.send_timeout_map[message]
if future.attempts < future.tries:
future.attempts += 1
log.info(
"SaltReqTimeoutError, retrying. (%s/%s)",
future.attempts,
future.tries,
)
self.send(
message,
timeout=future.timeout,
tries=future.tries,
future=future,
)
else:
future.set_exception(SaltReqTimeoutError("Message timed out"))
```
###Assistant :
Handle a message timeout by removing it from the sending queue
and informing the caller
:raises: SaltReqTimeoutError
|
1,381 | def test_not_all_records(self, requests_mock, authenticator, config, responses):
expected_output = [
{"id": 1, "updated_at": "2018-01-02T00:00:00Z"},
{"id": 2, "updated_at": "2018-02-02T00:00:00Z"},
{"id": 2, "updated_at": "2018-02-02T00:00:00Z"}, # duplicate
{"id": 3, "updated_at": "2018-03-02T00:00:00Z"},
{"id": 3, "updated_at": "2018-03-02T00:00:00Z"}, # duplicate
{"id": 4, "updated_at": "2019-01-03T00:00:00Z"},
{"id": 4, "updated_at": "2019-01-03T00:00:00Z"}, # duplicate
{"id": 5, "updated_at": "2019-02-03T00:00:00Z"},
{"id": 5, "updated_at": "2019-02-03T00:00:00Z"}, # duplicate
{"id": 6, "updated_at": "2019-03-03T00:00:00Z"},
]
# INT value of page number where the switch state should be triggered.
# in this test case values from: 1 - 4, assuming we want to switch state on this page.
ticket_paginate_limit = 2
# This parameter mocks the "per_page" parameter in the API Call
result_return_limit = 1
# Create test_stream instance.
test_stream = Tickets(authenticator=authenticator, config=config)
test_stream.ticket_paginate_limit = ticket_paginate_limit
test_stream.result_return_limit = result_return_limit
# Mocking Request
for response in responses:
requests_mock.register_uri(
"GET",
response["url"],
json=response["json"],
headers=response.get("headers", {}),
)
records = list(test_stream.read_records(sync_mode=SyncMode.full_refresh))
# We're expecting 6 records to return from the tickets_stream
assert records == expected_output
|
TEST 1 - not all records are retrieved
During test1 the tickets_stream changes the state of parameters on page: 2,
by updating the params:
`params["order_by"] = "updated_at"`
`params["updated_since"] = last_record`
continues to fetch records from the source, using new cycle, and so on.
NOTE:
After switch of the state on ticket_paginate_limit = 2, is this example, we will experience the
records duplication, because of the last_record state, starting at the point
where we stoped causes the duplication of the output. The solution for this is to add at least 1 second to the
last_record state. The DBT normalization should handle this for the end user, so the duplication issue is not a
blocker in such cases.
Main pricipal here is: airbyte is at-least-once delivery, but skipping records is data loss.
| 130 | 152 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_not_all_records(self, requests_mock, authenticator, config, responses):
expected_output = [
{"id": 1, "updated_at": "2018-01-02T00:00:00Z"},
{"id": 2, "updated_at": "2018-02-02T00:00:00Z"},
{"id": 2, "updated_at": "2018-02-02T00:00:00Z"}, # duplicate
{"id": 3, "updated_at": "2018-03-02T00:00:00Z"},
{"id": 3, "updated_at": "2018-03-02T00:00:00Z"}, # duplicate
{"id": 4, "updated_at": "2019-01-03T00:00:00Z"},
{"id": 4, "updated_at": "2019-01-03T00:00:00Z"}, # duplicate
{"id": 5, "updated_at": "2019-02-03T00:00:00Z"},
{"id": 5, "updated_at": "2019-02-03T00:00:00Z"}, # duplicate
{"id": 6, "updated_at": "2019-03-03T00:00:00Z"},
]
# INT value of page number where the switch state should be triggered.
# in this test case values from: 1 - 4, assuming we want to switch state on this page.
ticket_paginate_limit = 2
# This parameter mocks the "per_page" parameter in the API Call
result_return_limit = 1
# Create test_stream instance.
test_stream = Tickets(authenticator=authenticator, config=config)
test_stream.ticket_paginate_limit = ticket_paginate_limit
test_stream.result_return_limit = result_return_limit
# Mocking Request
for response in responses:
requests_mock.register_uri(
"GET",
response["url"],
json=response["json"],
headers=response.get("headers", {}),
)
records = list(test_stream.read_records(sync_mode=SyncMode.full_refresh))
# We're expecting 6 records to return from the tickets_stream
assert records == expected_output
```
###Assistant :
TEST 1 - not all records are retrieved
During test1 the tickets_stream changes the state of parameters on page: 2,
by updating the params:
`params["order_by"] = "updated_at"`
`params["updated_since"] = last_record`
continues to fetch records from the source, using new cycle, and so on.
NOTE:
After switch of the state on ticket_paginate_limit = 2, is this example, we will experience the
records duplication, because of the last_record state, starting at the point
where we stoped causes the duplication of the output. The solution for this is to add at least 1 second to the
last_record state. The DBT normalization should handle this for the end user, so the duplication issue is not a
blocker in such cases.
Main pricipal here is: airbyte is at-least-once delivery, but skipping records is data loss.
|
1,382 | def run_from_argv(self, argv):
self.test_runner = get_command_line_option(argv, "--testrunner")
super().run_from_argv(argv)
|
Pre-parse the command line to extract the value of the --testrunner
option. This allows a test runner to define additional command line
arguments.
| 23 | 8 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def run_from_argv(self, argv):
self.test_runner = get_command_line_option(argv, "--testrunner")
super().run_from_argv(argv)
```
###Assistant :
Pre-parse the command line to extract the value of the --testrunner
option. This allows a test runner to define additional command line
arguments.
|
1,383 | def test_new_processing_issue(self, mock_func):
notification = NewProcessingIssuesActivityNotification(
Activity(
project=self.project,
user=self.user,
type=ActivityType.NEW_PROCESSING_ISSUES,
data={
"issues": get_issues_data(),
"reprocessing_active": True,
},
)
)
with self.tasks():
notification.send()
attachment, text = get_attachment()
assert (
text
== f"Processing issues on <http://testserver/settings/{self.organization.slug}/projects/{self.project.slug}/processing-issues/|{self.project.slug}>"
)
assert (
attachment["text"]
== f"Some events failed to process in your project {self.project.slug}"
)
assert (
attachment["footer"]
== f"{self.project.slug} | <http://testserver/settings/account/notifications/workflow/?referrer=new_processing_issues_activity-slack-user|Notification Settings>"
)
|
Test that a Slack message is sent with the expected payload when an issue is held back in reprocessing
| 19 | 57 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_new_processing_issue(self, mock_func):
notification = NewProcessingIssuesActivityNotification(
Activity(
project=self.project,
user=self.user,
type=ActivityType.NEW_PROCESSING_ISSUES,
data={
"issues": get_issues_data(),
"reprocessing_active": True,
},
)
)
with self.tasks():
notification.send()
attachment, text = get_attachment()
assert (
text
== f"Processing issues on <http://testserver/settings/{self.organization.slug}/projects/{self.project.slug}/processing-issues/|{self.project.slug}>"
)
assert (
attachment["text"]
== f"Some events failed to process in your project {self.project.slug}"
)
assert (
attachment["footer"]
== f"{self.project.slug} | <http://testserver/settings/account/notifications/workflow/?referrer=new_processing_issues_activity-slack-user|Notification Settings>"
)
```
###Assistant :
Test that a Slack message is sent with the expected payload when an issue is held back in reprocessing
|
1,384 | def load_array(data_arrays, batch_size, is_train=True):
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
| Construct a PyTorch data iterator.
Defined in :numref:`sec_linear_concise` | 8 | 11 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def load_array(data_arrays, batch_size, is_train=True):
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
```
###Assistant : Construct a PyTorch data iterator.
Defined in :numref:`sec_linear_concise`
|
1,385 | def is_permanent_redirect(self):
return "location" in self.headers and self.status_code in (
codes.moved_permanently,
codes.permanent_redirect,
)
| True if this Response one of the permanent versions of redirect. | 11 | 13 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def is_permanent_redirect(self):
return "location" in self.headers and self.status_code in (
codes.moved_permanently,
codes.permanent_redirect,
)
```
###Assistant : True if this Response one of the permanent versions of redirect.
|
1,386 | def _estimate_step_duration(self, current, now):
if current:
# there are a few special scenarios here:
# 1) somebody is calling the progress bar without ever supplying
# step 1
# 2) somebody is calling the progress bar and supplies step one
# multiple times, e.g. as part of a finalizing call
# in these cases, we just fall back to the simple calculation
if self._time_after_first_step is not None and current > 1:
time_per_unit = (now - self._time_after_first_step) / (
current - 1
)
else:
time_per_unit = (now - self._start) / current
if current == 1:
self._time_after_first_step = now
return time_per_unit
else:
return 0
| Estimate the duration of a single step.
Given the step number `current` and the corresponding time `now` this
function returns an estimate for how long a single step takes. If this
is called before one step has been completed (i.e. `current == 0`) then
zero is given as an estimate. The duration estimate ignores the duration
of the (assumed to be non-representative) first step for estimates when
more steps are available (i.e. `current>1`).
Args:
current: Index of current step.
now: The current time.
Returns: Estimate of the duration of a single step.
| 92 | 102 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _estimate_step_duration(self, current, now):
if current:
# there are a few special scenarios here:
# 1) somebody is calling the progress bar without ever supplying
# step 1
# 2) somebody is calling the progress bar and supplies step one
# multiple times, e.g. as part of a finalizing call
# in these cases, we just fall back to the simple calculation
if self._time_after_first_step is not None and current > 1:
time_per_unit = (now - self._time_after_first_step) / (
current - 1
)
else:
time_per_unit = (now - self._start) / current
if current == 1:
self._time_after_first_step = now
return time_per_unit
else:
return 0
```
###Assistant : Estimate the duration of a single step.
Given the step number `current` and the corresponding time `now` this
function returns an estimate for how long a single step takes. If this
is called before one step has been completed (i.e. `current == 0`) then
zero is given as an estimate. The duration estimate ignores the duration
of the (assumed to be non-representative) first step for estimates when
more steps are available (i.e. `current>1`).
Args:
current: Index of current step.
now: The current time.
Returns: Estimate of the duration of a single step.
|
1,387 | def _propagate_index_objs(self, axis=None):
self._filter_empties()
if axis is None or axis == 0:
cum_row_lengths = np.cumsum([0] + self._row_lengths)
if axis is None or axis == 1:
cum_col_widths = np.cumsum([0] + self._column_widths)
if axis is None:
|
Synchronize labels by applying the index object for specific `axis` to the `self._partitions` lazily.
Adds `set_axis` function to call-queue of each partition from `self._partitions`
to apply new axis.
Parameters
----------
axis : int, default: None
The axis to apply to. If it's None applies to both axes.
| 47 | 34 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _propagate_index_objs(self, axis=None):
self._filter_empties()
if axis is None or axis == 0:
cum_row_lengths = np.cumsum([0] + self._row_lengths)
if axis is None or axis == 1:
cum_col_widths = np.cumsum([0] + self._column_widths)
if axis is None:
```
###Assistant :
Synchronize labels by applying the index object for specific `axis` to the `self._partitions` lazily.
Adds `set_axis` function to call-queue of each partition from `self._partitions`
to apply new axis.
Parameters
----------
axis : int, default: None
The axis to apply to. If it's None applies to both axes.
|
1,388 | def test_query_devices_remote_no_sync(self) -> None:
remote_user_id = "@test:other"
local_user_id = "@test:test"
remote_master_key = "85T7JXPFBAySB/jwby4S3lBPTqY3+Zg53nYuGmu1ggY"
remote_self_signing_key = "QeIiFEjluPBtI7WQdG365QKZcFs9kqmHir6RBD0//nQ"
self.hs.get_federation_client().query_client_keys = mock.Mock(
return_value=defer.succeed(
{
"device_keys": {remote_user_id: {}},
"master_keys": {
remote_user_id: {
"user_id": remote_user_id,
"usage": ["master"],
"keys": {"ed25519:" + remote_master_key: remote_master_key},
},
},
"self_signing_keys": {
remote_user_id: {
"user_id": remote_user_id,
"usage": ["self_signing"],
"keys": {
"ed25519:"
+ remote_self_signing_key: remote_self_signing_key
},
}
},
}
)
)
e2e_handler = self.hs.get_e2e_keys_handler()
query_result = self.get_success(
e2e_handler.query_devices(
{
"device_keys": {remote_user_id: []},
},
timeout=10,
from_user_id=local_user_id,
from_device_id="some_device_id",
)
)
self.assertEqual(query_result["failures"], {})
self.assertEqual(
query_result["master_keys"],
{
remote_user_id: {
"user_id": remote_user_id,
"usage": ["master"],
"keys": {"ed25519:" + remote_master_key: remote_master_key},
},
},
)
self.assertEqual(
query_result["self_signing_keys"],
{
remote_user_id: {
"user_id": remote_user_id,
"usage": ["self_signing"],
"keys": {
"ed25519:" + remote_self_signing_key: remote_self_signing_key
},
}
},
)
| Tests that querying keys for a remote user that we don't share a room
with returns the cross signing keys correctly.
| 21 | 114 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_query_devices_remote_no_sync(self) -> None:
remote_user_id = "@test:other"
local_user_id = "@test:test"
remote_master_key = "85T7JXPFBAySB/jwby4S3lBPTqY3+Zg53nYuGmu1ggY"
remote_self_signing_key = "QeIiFEjluPBtI7WQdG365QKZcFs9kqmHir6RBD0//nQ"
self.hs.get_federation_client().query_client_keys = mock.Mock(
return_value=defer.succeed(
{
"device_keys": {remote_user_id: {}},
"master_keys": {
remote_user_id: {
"user_id": remote_user_id,
"usage": ["master"],
"keys": {"ed25519:" + remote_master_key: remote_master_key},
},
},
"self_signing_keys": {
remote_user_id: {
"user_id": remote_user_id,
"usage": ["self_signing"],
"keys": {
"ed25519:"
+ remote_self_signing_key: remote_self_signing_key
},
}
},
}
)
)
e2e_handler = self.hs.get_e2e_keys_handler()
query_result = self.get_success(
e2e_handler.query_devices(
{
"device_keys": {remote_user_id: []},
},
timeout=10,
from_user_id=local_user_id,
from_device_id="some_device_id",
)
)
self.assertEqual(query_result["failures"], {})
self.assertEqual(
query_result["master_keys"],
{
remote_user_id: {
"user_id": remote_user_id,
"usage": ["master"],
"keys": {"ed25519:" + remote_master_key: remote_master_key},
},
},
)
self.assertEqual(
query_result["self_signing_keys"],
{
remote_user_id: {
"user_id": remote_user_id,
"usage": ["self_signing"],
"keys": {
"ed25519:" + remote_self_signing_key: remote_self_signing_key
},
}
},
)
```
###Assistant : Tests that querying keys for a remote user that we don't share a room
with returns the cross signing keys correctly.
|
1,389 | def _matches_get_other_nodes(dictionary, nodes, node_ind):
ind_node = nodes[node_ind]
return [ind for ind in dictionary if nodes[ind] == ind_node]
| Find other wildcards that may have already been matched. | 9 | 17 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _matches_get_other_nodes(dictionary, nodes, node_ind):
ind_node = nodes[node_ind]
return [ind for ind in dictionary if nodes[ind] == ind_node]
```
###Assistant : Find other wildcards that may have already been matched.
|
1,390 | def save_pretrained(self, save_directory):
for attribute_name in self.attributes:
attribute = getattr(self, attribute_name)
# Include the processor class in the attribute config so this processor can then be reloaded with the
# `AutoProcessor` API.
if hasattr(attribute, "_set_processor_class"):
attribute._set_processor_class(self.__class__.__name__)
attribute.save_pretrained(save_directory)
|
Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it
can be reloaded using the [`~ProcessorMixin.from_pretrained`] method.
<Tip>
This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and
[`~tokenization_utils_base.PreTrainedTokenizer.save_pretrained`]. Please refer to the docstrings of the methods
above for more information.
</Tip>
Args:
save_directory (`str` or `os.PathLike`):
Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
be created if it does not exist).
| 74 | 37 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def save_pretrained(self, save_directory):
for attribute_name in self.attributes:
attribute = getattr(self, attribute_name)
# Include the processor class in the attribute config so this processor can then be reloaded with the
# `AutoProcessor` API.
if hasattr(attribute, "_set_processor_class"):
attribute._set_processor_class(self.__class__.__name__)
attribute.save_pretrained(save_directory)
```
###Assistant :
Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it
can be reloaded using the [`~ProcessorMixin.from_pretrained`] method.
<Tip>
This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and
[`~tokenization_utils_base.PreTrainedTokenizer.save_pretrained`]. Please refer to the docstrings of the methods
above for more information.
</Tip>
Args:
save_directory (`str` or `os.PathLike`):
Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
be created if it does not exist).
|
1,391 | def _user_has_module_perms(user, app_label):
for backend in auth.get_backends():
if not hasattr(backend, "has_module_perms"):
continue
try:
if backend.has_module_perms(user, app_label):
return True
except PermissionDenied:
return False
return False
| Backend can raise `PermissionDenied` to short-circuit permission checking. | 8 | 24 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _user_has_module_perms(user, app_label):
for backend in auth.get_backends():
if not hasattr(backend, "has_module_perms"):
continue
try:
if backend.has_module_perms(user, app_label):
return True
except PermissionDenied:
return False
return False
```
###Assistant : Backend can raise `PermissionDenied` to short-circuit permission checking.
|
1,392 | def get_default_address(out, name):
shipping_addresses = frappe.db.sql(
,
(name),
as_dict=1,
)
if shipping_addresses:
for out.shipping_address in shipping_addresses:
if out.shipping_address.is_shipping_address:
return out.shipping_address
out.shipping_address = shipping_addresses[0]
return out.shipping_address
@frappe.whitelist() |
SELECT parent,
(SELECT is_shipping_address FROM tabAddress a WHERE a.name=dl.parent) AS is_shipping_address
FROM
`tabDynamic Link` dl
WHERE
dl.link_doctype="Customer"
AND dl.link_name=%s
AND dl.parenttype = "Address"
| 23 | 26 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_default_address(out, name):
shipping_addresses = frappe.db.sql(
,
(name),
as_dict=1,
)
if shipping_addresses:
for out.shipping_address in shipping_addresses:
if out.shipping_address.is_shipping_address:
return out.shipping_address
out.shipping_address = shipping_addresses[0]
return out.shipping_address
@frappe.whitelist()
```
###Assistant :
SELECT parent,
(SELECT is_shipping_address FROM tabAddress a WHERE a.name=dl.parent) AS is_shipping_address
FROM
`tabDynamic Link` dl
WHERE
dl.link_doctype="Customer"
AND dl.link_name=%s
AND dl.parenttype = "Address"
|
1,393 | def force_list(elements=None, to_tuple=False):
ctor = list
if to_tuple is True:
ctor = tuple
return ctor() if elements is None else ctor(elements) \
if type(elements) in [list, set, tuple] else ctor([elements])
|
Makes sure `elements` is returned as a list, whether `elements` is a single
item, already a list, or a tuple.
Args:
elements (Optional[any]): The inputs as single item, list, or tuple to
be converted into a list/tuple. If None, returns empty list/tuple.
to_tuple (bool): Whether to use tuple (instead of list).
Returns:
Union[list,tuple]: All given elements in a list/tuple depending on
`to_tuple`'s value. If elements is None,
returns an empty list/tuple.
| 71 | 30 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def force_list(elements=None, to_tuple=False):
ctor = list
if to_tuple is True:
ctor = tuple
return ctor() if elements is None else ctor(elements) \
if type(elements) in [list, set, tuple] else ctor([elements])
```
###Assistant :
Makes sure `elements` is returned as a list, whether `elements` is a single
item, already a list, or a tuple.
Args:
elements (Optional[any]): The inputs as single item, list, or tuple to
be converted into a list/tuple. If None, returns empty list/tuple.
to_tuple (bool): Whether to use tuple (instead of list).
Returns:
Union[list,tuple]: All given elements in a list/tuple depending on
`to_tuple`'s value. If elements is None,
returns an empty list/tuple.
|
1,394 | def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
if order == 3:
K = steps // 3 + 1
if steps % 3 == 0:
orders = [3, ] * (K - 2) + [2, 1]
elif steps % 3 == 1:
orders = [3, ] * (K - 1) + [1]
else:
orders = [3, ] * (K - 1) + [2]
elif order == 2:
if steps % 2 == 0:
K = steps // 2
orders = [2, ] * K
else:
K = steps // 2 + 1
orders = [2, ] * (K - 1) + [1]
elif order == 1:
K = 1
orders = [1, ] * steps
else:
raise ValueError("'order' must be '1' or '2' or '3'.")
if skip_type == 'logSNR':
# To reproduce the results in DPM-Solver paper
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
else:
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
return timesteps_outer, orders
|
Get the order of each step for sampling by the singlestep DPM-Solver.
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
- If order == 1:
We take `steps` of DPM-Solver-1 (i.e. DDIM).
- If order == 2:
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If order == 3:
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
============================================
Args:
order: A `int`. The max order for the solver (2 or 3).
steps: A `int`. The total number of function evaluations (NFE).
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- 'logSNR': uniform logSNR for the time steps.
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
device: A torch device.
Returns:
orders: A list of the solver order of each step.
| 309 | 159 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
if order == 3:
K = steps // 3 + 1
if steps % 3 == 0:
orders = [3, ] * (K - 2) + [2, 1]
elif steps % 3 == 1:
orders = [3, ] * (K - 1) + [1]
else:
orders = [3, ] * (K - 1) + [2]
elif order == 2:
if steps % 2 == 0:
K = steps // 2
orders = [2, ] * K
else:
K = steps // 2 + 1
orders = [2, ] * (K - 1) + [1]
elif order == 1:
K = 1
orders = [1, ] * steps
else:
raise ValueError("'order' must be '1' or '2' or '3'.")
if skip_type == 'logSNR':
# To reproduce the results in DPM-Solver paper
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
else:
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
return timesteps_outer, orders
```
###Assistant :
Get the order of each step for sampling by the singlestep DPM-Solver.
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
- If order == 1:
We take `steps` of DPM-Solver-1 (i.e. DDIM).
- If order == 2:
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If order == 3:
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
============================================
Args:
order: A `int`. The max order for the solver (2 or 3).
steps: A `int`. The total number of function evaluations (NFE).
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- 'logSNR': uniform logSNR for the time steps.
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
device: A torch device.
Returns:
orders: A list of the solver order of each step.
|
1,395 | def _aligned_zeros(shape, dtype=float, order="C", align=None):
dtype = np.dtype(dtype)
if dtype == np.dtype(object):
# Can't do this, fall back to standard allocation (which
# should always be sufficiently aligned)
if align is not None:
raise ValueError("object array alignment not supported")
return np.zeros(shape, dtype=dtype, order=order)
if align is None:
align = dtype.alignment
if not hasattr(shape, '__len__'):
shape = (shape,)
size = functools.reduce(operator.mul, shape) * dtype.itemsize
buf = np.empty(size + 2*align + 1, np.uint8)
ptr = buf.__array_interface__['data'][0]
offset = ptr % align
if offset != 0:
offset = align - offset
if (ptr % (2*align)) == 0:
offset += align
# Note: slices producing 0-size arrays do not necessarily change
# data pointer --- so we use and allocate size+1
buf = buf[offset:offset+size+1][:-1]
buf.fill(0)
data = np.ndarray(shape, dtype, buf, order=order)
return data
|
Allocate a new ndarray with aligned memory.
The ndarray is guaranteed *not* aligned to twice the requested alignment.
Eg, if align=4, guarantees it is not aligned to 8. If align=None uses
dtype.alignment. | 32 | 129 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _aligned_zeros(shape, dtype=float, order="C", align=None):
dtype = np.dtype(dtype)
if dtype == np.dtype(object):
# Can't do this, fall back to standard allocation (which
# should always be sufficiently aligned)
if align is not None:
raise ValueError("object array alignment not supported")
return np.zeros(shape, dtype=dtype, order=order)
if align is None:
align = dtype.alignment
if not hasattr(shape, '__len__'):
shape = (shape,)
size = functools.reduce(operator.mul, shape) * dtype.itemsize
buf = np.empty(size + 2*align + 1, np.uint8)
ptr = buf.__array_interface__['data'][0]
offset = ptr % align
if offset != 0:
offset = align - offset
if (ptr % (2*align)) == 0:
offset += align
# Note: slices producing 0-size arrays do not necessarily change
# data pointer --- so we use and allocate size+1
buf = buf[offset:offset+size+1][:-1]
buf.fill(0)
data = np.ndarray(shape, dtype, buf, order=order)
return data
```
###Assistant :
Allocate a new ndarray with aligned memory.
The ndarray is guaranteed *not* aligned to twice the requested alignment.
Eg, if align=4, guarantees it is not aligned to 8. If align=None uses
dtype.alignment.
|
1,396 | def smart_resize(x, size, interpolation='bilinear'):
if len(size) != 2:
raise ValueError('Expected `size` to be a tuple of 2 integers, '
f'but got: {size}.')
img = tf.convert_to_tensor(x)
if img.shape.rank is not None:
if img.shape.rank < 3 or img.shape.rank > 4:
raise ValueError(
'Expected an image array with shape `(height, width, channels)`, '
'or `(batch_size, height, width, channels)`, but '
f'got input with incorrect rank, of shape {img.shape}.')
shape = tf.shape(img)
height, width = shape[-3], shape[-2]
target_height, target_width = size
if img.shape.rank is not None:
static_num_channels = img.shape[-1]
else:
static_num_channels = None
crop_height = tf.cast(
tf.cast(width * target_height, 'float32') / target_width, 'int32')
crop_width = tf.cast(
tf.cast(height * target_width, 'float32') / target_height, 'int32')
# Set back to input height / width if crop_height / crop_width is not smaller.
crop_height = tf.minimum(height, crop_height)
crop_width = tf.minimum(width, crop_width)
crop_box_hstart = tf.cast(
tf.cast(height - crop_height, 'float32') / 2, 'int32')
crop_box_wstart = tf.cast(tf.cast(width - crop_width, 'float32') / 2, 'int32')
if img.shape.rank == 4:
crop_box_start = tf.stack([0, crop_box_hstart, crop_box_wstart, 0])
crop_box_size = tf.stack([-1, crop_height, crop_width, -1])
else:
crop_box_start = tf.stack([crop_box_hstart, crop_box_wstart, 0])
crop_box_size = tf.stack([crop_height, crop_width, -1])
img = tf.slice(img, crop_box_start, crop_box_size)
img = tf.image.resize(images=img, size=size, method=interpolation)
# Apparent bug in resize_images_v2 may cause shape to be lost
if img.shape.rank is not None:
if img.shape.rank == 4:
img.set_shape((None, None, None, static_num_channels))
if img.shape.rank == 3:
img.set_shape((None, None, static_num_channels))
if isinstance(x, np.ndarray):
return img.numpy()
return img
@keras_export('keras.utils.array_to_img',
'keras.preprocessing.image.array_to_img') | Resize images to a target size without aspect ratio distortion.
TensorFlow image datasets typically yield images that have each a different
size. However, these images need to be batched before they can be
processed by Keras layers. To be batched, images need to share the same height
and width.
You could simply do:
```python
size = (200, 200)
ds = ds.map(lambda img: tf.image.resize(img, size))
```
However, if you do this, you distort the aspect ratio of your images, since
in general they do not all have the same aspect ratio as `size`. This is
fine in many cases, but not always (e.g. for GANs this can be a problem).
Note that passing the argument `preserve_aspect_ratio=True` to `resize`
will preserve the aspect ratio, but at the cost of no longer respecting the
provided target size. Because `tf.image.resize` doesn't crop images,
your output images will still have different sizes.
This calls for:
```python
size = (200, 200)
ds = ds.map(lambda img: smart_resize(img, size))
```
Your output images will actually be `(200, 200)`, and will not be distorted.
Instead, the parts of the image that do not fit within the target size
get cropped out.
The resizing process is:
1. Take the largest centered crop of the image that has the same aspect ratio
as the target size. For instance, if `size=(200, 200)` and the input image has
size `(340, 500)`, we take a crop of `(340, 340)` centered along the width.
2. Resize the cropped image to the target size. In the example above,
we resize the `(340, 340)` crop to `(200, 200)`.
Args:
x: Input image or batch of images (as a tensor or NumPy array). Must be in
format `(height, width, channels)` or `(batch_size, height, width,
channels)`.
size: Tuple of `(height, width)` integer. Target size.
interpolation: String, interpolation to use for resizing. Defaults to
`'bilinear'`. Supports `bilinear`, `nearest`, `bicubic`, `area`,
`lanczos3`, `lanczos5`, `gaussian`, `mitchellcubic`.
Returns:
Array with shape `(size[0], size[1], channels)`. If the input image was a
NumPy array, the output is a NumPy array, and if it was a TF tensor,
the output is a TF tensor.
| 348 | 228 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def smart_resize(x, size, interpolation='bilinear'):
if len(size) != 2:
raise ValueError('Expected `size` to be a tuple of 2 integers, '
f'but got: {size}.')
img = tf.convert_to_tensor(x)
if img.shape.rank is not None:
if img.shape.rank < 3 or img.shape.rank > 4:
raise ValueError(
'Expected an image array with shape `(height, width, channels)`, '
'or `(batch_size, height, width, channels)`, but '
f'got input with incorrect rank, of shape {img.shape}.')
shape = tf.shape(img)
height, width = shape[-3], shape[-2]
target_height, target_width = size
if img.shape.rank is not None:
static_num_channels = img.shape[-1]
else:
static_num_channels = None
crop_height = tf.cast(
tf.cast(width * target_height, 'float32') / target_width, 'int32')
crop_width = tf.cast(
tf.cast(height * target_width, 'float32') / target_height, 'int32')
# Set back to input height / width if crop_height / crop_width is not smaller.
crop_height = tf.minimum(height, crop_height)
crop_width = tf.minimum(width, crop_width)
crop_box_hstart = tf.cast(
tf.cast(height - crop_height, 'float32') / 2, 'int32')
crop_box_wstart = tf.cast(tf.cast(width - crop_width, 'float32') / 2, 'int32')
if img.shape.rank == 4:
crop_box_start = tf.stack([0, crop_box_hstart, crop_box_wstart, 0])
crop_box_size = tf.stack([-1, crop_height, crop_width, -1])
else:
crop_box_start = tf.stack([crop_box_hstart, crop_box_wstart, 0])
crop_box_size = tf.stack([crop_height, crop_width, -1])
img = tf.slice(img, crop_box_start, crop_box_size)
img = tf.image.resize(images=img, size=size, method=interpolation)
# Apparent bug in resize_images_v2 may cause shape to be lost
if img.shape.rank is not None:
if img.shape.rank == 4:
img.set_shape((None, None, None, static_num_channels))
if img.shape.rank == 3:
img.set_shape((None, None, static_num_channels))
if isinstance(x, np.ndarray):
return img.numpy()
return img
@keras_export('keras.utils.array_to_img',
'keras.preprocessing.image.array_to_img')
```
###Assistant : Resize images to a target size without aspect ratio distortion.
TensorFlow image datasets typically yield images that have each a different
size. However, these images need to be batched before they can be
processed by Keras layers. To be batched, images need to share the same height
and width.
You could simply do:
```python
size = (200, 200)
ds = ds.map(lambda img: tf.image.resize(img, size))
```
However, if you do this, you distort the aspect ratio of your images, since
in general they do not all have the same aspect ratio as `size`. This is
fine in many cases, but not always (e.g. for GANs this can be a problem).
Note that passing the argument `preserve_aspect_ratio=True` to `resize`
will preserve the aspect ratio, but at the cost of no longer respecting the
provided target size. Because `tf.image.resize` doesn't crop images,
your output images will still have different sizes.
This calls for:
```python
size = (200, 200)
ds = ds.map(lambda img: smart_resize(img, size))
```
Your output images will actually be `(200, 200)`, and will not be distorted.
Instead, the parts of the image that do not fit within the target size
get cropped out.
The resizing process is:
1. Take the largest centered crop of the image that has the same aspect ratio
as the target size. For instance, if `size=(200, 200)` and the input image has
size `(340, 500)`, we take a crop of `(340, 340)` centered along the width.
2. Resize the cropped image to the target size. In the example above,
we resize the `(340, 340)` crop to `(200, 200)`.
Args:
x: Input image or batch of images (as a tensor or NumPy array). Must be in
format `(height, width, channels)` or `(batch_size, height, width,
channels)`.
size: Tuple of `(height, width)` integer. Target size.
interpolation: String, interpolation to use for resizing. Defaults to
`'bilinear'`. Supports `bilinear`, `nearest`, `bicubic`, `area`,
`lanczos3`, `lanczos5`, `gaussian`, `mitchellcubic`.
Returns:
Array with shape `(size[0], size[1], channels)`. If the input image was a
NumPy array, the output is a NumPy array, and if it was a TF tensor,
the output is a TF tensor.
|
1,397 | def gather(tensor):
if AcceleratorState().distributed_type == DistributedType.TPU:
return _tpu_gather(tensor, name="accelerate.utils.gather")
elif AcceleratorState().distributed_type in [DistributedType.DEEPSPEED, DistributedType.MULTI_GPU]:
return _gpu_gather(tensor)
elif AcceleratorState().distributed_type == DistributedType.MULTI_CPU:
return _cpu_gather(tensor)
else:
return tensor
|
Recursively gather tensor in a nested list/tuple/dictionary of tensors from all devices.
Args:
tensor (nested list/tuple/dictionary of :obj:`torch.Tensor`):
The data to gather.
Returns:
The same data structure as :obj:`tensor` with all tensors sent to the proper device.
| 37 | 25 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def gather(tensor):
if AcceleratorState().distributed_type == DistributedType.TPU:
return _tpu_gather(tensor, name="accelerate.utils.gather")
elif AcceleratorState().distributed_type in [DistributedType.DEEPSPEED, DistributedType.MULTI_GPU]:
return _gpu_gather(tensor)
elif AcceleratorState().distributed_type == DistributedType.MULTI_CPU:
return _cpu_gather(tensor)
else:
return tensor
```
###Assistant :
Recursively gather tensor in a nested list/tuple/dictionary of tensors from all devices.
Args:
tensor (nested list/tuple/dictionary of :obj:`torch.Tensor`):
The data to gather.
Returns:
The same data structure as :obj:`tensor` with all tensors sent to the proper device.
|
1,398 | def speed_metrics(split, start_time, num_samples=None, num_steps=None):
runtime = time.time() - start_time
result = {f"{split}_runtime": round(runtime, 4)}
if num_samples is not None:
samples_per_second = num_samples / runtime
result[f"{split}_samples_per_second"] = round(samples_per_second, 3)
if num_steps is not None:
steps_per_second = num_steps / runtime
result[f"{split}_steps_per_second"] = round(steps_per_second, 3)
return result
|
Measure and return speed performance metrics.
This function requires a time snapshot `start_time` before the operation to be measured starts and this function
should be run immediately after the operation to be measured has completed.
Args:
- split: name to prefix metric (like train, eval, test...)
- start_time: operation start time
- num_samples: number of samples processed
| 57 | 45 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def speed_metrics(split, start_time, num_samples=None, num_steps=None):
runtime = time.time() - start_time
result = {f"{split}_runtime": round(runtime, 4)}
if num_samples is not None:
samples_per_second = num_samples / runtime
result[f"{split}_samples_per_second"] = round(samples_per_second, 3)
if num_steps is not None:
steps_per_second = num_steps / runtime
result[f"{split}_steps_per_second"] = round(steps_per_second, 3)
return result
```
###Assistant :
Measure and return speed performance metrics.
This function requires a time snapshot `start_time` before the operation to be measured starts and this function
should be run immediately after the operation to be measured has completed.
Args:
- split: name to prefix metric (like train, eval, test...)
- start_time: operation start time
- num_samples: number of samples processed
|
1,399 | def parse_date_fields(year_col, month_col, day_col) -> npt.NDArray[np.object_]:
warnings.warn(
, # noqa: E501
FutureWarning,
stacklevel=find_stack_level(),
)
year_col = _maybe_cast(year_col)
month_col = _maybe_cast(month_col)
day_col = _maybe_cast(day_col)
return parsing.try_parse_year_month_day(year_col, month_col, day_col)
|
Parse columns with years, months and days into a single date column.
.. deprecated:: 1.2
Use pd.to_datetime({"year": year_col, "month": month_col, "day": day_col}) instead to get a Pandas Series.
Use ser = pd.to_datetime({"year": year_col, "month": month_col, "day": day_col}) and
np.array([s.to_pydatetime() for s in ser]) instead to get a Numpy array.
| 49 | 27 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def parse_date_fields(year_col, month_col, day_col) -> npt.NDArray[np.object_]:
warnings.warn(
, # noqa: E501
FutureWarning,
stacklevel=find_stack_level(),
)
year_col = _maybe_cast(year_col)
month_col = _maybe_cast(month_col)
day_col = _maybe_cast(day_col)
return parsing.try_parse_year_month_day(year_col, month_col, day_col)
```
###Assistant :
Parse columns with years, months and days into a single date column.
.. deprecated:: 1.2
Use pd.to_datetime({"year": year_col, "month": month_col, "day": day_col}) instead to get a Pandas Series.
Use ser = pd.to_datetime({"year": year_col, "month": month_col, "day": day_col}) and
np.array([s.to_pydatetime() for s in ser]) instead to get a Numpy array.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.