Unnamed: 0
int64 0
2.93k
| code
stringlengths 101
62.2k
| docs
stringlengths 51
10.7k
| doc_len
int64 4
1.74k
| words
int64 4
4.82k
| lang
stringclasses 1
value | prompt
stringlengths 320
71.2k
|
---|---|---|---|---|---|---|
1,500 | async def read_settings() -> prefect.settings.Settings:
return prefect.settings.get_current_settings().with_obfuscated_secrets()
@router.get("/version") |
Get the current Orion settings.
Secret setting values will be obfuscated.
| 11 | 8 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
async def read_settings() -> prefect.settings.Settings:
return prefect.settings.get_current_settings().with_obfuscated_secrets()
@router.get("/version")
```
###Assistant :
Get the current Orion settings.
Secret setting values will be obfuscated.
|
1,501 | def map_overlap(self, func, depth, boundary=None, trim=True, **kwargs):
from dask.array.overlap import map_overlap
return map_overlap(
func, self, depth=depth, boundary=boundary, trim=trim, **kwargs
)
| Map a function over blocks of the array with some overlap
We share neighboring zones between blocks of the array, then map a
function, then trim away the neighboring strips.
Note that this function will attempt to automatically determine the output
array type before computing it, please refer to the ``meta`` keyword argument
in :func:`map_blocks <dask.array.core.map_blocks>` if you expect that the function will not succeed when
operating on 0-d arrays.
Parameters
----------
func: function
The function to apply to each extended block
depth: int, tuple, or dict
The number of elements that each block should share with its neighbors
If a tuple or dict then this can be different per axis
boundary: str, tuple, dict
How to handle the boundaries.
Values include 'reflect', 'periodic', 'nearest', 'none',
or any constant value like 0 or np.nan
trim: bool
Whether or not to trim ``depth`` elements from each block after
calling the map function.
Set this to False if your mapping function already does this for you
**kwargs:
Other keyword arguments valid in :func:`map_blocks <dask.array.core.map_blocks>`.
Examples
--------
>>> import dask.array as da
>>> x = np.array([1, 1, 2, 3, 3, 3, 2, 1, 1])
>>> x = da.from_array(x, chunks=5)
>>> def derivative(x):
... return x - np.roll(x, 1)
>>> y = x.map_overlap(derivative, depth=1, boundary=0)
>>> y.compute()
array([ 1, 0, 1, 1, 0, 0, -1, -1, 0])
>>> import dask.array as da
>>> x = np.arange(16).reshape((4, 4))
>>> d = da.from_array(x, chunks=(2, 2))
>>> y = d.map_overlap(lambda x: x + x.size, depth=1, boundary='reflect')
>>> y.compute()
array([[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27],
[28, 29, 30, 31]])
>>> func = lambda x: x + x.size
>>> depth = {0: 1, 1: 1}
>>> boundary = {0: 'reflect', 1: 'none'}
>>> d.map_overlap(func, depth, boundary).compute() # doctest: +NORMALIZE_WHITESPACE
array([[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27]])
>>> x = np.arange(16).reshape((4, 4))
>>> d = da.from_array(x, chunks=(2, 2))
>>> y = d.map_overlap(lambda x: x + x[2], depth=1, boundary='reflect', meta=np.array(()))
>>> y
dask.array<_trim, shape=(4, 4), dtype=float64, chunksize=(2, 2), chunktype=numpy.ndarray>
>>> y.compute()
array([[ 4, 6, 8, 10],
[ 8, 10, 12, 14],
[20, 22, 24, 26],
[24, 26, 28, 30]])
>>> import cupy # doctest: +SKIP
>>> x = cupy.arange(16).reshape((4, 4)) # doctest: +SKIP
>>> d = da.from_array(x, chunks=(2, 2)) # doctest: +SKIP
>>> y = d.map_overlap(lambda x: x + x[2], depth=1, boundary='reflect', meta=cupy.array(())) # doctest: +SKIP
>>> y # doctest: +SKIP
dask.array<_trim, shape=(4, 4), dtype=float64, chunksize=(2, 2), chunktype=cupy.ndarray>
>>> y.compute() # doctest: +SKIP
array([[ 4, 6, 8, 10],
[ 8, 10, 12, 14],
[20, 22, 24, 26],
[24, 26, 28, 30]])
| 435 | 20 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def map_overlap(self, func, depth, boundary=None, trim=True, **kwargs):
from dask.array.overlap import map_overlap
return map_overlap(
func, self, depth=depth, boundary=boundary, trim=trim, **kwargs
)
```
###Assistant : Map a function over blocks of the array with some overlap
We share neighboring zones between blocks of the array, then map a
function, then trim away the neighboring strips.
Note that this function will attempt to automatically determine the output
array type before computing it, please refer to the ``meta`` keyword argument
in :func:`map_blocks <dask.array.core.map_blocks>` if you expect that the function will not succeed when
operating on 0-d arrays.
Parameters
----------
func: function
The function to apply to each extended block
depth: int, tuple, or dict
The number of elements that each block should share with its neighbors
If a tuple or dict then this can be different per axis
boundary: str, tuple, dict
How to handle the boundaries.
Values include 'reflect', 'periodic', 'nearest', 'none',
or any constant value like 0 or np.nan
trim: bool
Whether or not to trim ``depth`` elements from each block after
calling the map function.
Set this to False if your mapping function already does this for you
**kwargs:
Other keyword arguments valid in :func:`map_blocks <dask.array.core.map_blocks>`.
Examples
--------
>>> import dask.array as da
>>> x = np.array([1, 1, 2, 3, 3, 3, 2, 1, 1])
>>> x = da.from_array(x, chunks=5)
>>> def derivative(x):
... return x - np.roll(x, 1)
>>> y = x.map_overlap(derivative, depth=1, boundary=0)
>>> y.compute()
array([ 1, 0, 1, 1, 0, 0, -1, -1, 0])
>>> import dask.array as da
>>> x = np.arange(16).reshape((4, 4))
>>> d = da.from_array(x, chunks=(2, 2))
>>> y = d.map_overlap(lambda x: x + x.size, depth=1, boundary='reflect')
>>> y.compute()
array([[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27],
[28, 29, 30, 31]])
>>> func = lambda x: x + x.size
>>> depth = {0: 1, 1: 1}
>>> boundary = {0: 'reflect', 1: 'none'}
>>> d.map_overlap(func, depth, boundary).compute() # doctest: +NORMALIZE_WHITESPACE
array([[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27]])
>>> x = np.arange(16).reshape((4, 4))
>>> d = da.from_array(x, chunks=(2, 2))
>>> y = d.map_overlap(lambda x: x + x[2], depth=1, boundary='reflect', meta=np.array(()))
>>> y
dask.array<_trim, shape=(4, 4), dtype=float64, chunksize=(2, 2), chunktype=numpy.ndarray>
>>> y.compute()
array([[ 4, 6, 8, 10],
[ 8, 10, 12, 14],
[20, 22, 24, 26],
[24, 26, 28, 30]])
>>> import cupy # doctest: +SKIP
>>> x = cupy.arange(16).reshape((4, 4)) # doctest: +SKIP
>>> d = da.from_array(x, chunks=(2, 2)) # doctest: +SKIP
>>> y = d.map_overlap(lambda x: x + x[2], depth=1, boundary='reflect', meta=cupy.array(())) # doctest: +SKIP
>>> y # doctest: +SKIP
dask.array<_trim, shape=(4, 4), dtype=float64, chunksize=(2, 2), chunktype=cupy.ndarray>
>>> y.compute() # doctest: +SKIP
array([[ 4, 6, 8, 10],
[ 8, 10, 12, 14],
[20, 22, 24, 26],
[24, 26, 28, 30]])
|
1,502 | def _flush(self):
# Raise an Exception if the value is being changed in read mode.
if not self._write:
raise GDALException(
"Raster needs to be opened in write mode to change values."
)
capi.flush_ds(self._ptr)
|
Flush all data from memory into the source file if it exists.
The data that needs flushing are geotransforms, coordinate systems,
nodata_values and pixel values. This function will be called
automatically wherever it is needed.
| 35 | 33 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _flush(self):
# Raise an Exception if the value is being changed in read mode.
if not self._write:
raise GDALException(
"Raster needs to be opened in write mode to change values."
)
capi.flush_ds(self._ptr)
```
###Assistant :
Flush all data from memory into the source file if it exists.
The data that needs flushing are geotransforms, coordinate systems,
nodata_values and pixel values. This function will be called
automatically wherever it is needed.
|
1,503 | def _round(self, places, rounding):
if places <= 0:
raise ValueError("argument should be at least 1 in _round")
if self._is_special or not self:
return Decimal(self)
ans = self._rescale(self.adjusted()+1-places, rounding)
# it can happen that the rescale alters the adjusted exponent;
# for example when rounding 99.97 to 3 significant figures.
# When this happens we end up with an extra 0 at the end of
# the number; a second rescale fixes this.
if ans.adjusted() != self.adjusted():
ans = ans._rescale(ans.adjusted()+1-places, rounding)
return ans
| Round a nonzero, nonspecial Decimal to a fixed number of
significant figures, using the given rounding mode.
Infinities, NaNs and zeros are returned unaltered.
This operation is quiet: it raises no flags, and uses no
information from the context.
| 39 | 82 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _round(self, places, rounding):
if places <= 0:
raise ValueError("argument should be at least 1 in _round")
if self._is_special or not self:
return Decimal(self)
ans = self._rescale(self.adjusted()+1-places, rounding)
# it can happen that the rescale alters the adjusted exponent;
# for example when rounding 99.97 to 3 significant figures.
# When this happens we end up with an extra 0 at the end of
# the number; a second rescale fixes this.
if ans.adjusted() != self.adjusted():
ans = ans._rescale(ans.adjusted()+1-places, rounding)
return ans
```
###Assistant : Round a nonzero, nonspecial Decimal to a fixed number of
significant figures, using the given rounding mode.
Infinities, NaNs and zeros are returned unaltered.
This operation is quiet: it raises no flags, and uses no
information from the context.
|
1,504 | def is_redirect(self):
return "location" in self.headers and self.status_code in REDIRECT_STATI
| True if this Response is a well-formed HTTP redirect that could have
been processed automatically (by :meth:`Session.resolve_redirects`).
| 17 | 10 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def is_redirect(self):
return "location" in self.headers and self.status_code in REDIRECT_STATI
```
###Assistant : True if this Response is a well-formed HTTP redirect that could have
been processed automatically (by :meth:`Session.resolve_redirects`).
|
1,505 | def write_eqapo_graphic_eq(self, file_path, normalize=True):
file_path = os.path.abspath(file_path)
s = self.eqapo_graphic_eq(normalize=normalize)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(s)
return s
| Writes equalization graph to a file as Equalizer APO config. | 10 | 19 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def write_eqapo_graphic_eq(self, file_path, normalize=True):
file_path = os.path.abspath(file_path)
s = self.eqapo_graphic_eq(normalize=normalize)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(s)
return s
```
###Assistant : Writes equalization graph to a file as Equalizer APO config.
|
1,506 | def test_export_pipeline_6():
pipeline_string = (
'DecisionTreeClassifier(SelectPercentile(input_matrix, SelectPercentile__percentile=20),'
'DecisionTreeClassifier__criterion=gini, DecisionTreeClassifier__max_depth=8,'
'DecisionTreeClassifier__min_samples_leaf=5, DecisionTreeClassifier__min_samples_split=5)'
)
pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)
expected_code =
exported_code = export_pipeline(pipeline, tpot_obj.operators,
tpot_obj._pset, random_state=42,
data_file_path='test_path')
assert expected_code == exported_code
| Assert that exported_pipeline() generated a compile source file with random_state and data_file_path.import numpy as np
import pandas as pd
from sklearn.feature_selection import SelectPercentile, f_classif
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.tree import DecisionTreeClassifier
from tpot.export_utils import set_param_recursive
# NOTE: Make sure that the outcome column is labeled 'target' in the data file
tpot_data = pd.read_csv('test_path', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1)
training_features, testing_features, training_target, testing_target = \\
train_test_split(features, tpot_data['target'], random_state=42)
exported_pipeline = make_pipeline(
SelectPercentile(score_func=f_classif, percentile=20),
DecisionTreeClassifier(criterion="gini", max_depth=8, min_samples_leaf=5, min_samples_split=5)
)
# Fix random state for all the steps in exported pipeline
set_param_recursive(exported_pipeline.steps, 'random_state', 42)
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
| 102 | 29 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_export_pipeline_6():
pipeline_string = (
'DecisionTreeClassifier(SelectPercentile(input_matrix, SelectPercentile__percentile=20),'
'DecisionTreeClassifier__criterion=gini, DecisionTreeClassifier__max_depth=8,'
'DecisionTreeClassifier__min_samples_leaf=5, DecisionTreeClassifier__min_samples_split=5)'
)
pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)
expected_code =
exported_code = export_pipeline(pipeline, tpot_obj.operators,
tpot_obj._pset, random_state=42,
data_file_path='test_path')
assert expected_code == exported_code
```
###Assistant : Assert that exported_pipeline() generated a compile source file with random_state and data_file_path.import numpy as np
import pandas as pd
from sklearn.feature_selection import SelectPercentile, f_classif
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.tree import DecisionTreeClassifier
from tpot.export_utils import set_param_recursive
# NOTE: Make sure that the outcome column is labeled 'target' in the data file
tpot_data = pd.read_csv('test_path', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1)
training_features, testing_features, training_target, testing_target = \\
train_test_split(features, tpot_data['target'], random_state=42)
exported_pipeline = make_pipeline(
SelectPercentile(score_func=f_classif, percentile=20),
DecisionTreeClassifier(criterion="gini", max_depth=8, min_samples_leaf=5, min_samples_split=5)
)
# Fix random state for all the steps in exported pipeline
set_param_recursive(exported_pipeline.steps, 'random_state', 42)
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
|
1,507 | def _check_edge_connectivity(G):
# Construct the auxiliary graph that can be used to make each k-cc or k-sub
aux_graph = EdgeComponentAuxGraph.construct(G)
# memoize the local connectivity in this graph
memo = {}
for k in it.count(1):
# Test "local" k-edge-components and k-edge-subgraphs
ccs_local = fset(aux_graph.k_edge_components(k))
ccs_subgraph = fset(aux_graph.k_edge_subgraphs(k))
# Check connectivity properties that should be guaranteed by the
# algorithms.
_assert_local_cc_edge_connectivity(G, ccs_local, k, memo)
_assert_subgraph_edge_connectivity(G, ccs_subgraph, k)
if k == 1 or k == 2 and not G.is_directed():
assert (
ccs_local == ccs_subgraph
), "Subgraphs and components should be the same when k == 1 or (k == 2 and not G.directed())"
if G.is_directed():
# Test special case methods are the same as the aux graph
if k == 1:
alt_sccs = fset(nx.strongly_connected_components(G))
assert alt_sccs == ccs_local, "k=1 failed alt"
assert alt_sccs == ccs_subgraph, "k=1 failed alt"
else:
# Test special case methods are the same as the aux graph
if k == 1:
alt_ccs = fset(nx.connected_components(G))
assert alt_ccs == ccs_local, "k=1 failed alt"
assert alt_ccs == ccs_subgraph, "k=1 failed alt"
elif k == 2:
alt_bridge_ccs = fset(bridge_components(G))
assert alt_bridge_ccs == ccs_local, "k=2 failed alt"
assert alt_bridge_ccs == ccs_subgraph, "k=2 failed alt"
# if new methods for k == 3 or k == 4 are implemented add them here
# Check the general subgraph method works by itself
alt_subgraph_ccs = fset(
[set(C.nodes()) for C in general_k_edge_subgraphs(G, k=k)]
)
assert alt_subgraph_ccs == ccs_subgraph, "alt subgraph method failed"
# Stop once k is larger than all special case methods
# and we cannot break down ccs any further.
if k > 2 and all(len(cc) == 1 for cc in ccs_local):
break
# ----------------
# Misc tests
# ----------------
|
Helper - generates all k-edge-components using the aux graph. Checks the
both local and subgraph edge connectivity of each cc. Also checks that
alternate methods of computing the k-edge-ccs generate the same result.
| 33 | 275 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _check_edge_connectivity(G):
# Construct the auxiliary graph that can be used to make each k-cc or k-sub
aux_graph = EdgeComponentAuxGraph.construct(G)
# memoize the local connectivity in this graph
memo = {}
for k in it.count(1):
# Test "local" k-edge-components and k-edge-subgraphs
ccs_local = fset(aux_graph.k_edge_components(k))
ccs_subgraph = fset(aux_graph.k_edge_subgraphs(k))
# Check connectivity properties that should be guaranteed by the
# algorithms.
_assert_local_cc_edge_connectivity(G, ccs_local, k, memo)
_assert_subgraph_edge_connectivity(G, ccs_subgraph, k)
if k == 1 or k == 2 and not G.is_directed():
assert (
ccs_local == ccs_subgraph
), "Subgraphs and components should be the same when k == 1 or (k == 2 and not G.directed())"
if G.is_directed():
# Test special case methods are the same as the aux graph
if k == 1:
alt_sccs = fset(nx.strongly_connected_components(G))
assert alt_sccs == ccs_local, "k=1 failed alt"
assert alt_sccs == ccs_subgraph, "k=1 failed alt"
else:
# Test special case methods are the same as the aux graph
if k == 1:
alt_ccs = fset(nx.connected_components(G))
assert alt_ccs == ccs_local, "k=1 failed alt"
assert alt_ccs == ccs_subgraph, "k=1 failed alt"
elif k == 2:
alt_bridge_ccs = fset(bridge_components(G))
assert alt_bridge_ccs == ccs_local, "k=2 failed alt"
assert alt_bridge_ccs == ccs_subgraph, "k=2 failed alt"
# if new methods for k == 3 or k == 4 are implemented add them here
# Check the general subgraph method works by itself
alt_subgraph_ccs = fset(
[set(C.nodes()) for C in general_k_edge_subgraphs(G, k=k)]
)
assert alt_subgraph_ccs == ccs_subgraph, "alt subgraph method failed"
# Stop once k is larger than all special case methods
# and we cannot break down ccs any further.
if k > 2 and all(len(cc) == 1 for cc in ccs_local):
break
# ----------------
# Misc tests
# ----------------
```
###Assistant :
Helper - generates all k-edge-components using the aux graph. Checks the
both local and subgraph edge connectivity of each cc. Also checks that
alternate methods of computing the k-edge-ccs generate the same result.
|
1,508 | def test_sequence_name_length_limits_flush(self):
# A full flush is expensive to the full test, so we dig into the
# internals to generate the likely offending SQL and run it manually
# Some convenience aliases
VLM = VeryLongModelNameZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
VLM_m2m = (
VLM.m2m_also_quite_long_zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz.through
)
tables = [
VLM._meta.db_table,
VLM_m2m._meta.db_table,
]
sql_list = connection.ops.sql_flush(no_style(), tables, reset_sequences=True)
connection.ops.execute_sql_flush(sql_list)
|
Sequence resetting as part of a flush with model with long name and
long pk name doesn't error (#8901).
| 19 | 53 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_sequence_name_length_limits_flush(self):
# A full flush is expensive to the full test, so we dig into the
# internals to generate the likely offending SQL and run it manually
# Some convenience aliases
VLM = VeryLongModelNameZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
VLM_m2m = (
VLM.m2m_also_quite_long_zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz.through
)
tables = [
VLM._meta.db_table,
VLM_m2m._meta.db_table,
]
sql_list = connection.ops.sql_flush(no_style(), tables, reset_sequences=True)
connection.ops.execute_sql_flush(sql_list)
```
###Assistant :
Sequence resetting as part of a flush with model with long name and
long pk name doesn't error (#8901).
|
1,509 | def test_delete_media(self) -> None:
download_resource = self.media_repo.children[b"download"]
upload_resource = self.media_repo.children[b"upload"]
# Upload some media into the room
response = self.helper.upload_media(
upload_resource,
SMALL_PNG,
tok=self.admin_user_tok,
expect_code=200,
)
# Extract media ID from the response
server_and_media_id = response["content_uri"][6:] # Cut off 'mxc://'
server_name, media_id = server_and_media_id.split("/")
self.assertEqual(server_name, self.server_name)
# Attempt to access media
channel = make_request(
self.reactor,
FakeSite(download_resource, self.reactor),
"GET",
server_and_media_id,
shorthand=False,
access_token=self.admin_user_tok,
)
# Should be successful
self.assertEqual(
200,
channel.code,
msg=(
"Expected to receive a 200 on accessing media: %s" % server_and_media_id
),
)
# Test if the file exists
local_path = self.filepaths.local_media_filepath(media_id)
self.assertTrue(os.path.exists(local_path))
url = "/_synapse/admin/v1/media/%s/%s" % (self.server_name, media_id)
# Delete media
channel = self.make_request(
"DELETE",
url,
access_token=self.admin_user_tok,
)
self.assertEqual(200, channel.code, msg=channel.json_body)
self.assertEqual(1, channel.json_body["total"])
self.assertEqual(
media_id,
channel.json_body["deleted_media"][0],
)
# Attempt to access media
channel = make_request(
self.reactor,
FakeSite(download_resource, self.reactor),
"GET",
server_and_media_id,
shorthand=False,
access_token=self.admin_user_tok,
)
self.assertEqual(
HTTPStatus.NOT_FOUND,
channel.code,
msg=(
"Expected to receive a HTTPStatus.NOT_FOUND on accessing deleted media: %s"
% server_and_media_id
),
)
# Test if the file is deleted
self.assertFalse(os.path.exists(local_path))
|
Tests that delete a media is successfully
| 7 | 159 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_delete_media(self) -> None:
download_resource = self.media_repo.children[b"download"]
upload_resource = self.media_repo.children[b"upload"]
# Upload some media into the room
response = self.helper.upload_media(
upload_resource,
SMALL_PNG,
tok=self.admin_user_tok,
expect_code=200,
)
# Extract media ID from the response
server_and_media_id = response["content_uri"][6:] # Cut off 'mxc://'
server_name, media_id = server_and_media_id.split("/")
self.assertEqual(server_name, self.server_name)
# Attempt to access media
channel = make_request(
self.reactor,
FakeSite(download_resource, self.reactor),
"GET",
server_and_media_id,
shorthand=False,
access_token=self.admin_user_tok,
)
# Should be successful
self.assertEqual(
200,
channel.code,
msg=(
"Expected to receive a 200 on accessing media: %s" % server_and_media_id
),
)
# Test if the file exists
local_path = self.filepaths.local_media_filepath(media_id)
self.assertTrue(os.path.exists(local_path))
url = "/_synapse/admin/v1/media/%s/%s" % (self.server_name, media_id)
# Delete media
channel = self.make_request(
"DELETE",
url,
access_token=self.admin_user_tok,
)
self.assertEqual(200, channel.code, msg=channel.json_body)
self.assertEqual(1, channel.json_body["total"])
self.assertEqual(
media_id,
channel.json_body["deleted_media"][0],
)
# Attempt to access media
channel = make_request(
self.reactor,
FakeSite(download_resource, self.reactor),
"GET",
server_and_media_id,
shorthand=False,
access_token=self.admin_user_tok,
)
self.assertEqual(
HTTPStatus.NOT_FOUND,
channel.code,
msg=(
"Expected to receive a HTTPStatus.NOT_FOUND on accessing deleted media: %s"
% server_and_media_id
),
)
# Test if the file is deleted
self.assertFalse(os.path.exists(local_path))
```
###Assistant :
Tests that delete a media is successfully
|
1,510 | def load_data_for_viz(load_type, model_file_statistics, **kwargs):
supported_load_types = dict(
load_json=load_json,
load_from_file=partial(
load_from_file, dtype=kwargs.get("dtype", int), ground_truth_split=kwargs.get("ground_truth_split", 2)
),
)
loader = supported_load_types[load_type]
try:
stats_per_model = [loader(stats_f) for stats_f in model_file_statistics]
except (TypeError, AttributeError):
logger.exception(f"Unable to open model statistics file {model_file_statistics}!")
raise
return stats_per_model
| Load model file data in to list of .
:param load_type: type of the data loader to be used.
:param model_file_statistics: JSON file or list of json files containing any
model experiment stats.
:return List of training statistics loaded as json objects.
| 42 | 40 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def load_data_for_viz(load_type, model_file_statistics, **kwargs):
supported_load_types = dict(
load_json=load_json,
load_from_file=partial(
load_from_file, dtype=kwargs.get("dtype", int), ground_truth_split=kwargs.get("ground_truth_split", 2)
),
)
loader = supported_load_types[load_type]
try:
stats_per_model = [loader(stats_f) for stats_f in model_file_statistics]
except (TypeError, AttributeError):
logger.exception(f"Unable to open model statistics file {model_file_statistics}!")
raise
return stats_per_model
```
###Assistant : Load model file data in to list of .
:param load_type: type of the data loader to be used.
:param model_file_statistics: JSON file or list of json files containing any
model experiment stats.
:return List of training statistics loaded as json objects.
|
1,511 | def scan_vocab(self, corpus_iterable=None, corpus_file=None, progress_per=100000, trim_rule=None):
logger.info("collecting all words and their counts")
if corpus_file is not None:
corpus_iterable = TaggedLineDocument(corpus_file)
total_words, corpus_count = self._scan_vocab(corpus_iterable, progress_per, trim_rule)
logger.info(
"collected %i word types and %i unique tags from a corpus of %i examples and %i words",
len(self.raw_vocab), len(self.dv), corpus_count, total_words,
)
return total_words, corpus_count
| Create the model's vocabulary: a mapping from unique words in the corpus to their frequency count.
Parameters
----------
documents : iterable of :class:`~gensim.models.doc2vec.TaggedDocument`, optional
The tagged documents used to create the vocabulary. Their tags can be either str tokens or ints (faster).
corpus_file : str, optional
Path to a corpus file in :class:`~gensim.models.word2vec.LineSentence` format.
You may use this argument instead of `documents` to get performance boost. Only one of `documents` or
`corpus_file` arguments need to be passed (not both of them).
progress_per : int
Progress will be logged every `progress_per` documents.
trim_rule : function, optional
Vocabulary trimming rule, specifies whether certain words should remain in the vocabulary,
be trimmed away, or handled using the default (discard if word count < min_count).
Can be None (min_count will be used, look to :func:`~gensim.utils.keep_vocab_item`),
or a callable that accepts parameters (word, count, min_count) and returns either
:attr:`gensim.utils.RULE_DISCARD`, :attr:`gensim.utils.RULE_KEEP` or :attr:`gensim.utils.RULE_DEFAULT`.
The rule, if given, is only used to prune vocabulary during
:meth:`~gensim.models.doc2vec.Doc2Vec.build_vocab` and is not stored as part of the model.
The input parameters are of the following types:
* `word` (str) - the word we are examining
* `count` (int) - the word's frequency count in the corpus
* `min_count` (int) - the minimum count threshold.
Returns
-------
(int, int)
Tuple of `(total words in the corpus, number of documents)`.
| 218 | 52 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def scan_vocab(self, corpus_iterable=None, corpus_file=None, progress_per=100000, trim_rule=None):
logger.info("collecting all words and their counts")
if corpus_file is not None:
corpus_iterable = TaggedLineDocument(corpus_file)
total_words, corpus_count = self._scan_vocab(corpus_iterable, progress_per, trim_rule)
logger.info(
"collected %i word types and %i unique tags from a corpus of %i examples and %i words",
len(self.raw_vocab), len(self.dv), corpus_count, total_words,
)
return total_words, corpus_count
```
###Assistant : Create the model's vocabulary: a mapping from unique words in the corpus to their frequency count.
Parameters
----------
documents : iterable of :class:`~gensim.models.doc2vec.TaggedDocument`, optional
The tagged documents used to create the vocabulary. Their tags can be either str tokens or ints (faster).
corpus_file : str, optional
Path to a corpus file in :class:`~gensim.models.word2vec.LineSentence` format.
You may use this argument instead of `documents` to get performance boost. Only one of `documents` or
`corpus_file` arguments need to be passed (not both of them).
progress_per : int
Progress will be logged every `progress_per` documents.
trim_rule : function, optional
Vocabulary trimming rule, specifies whether certain words should remain in the vocabulary,
be trimmed away, or handled using the default (discard if word count < min_count).
Can be None (min_count will be used, look to :func:`~gensim.utils.keep_vocab_item`),
or a callable that accepts parameters (word, count, min_count) and returns either
:attr:`gensim.utils.RULE_DISCARD`, :attr:`gensim.utils.RULE_KEEP` or :attr:`gensim.utils.RULE_DEFAULT`.
The rule, if given, is only used to prune vocabulary during
:meth:`~gensim.models.doc2vec.Doc2Vec.build_vocab` and is not stored as part of the model.
The input parameters are of the following types:
* `word` (str) - the word we are examining
* `count` (int) - the word's frequency count in the corpus
* `min_count` (int) - the minimum count threshold.
Returns
-------
(int, int)
Tuple of `(total words in the corpus, number of documents)`.
|
1,512 | def _parse_command_opts(self, parser, args):
# late import because of mutual dependence between these modules
from distutils.cmd import Command
# Pull the current command from the head of the command line
command = args[0]
if not command_re.match(command):
raise SystemExit("invalid command name '%s'" % command)
self.commands.append(command)
# Dig up the command class that implements this command, so we
# 1) know that it's a valid command, and 2) know which options
# it takes.
try:
cmd_class = self.get_command_class(command)
except DistutilsModuleError as msg:
raise DistutilsArgError(msg)
# Require that the command class be derived from Command -- want
# to be sure that the basic "command" interface is implemented.
if not issubclass(cmd_class, Command):
raise DistutilsClassError(
"command class %s must subclass Command" % cmd_class)
# Also make sure that the command object provides a list of its
# known options.
if not (hasattr(cmd_class, 'user_options') and
isinstance(cmd_class.user_options, list)):
msg = ("command class %s must provide "
"'user_options' attribute (a list of tuples)")
raise DistutilsClassError(msg % cmd_class)
# If the command class has a list of negative alias options,
# merge it in with the global negative aliases.
negative_opt = self.negative_opt
if hasattr(cmd_class, 'negative_opt'):
negative_opt = negative_opt.copy()
negative_opt.update(cmd_class.negative_opt)
# Check for help_options in command class. They have a different
# format (tuple of four) so we need to preprocess them here.
if (hasattr(cmd_class, 'help_options') and
isinstance(cmd_class.help_options, list)):
help_options = fix_help_options(cmd_class.help_options)
else:
help_options = []
# All commands support the global options too, just by adding
# in 'global_options'.
parser.set_option_table(self.global_options +
cmd_class.user_options +
help_options)
parser.set_negative_aliases(negative_opt)
(args, opts) = parser.getopt(args[1:])
if hasattr(opts, 'help') and opts.help:
self._show_help(parser, display_options=0, commands=[cmd_class])
return
if (hasattr(cmd_class, 'help_options') and
isinstance(cmd_class.help_options, list)):
help_option_found=0
for (help_option, short, desc, func) in cmd_class.help_options:
if hasattr(opts, parser.get_attr_name(help_option)):
help_option_found=1
if callable(func):
func()
else:
raise DistutilsClassError(
"invalid help function %r for help option '%s': "
"must be a callable object (function, etc.)"
% (func, help_option))
if help_option_found:
return
# Put the options from the command-line into their official
# holding pen, the 'command_options' dictionary.
opt_dict = self.get_option_dict(command)
for (name, value) in vars(opts).items():
opt_dict[name] = ("command line", value)
return args
| Parse the command-line options for a single command.
'parser' must be a FancyGetopt instance; 'args' must be the list
of arguments, starting with the current command (whose options
we are about to parse). Returns a new version of 'args' with
the next command at the front of the list; will be the empty
list if there are no more commands on the command line. Returns
None if the user asked for help on this command.
| 75 | 337 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _parse_command_opts(self, parser, args):
# late import because of mutual dependence between these modules
from distutils.cmd import Command
# Pull the current command from the head of the command line
command = args[0]
if not command_re.match(command):
raise SystemExit("invalid command name '%s'" % command)
self.commands.append(command)
# Dig up the command class that implements this command, so we
# 1) know that it's a valid command, and 2) know which options
# it takes.
try:
cmd_class = self.get_command_class(command)
except DistutilsModuleError as msg:
raise DistutilsArgError(msg)
# Require that the command class be derived from Command -- want
# to be sure that the basic "command" interface is implemented.
if not issubclass(cmd_class, Command):
raise DistutilsClassError(
"command class %s must subclass Command" % cmd_class)
# Also make sure that the command object provides a list of its
# known options.
if not (hasattr(cmd_class, 'user_options') and
isinstance(cmd_class.user_options, list)):
msg = ("command class %s must provide "
"'user_options' attribute (a list of tuples)")
raise DistutilsClassError(msg % cmd_class)
# If the command class has a list of negative alias options,
# merge it in with the global negative aliases.
negative_opt = self.negative_opt
if hasattr(cmd_class, 'negative_opt'):
negative_opt = negative_opt.copy()
negative_opt.update(cmd_class.negative_opt)
# Check for help_options in command class. They have a different
# format (tuple of four) so we need to preprocess them here.
if (hasattr(cmd_class, 'help_options') and
isinstance(cmd_class.help_options, list)):
help_options = fix_help_options(cmd_class.help_options)
else:
help_options = []
# All commands support the global options too, just by adding
# in 'global_options'.
parser.set_option_table(self.global_options +
cmd_class.user_options +
help_options)
parser.set_negative_aliases(negative_opt)
(args, opts) = parser.getopt(args[1:])
if hasattr(opts, 'help') and opts.help:
self._show_help(parser, display_options=0, commands=[cmd_class])
return
if (hasattr(cmd_class, 'help_options') and
isinstance(cmd_class.help_options, list)):
help_option_found=0
for (help_option, short, desc, func) in cmd_class.help_options:
if hasattr(opts, parser.get_attr_name(help_option)):
help_option_found=1
if callable(func):
func()
else:
raise DistutilsClassError(
"invalid help function %r for help option '%s': "
"must be a callable object (function, etc.)"
% (func, help_option))
if help_option_found:
return
# Put the options from the command-line into their official
# holding pen, the 'command_options' dictionary.
opt_dict = self.get_option_dict(command)
for (name, value) in vars(opts).items():
opt_dict[name] = ("command line", value)
return args
```
###Assistant : Parse the command-line options for a single command.
'parser' must be a FancyGetopt instance; 'args' must be the list
of arguments, starting with the current command (whose options
we are about to parse). Returns a new version of 'args' with
the next command at the front of the list; will be the empty
list if there are no more commands on the command line. Returns
None if the user asked for help on this command.
|
1,513 | def interval(self, confidence=None, *args, **kwds):
# This function was originally written with parameter `alpha`, but
# `alpha` is also the name of a shape parameter of two distributions.
# This block allows the function to accept both `alpha` and its
# replacement `confidence` during a deprecation period; it can be
# removed in the second release after 1.9.0.
# See description of logic in `moment` method.
has_shape_alpha = (self.shapes is not None
and "alpha" in (self.shapes.split(", ")))
got_confidence = confidence is not None
got_keyword_alpha = kwds.get("alpha", None) is not None
if not got_confidence and ((not got_keyword_alpha)
or (got_keyword_alpha and has_shape_alpha)):
message = ("interval() missing 1 required positional argument: "
"`confidence`")
raise TypeError(message)
if got_keyword_alpha and not has_shape_alpha:
if got_confidence:
# this will change to "interval got unexpected argument alpha"
message = "interval() got multiple values for first argument"
raise TypeError(message)
else:
message = ("Use of keyword argument `alpha` for method "
"`interval` is deprecated. Use first positional "
"argument or keyword argument `confidence` "
"instead.")
confidence = kwds.pop("alpha")
warnings.warn(message, DeprecationWarning, stacklevel=2)
alpha = confidence
alpha = asarray(alpha)
if np.any((alpha > 1) | (alpha < 0)):
raise ValueError("alpha must be between 0 and 1 inclusive")
q1 = (1.0-alpha)/2
q2 = (1.0+alpha)/2
a = self.ppf(q1, *args, **kwds)
b = self.ppf(q2, *args, **kwds)
return a, b
| Confidence interval with equal areas around the median.
.. deprecated:: 1.9.0
Parameter `alpha` is replaced by parameter `confidence` to avoid
name collisions with the shape parameter `alpha` of some
distributions. Parameter `alpha` will be removed in the second
release after 1.9.0.
Parameters
----------
confidence : array_like of float
Probability that an rv will be drawn from the returned range.
Each value should be in the range [0, 1].
arg1, arg2, ... : array_like
The shape parameter(s) for the distribution (see docstring of the
instance object for more information).
loc : array_like, optional
location parameter, Default is 0.
scale : array_like, optional
scale parameter, Default is 1.
Returns
-------
a, b : ndarray of float
end-points of range that contain ``100 * alpha %`` of the rv's
possible values.
| 128 | 213 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def interval(self, confidence=None, *args, **kwds):
# This function was originally written with parameter `alpha`, but
# `alpha` is also the name of a shape parameter of two distributions.
# This block allows the function to accept both `alpha` and its
# replacement `confidence` during a deprecation period; it can be
# removed in the second release after 1.9.0.
# See description of logic in `moment` method.
has_shape_alpha = (self.shapes is not None
and "alpha" in (self.shapes.split(", ")))
got_confidence = confidence is not None
got_keyword_alpha = kwds.get("alpha", None) is not None
if not got_confidence and ((not got_keyword_alpha)
or (got_keyword_alpha and has_shape_alpha)):
message = ("interval() missing 1 required positional argument: "
"`confidence`")
raise TypeError(message)
if got_keyword_alpha and not has_shape_alpha:
if got_confidence:
# this will change to "interval got unexpected argument alpha"
message = "interval() got multiple values for first argument"
raise TypeError(message)
else:
message = ("Use of keyword argument `alpha` for method "
"`interval` is deprecated. Use first positional "
"argument or keyword argument `confidence` "
"instead.")
confidence = kwds.pop("alpha")
warnings.warn(message, DeprecationWarning, stacklevel=2)
alpha = confidence
alpha = asarray(alpha)
if np.any((alpha > 1) | (alpha < 0)):
raise ValueError("alpha must be between 0 and 1 inclusive")
q1 = (1.0-alpha)/2
q2 = (1.0+alpha)/2
a = self.ppf(q1, *args, **kwds)
b = self.ppf(q2, *args, **kwds)
return a, b
```
###Assistant : Confidence interval with equal areas around the median.
.. deprecated:: 1.9.0
Parameter `alpha` is replaced by parameter `confidence` to avoid
name collisions with the shape parameter `alpha` of some
distributions. Parameter `alpha` will be removed in the second
release after 1.9.0.
Parameters
----------
confidence : array_like of float
Probability that an rv will be drawn from the returned range.
Each value should be in the range [0, 1].
arg1, arg2, ... : array_like
The shape parameter(s) for the distribution (see docstring of the
instance object for more information).
loc : array_like, optional
location parameter, Default is 0.
scale : array_like, optional
scale parameter, Default is 1.
Returns
-------
a, b : ndarray of float
end-points of range that contain ``100 * alpha %`` of the rv's
possible values.
|
1,514 | def __call__(self) -> bool:
for meta in tqdm(self._face_alignments,
desc="Updating Alignments File from PNG Header",
leave=False):
src = meta["source"]
alignment = meta["alignments"]
if not any(alignment.get(key, {}) for key in self._updatable_keys):
continue
faces = self._alignments.get_faces_in_frame(src["source_filename"])
if len(faces) < src["face_index"] + 1: # list index out of range
logger.debug("Skipped face '%s'. Index does not exist in alignments file",
src["original_filename"])
continue
face = faces[src["face_index"]]
self._check_and_update(alignment, face)
retval = False
if self._counts:
retval = True
logger.info("Updated alignments file from PNG Data: %s", self._counts)
return retval
| Parse through the face data updating any entries in the alignments file.
Returns
-------
bool
``True`` if any alignment information was updated otherwise ``False``
| 24 | 80 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def __call__(self) -> bool:
for meta in tqdm(self._face_alignments,
desc="Updating Alignments File from PNG Header",
leave=False):
src = meta["source"]
alignment = meta["alignments"]
if not any(alignment.get(key, {}) for key in self._updatable_keys):
continue
faces = self._alignments.get_faces_in_frame(src["source_filename"])
if len(faces) < src["face_index"] + 1: # list index out of range
logger.debug("Skipped face '%s'. Index does not exist in alignments file",
src["original_filename"])
continue
face = faces[src["face_index"]]
self._check_and_update(alignment, face)
retval = False
if self._counts:
retval = True
logger.info("Updated alignments file from PNG Data: %s", self._counts)
return retval
```
###Assistant : Parse through the face data updating any entries in the alignments file.
Returns
-------
bool
``True`` if any alignment information was updated otherwise ``False``
|
1,515 | def test_dynamic_path(self):
doc = Document.objects.create(
title="does not matter",
created=timezone.make_aware(datetime.datetime(2020, 6, 25, 7, 36, 51, 153)),
mime_type="application/pdf",
pk=2,
checksum="2",
storage_path=StoragePath.objects.create(path="TestFolder/{created}"),
)
self.assertEqual(generate_filename(doc), "TestFolder/2020-06-25.pdf")
|
GIVEN:
- A document with a defined storage path
WHEN:
- the filename is generated for the document
THEN:
- the generated filename uses the defined storage path for the document
| 31 | 22 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_dynamic_path(self):
doc = Document.objects.create(
title="does not matter",
created=timezone.make_aware(datetime.datetime(2020, 6, 25, 7, 36, 51, 153)),
mime_type="application/pdf",
pk=2,
checksum="2",
storage_path=StoragePath.objects.create(path="TestFolder/{created}"),
)
self.assertEqual(generate_filename(doc), "TestFolder/2020-06-25.pdf")
```
###Assistant :
GIVEN:
- A document with a defined storage path
WHEN:
- the filename is generated for the document
THEN:
- the generated filename uses the defined storage path for the document
|
1,516 | async def follower_loop(self):
try:
await self._connect_to_leaders()
except Exception as e:
logger.error("Exception occurred in follower loop: ")
logger.exception(e)
|
Main follower coroutine
This starts all of the leader connection coros
| 11 | 17 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
async def follower_loop(self):
try:
await self._connect_to_leaders()
except Exception as e:
logger.error("Exception occurred in follower loop: ")
logger.exception(e)
```
###Assistant :
Main follower coroutine
This starts all of the leader connection coros
|
1,517 | def test_launcher_ensures_stdio(self):
from kitty.constants import kitty_exe
import subprocess
exe = kitty_exe()
cp = subprocess.run([exe, '+runpy', ])
self.assertEqual(cp.returncode, 0)
| \
import os, sys
if sys.stdin:
os.close(sys.stdin.fileno())
if sys.stdout:
os.close(sys.stdout.fileno())
if sys.stderr:
os.close(sys.stderr.fileno())
os.execlp('kitty', 'kitty', '+runpy', 'import sys; raise SystemExit(1 if sys.stdout is None or sys.stdin is None or sys.stderr is None else 0)')
| 34 | 18 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_launcher_ensures_stdio(self):
from kitty.constants import kitty_exe
import subprocess
exe = kitty_exe()
cp = subprocess.run([exe, '+runpy', ])
self.assertEqual(cp.returncode, 0)
```
###Assistant : \
import os, sys
if sys.stdin:
os.close(sys.stdin.fileno())
if sys.stdout:
os.close(sys.stdout.fileno())
if sys.stderr:
os.close(sys.stderr.fileno())
os.execlp('kitty', 'kitty', '+runpy', 'import sys; raise SystemExit(1 if sys.stdout is None or sys.stdin is None or sys.stderr is None else 0)')
|
1,518 | def test_interface_label_count_mismatch(self):
bad_interface_data = {
'device': self.device.pk,
'name': 'eth[0-9]',
'label': 'Interface[0-1]',
'type': InterfaceTypeChoices.TYPE_1GE_GBIC,
}
form = InterfaceCreateForm(bad_interface_data)
self.assertFalse(form.is_valid())
self.assertIn('label', form.errors)
|
Check that attempting to generate a differing number of names and labels results in a validation error.
| 17 | 20 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_interface_label_count_mismatch(self):
bad_interface_data = {
'device': self.device.pk,
'name': 'eth[0-9]',
'label': 'Interface[0-1]',
'type': InterfaceTypeChoices.TYPE_1GE_GBIC,
}
form = InterfaceCreateForm(bad_interface_data)
self.assertFalse(form.is_valid())
self.assertIn('label', form.errors)
```
###Assistant :
Check that attempting to generate a differing number of names and labels results in a validation error.
|
1,519 | def power_transform(X, method="yeo-johnson", *, standardize=True, copy=True):
pt = PowerTransformer(method=method, standardize=standardize, copy=copy)
return pt.fit_transform(X)
| Parametric, monotonic transformation to make data more Gaussian-like.
Power transforms are a family of parametric, monotonic transformations
that are applied to make data more Gaussian-like. This is useful for
modeling issues related to heteroscedasticity (non-constant variance),
or other situations where normality is desired.
Currently, power_transform supports the Box-Cox transform and the
Yeo-Johnson transform. The optimal parameter for stabilizing variance and
minimizing skewness is estimated through maximum likelihood.
Box-Cox requires input data to be strictly positive, while Yeo-Johnson
supports both positive or negative data.
By default, zero-mean, unit-variance normalization is applied to the
transformed data.
Read more in the :ref:`User Guide <preprocessing_transformer>`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data to be transformed using a power transformation.
method : {'yeo-johnson', 'box-cox'}, default='yeo-johnson'
The power transform method. Available methods are:
- 'yeo-johnson' [1]_, works with positive and negative values
- 'box-cox' [2]_, only works with strictly positive values
.. versionchanged:: 0.23
The default value of the `method` parameter changed from
'box-cox' to 'yeo-johnson' in 0.23.
standardize : bool, default=True
Set to True to apply zero-mean, unit-variance normalization to the
transformed output.
copy : bool, default=True
Set to False to perform inplace computation during transformation.
Returns
-------
X_trans : ndarray of shape (n_samples, n_features)
The transformed data.
See Also
--------
PowerTransformer : Equivalent transformation with the
Transformer API (e.g. as part of a preprocessing
:class:`~sklearn.pipeline.Pipeline`).
quantile_transform : Maps data to a standard normal distribution with
the parameter `output_distribution='normal'`.
Notes
-----
NaNs are treated as missing values: disregarded in ``fit``, and maintained
in ``transform``.
For a comparison of the different scalers, transformers, and normalizers,
see :ref:`examples/preprocessing/plot_all_scaling.py
<sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.
References
----------
.. [1] I.K. Yeo and R.A. Johnson, "A new family of power transformations to
improve normality or symmetry." Biometrika, 87(4), pp.954-959,
(2000).
.. [2] G.E.P. Box and D.R. Cox, "An Analysis of Transformations", Journal
of the Royal Statistical Society B, 26, 211-252 (1964).
Examples
--------
>>> import numpy as np
>>> from sklearn.preprocessing import power_transform
>>> data = [[1, 2], [3, 2], [4, 5]]
>>> print(power_transform(data, method='box-cox'))
[[-1.332... -0.707...]
[ 0.256... -0.707...]
[ 1.076... 1.414...]]
.. warning:: Risk of data leak.
Do not use :func:`~sklearn.preprocessing.power_transform` unless you
know what you are doing. A common mistake is to apply it to the entire
data *before* splitting into training and test sets. This will bias the
model evaluation because information would have leaked from the test
set to the training set.
In general, we recommend using
:class:`~sklearn.preprocessing.PowerTransformer` within a
:ref:`Pipeline <pipeline>` in order to prevent most risks of data
leaking, e.g.: `pipe = make_pipeline(PowerTransformer(),
LogisticRegression())`.
| 421 | 13 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def power_transform(X, method="yeo-johnson", *, standardize=True, copy=True):
pt = PowerTransformer(method=method, standardize=standardize, copy=copy)
return pt.fit_transform(X)
```
###Assistant : Parametric, monotonic transformation to make data more Gaussian-like.
Power transforms are a family of parametric, monotonic transformations
that are applied to make data more Gaussian-like. This is useful for
modeling issues related to heteroscedasticity (non-constant variance),
or other situations where normality is desired.
Currently, power_transform supports the Box-Cox transform and the
Yeo-Johnson transform. The optimal parameter for stabilizing variance and
minimizing skewness is estimated through maximum likelihood.
Box-Cox requires input data to be strictly positive, while Yeo-Johnson
supports both positive or negative data.
By default, zero-mean, unit-variance normalization is applied to the
transformed data.
Read more in the :ref:`User Guide <preprocessing_transformer>`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data to be transformed using a power transformation.
method : {'yeo-johnson', 'box-cox'}, default='yeo-johnson'
The power transform method. Available methods are:
- 'yeo-johnson' [1]_, works with positive and negative values
- 'box-cox' [2]_, only works with strictly positive values
.. versionchanged:: 0.23
The default value of the `method` parameter changed from
'box-cox' to 'yeo-johnson' in 0.23.
standardize : bool, default=True
Set to True to apply zero-mean, unit-variance normalization to the
transformed output.
copy : bool, default=True
Set to False to perform inplace computation during transformation.
Returns
-------
X_trans : ndarray of shape (n_samples, n_features)
The transformed data.
See Also
--------
PowerTransformer : Equivalent transformation with the
Transformer API (e.g. as part of a preprocessing
:class:`~sklearn.pipeline.Pipeline`).
quantile_transform : Maps data to a standard normal distribution with
the parameter `output_distribution='normal'`.
Notes
-----
NaNs are treated as missing values: disregarded in ``fit``, and maintained
in ``transform``.
For a comparison of the different scalers, transformers, and normalizers,
see :ref:`examples/preprocessing/plot_all_scaling.py
<sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.
References
----------
.. [1] I.K. Yeo and R.A. Johnson, "A new family of power transformations to
improve normality or symmetry." Biometrika, 87(4), pp.954-959,
(2000).
.. [2] G.E.P. Box and D.R. Cox, "An Analysis of Transformations", Journal
of the Royal Statistical Society B, 26, 211-252 (1964).
Examples
--------
>>> import numpy as np
>>> from sklearn.preprocessing import power_transform
>>> data = [[1, 2], [3, 2], [4, 5]]
>>> print(power_transform(data, method='box-cox'))
[[-1.332... -0.707...]
[ 0.256... -0.707...]
[ 1.076... 1.414...]]
.. warning:: Risk of data leak.
Do not use :func:`~sklearn.preprocessing.power_transform` unless you
know what you are doing. A common mistake is to apply it to the entire
data *before* splitting into training and test sets. This will bias the
model evaluation because information would have leaked from the test
set to the training set.
In general, we recommend using
:class:`~sklearn.preprocessing.PowerTransformer` within a
:ref:`Pipeline <pipeline>` in order to prevent most risks of data
leaking, e.g.: `pipe = make_pipeline(PowerTransformer(),
LogisticRegression())`.
|
1,520 | def desargues_graph(create_using=None):
G = LCF_graph(20, [5, -5, 9, -9], 5, create_using)
G.name = "Desargues Graph"
return G
|
Returns the Desargues Graph
The Desargues Graph is a non-planar, distance-transitive cubic graph
with 20 nodes and 30 edges [1]_.
It is a symmetric graph. It can be represented in LCF notation
as [5,-5,9,-9]^5 [2]_.
Parameters
----------
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
G : networkx Graph
Desargues Graph with 20 nodes and 30 edges
References
----------
.. [1] https://en.wikipedia.org/wiki/Desargues_graph
.. [2] https://mathworld.wolfram.com/DesarguesGraph.html
| 77 | 17 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def desargues_graph(create_using=None):
G = LCF_graph(20, [5, -5, 9, -9], 5, create_using)
G.name = "Desargues Graph"
return G
```
###Assistant :
Returns the Desargues Graph
The Desargues Graph is a non-planar, distance-transitive cubic graph
with 20 nodes and 30 edges [1]_.
It is a symmetric graph. It can be represented in LCF notation
as [5,-5,9,-9]^5 [2]_.
Parameters
----------
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
G : networkx Graph
Desargues Graph with 20 nodes and 30 edges
References
----------
.. [1] https://en.wikipedia.org/wiki/Desargues_graph
.. [2] https://mathworld.wolfram.com/DesarguesGraph.html
|
1,521 | def get_output_feature_jsonschema():
output_feature_types = sorted(list(output_type_registry.keys()))
return {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {"type": "string"},
"type": {"type": "string", "enum": output_feature_types},
"column": {"type": "string"},
},
"additionalProperties": True,
"allOf": get_output_feature_conds(),
"required": ["name", "type"],
},
}
| This function returns a JSON schema structured to only requires a `type` key and then conditionally applies
a corresponding output feature's field constraints.
Returns: JSON Schema
| 26 | 36 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_output_feature_jsonschema():
output_feature_types = sorted(list(output_type_registry.keys()))
return {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {"type": "string"},
"type": {"type": "string", "enum": output_feature_types},
"column": {"type": "string"},
},
"additionalProperties": True,
"allOf": get_output_feature_conds(),
"required": ["name", "type"],
},
}
```
###Assistant : This function returns a JSON schema structured to only requires a `type` key and then conditionally applies
a corresponding output feature's field constraints.
Returns: JSON Schema
|
1,522 | def greet(str):
return str
with gr.Blocks() as demo:
with gr.Row():
text1 = gr.component("textarea")
text2 = gr.TextArea()
text3 = gr.templates.TextArea()
text1.change(greet, text1, text2)
text2.change(greet, text2, text3)
text3.change(greet, text3, text1)
demo.launch()
|
You can make use of str shortcuts you use in Interface within Blocks as well.
Interface shortcut example:
Interface(greet, "textarea", "textarea")
You can use
1. gr.component()
2. gr.templates.Template()
3. gr.Template()
All the templates are listed in gradio/templates.py
| 37 | 29 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def greet(str):
return str
with gr.Blocks() as demo:
with gr.Row():
text1 = gr.component("textarea")
text2 = gr.TextArea()
text3 = gr.templates.TextArea()
text1.change(greet, text1, text2)
text2.change(greet, text2, text3)
text3.change(greet, text3, text1)
demo.launch()
```
###Assistant :
You can make use of str shortcuts you use in Interface within Blocks as well.
Interface shortcut example:
Interface(greet, "textarea", "textarea")
You can use
1. gr.component()
2. gr.templates.Template()
3. gr.Template()
All the templates are listed in gradio/templates.py
|
1,523 | def _impute_values(self, features):
if self.verbosity > 1:
print("Imputing missing values in feature set")
if self._fitted_imputer is None:
self._fitted_imputer = SimpleImputer(strategy="median")
self._fitted_imputer.fit(features)
return self._fitted_imputer.transform(features)
| Impute missing values in a feature set.
Parameters
----------
features: array-like {n_samples, n_features}
A feature matrix
Returns
-------
array-like {n_samples, n_features}
| 21 | 23 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _impute_values(self, features):
if self.verbosity > 1:
print("Imputing missing values in feature set")
if self._fitted_imputer is None:
self._fitted_imputer = SimpleImputer(strategy="median")
self._fitted_imputer.fit(features)
return self._fitted_imputer.transform(features)
```
###Assistant : Impute missing values in a feature set.
Parameters
----------
features: array-like {n_samples, n_features}
A feature matrix
Returns
-------
array-like {n_samples, n_features}
|
1,524 | def get_current_site(request):
# Import is inside the function because its point is to avoid importing the
# Site models when django.contrib.sites isn't installed.
if apps.is_installed("django.contrib.sites"):
from .models import Site
return Site.objects.get_current(request)
else:
return RequestSite(request)
|
Check if contrib.sites is installed and return either the current
``Site`` object or a ``RequestSite`` object based on the request.
| 20 | 34 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_current_site(request):
# Import is inside the function because its point is to avoid importing the
# Site models when django.contrib.sites isn't installed.
if apps.is_installed("django.contrib.sites"):
from .models import Site
return Site.objects.get_current(request)
else:
return RequestSite(request)
```
###Assistant :
Check if contrib.sites is installed and return either the current
``Site`` object or a ``RequestSite`` object based on the request.
|
1,525 | def get_scripts(use_names=False):
scripts = OrderedDict()
# Iterate through all modules within the scripts path. These are the user-created files in which reports are
# defined.
for importer, module_name, _ in pkgutil.iter_modules([settings.SCRIPTS_ROOT]):
# Remove cached module to ensure consistency with filesystem
if module_name in sys.modules:
del sys.modules[module_name]
module = importer.find_module(module_name).load_module(module_name)
if use_names and hasattr(module, 'name'):
module_name = module.name
module_scripts = OrderedDict()
script_order = getattr(module, "script_order", ())
ordered_scripts = [cls for cls in script_order if is_script(cls)]
unordered_scripts = [cls for _, cls in inspect.getmembers(module, is_script) if cls not in script_order]
for cls in [*ordered_scripts, *unordered_scripts]:
module_scripts[cls.__name__] = cls
if module_scripts:
scripts[module_name] = module_scripts
return scripts
|
Return a dict of dicts mapping all scripts to their modules. Set use_names to True to use each module's human-
defined name in place of the actual module name.
| 29 | 103 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_scripts(use_names=False):
scripts = OrderedDict()
# Iterate through all modules within the scripts path. These are the user-created files in which reports are
# defined.
for importer, module_name, _ in pkgutil.iter_modules([settings.SCRIPTS_ROOT]):
# Remove cached module to ensure consistency with filesystem
if module_name in sys.modules:
del sys.modules[module_name]
module = importer.find_module(module_name).load_module(module_name)
if use_names and hasattr(module, 'name'):
module_name = module.name
module_scripts = OrderedDict()
script_order = getattr(module, "script_order", ())
ordered_scripts = [cls for cls in script_order if is_script(cls)]
unordered_scripts = [cls for _, cls in inspect.getmembers(module, is_script) if cls not in script_order]
for cls in [*ordered_scripts, *unordered_scripts]:
module_scripts[cls.__name__] = cls
if module_scripts:
scripts[module_name] = module_scripts
return scripts
```
###Assistant :
Return a dict of dicts mapping all scripts to their modules. Set use_names to True to use each module's human-
defined name in place of the actual module name.
|
1,526 | def render(self, template_name, extra_context=None):
if extra_context is None:
extra_context = {}
elif not isinstance(extra_context, dict):
raise TypeError("extra_context must be a dictionary")
return get_template(template_name).render({**self.context, **extra_context})
|
Convenience method for rendering the specified Django template using the default context data. An additional
context dictionary may be passed as `extra_context`.
| 22 | 24 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def render(self, template_name, extra_context=None):
if extra_context is None:
extra_context = {}
elif not isinstance(extra_context, dict):
raise TypeError("extra_context must be a dictionary")
return get_template(template_name).render({**self.context, **extra_context})
```
###Assistant :
Convenience method for rendering the specified Django template using the default context data. An additional
context dictionary may be passed as `extra_context`.
|
1,527 | def preprocess_input(x, data_format=None):
return x
@keras_export("keras.applications.mobilenet_v3.decode_predictions") | A placeholder method for backward compatibility.
The preprocessing logic has been included in the mobilenet_v3 model
implementation. Users are no longer required to call this method to
normalize the input data. This method does nothing and only kept as a
placeholder to align the API surface between old and new version of model.
Args:
x: A floating point `numpy.array` or a `tf.Tensor`.
data_format: Optional data format of the image tensor/array. Defaults to
None, in which case the global setting
`tf.keras.backend.image_data_format()` is used (unless you changed it,
it defaults to "channels_last").{mode}
Returns:
Unchanged `numpy.array` or `tf.Tensor`.
| 95 | 6 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def preprocess_input(x, data_format=None):
return x
@keras_export("keras.applications.mobilenet_v3.decode_predictions")
```
###Assistant : A placeholder method for backward compatibility.
The preprocessing logic has been included in the mobilenet_v3 model
implementation. Users are no longer required to call this method to
normalize the input data. This method does nothing and only kept as a
placeholder to align the API surface between old and new version of model.
Args:
x: A floating point `numpy.array` or a `tf.Tensor`.
data_format: Optional data format of the image tensor/array. Defaults to
None, in which case the global setting
`tf.keras.backend.image_data_format()` is used (unless you changed it,
it defaults to "channels_last").{mode}
Returns:
Unchanged `numpy.array` or `tf.Tensor`.
|
1,528 | def message_level_tag(message):
return MESSAGE_TAGS.get(message.level)
@register.simple_tag |
Return the tag for this message's level as defined in
django.contrib.messages.constants.DEFAULT_TAGS, ignoring the project-level
MESSAGE_TAGS setting (which end-users might customise).
| 20 | 5 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def message_level_tag(message):
return MESSAGE_TAGS.get(message.level)
@register.simple_tag
```
###Assistant :
Return the tag for this message's level as defined in
django.contrib.messages.constants.DEFAULT_TAGS, ignoring the project-level
MESSAGE_TAGS setting (which end-users might customise).
|
1,529 | def _check_reg_targets(y_true, y_pred, multioutput, dtype="numeric"):
check_consistent_length(y_true, y_pred)
y_true = check_array(y_true, ensure_2d=False, dtype=dtype)
y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype)
if y_true.ndim == 1:
y_true = y_true.reshape((-1, 1))
if y_pred.ndim == 1:
y_pred = y_pred.reshape((-1, 1))
if y_true.shape[1] != y_pred.shape[1]:
raise ValueError(
"y_true and y_pred have different number of output ({0}!={1})".format(
y_true.shape[1], y_pred.shape[1]
)
)
n_outputs = y_true.shape[1]
allowed_multioutput_str = ("raw_values", "uniform_average", "variance_weighted")
if isinstance(multioutput, str):
if multioutput not in allowed_multioutput_str:
raise ValueError(
"Allowed 'multioutput' string values are {}. "
"You provided multioutput={!r}".format(
allowed_multioutput_str, multioutput
)
)
elif multioutput is not None:
multioutput = check_array(multioutput, ensure_2d=False)
if n_outputs == 1:
raise ValueError("Custom weights are useful only in multi-output cases.")
elif n_outputs != len(multioutput):
raise ValueError(
"There must be equally many custom weights (%d) as outputs (%d)."
% (len(multioutput), n_outputs)
)
y_type = "continuous" if n_outputs == 1 else "continuous-multioutput"
return y_type, y_true, y_pred, multioutput
| Check that y_true and y_pred belong to the same regression task.
Parameters
----------
y_true : array-like
y_pred : array-like
multioutput : array-like or string in ['raw_values', uniform_average',
'variance_weighted'] or None
None is accepted due to backward compatibility of r2_score().
dtype : str or list, default="numeric"
the dtype argument passed to check_array.
Returns
-------
type_true : one of {'continuous', continuous-multioutput'}
The type of the true target data, as output by
'utils.multiclass.type_of_target'.
y_true : array-like of shape (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred : array-like of shape (n_samples, n_outputs)
Estimated target values.
multioutput : array-like of shape (n_outputs) or string in ['raw_values',
uniform_average', 'variance_weighted'] or None
Custom output weights if ``multioutput`` is array-like or
just the corresponding argument if ``multioutput`` is a
correct keyword.
| 124 | 141 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _check_reg_targets(y_true, y_pred, multioutput, dtype="numeric"):
check_consistent_length(y_true, y_pred)
y_true = check_array(y_true, ensure_2d=False, dtype=dtype)
y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype)
if y_true.ndim == 1:
y_true = y_true.reshape((-1, 1))
if y_pred.ndim == 1:
y_pred = y_pred.reshape((-1, 1))
if y_true.shape[1] != y_pred.shape[1]:
raise ValueError(
"y_true and y_pred have different number of output ({0}!={1})".format(
y_true.shape[1], y_pred.shape[1]
)
)
n_outputs = y_true.shape[1]
allowed_multioutput_str = ("raw_values", "uniform_average", "variance_weighted")
if isinstance(multioutput, str):
if multioutput not in allowed_multioutput_str:
raise ValueError(
"Allowed 'multioutput' string values are {}. "
"You provided multioutput={!r}".format(
allowed_multioutput_str, multioutput
)
)
elif multioutput is not None:
multioutput = check_array(multioutput, ensure_2d=False)
if n_outputs == 1:
raise ValueError("Custom weights are useful only in multi-output cases.")
elif n_outputs != len(multioutput):
raise ValueError(
"There must be equally many custom weights (%d) as outputs (%d)."
% (len(multioutput), n_outputs)
)
y_type = "continuous" if n_outputs == 1 else "continuous-multioutput"
return y_type, y_true, y_pred, multioutput
```
###Assistant : Check that y_true and y_pred belong to the same regression task.
Parameters
----------
y_true : array-like
y_pred : array-like
multioutput : array-like or string in ['raw_values', uniform_average',
'variance_weighted'] or None
None is accepted due to backward compatibility of r2_score().
dtype : str or list, default="numeric"
the dtype argument passed to check_array.
Returns
-------
type_true : one of {'continuous', continuous-multioutput'}
The type of the true target data, as output by
'utils.multiclass.type_of_target'.
y_true : array-like of shape (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred : array-like of shape (n_samples, n_outputs)
Estimated target values.
multioutput : array-like of shape (n_outputs) or string in ['raw_values',
uniform_average', 'variance_weighted'] or None
Custom output weights if ``multioutput`` is array-like or
just the corresponding argument if ``multioutput`` is a
correct keyword.
|
1,530 | def bind(self, *args, **kwargs) -> Union[ClassNode, FunctionNode]:
copied_self = copy(self)
copied_self._func_or_class = "dummpy.module"
schema_shell = deployment_to_schema(copied_self)
if inspect.isfunction(self._func_or_class):
return FunctionNode(
self._func_or_class,
args, # Used to bind and resolve DAG only, can take user input
kwargs, # Used to bind and resolve DAG only, can take user input
self._ray_actor_options or dict(),
other_args_to_resolve={
"deployment_schema": schema_shell,
"is_from_serve_deployment": True,
},
)
else:
return ClassNode(
self._func_or_class,
args,
kwargs,
cls_options=self._ray_actor_options or dict(),
other_args_to_resolve={
"deployment_schema": schema_shell,
"is_from_serve_deployment": True,
},
)
| Bind the provided arguments and return a class or function node.
The returned bound deployment can be deployed or bound to other
deployments to create a deployment graph.
| 28 | 73 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def bind(self, *args, **kwargs) -> Union[ClassNode, FunctionNode]:
copied_self = copy(self)
copied_self._func_or_class = "dummpy.module"
schema_shell = deployment_to_schema(copied_self)
if inspect.isfunction(self._func_or_class):
return FunctionNode(
self._func_or_class,
args, # Used to bind and resolve DAG only, can take user input
kwargs, # Used to bind and resolve DAG only, can take user input
self._ray_actor_options or dict(),
other_args_to_resolve={
"deployment_schema": schema_shell,
"is_from_serve_deployment": True,
},
)
else:
return ClassNode(
self._func_or_class,
args,
kwargs,
cls_options=self._ray_actor_options or dict(),
other_args_to_resolve={
"deployment_schema": schema_shell,
"is_from_serve_deployment": True,
},
)
```
###Assistant : Bind the provided arguments and return a class or function node.
The returned bound deployment can be deployed or bound to other
deployments to create a deployment graph.
|
1,531 | def _obtain_mask(cls, detected_face, mask_type):
mask = detected_face.mask.get(mask_type)
if not mask:
return None
if mask.stored_centering != "face":
face = AlignedFace(detected_face.landmarks_xy)
mask.set_sub_crop(face.pose.offset[mask.stored_centering],
face.pose.offset["face"],
centering="face")
return mask.mask.squeeze()
| Obtain the mask for the correct "face" centering that is used in the thumbnail display.
Parameters
-----------
detected_face: :class:`lib.align.DetectedFace`
The Detected Face object to obtain the mask for
mask_type: str
The type of mask to obtain
Returns
-------
:class:`numpy.ndarray` or ``None``
The single channel mask of requested mask type, if it exists, otherwise ``None``
| 54 | 24 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _obtain_mask(cls, detected_face, mask_type):
mask = detected_face.mask.get(mask_type)
if not mask:
return None
if mask.stored_centering != "face":
face = AlignedFace(detected_face.landmarks_xy)
mask.set_sub_crop(face.pose.offset[mask.stored_centering],
face.pose.offset["face"],
centering="face")
return mask.mask.squeeze()
```
###Assistant : Obtain the mask for the correct "face" centering that is used in the thumbnail display.
Parameters
-----------
detected_face: :class:`lib.align.DetectedFace`
The Detected Face object to obtain the mask for
mask_type: str
The type of mask to obtain
Returns
-------
:class:`numpy.ndarray` or ``None``
The single channel mask of requested mask type, if it exists, otherwise ``None``
|
1,532 | def forward(self, input, mask=None):
forward_input, backward_input = paddle.chunk(input, chunks=2, axis=2)
# elementwise-sum forward_x and backward_x
# Shape: (batch_size, max_seq_len, hidden_size)
h = paddle.add_n([forward_input, backward_input])
# Shape: (batch_size, hidden_size, 1)
att_weight = self.att_weight.tile(
repeat_times=(paddle.shape(h)[0], 1, 1))
# Shape: (batch_size, max_seq_len, 1)
att_score = paddle.bmm(paddle.tanh(h), att_weight)
if mask is not None:
# mask, remove the effect of 'PAD'
mask = paddle.cast(mask, dtype='float32')
mask = mask.unsqueeze(axis=-1)
inf_tensor = paddle.full(
shape=mask.shape, dtype='float32', fill_value=-INF)
att_score = paddle.multiply(att_score, mask) + paddle.multiply(
inf_tensor, (1 - mask))
# Shape: (batch_size, max_seq_len, 1)
att_weight = F.softmax(att_score, axis=1)
# Shape: (batch_size, lstm_hidden_size)
reps = paddle.bmm(h.transpose(perm=(0, 2, 1)),
att_weight).squeeze(axis=-1)
reps = paddle.tanh(reps)
return reps, att_weight
|
Args:
input (paddle.Tensor) of shape (batch, seq_len, input_size): Tensor containing the features of the input sequence.
mask (paddle.Tensor) of shape (batch, seq_len) :
Tensor is a bool tensor, whose each element identifies whether the input word id is pad token or not.
Defaults to `None`.
| 45 | 104 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def forward(self, input, mask=None):
forward_input, backward_input = paddle.chunk(input, chunks=2, axis=2)
# elementwise-sum forward_x and backward_x
# Shape: (batch_size, max_seq_len, hidden_size)
h = paddle.add_n([forward_input, backward_input])
# Shape: (batch_size, hidden_size, 1)
att_weight = self.att_weight.tile(
repeat_times=(paddle.shape(h)[0], 1, 1))
# Shape: (batch_size, max_seq_len, 1)
att_score = paddle.bmm(paddle.tanh(h), att_weight)
if mask is not None:
# mask, remove the effect of 'PAD'
mask = paddle.cast(mask, dtype='float32')
mask = mask.unsqueeze(axis=-1)
inf_tensor = paddle.full(
shape=mask.shape, dtype='float32', fill_value=-INF)
att_score = paddle.multiply(att_score, mask) + paddle.multiply(
inf_tensor, (1 - mask))
# Shape: (batch_size, max_seq_len, 1)
att_weight = F.softmax(att_score, axis=1)
# Shape: (batch_size, lstm_hidden_size)
reps = paddle.bmm(h.transpose(perm=(0, 2, 1)),
att_weight).squeeze(axis=-1)
reps = paddle.tanh(reps)
return reps, att_weight
```
###Assistant :
Args:
input (paddle.Tensor) of shape (batch, seq_len, input_size): Tensor containing the features of the input sequence.
mask (paddle.Tensor) of shape (batch, seq_len) :
Tensor is a bool tensor, whose each element identifies whether the input word id is pad token or not.
Defaults to `None`.
|
1,533 | def simple_test(self, feats, img_metas, **kwargs):
all_cls_scores, all_mask_preds = self(feats, img_metas)
mask_cls_results = all_cls_scores[-1]
mask_pred_results = all_mask_preds[-1]
# upsample masks
img_shape = img_metas[0]['batch_input_shape']
mask_pred_results = F.interpolate(
mask_pred_results,
size=(img_shape[0], img_shape[1]),
mode='bilinear',
align_corners=False)
return mask_cls_results, mask_pred_results
| Test without augmentaton.
Args:
feats (list[Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
img_metas (list[dict]): List of image information.
Returns:
tuple: A tuple contains two tensors.
- mask_cls_results (Tensor): Mask classification logits,\
shape (batch_size, num_queries, cls_out_channels).
Note `cls_out_channels` should includes background.
- mask_pred_results (Tensor): Mask logits, shape \
(batch_size, num_queries, h, w).
| 55 | 33 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def simple_test(self, feats, img_metas, **kwargs):
all_cls_scores, all_mask_preds = self(feats, img_metas)
mask_cls_results = all_cls_scores[-1]
mask_pred_results = all_mask_preds[-1]
# upsample masks
img_shape = img_metas[0]['batch_input_shape']
mask_pred_results = F.interpolate(
mask_pred_results,
size=(img_shape[0], img_shape[1]),
mode='bilinear',
align_corners=False)
return mask_cls_results, mask_pred_results
```
###Assistant : Test without augmentaton.
Args:
feats (list[Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
img_metas (list[dict]): List of image information.
Returns:
tuple: A tuple contains two tensors.
- mask_cls_results (Tensor): Mask classification logits,\
shape (batch_size, num_queries, cls_out_channels).
Note `cls_out_channels` should includes background.
- mask_pred_results (Tensor): Mask logits, shape \
(batch_size, num_queries, h, w).
|
1,534 | def _format_list(self, extracted_list):
Colors = self.Colors
list = []
for ind, (filename, lineno, name, line) in enumerate(extracted_list):
normalCol, nameCol, fileCol, lineCol = (
# Emphasize the last entry
(Colors.normalEm, Colors.nameEm, Colors.filenameEm, Colors.line)
if ind == len(extracted_list) - 1
else (Colors.Normal, Colors.name, Colors.filename, "")
)
fns = _format_filename(filename, fileCol, normalCol, lineno=lineno)
item = f"{normalCol} {fns}"
if name != "<module>":
item += f" in {nameCol}{name}{normalCol}\n"
else:
item += "\n"
if line:
item += f"{lineCol} {line.strip()}{normalCol}\n"
list.append(item)
return list
| Format a list of traceback entry tuples for printing.
Given a list of tuples as returned by extract_tb() or
extract_stack(), return a list of strings ready for printing.
Each string in the resulting list corresponds to the item with the
same index in the argument list. Each string ends in a newline;
the strings may contain internal newlines as well, for those items
whose source text line is not None.
Lifted almost verbatim from traceback.py
| 75 | 76 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _format_list(self, extracted_list):
Colors = self.Colors
list = []
for ind, (filename, lineno, name, line) in enumerate(extracted_list):
normalCol, nameCol, fileCol, lineCol = (
# Emphasize the last entry
(Colors.normalEm, Colors.nameEm, Colors.filenameEm, Colors.line)
if ind == len(extracted_list) - 1
else (Colors.Normal, Colors.name, Colors.filename, "")
)
fns = _format_filename(filename, fileCol, normalCol, lineno=lineno)
item = f"{normalCol} {fns}"
if name != "<module>":
item += f" in {nameCol}{name}{normalCol}\n"
else:
item += "\n"
if line:
item += f"{lineCol} {line.strip()}{normalCol}\n"
list.append(item)
return list
```
###Assistant : Format a list of traceback entry tuples for printing.
Given a list of tuples as returned by extract_tb() or
extract_stack(), return a list of strings ready for printing.
Each string in the resulting list corresponds to the item with the
same index in the argument list. Each string ends in a newline;
the strings may contain internal newlines as well, for those items
whose source text line is not None.
Lifted almost verbatim from traceback.py
|
1,535 | def euler_equations(L, funcs=(), vars=()):
r
funcs = tuple(funcs) if iterable(funcs) else (funcs,)
if not funcs:
funcs = tuple(L.atoms(Function))
else:
for f in funcs:
if not isinstance(f, Function):
raise TypeError('Function expected, got: %s' % f)
vars = tuple(vars) if iterable(vars) else (vars,)
if not vars:
vars = funcs[0].args
else:
vars = tuple(sympify(var) for var in vars)
if not all(isinstance(v, Symbol) for v in vars):
raise TypeError('Variables are not symbols, got %s' % vars)
for f in funcs:
if not vars == f.args:
raise ValueError("Variables %s do not match args: %s" % (vars, f))
order = max([len(d.variables) for d in L.atoms(Derivative)
if d.expr in funcs] + [0])
eqns = []
for f in funcs:
eq = diff(L, f)
for i in range(1, order + 1):
for p in combinations_with_replacement(vars, i):
eq = eq + S.NegativeOne**i*diff(L, diff(f, *p), *p)
new_eq = Eq(eq, 0)
if isinstance(new_eq, Eq):
eqns.append(new_eq)
return eqns
|
Find the Euler-Lagrange equations [1]_ for a given Lagrangian.
Parameters
==========
L : Expr
The Lagrangian that should be a function of the functions listed
in the second argument and their derivatives.
For example, in the case of two functions `f(x,y)`, `g(x,y)` and
two independent variables `x`, `y` the Lagrangian would have the form:
.. math:: L\left(f(x,y),g(x,y),\frac{\partial f(x,y)}{\partial x},
\frac{\partial f(x,y)}{\partial y},
\frac{\partial g(x,y)}{\partial x},
\frac{\partial g(x,y)}{\partial y},x,y\right)
In many cases it is not necessary to provide anything, except the
Lagrangian, it will be auto-detected (and an error raised if this
couldn't be done).
funcs : Function or an iterable of Functions
The functions that the Lagrangian depends on. The Euler equations
are differential equations for each of these functions.
vars : Symbol or an iterable of Symbols
The Symbols that are the independent variables of the functions.
Returns
=======
eqns : list of Eq
The list of differential equations, one for each function.
Examples
========
>>> from sympy import euler_equations, Symbol, Function
>>> x = Function('x')
>>> t = Symbol('t')
>>> L = (x(t).diff(t))**2/2 - x(t)**2/2
>>> euler_equations(L, x(t), t)
[Eq(-x(t) - Derivative(x(t), (t, 2)), 0)]
>>> u = Function('u')
>>> x = Symbol('x')
>>> L = (u(t, x).diff(t))**2/2 - (u(t, x).diff(x))**2/2
>>> euler_equations(L, u(t, x), [t, x])
[Eq(-Derivative(u(t, x), (t, 2)) + Derivative(u(t, x), (x, 2)), 0)]
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation
| 224 | 146 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def euler_equations(L, funcs=(), vars=()):
r
funcs = tuple(funcs) if iterable(funcs) else (funcs,)
if not funcs:
funcs = tuple(L.atoms(Function))
else:
for f in funcs:
if not isinstance(f, Function):
raise TypeError('Function expected, got: %s' % f)
vars = tuple(vars) if iterable(vars) else (vars,)
if not vars:
vars = funcs[0].args
else:
vars = tuple(sympify(var) for var in vars)
if not all(isinstance(v, Symbol) for v in vars):
raise TypeError('Variables are not symbols, got %s' % vars)
for f in funcs:
if not vars == f.args:
raise ValueError("Variables %s do not match args: %s" % (vars, f))
order = max([len(d.variables) for d in L.atoms(Derivative)
if d.expr in funcs] + [0])
eqns = []
for f in funcs:
eq = diff(L, f)
for i in range(1, order + 1):
for p in combinations_with_replacement(vars, i):
eq = eq + S.NegativeOne**i*diff(L, diff(f, *p), *p)
new_eq = Eq(eq, 0)
if isinstance(new_eq, Eq):
eqns.append(new_eq)
return eqns
```
###Assistant :
Find the Euler-Lagrange equations [1]_ for a given Lagrangian.
Parameters
==========
L : Expr
The Lagrangian that should be a function of the functions listed
in the second argument and their derivatives.
For example, in the case of two functions `f(x,y)`, `g(x,y)` and
two independent variables `x`, `y` the Lagrangian would have the form:
.. math:: L\left(f(x,y),g(x,y),\frac{\partial f(x,y)}{\partial x},
\frac{\partial f(x,y)}{\partial y},
\frac{\partial g(x,y)}{\partial x},
\frac{\partial g(x,y)}{\partial y},x,y\right)
In many cases it is not necessary to provide anything, except the
Lagrangian, it will be auto-detected (and an error raised if this
couldn't be done).
funcs : Function or an iterable of Functions
The functions that the Lagrangian depends on. The Euler equations
are differential equations for each of these functions.
vars : Symbol or an iterable of Symbols
The Symbols that are the independent variables of the functions.
Returns
=======
eqns : list of Eq
The list of differential equations, one for each function.
Examples
========
>>> from sympy import euler_equations, Symbol, Function
>>> x = Function('x')
>>> t = Symbol('t')
>>> L = (x(t).diff(t))**2/2 - x(t)**2/2
>>> euler_equations(L, x(t), t)
[Eq(-x(t) - Derivative(x(t), (t, 2)), 0)]
>>> u = Function('u')
>>> x = Symbol('x')
>>> L = (u(t, x).diff(t))**2/2 - (u(t, x).diff(x))**2/2
>>> euler_equations(L, u(t, x), [t, x])
[Eq(-Derivative(u(t, x), (t, 2)) + Derivative(u(t, x), (x, 2)), 0)]
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation
|
1,536 | def delay_update(self, skip_if_already_set=False, **kwargs):
for key, value in kwargs.items():
if key in self.extra_update_fields and skip_if_already_set:
continue
elif key in self.extra_update_fields and key in ('job_explanation', 'result_traceback'):
if str(value) in self.extra_update_fields.get(key, ''):
continue # if already set, avoid duplicating messages
# In the case of these fields, we do not want to lose any prior information, so combine values
self.extra_update_fields[key] = '\n'.join([str(self.extra_update_fields[key]), str(value)])
else:
self.extra_update_fields[key] = value
| Stash fields that should be saved along with the job status change | 12 | 65 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def delay_update(self, skip_if_already_set=False, **kwargs):
for key, value in kwargs.items():
if key in self.extra_update_fields and skip_if_already_set:
continue
elif key in self.extra_update_fields and key in ('job_explanation', 'result_traceback'):
if str(value) in self.extra_update_fields.get(key, ''):
continue # if already set, avoid duplicating messages
# In the case of these fields, we do not want to lose any prior information, so combine values
self.extra_update_fields[key] = '\n'.join([str(self.extra_update_fields[key]), str(value)])
else:
self.extra_update_fields[key] = value
```
###Assistant : Stash fields that should be saved along with the job status change
|
1,537 | def adjacent_tmp_file(path, **kwargs):
# type: (str, **Any) -> Iterator[BinaryIO]
with NamedTemporaryFile(
delete=False,
dir=os.path.dirname(path),
prefix=os.path.basename(path),
suffix=".tmp",
**kwargs,
) as f:
result = cast(BinaryIO, f)
try:
yield result
finally:
result.flush()
os.fsync(result.fileno())
# Tenacity raises RetryError by default, explictly raise the original exception
_replace_retry = retry(reraise=True, stop=stop_after_delay(1), wait=wait_fixed(0.25))
replace = _replace_retry(os.replace)
# test_writable_dir and _test_writable_dir_win are copied from Flit,
# with the author's agreement to also place them under pip's license. | Return a file-like object pointing to a tmp file next to path.
The file is created securely and is ensured to be written to disk
after the context reaches its end.
kwargs will be passed to tempfile.NamedTemporaryFile to control
the way the temporary file will be opened.
| 47 | 68 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def adjacent_tmp_file(path, **kwargs):
# type: (str, **Any) -> Iterator[BinaryIO]
with NamedTemporaryFile(
delete=False,
dir=os.path.dirname(path),
prefix=os.path.basename(path),
suffix=".tmp",
**kwargs,
) as f:
result = cast(BinaryIO, f)
try:
yield result
finally:
result.flush()
os.fsync(result.fileno())
# Tenacity raises RetryError by default, explictly raise the original exception
_replace_retry = retry(reraise=True, stop=stop_after_delay(1), wait=wait_fixed(0.25))
replace = _replace_retry(os.replace)
# test_writable_dir and _test_writable_dir_win are copied from Flit,
# with the author's agreement to also place them under pip's license.
```
###Assistant : Return a file-like object pointing to a tmp file next to path.
The file is created securely and is ensured to be written to disk
after the context reaches its end.
kwargs will be passed to tempfile.NamedTemporaryFile to control
the way the temporary file will be opened.
|
1,538 | def _lsb_release_info(self):
# type: () -> Dict[str, str]
if not self.include_lsb:
return {}
with open(os.devnull, "wb") as devnull:
try:
cmd = ("lsb_release", "-a")
stdout = subprocess.check_output(cmd, stderr=devnull)
# Command not found or lsb_release returned error
except (OSError, subprocess.CalledProcessError):
return {}
content = self._to_str(stdout).splitlines()
return self._parse_lsb_release_content(content)
|
Get the information items from the lsb_release command output.
Returns:
A dictionary containing all information items.
| 16 | 45 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _lsb_release_info(self):
# type: () -> Dict[str, str]
if not self.include_lsb:
return {}
with open(os.devnull, "wb") as devnull:
try:
cmd = ("lsb_release", "-a")
stdout = subprocess.check_output(cmd, stderr=devnull)
# Command not found or lsb_release returned error
except (OSError, subprocess.CalledProcessError):
return {}
content = self._to_str(stdout).splitlines()
return self._parse_lsb_release_content(content)
```
###Assistant :
Get the information items from the lsb_release command output.
Returns:
A dictionary containing all information items.
|
1,539 | def as_dict(self) -> Dict[Text, Any]:
serializable_graph_schema: Dict[Text, Dict[Text, Any]] = {"nodes": {}}
for node_name, node in self.nodes.items():
serializable = dataclasses.asdict(node)
# Classes are not JSON serializable (surprise)
serializable["uses"] = f"{node.uses.__module__}.{node.uses.__name__}"
serializable_graph_schema["nodes"][node_name] = serializable
return serializable_graph_schema
| Returns graph schema in a serializable format.
Returns:
The graph schema in a format which can be dumped as JSON or other formats.
| 23 | 35 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def as_dict(self) -> Dict[Text, Any]:
serializable_graph_schema: Dict[Text, Dict[Text, Any]] = {"nodes": {}}
for node_name, node in self.nodes.items():
serializable = dataclasses.asdict(node)
# Classes are not JSON serializable (surprise)
serializable["uses"] = f"{node.uses.__module__}.{node.uses.__name__}"
serializable_graph_schema["nodes"][node_name] = serializable
return serializable_graph_schema
```
###Assistant : Returns graph schema in a serializable format.
Returns:
The graph schema in a format which can be dumped as JSON or other formats.
|
1,540 | def _create_project_state(self, with_applied_migrations=False):
state = ProjectState(real_apps=self.loader.unmigrated_apps)
if with_applied_migrations:
# Create the forwards plan Django would follow on an empty database
full_plan = self.migration_plan(
self.loader.graph.leaf_nodes(), clean_start=True
)
applied_migrations = {
self.loader.graph.nodes[key]
for key in self.loader.applied_migrations
if key in self.loader.graph.nodes
}
for migration, _ in full_plan:
if migration in applied_migrations:
migration.mutate_state(state, preserve=False)
return state
|
Create a project state including all the applications without
migrations and applied migrations if with_applied_migrations=True.
| 15 | 52 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _create_project_state(self, with_applied_migrations=False):
state = ProjectState(real_apps=self.loader.unmigrated_apps)
if with_applied_migrations:
# Create the forwards plan Django would follow on an empty database
full_plan = self.migration_plan(
self.loader.graph.leaf_nodes(), clean_start=True
)
applied_migrations = {
self.loader.graph.nodes[key]
for key in self.loader.applied_migrations
if key in self.loader.graph.nodes
}
for migration, _ in full_plan:
if migration in applied_migrations:
migration.mutate_state(state, preserve=False)
return state
```
###Assistant :
Create a project state including all the applications without
migrations and applied migrations if with_applied_migrations=True.
|
1,541 | def revoke(state, task_id, terminate=False, signal=None, **kwargs):
# pylint: disable=redefined-outer-name
# XXX Note that this redefines `terminate`:
# Outside of this scope that is a function.
# supports list argument since 3.1
task_ids, task_id = set(maybe_list(task_id) or []), None
task_ids = _revoke(state, task_ids, terminate, signal, **kwargs)
return ok(f'tasks {task_ids} flagged as revoked')
@control_command(
variadic='headers',
signature='[key1=value1 [key2=value2 [... [keyN=valueN]]]]',
) | Revoke task by task id (or list of ids).
Keyword Arguments:
terminate (bool): Also terminate the process if the task is active.
signal (str): Name of signal to use for terminate (e.g., ``KILL``).
| 33 | 58 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def revoke(state, task_id, terminate=False, signal=None, **kwargs):
# pylint: disable=redefined-outer-name
# XXX Note that this redefines `terminate`:
# Outside of this scope that is a function.
# supports list argument since 3.1
task_ids, task_id = set(maybe_list(task_id) or []), None
task_ids = _revoke(state, task_ids, terminate, signal, **kwargs)
return ok(f'tasks {task_ids} flagged as revoked')
@control_command(
variadic='headers',
signature='[key1=value1 [key2=value2 [... [keyN=valueN]]]]',
)
```
###Assistant : Revoke task by task id (or list of ids).
Keyword Arguments:
terminate (bool): Also terminate the process if the task is active.
signal (str): Name of signal to use for terminate (e.g., ``KILL``).
|
1,542 | def inplace_swap_row_csc(X, m, n):
for t in [m, n]:
if isinstance(t, np.ndarray):
raise TypeError("m and n should be valid integers")
if m < 0:
m += X.shape[0]
if n < 0:
n += X.shape[0]
m_mask = X.indices == m
X.indices[X.indices == n] = m
X.indices[m_mask] = n
| Swap two rows of a CSC matrix in-place.
Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
Matrix whose two rows are to be swapped. It should be of
CSC format.
m : int
Index of the row of X to be swapped.
n : int
Index of the row of X to be swapped.
| 56 | 47 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def inplace_swap_row_csc(X, m, n):
for t in [m, n]:
if isinstance(t, np.ndarray):
raise TypeError("m and n should be valid integers")
if m < 0:
m += X.shape[0]
if n < 0:
n += X.shape[0]
m_mask = X.indices == m
X.indices[X.indices == n] = m
X.indices[m_mask] = n
```
###Assistant : Swap two rows of a CSC matrix in-place.
Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
Matrix whose two rows are to be swapped. It should be of
CSC format.
m : int
Index of the row of X to be swapped.
n : int
Index of the row of X to be swapped.
|
1,543 | def test_render_empty_table(self):
block = TableBlock()
result = block.render(
{
"first_row_is_table_header": False,
"first_col_is_header": False,
"data": [[None, None, None], [None, None, None], [None, None, None]],
}
)
expected =
self.assertHTMLEqual(result, expected)
|
An empty table should render okay.
<table>
<tbody>
<tr><td></td><td></td><td></td></tr>
<tr><td></td><td></td><td></td></tr>
<tr><td></td><td></td><td></td></tr>
</tbody>
</table>
| 13 | 29 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_render_empty_table(self):
block = TableBlock()
result = block.render(
{
"first_row_is_table_header": False,
"first_col_is_header": False,
"data": [[None, None, None], [None, None, None], [None, None, None]],
}
)
expected =
self.assertHTMLEqual(result, expected)
```
###Assistant :
An empty table should render okay.
<table>
<tbody>
<tr><td></td><td></td><td></td></tr>
<tr><td></td><td></td><td></td></tr>
<tr><td></td><td></td><td></td></tr>
</tbody>
</table>
|
1,544 | def rot_axis3(theta):
ct = cos(theta)
st = sin(theta)
lil = ((ct, st, 0),
(-st, ct, 0),
(0, 0, 1))
return Matrix(lil)
| Returns a rotation matrix for a rotation of theta (in radians) about
the 3-axis.
Examples
========
>>> from sympy import pi, rot_axis3
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis3(theta)
Matrix([
[ 1/2, sqrt(3)/2, 0],
[-sqrt(3)/2, 1/2, 0],
[ 0, 0, 1]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis3(pi/2)
Matrix([
[ 0, 1, 0],
[-1, 0, 0],
[ 0, 0, 1]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
| 100 | 21 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def rot_axis3(theta):
ct = cos(theta)
st = sin(theta)
lil = ((ct, st, 0),
(-st, ct, 0),
(0, 0, 1))
return Matrix(lil)
```
###Assistant : Returns a rotation matrix for a rotation of theta (in radians) about
the 3-axis.
Examples
========
>>> from sympy import pi, rot_axis3
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis3(theta)
Matrix([
[ 1/2, sqrt(3)/2, 0],
[-sqrt(3)/2, 1/2, 0],
[ 0, 0, 1]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis3(pi/2)
Matrix([
[ 0, 1, 0],
[-1, 0, 0],
[ 0, 0, 1]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
|
1,545 | def current(self):
rv = self._current or '0'
if not isinstance(rv, str):
rv = bin(rv)[2:]
return rv.rjust(self.n, '0')
|
Returns the currently referenced Gray code as a bit string.
Examples
========
>>> from sympy.combinatorics import GrayCode
>>> GrayCode(3, start='100').current
'100'
| 21 | 17 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def current(self):
rv = self._current or '0'
if not isinstance(rv, str):
rv = bin(rv)[2:]
return rv.rjust(self.n, '0')
```
###Assistant :
Returns the currently referenced Gray code as a bit string.
Examples
========
>>> from sympy.combinatorics import GrayCode
>>> GrayCode(3, start='100').current
'100'
|
1,546 | def upsample_conv_2d(x, w, k=None, factor=2, gain=1):
assert isinstance(factor, int) and factor >= 1
# Check weight shape.
assert len(w.shape) == 4
convH = w.shape[2]
convW = w.shape[3]
inC = w.shape[1]
assert convW == convH
# Setup filter kernel.
if k is None:
k = [1] * factor
k = _setup_kernel(k) * (gain * (factor**2))
p = (k.shape[0] - factor) - (convW - 1)
stride = (factor, factor)
# Determine data dimensions.
stride = [1, 1, factor, factor]
output_shape = ((_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1) * factor + convW)
output_padding = (
output_shape[0] - (_shape(x, 2) - 1) * stride[0] - convH,
output_shape[1] - (_shape(x, 3) - 1) * stride[1] - convW,
)
assert output_padding[0] >= 0 and output_padding[1] >= 0
num_groups = _shape(x, 1) // inC
# Transpose weights.
w = torch.reshape(w, (num_groups, -1, inC, convH, convW))
w = w[..., ::-1, ::-1].permute(0, 2, 1, 3, 4)
w = torch.reshape(w, (num_groups * inC, -1, convH, convW))
x = F.conv_transpose2d(x, w, stride=stride, output_padding=output_padding, padding=0)
# Original TF code.
# x = tf.nn.conv2d_transpose(
# x,
# w,
# output_shape=output_shape,
# strides=stride,
# padding='VALID',
# data_format=data_format)
# JAX equivalent
return upfirdn2d(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2 + factor - 1, p // 2 + 1))
| Fused `upsample_2d()` followed by `tf.nn.conv2d()`.
Padding is performed only once at the beginning, not between the
operations.
The fused op is considerably more efficient than performing the same
calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
w: Weight tensor of the shape `[filterH, filterW, inChannels,
outChannels]`. Grouped convolution can be performed by `inChannels =
x.shape[0] // numGroups`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to
nearest-neighbor upsampling.
factor: Integer upsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H * factor, W * factor]` or
`[N, H * factor, W * factor, C]`, and same datatype as `x`.
| 139 | 210 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def upsample_conv_2d(x, w, k=None, factor=2, gain=1):
assert isinstance(factor, int) and factor >= 1
# Check weight shape.
assert len(w.shape) == 4
convH = w.shape[2]
convW = w.shape[3]
inC = w.shape[1]
assert convW == convH
# Setup filter kernel.
if k is None:
k = [1] * factor
k = _setup_kernel(k) * (gain * (factor**2))
p = (k.shape[0] - factor) - (convW - 1)
stride = (factor, factor)
# Determine data dimensions.
stride = [1, 1, factor, factor]
output_shape = ((_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1) * factor + convW)
output_padding = (
output_shape[0] - (_shape(x, 2) - 1) * stride[0] - convH,
output_shape[1] - (_shape(x, 3) - 1) * stride[1] - convW,
)
assert output_padding[0] >= 0 and output_padding[1] >= 0
num_groups = _shape(x, 1) // inC
# Transpose weights.
w = torch.reshape(w, (num_groups, -1, inC, convH, convW))
w = w[..., ::-1, ::-1].permute(0, 2, 1, 3, 4)
w = torch.reshape(w, (num_groups * inC, -1, convH, convW))
x = F.conv_transpose2d(x, w, stride=stride, output_padding=output_padding, padding=0)
# Original TF code.
# x = tf.nn.conv2d_transpose(
# x,
# w,
# output_shape=output_shape,
# strides=stride,
# padding='VALID',
# data_format=data_format)
# JAX equivalent
return upfirdn2d(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2 + factor - 1, p // 2 + 1))
```
###Assistant : Fused `upsample_2d()` followed by `tf.nn.conv2d()`.
Padding is performed only once at the beginning, not between the
operations.
The fused op is considerably more efficient than performing the same
calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
w: Weight tensor of the shape `[filterH, filterW, inChannels,
outChannels]`. Grouped convolution can be performed by `inChannels =
x.shape[0] // numGroups`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to
nearest-neighbor upsampling.
factor: Integer upsampling factor (default: 2).
gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H * factor, W * factor]` or
`[N, H * factor, W * factor, C]`, and same datatype as `x`.
|
1,547 | def read(self, size=None):
if size is None:
t = []
while True:
buf = self._read(self.bufsize)
if not buf:
break
t.append(buf)
buf = "".join(t)
else:
buf = self._read(size)
self.pos += len(buf)
return buf
| Return the next size number of bytes from the stream.
If size is not defined, return all bytes of the stream
up to EOF.
| 24 | 32 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def read(self, size=None):
if size is None:
t = []
while True:
buf = self._read(self.bufsize)
if not buf:
break
t.append(buf)
buf = "".join(t)
else:
buf = self._read(size)
self.pos += len(buf)
return buf
```
###Assistant : Return the next size number of bytes from the stream.
If size is not defined, return all bytes of the stream
up to EOF.
|
1,548 | def state(self) -> Mapping[str, Any]:
if self._cursor_value:
return {
self.cursor_field: self._cursor_value,
"include_deleted": self._include_deleted,
}
return {}
| State getter, get current state and serialize it to emmit Airbyte STATE message | 13 | 16 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def state(self) -> Mapping[str, Any]:
if self._cursor_value:
return {
self.cursor_field: self._cursor_value,
"include_deleted": self._include_deleted,
}
return {}
```
###Assistant : State getter, get current state and serialize it to emmit Airbyte STATE message
|
1,549 | def set_task_factory(self, factory):
if factory is not None and not callable(factory):
raise TypeError('task factory must be a callable or None')
self._task_factory = factory
| Set a task factory that will be used by loop.create_task().
If factory is None the default task factory will be set.
If factory is a callable, it should have a signature matching
'(loop, coro)', where 'loop' will be a reference to the active
event loop, 'coro' will be a coroutine object. The callable
must return a Future.
| 57 | 23 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def set_task_factory(self, factory):
if factory is not None and not callable(factory):
raise TypeError('task factory must be a callable or None')
self._task_factory = factory
```
###Assistant : Set a task factory that will be used by loop.create_task().
If factory is None the default task factory will be set.
If factory is a callable, it should have a signature matching
'(loop, coro)', where 'loop' will be a reference to the active
event loop, 'coro' will be a coroutine object. The callable
must return a Future.
|
1,550 | def date(self) -> npt.NDArray[np.object_]:
# If the Timestamps have a timezone that is not UTC,
# convert them into their i8 representation while
# keeping their timezone and not using UTC
timestamps = self._local_timestamps()
return ints_to_pydatetime(timestamps, box="date")
|
Returns numpy array of python :class:`datetime.date` objects.
Namely, the date part of Timestamps without time and
timezone information.
| 18 | 37 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def date(self) -> npt.NDArray[np.object_]:
# If the Timestamps have a timezone that is not UTC,
# convert them into their i8 representation while
# keeping their timezone and not using UTC
timestamps = self._local_timestamps()
return ints_to_pydatetime(timestamps, box="date")
```
###Assistant :
Returns numpy array of python :class:`datetime.date` objects.
Namely, the date part of Timestamps without time and
timezone information.
|
1,551 | def apply_transparency(self):
if self.mode != "P" or "transparency" not in self.info:
return
from . import ImagePalette
palette = self.getpalette("RGBA")
transparency = self.info["transparency"]
if isinstance(transparency, bytes):
for i, alpha in enumerate(transparency):
palette[i * 4 + 3] = alpha
else:
palette[transparency * 4 + 3] = 0
self.palette = ImagePalette.ImagePalette("RGBA", bytes(palette))
self.palette.dirty = 1
del self.info["transparency"]
|
If a P mode image has a "transparency" key in the info dictionary,
remove the key and apply the transparency to the palette instead.
| 24 | 54 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def apply_transparency(self):
if self.mode != "P" or "transparency" not in self.info:
return
from . import ImagePalette
palette = self.getpalette("RGBA")
transparency = self.info["transparency"]
if isinstance(transparency, bytes):
for i, alpha in enumerate(transparency):
palette[i * 4 + 3] = alpha
else:
palette[transparency * 4 + 3] = 0
self.palette = ImagePalette.ImagePalette("RGBA", bytes(palette))
self.palette.dirty = 1
del self.info["transparency"]
```
###Assistant :
If a P mode image has a "transparency" key in the info dictionary,
remove the key and apply the transparency to the palette instead.
|
1,552 | def get_frontend_app_asset_url(module, key):
args = (settings.STATIC_FRONTEND_APP_URL.rstrip("/"), module, key.lstrip("/"))
return "{}/{}/{}".format(*args)
|
Returns an asset URL that is unversioned. These assets should have a
`Cache-Control: max-age=0, must-revalidate` so that clients must validate with the origin
server before using their locally cached asset.
Example:
{% frontend_app_asset_url 'sentry' 'sentry.css' %}
=> "/_static/dist/sentry/sentry.css"
| 38 | 10 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_frontend_app_asset_url(module, key):
args = (settings.STATIC_FRONTEND_APP_URL.rstrip("/"), module, key.lstrip("/"))
return "{}/{}/{}".format(*args)
```
###Assistant :
Returns an asset URL that is unversioned. These assets should have a
`Cache-Control: max-age=0, must-revalidate` so that clients must validate with the origin
server before using their locally cached asset.
Example:
{% frontend_app_asset_url 'sentry' 'sentry.css' %}
=> "/_static/dist/sentry/sentry.css"
|
1,553 | def tridiagonal_solve(dl, d, du, b):
r
if dl.ndim != 1 or d.ndim != 1 or du.ndim != 1:
raise ValueError('dl, d and du must be vectors')
if dl.shape != d.shape or d.shape != du.shape:
raise ValueError(
f'dl={dl.shape}, d={d.shape} and du={du.shape} must all be `[m]`')
if b.ndim != 2:
raise ValueError(f'b={b.shape} must be a matrix')
m, = dl.shape
if m < 3:
raise ValueError(f'm ({m}) must be >= 3')
ldb, n = b.shape
if ldb < max(1, m):
raise ValueError(f'Leading dimension of b={ldb} must be ≥ max(1, {m})')
if dl.dtype != d.dtype or d.dtype != du.dtype or du.dtype != b.dtype:
raise ValueError(f'dl={dl.dtype}, d={d.dtype}, du={du.dtype} and '
f'b={b.dtype} must be the same dtype,')
t = dl.dtype
if t not in (np.float32, np.float64):
raise ValueError(f'Only f32/f64 are supported, got {t}')
return tridiagonal_solve_p.bind(dl, d, du, b, m=m, n=n, ldb=ldb, t=t)
# Schur Decomposition
| Computes the solution of a tridiagonal linear system.
This function computes the solution of a tridiagonal linear system:
.. math::
A . X = B
Args:
dl: The lower diagonal of A: ``dl[i] := A[i, i-1]`` for i in ``[0,m)``.
Note that ``dl[0] = 0``.
d: The middle diagnoal of A: ``d[i] := A[i, i]`` for i in ``[0,m)``.
du: The upper diagonal of A: ``du[i] := A[i, i+1]`` for i in ``[0,m)``.
Note that ``dl[m - 1] = 0``.
b: Right hand side matrix.
Returns:
Solution ``X`` of tridiagonal system.
| 91 | 139 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def tridiagonal_solve(dl, d, du, b):
r
if dl.ndim != 1 or d.ndim != 1 or du.ndim != 1:
raise ValueError('dl, d and du must be vectors')
if dl.shape != d.shape or d.shape != du.shape:
raise ValueError(
f'dl={dl.shape}, d={d.shape} and du={du.shape} must all be `[m]`')
if b.ndim != 2:
raise ValueError(f'b={b.shape} must be a matrix')
m, = dl.shape
if m < 3:
raise ValueError(f'm ({m}) must be >= 3')
ldb, n = b.shape
if ldb < max(1, m):
raise ValueError(f'Leading dimension of b={ldb} must be ≥ max(1, {m})')
if dl.dtype != d.dtype or d.dtype != du.dtype or du.dtype != b.dtype:
raise ValueError(f'dl={dl.dtype}, d={d.dtype}, du={du.dtype} and '
f'b={b.dtype} must be the same dtype,')
t = dl.dtype
if t not in (np.float32, np.float64):
raise ValueError(f'Only f32/f64 are supported, got {t}')
return tridiagonal_solve_p.bind(dl, d, du, b, m=m, n=n, ldb=ldb, t=t)
# Schur Decomposition
```
###Assistant : Computes the solution of a tridiagonal linear system.
This function computes the solution of a tridiagonal linear system:
.. math::
A . X = B
Args:
dl: The lower diagonal of A: ``dl[i] := A[i, i-1]`` for i in ``[0,m)``.
Note that ``dl[0] = 0``.
d: The middle diagnoal of A: ``d[i] := A[i, i]`` for i in ``[0,m)``.
du: The upper diagonal of A: ``du[i] := A[i, i+1]`` for i in ``[0,m)``.
Note that ``dl[m - 1] = 0``.
b: Right hand side matrix.
Returns:
Solution ``X`` of tridiagonal system.
|
1,554 | def _get_dependency_info() -> dict[str, JSONSerializable]:
deps = [
"pandas",
# required
"numpy",
"pytz",
"dateutil",
# install / build,
"setuptools",
"pip",
"Cython",
# test
"pytest",
"hypothesis",
# docs
"sphinx",
# Other, need a min version
"blosc",
"feather",
"xlsxwriter",
"lxml.etree",
"html5lib",
"pymysql",
"psycopg2",
"jinja2",
# Other, not imported.
"IPython",
"pandas_datareader",
]
deps.extend(list(VERSIONS))
result: dict[str, JSONSerializable] = {}
for modname in deps:
mod = import_optional_dependency(modname, errors="ignore")
result[modname] = get_version(mod) if mod else None
return result
|
Returns dependency information as a JSON serializable dictionary.
| 8 | 72 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _get_dependency_info() -> dict[str, JSONSerializable]:
deps = [
"pandas",
# required
"numpy",
"pytz",
"dateutil",
# install / build,
"setuptools",
"pip",
"Cython",
# test
"pytest",
"hypothesis",
# docs
"sphinx",
# Other, need a min version
"blosc",
"feather",
"xlsxwriter",
"lxml.etree",
"html5lib",
"pymysql",
"psycopg2",
"jinja2",
# Other, not imported.
"IPython",
"pandas_datareader",
]
deps.extend(list(VERSIONS))
result: dict[str, JSONSerializable] = {}
for modname in deps:
mod = import_optional_dependency(modname, errors="ignore")
result[modname] = get_version(mod) if mod else None
return result
```
###Assistant :
Returns dependency information as a JSON serializable dictionary.
|
1,555 | def execute():
company_list = frappe.get_all("Company", filters={"country": "Germany"})
for company in company_list:
party_account_list = frappe.get_all(
"Party Account",
filters={"company": company.name},
fields=["name", "account", "debtor_creditor_number"],
)
for party_account in party_account_list:
if (not party_account.account) or party_account.debtor_creditor_number:
# account empty or debtor_creditor_number already filled
continue
account_number = frappe.db.get_value("Account", party_account.account, "account_number")
if not account_number:
continue
frappe.db.set_value(
"Party Account", party_account.name, "debtor_creditor_number", account_number
)
frappe.db.set_value("Party Account", party_account.name, "account", "")
| Move account number into the new custom field debtor_creditor_number.
German companies used to use a dedicated payable/receivable account for
every party to mimick party accounts in the external accounting software
"DATEV". This is no longer necessary. The reference ID for DATEV will be
stored in a new custom field "debtor_creditor_number".
| 50 | 60 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def execute():
company_list = frappe.get_all("Company", filters={"country": "Germany"})
for company in company_list:
party_account_list = frappe.get_all(
"Party Account",
filters={"company": company.name},
fields=["name", "account", "debtor_creditor_number"],
)
for party_account in party_account_list:
if (not party_account.account) or party_account.debtor_creditor_number:
# account empty or debtor_creditor_number already filled
continue
account_number = frappe.db.get_value("Account", party_account.account, "account_number")
if not account_number:
continue
frappe.db.set_value(
"Party Account", party_account.name, "debtor_creditor_number", account_number
)
frappe.db.set_value("Party Account", party_account.name, "account", "")
```
###Assistant : Move account number into the new custom field debtor_creditor_number.
German companies used to use a dedicated payable/receivable account for
every party to mimick party accounts in the external accounting software
"DATEV". This is no longer necessary. The reference ID for DATEV will be
stored in a new custom field "debtor_creditor_number".
|
1,556 | def compute_or_load(self, wav_file):
pitch_file = self.create_pitch_file_path(wav_file, self.cache_path)
if not os.path.exists(pitch_file):
pitch = self._compute_and_save_pitch(self.ap, wav_file, pitch_file)
else:
pitch = np.load(pitch_file)
return pitch.astype(np.float32)
|
compute pitch and return a numpy array of pitch values
| 10 | 21 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def compute_or_load(self, wav_file):
pitch_file = self.create_pitch_file_path(wav_file, self.cache_path)
if not os.path.exists(pitch_file):
pitch = self._compute_and_save_pitch(self.ap, wav_file, pitch_file)
else:
pitch = np.load(pitch_file)
return pitch.astype(np.float32)
```
###Assistant :
compute pitch and return a numpy array of pitch values
|
1,557 | def check_output(self, want, got, optionflags):
# Handle the common case first, for efficiency:
# if they're string-identical, always return true.
if got == want:
return True
# TODO parse integers as well ?
# Parse floats and compare them. If some of the parsed floats contain
# ellipses, skip the comparison.
matches = self.num_got_rgx.finditer(got)
numbers_got = [match.group(1) for match in matches] # list of strs
matches = self.num_want_rgx.finditer(want)
numbers_want = [match.group(1) for match in matches] # list of strs
if len(numbers_got) != len(numbers_want):
return False
if len(numbers_got) > 0:
nw_ = []
for ng, nw in zip(numbers_got, numbers_want):
if '...' in nw:
nw_.append(ng)
continue
else:
nw_.append(nw)
if abs(float(ng)-float(nw)) > 1e-5:
return False
got = self.num_got_rgx.sub(r'%s', got)
got = got % tuple(nw_)
# <BLANKLINE> can be used as a special sequence to signify a
# blank line, unless the DONT_ACCEPT_BLANKLINE flag is used.
if not (optionflags & pdoctest.DONT_ACCEPT_BLANKLINE):
# Replace <BLANKLINE> in want with a blank line.
want = re.sub(r'(?m)^%s\s*?$' % re.escape(pdoctest.BLANKLINE_MARKER),
'', want)
# If a line in got contains only spaces, then remove the
# spaces.
got = re.sub(r'(?m)^\s*?$', '', got)
if got == want:
return True
# This flag causes doctest to ignore any differences in the
# contents of whitespace strings. Note that this can be used
# in conjunction with the ELLIPSIS flag.
if optionflags & pdoctest.NORMALIZE_WHITESPACE:
got = ' '.join(got.split())
want = ' '.join(want.split())
if got == want:
return True
# The ELLIPSIS flag says to let the sequence "..." in `want`
# match any substring in `got`.
if optionflags & pdoctest.ELLIPSIS:
if pdoctest._ellipsis_match(want, got):
return True
# We didn't find any match; return false.
return False
|
Return True iff the actual output from an example (`got`)
matches the expected output (`want`). These strings are
always considered to match if they are identical; but
depending on what option flags the test runner is using,
several non-exact match types are also possible. See the
documentation for `TestRunner` for more information about
option flags.
| 55 | 272 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def check_output(self, want, got, optionflags):
# Handle the common case first, for efficiency:
# if they're string-identical, always return true.
if got == want:
return True
# TODO parse integers as well ?
# Parse floats and compare them. If some of the parsed floats contain
# ellipses, skip the comparison.
matches = self.num_got_rgx.finditer(got)
numbers_got = [match.group(1) for match in matches] # list of strs
matches = self.num_want_rgx.finditer(want)
numbers_want = [match.group(1) for match in matches] # list of strs
if len(numbers_got) != len(numbers_want):
return False
if len(numbers_got) > 0:
nw_ = []
for ng, nw in zip(numbers_got, numbers_want):
if '...' in nw:
nw_.append(ng)
continue
else:
nw_.append(nw)
if abs(float(ng)-float(nw)) > 1e-5:
return False
got = self.num_got_rgx.sub(r'%s', got)
got = got % tuple(nw_)
# <BLANKLINE> can be used as a special sequence to signify a
# blank line, unless the DONT_ACCEPT_BLANKLINE flag is used.
if not (optionflags & pdoctest.DONT_ACCEPT_BLANKLINE):
# Replace <BLANKLINE> in want with a blank line.
want = re.sub(r'(?m)^%s\s*?$' % re.escape(pdoctest.BLANKLINE_MARKER),
'', want)
# If a line in got contains only spaces, then remove the
# spaces.
got = re.sub(r'(?m)^\s*?$', '', got)
if got == want:
return True
# This flag causes doctest to ignore any differences in the
# contents of whitespace strings. Note that this can be used
# in conjunction with the ELLIPSIS flag.
if optionflags & pdoctest.NORMALIZE_WHITESPACE:
got = ' '.join(got.split())
want = ' '.join(want.split())
if got == want:
return True
# The ELLIPSIS flag says to let the sequence "..." in `want`
# match any substring in `got`.
if optionflags & pdoctest.ELLIPSIS:
if pdoctest._ellipsis_match(want, got):
return True
# We didn't find any match; return false.
return False
```
###Assistant :
Return True iff the actual output from an example (`got`)
matches the expected output (`want`). These strings are
always considered to match if they are identical; but
depending on what option flags the test runner is using,
several non-exact match types are also possible. See the
documentation for `TestRunner` for more information about
option flags.
|
1,558 | def start(self, workflow_state, user=None):
task_state = self.get_task_state_class()(workflow_state=workflow_state)
task_state.status = TaskState.STATUS_IN_PROGRESS
task_state.page_revision = workflow_state.page.get_latest_revision()
task_state.task = self
task_state.save()
task_submitted.send(
sender=task_state.specific.__class__,
instance=task_state.specific,
user=user,
)
return task_state
| Start this task on the provided workflow state by creating an instance of TaskState | 14 | 24 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def start(self, workflow_state, user=None):
task_state = self.get_task_state_class()(workflow_state=workflow_state)
task_state.status = TaskState.STATUS_IN_PROGRESS
task_state.page_revision = workflow_state.page.get_latest_revision()
task_state.task = self
task_state.save()
task_submitted.send(
sender=task_state.specific.__class__,
instance=task_state.specific,
user=user,
)
return task_state
```
###Assistant : Start this task on the provided workflow state by creating an instance of TaskState
|
1,559 | def get_datev_csv(data, filters, csv_class):
empty_df = pd.DataFrame(columns=csv_class.COLUMNS)
data_df = pd.DataFrame.from_records(data)
result = empty_df.append(data_df, sort=True)
if csv_class.DATA_CATEGORY == DataCategory.TRANSACTIONS:
result["Belegdatum"] = pd.to_datetime(result["Belegdatum"])
result["Beleginfo - Inhalt 6"] = pd.to_datetime(result["Beleginfo - Inhalt 6"])
result["Beleginfo - Inhalt 6"] = result["Beleginfo - Inhalt 6"].dt.strftime("%d%m%Y")
result["Fälligkeit"] = pd.to_datetime(result["Fälligkeit"])
result["Fälligkeit"] = result["Fälligkeit"].dt.strftime("%d%m%y")
result.sort_values(by="Belegdatum", inplace=True, kind="stable", ignore_index=True)
if csv_class.DATA_CATEGORY == DataCategory.ACCOUNT_NAMES:
result["Sprach-ID"] = "de-DE"
data = result.to_csv(
# Reason for str(';'): https://github.com/pandas-dev/pandas/issues/6035
sep=";",
# European decimal seperator
decimal=",",
# Windows "ANSI" encoding
encoding="latin_1",
# format date as DDMM
date_format="%d%m",
# Windows line terminator
line_terminator="\r\n",
# Do not number rows
index=False,
# Use all columns defined above
columns=csv_class.COLUMNS,
# Quote most fields, even currency values with "," separator
quoting=QUOTE_NONNUMERIC,
)
data = data.encode("latin_1", errors="replace")
header = get_header(filters, csv_class)
header = ";".join(header).encode("latin_1", errors="replace")
# 1st Row: Header with meta data
# 2nd Row: Data heading (Überschrift der Nutzdaten), included in `data` here.
# 3rd - nth Row: Data (Nutzdaten)
return header + b"\r\n" + data
|
Fill in missing columns and return a CSV in DATEV Format.
For automatic processing, DATEV requires the first line of the CSV file to
hold meta data such as the length of account numbers oder the category of
the data.
Arguments:
data -- array of dictionaries
filters -- dict
csv_class -- defines DATA_CATEGORY, FORMAT_NAME and COLUMNS
| 56 | 155 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_datev_csv(data, filters, csv_class):
empty_df = pd.DataFrame(columns=csv_class.COLUMNS)
data_df = pd.DataFrame.from_records(data)
result = empty_df.append(data_df, sort=True)
if csv_class.DATA_CATEGORY == DataCategory.TRANSACTIONS:
result["Belegdatum"] = pd.to_datetime(result["Belegdatum"])
result["Beleginfo - Inhalt 6"] = pd.to_datetime(result["Beleginfo - Inhalt 6"])
result["Beleginfo - Inhalt 6"] = result["Beleginfo - Inhalt 6"].dt.strftime("%d%m%Y")
result["Fälligkeit"] = pd.to_datetime(result["Fälligkeit"])
result["Fälligkeit"] = result["Fälligkeit"].dt.strftime("%d%m%y")
result.sort_values(by="Belegdatum", inplace=True, kind="stable", ignore_index=True)
if csv_class.DATA_CATEGORY == DataCategory.ACCOUNT_NAMES:
result["Sprach-ID"] = "de-DE"
data = result.to_csv(
# Reason for str(';'): https://github.com/pandas-dev/pandas/issues/6035
sep=";",
# European decimal seperator
decimal=",",
# Windows "ANSI" encoding
encoding="latin_1",
# format date as DDMM
date_format="%d%m",
# Windows line terminator
line_terminator="\r\n",
# Do not number rows
index=False,
# Use all columns defined above
columns=csv_class.COLUMNS,
# Quote most fields, even currency values with "," separator
quoting=QUOTE_NONNUMERIC,
)
data = data.encode("latin_1", errors="replace")
header = get_header(filters, csv_class)
header = ";".join(header).encode("latin_1", errors="replace")
# 1st Row: Header with meta data
# 2nd Row: Data heading (Überschrift der Nutzdaten), included in `data` here.
# 3rd - nth Row: Data (Nutzdaten)
return header + b"\r\n" + data
```
###Assistant :
Fill in missing columns and return a CSV in DATEV Format.
For automatic processing, DATEV requires the first line of the CSV file to
hold meta data such as the length of account numbers oder the category of
the data.
Arguments:
data -- array of dictionaries
filters -- dict
csv_class -- defines DATA_CATEGORY, FORMAT_NAME and COLUMNS
|
1,560 | def CircularSymplecticEnsemble(sym, dim):
sym, dim = _symbol_converter(sym), _sympify(dim)
model = CircularSymplecticEnsembleModel(sym, dim)
rmp = RandomMatrixPSpace(sym, model=model)
return RandomMatrixSymbol(sym, dim, dim, pspace=rmp)
|
Represents Circular Symplectic Ensembles.
Examples
========
>>> from sympy.stats import CircularSymplecticEnsemble as CSE
>>> from sympy.stats import joint_eigen_distribution
>>> C = CSE('S', 1)
>>> joint_eigen_distribution(C)
Lambda(t[1], Product(Abs(exp(I*t[_j]) - exp(I*t[_k]))**4, (_j, _k + 1, 1), (_k, 1, 0))/(2*pi))
Note
====
As can be seen above in the example, density of CiruclarSymplecticEnsemble
is not evaluated because the exact definition is based on haar measure of
unitary group which is not unique.
| 69 | 21 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def CircularSymplecticEnsemble(sym, dim):
sym, dim = _symbol_converter(sym), _sympify(dim)
model = CircularSymplecticEnsembleModel(sym, dim)
rmp = RandomMatrixPSpace(sym, model=model)
return RandomMatrixSymbol(sym, dim, dim, pspace=rmp)
```
###Assistant :
Represents Circular Symplectic Ensembles.
Examples
========
>>> from sympy.stats import CircularSymplecticEnsemble as CSE
>>> from sympy.stats import joint_eigen_distribution
>>> C = CSE('S', 1)
>>> joint_eigen_distribution(C)
Lambda(t[1], Product(Abs(exp(I*t[_j]) - exp(I*t[_k]))**4, (_j, _k + 1, 1), (_k, 1, 0))/(2*pi))
Note
====
As can be seen above in the example, density of CiruclarSymplecticEnsemble
is not evaluated because the exact definition is based on haar measure of
unitary group which is not unique.
|
1,561 | def _executor_config_comparator(x, y):
try:
return x == y
except AttributeError:
return False
|
The TaskInstance.executor_config attribute is a pickled object that may contain
kubernetes objects. If the installed library version has changed since the
object was originally pickled, due to the underlying ``__eq__`` method on these
objects (which converts them to JSON), we may encounter attribute errors. In this
case we should replace the stored object.
| 53 | 12 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _executor_config_comparator(x, y):
try:
return x == y
except AttributeError:
return False
```
###Assistant :
The TaskInstance.executor_config attribute is a pickled object that may contain
kubernetes objects. If the installed library version has changed since the
object was originally pickled, due to the underlying ``__eq__`` method on these
objects (which converts them to JSON), we may encounter attribute errors. In this
case we should replace the stored object.
|
1,562 | def test_color_temperature_to_rgbww():
# Coldest color temperature -> only cold channel enabled
assert color_util.color_temperature_to_rgbww(6535, 255, 2000, 6535) == (
0,
0,
0,
255,
0,
)
assert color_util.color_temperature_to_rgbww(6535, 128, 2000, 6535) == (
0,
0,
0,
128,
0,
)
# Warmest color temperature -> only cold channel enabled
assert color_util.color_temperature_to_rgbww(2000, 255, 2000, 6535) == (
0,
0,
0,
0,
255,
)
assert color_util.color_temperature_to_rgbww(2000, 128, 2000, 6535) == (
0,
0,
0,
0,
128,
)
# Warmer than mid point color temperature -> More warm than cold channel enabled
assert color_util.color_temperature_to_rgbww(2881, 255, 2000, 6535) == (
0,
0,
0,
112,
143,
)
assert color_util.color_temperature_to_rgbww(2881, 128, 2000, 6535) == (
0,
0,
0,
56,
72,
)
| Test color temp to warm, cold conversion.
Temperature values must be in mireds
Home Assistant uses rgbcw for rgbww
| 19 | 112 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_color_temperature_to_rgbww():
# Coldest color temperature -> only cold channel enabled
assert color_util.color_temperature_to_rgbww(6535, 255, 2000, 6535) == (
0,
0,
0,
255,
0,
)
assert color_util.color_temperature_to_rgbww(6535, 128, 2000, 6535) == (
0,
0,
0,
128,
0,
)
# Warmest color temperature -> only cold channel enabled
assert color_util.color_temperature_to_rgbww(2000, 255, 2000, 6535) == (
0,
0,
0,
0,
255,
)
assert color_util.color_temperature_to_rgbww(2000, 128, 2000, 6535) == (
0,
0,
0,
0,
128,
)
# Warmer than mid point color temperature -> More warm than cold channel enabled
assert color_util.color_temperature_to_rgbww(2881, 255, 2000, 6535) == (
0,
0,
0,
112,
143,
)
assert color_util.color_temperature_to_rgbww(2881, 128, 2000, 6535) == (
0,
0,
0,
56,
72,
)
```
###Assistant : Test color temp to warm, cold conversion.
Temperature values must be in mireds
Home Assistant uses rgbcw for rgbww
|
1,563 | def test_set_page_config_first(self):
fake_enqueue = lambda msg: None
ctx = ScriptRunContext(
"TestSessionID",
fake_enqueue,
"",
SessionState(),
UploadedFileManager(),
)
ctx.on_script_start()
markdown_msg = ForwardMsg()
markdown_msg.delta.new_element.markdown.body = "foo"
msg = ForwardMsg()
msg.page_config_changed.title = "foo"
ctx.enqueue(markdown_msg)
with self.assertRaises(StreamlitAPIException):
ctx.enqueue(msg)
| st.set_page_config must be called before other st commands
when the script has been marked as started | 16 | 33 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_set_page_config_first(self):
fake_enqueue = lambda msg: None
ctx = ScriptRunContext(
"TestSessionID",
fake_enqueue,
"",
SessionState(),
UploadedFileManager(),
)
ctx.on_script_start()
markdown_msg = ForwardMsg()
markdown_msg.delta.new_element.markdown.body = "foo"
msg = ForwardMsg()
msg.page_config_changed.title = "foo"
ctx.enqueue(markdown_msg)
with self.assertRaises(StreamlitAPIException):
ctx.enqueue(msg)
```
###Assistant : st.set_page_config must be called before other st commands
when the script has been marked as started
|
1,564 | def set_vars(self) -> None:
tk_vars = super().set_vars()
smoothgraph = tk.DoubleVar()
smoothgraph.set(0.900)
tk_vars["smoothgraph"] = smoothgraph
raw_var = tk.BooleanVar()
raw_var.set(True)
tk_vars["raw_data"] = raw_var
smooth_var = tk.BooleanVar()
smooth_var.set(True)
tk_vars["smooth_data"] = smooth_var
iterations_var = tk.IntVar()
iterations_var.set(10000)
tk_vars["display_iterations"] = iterations_var
logger.debug(tk_vars)
return tk_vars
| Add graphing specific variables to the default variables.
Overrides original method.
Returns
-------
dict
The variable names with their corresponding tkinter variable
| 22 | 38 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def set_vars(self) -> None:
tk_vars = super().set_vars()
smoothgraph = tk.DoubleVar()
smoothgraph.set(0.900)
tk_vars["smoothgraph"] = smoothgraph
raw_var = tk.BooleanVar()
raw_var.set(True)
tk_vars["raw_data"] = raw_var
smooth_var = tk.BooleanVar()
smooth_var.set(True)
tk_vars["smooth_data"] = smooth_var
iterations_var = tk.IntVar()
iterations_var.set(10000)
tk_vars["display_iterations"] = iterations_var
logger.debug(tk_vars)
return tk_vars
```
###Assistant : Add graphing specific variables to the default variables.
Overrides original method.
Returns
-------
dict
The variable names with their corresponding tkinter variable
|
1,565 | def _configure_kubernetes_library_client(self) -> None:
# TODO: Investigate returning a configured client so calls on other threads
# will not invalidate the config needed here
# if a k8s cluster block is provided to the flow runner, use that
if self.cluster_config:
self.cluster_config.configure_client()
else:
# If no block specified, try to load Kubernetes configuration within a cluster. If that doesn't
# work, try to load the configuration from the local environment, allowing
# any further ConfigExceptions to bubble up.
try:
kubernetes.config.load_incluster_config()
except kubernetes.config.ConfigException:
kubernetes.config.load_kube_config()
|
Set the correct kubernetes client configuration.
WARNING: This action is not threadsafe and may override the configuration
specified by another `KubernetesJob` instance.
| 22 | 82 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _configure_kubernetes_library_client(self) -> None:
# TODO: Investigate returning a configured client so calls on other threads
# will not invalidate the config needed here
# if a k8s cluster block is provided to the flow runner, use that
if self.cluster_config:
self.cluster_config.configure_client()
else:
# If no block specified, try to load Kubernetes configuration within a cluster. If that doesn't
# work, try to load the configuration from the local environment, allowing
# any further ConfigExceptions to bubble up.
try:
kubernetes.config.load_incluster_config()
except kubernetes.config.ConfigException:
kubernetes.config.load_kube_config()
```
###Assistant :
Set the correct kubernetes client configuration.
WARNING: This action is not threadsafe and may override the configuration
specified by another `KubernetesJob` instance.
|
1,566 | def test_runs_alert_rule_action_creator(self, mock_alert_rule_action_creator):
self.login_as(user=self.user)
project = self.create_project()
self.create_sentry_app(
name="Pied Piper",
organization=project.organization,
schema={"elements": [self.create_alert_rule_action_schema()]},
)
install = self.create_sentry_app_installation(
slug="pied-piper", organization=project.organization
)
actions = [
{
"id": "sentry.rules.actions.notify_event_sentry_app.NotifyEventSentryAppAction",
"settings": [
{"name": "title", "value": "Team Rocket"},
{"name": "summary", "value": "We're blasting off again."},
],
"sentryAppInstallationUuid": install.uuid,
"hasSchemaFormConfig": True,
},
]
url = reverse(
"sentry-api-0-project-rules",
kwargs={"organization_slug": project.organization.slug, "project_slug": project.slug},
)
response = self.client.post(
url,
data={
"name": "my super cool rule",
"owner": f"user:{self.user.id}",
"conditions": [],
"filters": [],
"actions": actions,
"filterMatch": "any",
"actionMatch": "any",
"frequency": 30,
},
format="json",
)
assert response.status_code == 200, response.content
assert response.data["id"]
rule = Rule.objects.get(id=response.data["id"])
assert rule.data["actions"] == actions
kwargs = {
"install": install,
"fields": actions[0].get("settings"),
}
call_kwargs = mock_alert_rule_action_creator.call_args[1]
assert call_kwargs["install"].id == kwargs["install"].id
assert call_kwargs["fields"] == kwargs["fields"]
|
Ensures that Sentry Apps with schema forms (UI components)
receive a payload when an alert rule is created with them.
| 20 | 116 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_runs_alert_rule_action_creator(self, mock_alert_rule_action_creator):
self.login_as(user=self.user)
project = self.create_project()
self.create_sentry_app(
name="Pied Piper",
organization=project.organization,
schema={"elements": [self.create_alert_rule_action_schema()]},
)
install = self.create_sentry_app_installation(
slug="pied-piper", organization=project.organization
)
actions = [
{
"id": "sentry.rules.actions.notify_event_sentry_app.NotifyEventSentryAppAction",
"settings": [
{"name": "title", "value": "Team Rocket"},
{"name": "summary", "value": "We're blasting off again."},
],
"sentryAppInstallationUuid": install.uuid,
"hasSchemaFormConfig": True,
},
]
url = reverse(
"sentry-api-0-project-rules",
kwargs={"organization_slug": project.organization.slug, "project_slug": project.slug},
)
response = self.client.post(
url,
data={
"name": "my super cool rule",
"owner": f"user:{self.user.id}",
"conditions": [],
"filters": [],
"actions": actions,
"filterMatch": "any",
"actionMatch": "any",
"frequency": 30,
},
format="json",
)
assert response.status_code == 200, response.content
assert response.data["id"]
rule = Rule.objects.get(id=response.data["id"])
assert rule.data["actions"] == actions
kwargs = {
"install": install,
"fields": actions[0].get("settings"),
}
call_kwargs = mock_alert_rule_action_creator.call_args[1]
assert call_kwargs["install"].id == kwargs["install"].id
assert call_kwargs["fields"] == kwargs["fields"]
```
###Assistant :
Ensures that Sentry Apps with schema forms (UI components)
receive a payload when an alert rule is created with them.
|
1,567 | def _determine_interval(self) -> int:
intervals = {"default": self._max_interval}
for device in self._devices.values():
# Max interval if no location
if device.location is None:
continue
current_zone = run_callback_threadsafe(
self.hass.loop,
async_active_zone,
self.hass,
device.location[DEVICE_LOCATION_LATITUDE],
device.location[DEVICE_LOCATION_LONGITUDE],
device.location[DEVICE_LOCATION_HORIZONTAL_ACCURACY],
).result()
# Max interval if in zone
if current_zone is not None:
continue
zones = (
self.hass.states.get(entity_id)
for entity_id in sorted(self.hass.states.entity_ids("zone"))
)
distances = []
for zone_state in zones:
if zone_state is None:
continue
zone_state_lat = zone_state.attributes[DEVICE_LOCATION_LATITUDE]
zone_state_long = zone_state.attributes[DEVICE_LOCATION_LONGITUDE]
zone_distance = distance(
device.location[DEVICE_LOCATION_LATITUDE],
device.location[DEVICE_LOCATION_LONGITUDE],
zone_state_lat,
zone_state_long,
)
if zone_distance is not None:
distances.append(round(zone_distance / 1000, 1))
# Max interval if no zone
if not distances:
continue
mindistance = min(distances)
# Calculate out how long it would take for the device to drive
# to the nearest zone at 120 km/h:
interval = round(mindistance / 2)
# Never poll more than once per minute
interval = max(interval, 1)
if interval > 180:
# Three hour drive?
# This is far enough that they might be flying
interval = self._max_interval
if (
device.battery_level is not None
and device.battery_level <= 33
and mindistance > 3
):
# Low battery - let's check half as often
interval = interval * 2
intervals[device.name] = interval
return max(
int(min(intervals.items(), key=operator.itemgetter(1))[1]),
self._max_interval,
)
| Calculate new interval between two API fetch (in minutes). | 9 | 199 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _determine_interval(self) -> int:
intervals = {"default": self._max_interval}
for device in self._devices.values():
# Max interval if no location
if device.location is None:
continue
current_zone = run_callback_threadsafe(
self.hass.loop,
async_active_zone,
self.hass,
device.location[DEVICE_LOCATION_LATITUDE],
device.location[DEVICE_LOCATION_LONGITUDE],
device.location[DEVICE_LOCATION_HORIZONTAL_ACCURACY],
).result()
# Max interval if in zone
if current_zone is not None:
continue
zones = (
self.hass.states.get(entity_id)
for entity_id in sorted(self.hass.states.entity_ids("zone"))
)
distances = []
for zone_state in zones:
if zone_state is None:
continue
zone_state_lat = zone_state.attributes[DEVICE_LOCATION_LATITUDE]
zone_state_long = zone_state.attributes[DEVICE_LOCATION_LONGITUDE]
zone_distance = distance(
device.location[DEVICE_LOCATION_LATITUDE],
device.location[DEVICE_LOCATION_LONGITUDE],
zone_state_lat,
zone_state_long,
)
if zone_distance is not None:
distances.append(round(zone_distance / 1000, 1))
# Max interval if no zone
if not distances:
continue
mindistance = min(distances)
# Calculate out how long it would take for the device to drive
# to the nearest zone at 120 km/h:
interval = round(mindistance / 2)
# Never poll more than once per minute
interval = max(interval, 1)
if interval > 180:
# Three hour drive?
# This is far enough that they might be flying
interval = self._max_interval
if (
device.battery_level is not None
and device.battery_level <= 33
and mindistance > 3
):
# Low battery - let's check half as often
interval = interval * 2
intervals[device.name] = interval
return max(
int(min(intervals.items(), key=operator.itemgetter(1))[1]),
self._max_interval,
)
```
###Assistant : Calculate new interval between two API fetch (in minutes).
|
1,568 | def prepare_cookies(self, cookies):
if isinstance(cookies, cookielib.CookieJar):
self._cookies = cookies
else:
self._cookies = cookiejar_from_dict(cookies)
cookie_header = get_cookie_header(self._cookies, self)
if cookie_header is not None:
self.headers["Cookie"] = cookie_header
| Prepares the given HTTP cookie data.
This function eventually generates a ``Cookie`` header from the
given cookies using cookielib. Due to cookielib's design, the header
will not be regenerated if it already exists, meaning this function
can only be called once for the life of the
:class:`PreparedRequest <PreparedRequest>` object. Any subsequent calls
to ``prepare_cookies`` will have no actual effect, unless the "Cookie"
header is removed beforehand.
| 66 | 25 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def prepare_cookies(self, cookies):
if isinstance(cookies, cookielib.CookieJar):
self._cookies = cookies
else:
self._cookies = cookiejar_from_dict(cookies)
cookie_header = get_cookie_header(self._cookies, self)
if cookie_header is not None:
self.headers["Cookie"] = cookie_header
```
###Assistant : Prepares the given HTTP cookie data.
This function eventually generates a ``Cookie`` header from the
given cookies using cookielib. Due to cookielib's design, the header
will not be regenerated if it already exists, meaning this function
can only be called once for the life of the
:class:`PreparedRequest <PreparedRequest>` object. Any subsequent calls
to ``prepare_cookies`` will have no actual effect, unless the "Cookie"
header is removed beforehand.
|
1,569 | def wait_for_contains_text(self, selector, text, timeout=None):
return self._wait_for(
method=contains_text,
args=(selector, text),
timeout=timeout,
msg=f"text -> {text} not found inside element within {timeout or self._wait_timeout}s",
)
| Explicit wait until the element's text contains the expected `text`.
timeout if not set, equals to the fixture's `wait_timeout`
shortcut to `WebDriverWait` with customized `contains_text`
condition.
| 26 | 23 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def wait_for_contains_text(self, selector, text, timeout=None):
return self._wait_for(
method=contains_text,
args=(selector, text),
timeout=timeout,
msg=f"text -> {text} not found inside element within {timeout or self._wait_timeout}s",
)
```
###Assistant : Explicit wait until the element's text contains the expected `text`.
timeout if not set, equals to the fixture's `wait_timeout`
shortcut to `WebDriverWait` with customized `contains_text`
condition.
|
1,570 | def remove_member(self, label):
if label not in list(self._members):
raise ValueError("No such member exists in the Truss")
else:
self._nodes_occupied.pop(tuple([self._members[label][0], self._members[label][1]]))
self._nodes_occupied.pop(tuple([self._members[label][1], self._members[label][0]]))
self._members.pop(label)
self._internal_forces.pop(label)
|
This method removes a member from the given truss.
Parameters
==========
label: String or Symbol
The label for the member to be removed.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.add_node('C', 2, 2)
>>> t.add_member('AB', 'A', 'B')
>>> t.add_member('AC', 'A', 'C')
>>> t.add_member('BC', 'B', 'C')
>>> t.members
{'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']}
>>> t.remove_member('AC')
>>> t.members
{'AB': ['A', 'B'], 'BC': ['B', 'C']}
| 79 | 23 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def remove_member(self, label):
if label not in list(self._members):
raise ValueError("No such member exists in the Truss")
else:
self._nodes_occupied.pop(tuple([self._members[label][0], self._members[label][1]]))
self._nodes_occupied.pop(tuple([self._members[label][1], self._members[label][0]]))
self._members.pop(label)
self._internal_forces.pop(label)
```
###Assistant :
This method removes a member from the given truss.
Parameters
==========
label: String or Symbol
The label for the member to be removed.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.add_node('C', 2, 2)
>>> t.add_member('AB', 'A', 'B')
>>> t.add_member('AC', 'A', 'C')
>>> t.add_member('BC', 'B', 'C')
>>> t.members
{'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']}
>>> t.remove_member('AC')
>>> t.members
{'AB': ['A', 'B'], 'BC': ['B', 'C']}
|
1,571 | def _create_mock_app_session(*args, **kwargs):
mock_id = mock.PropertyMock(
return_value="mock_id:%s" % ServerTestCase._next_session_id
)
ServerTestCase._next_session_id += 1
mock_session = mock.MagicMock(AppSession, autospec=True, *args, **kwargs)
type(mock_session).id = mock_id
return mock_session
| Create a mock AppSession. Each mocked instance will have
its own unique ID. | 13 | 24 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _create_mock_app_session(*args, **kwargs):
mock_id = mock.PropertyMock(
return_value="mock_id:%s" % ServerTestCase._next_session_id
)
ServerTestCase._next_session_id += 1
mock_session = mock.MagicMock(AppSession, autospec=True, *args, **kwargs)
type(mock_session).id = mock_id
return mock_session
```
###Assistant : Create a mock AppSession. Each mocked instance will have
its own unique ID.
|
1,572 | def taggedsents_to_conll(sentences):
for sentence in sentences:
yield from taggedsent_to_conll(sentence)
yield "\n\n"
######################################################################
# { Test Suites
######################################################################
|
A module to convert the a POS tagged document stream
(i.e. list of list of tuples, a list of sentences) and yield lines
in CONLL format. This module yields one line per word and two newlines
for end of sentence.
>>> from nltk import word_tokenize, sent_tokenize, pos_tag
>>> text = "This is a foobar sentence. Is that right?"
>>> sentences = [pos_tag(word_tokenize(sent)) for sent in sent_tokenize(text)]
>>> for line in taggedsents_to_conll(sentences): # doctest: +NORMALIZE_WHITESPACE
... if line:
... print(line, end="")
1 This _ DT DT _ 0 a _ _
2 is _ VBZ VBZ _ 0 a _ _
3 a _ DT DT _ 0 a _ _
4 foobar _ JJ JJ _ 0 a _ _
5 sentence _ NN NN _ 0 a _ _
6 . _ . . _ 0 a _ _
<BLANKLINE>
<BLANKLINE>
1 Is _ VBZ VBZ _ 0 a _ _
2 that _ IN IN _ 0 a _ _
3 right _ NN NN _ 0 a _ _
4 ? _ . . _ 0 a _ _
<BLANKLINE>
<BLANKLINE>
:param sentences: Input sentences to parse
:type sentence: list(list(tuple(str, str)))
:rtype: iter(str)
:return: a generator yielding sentences in CONLL format.
| 204 | 17 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def taggedsents_to_conll(sentences):
for sentence in sentences:
yield from taggedsent_to_conll(sentence)
yield "\n\n"
######################################################################
# { Test Suites
######################################################################
```
###Assistant :
A module to convert the a POS tagged document stream
(i.e. list of list of tuples, a list of sentences) and yield lines
in CONLL format. This module yields one line per word and two newlines
for end of sentence.
>>> from nltk import word_tokenize, sent_tokenize, pos_tag
>>> text = "This is a foobar sentence. Is that right?"
>>> sentences = [pos_tag(word_tokenize(sent)) for sent in sent_tokenize(text)]
>>> for line in taggedsents_to_conll(sentences): # doctest: +NORMALIZE_WHITESPACE
... if line:
... print(line, end="")
1 This _ DT DT _ 0 a _ _
2 is _ VBZ VBZ _ 0 a _ _
3 a _ DT DT _ 0 a _ _
4 foobar _ JJ JJ _ 0 a _ _
5 sentence _ NN NN _ 0 a _ _
6 . _ . . _ 0 a _ _
<BLANKLINE>
<BLANKLINE>
1 Is _ VBZ VBZ _ 0 a _ _
2 that _ IN IN _ 0 a _ _
3 right _ NN NN _ 0 a _ _
4 ? _ . . _ 0 a _ _
<BLANKLINE>
<BLANKLINE>
:param sentences: Input sentences to parse
:type sentence: list(list(tuple(str, str)))
:rtype: iter(str)
:return: a generator yielding sentences in CONLL format.
|
1,573 | def _get_input_shape(self):
arch = self.config["enc_architecture"]
enforce_size = _MODEL_MAPPING[arch].get("enforce_for_weights", False)
default_size = _MODEL_MAPPING[arch]["default_size"]
scaling = self.config["enc_scaling"] / 100
min_size = _MODEL_MAPPING[arch].get("min_size", 32)
size = int(max(min_size, min(default_size, ((default_size * scaling) // 16) * 16)))
if self.config["enc_load_weights"] and enforce_size and scaling != 1.0:
logger.warning("%s requires input size to be %spx when loading imagenet weights. "
"Adjusting input size from %spx to %spx",
arch, default_size, size, default_size)
retval = (default_size, default_size, 3)
else:
retval = (size, size, 3)
logger.debug("Encoder input set to: %s", retval)
return retval
| Obtain the input shape for the model.
Input shape is calculated from the selected Encoder's input size, scaled to the user
selected Input Scaling, rounded down to the nearest 16 pixels.
Notes
-----
Some models (NasNet) require the input size to be of a certain dimension if loading
imagenet weights. In these instances resize inputs and raise warning message
Returns
-------
tuple
The shape tuple for the input size to the Phaze-A model
| 73 | 82 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _get_input_shape(self):
arch = self.config["enc_architecture"]
enforce_size = _MODEL_MAPPING[arch].get("enforce_for_weights", False)
default_size = _MODEL_MAPPING[arch]["default_size"]
scaling = self.config["enc_scaling"] / 100
min_size = _MODEL_MAPPING[arch].get("min_size", 32)
size = int(max(min_size, min(default_size, ((default_size * scaling) // 16) * 16)))
if self.config["enc_load_weights"] and enforce_size and scaling != 1.0:
logger.warning("%s requires input size to be %spx when loading imagenet weights. "
"Adjusting input size from %spx to %spx",
arch, default_size, size, default_size)
retval = (default_size, default_size, 3)
else:
retval = (size, size, 3)
logger.debug("Encoder input set to: %s", retval)
return retval
```
###Assistant : Obtain the input shape for the model.
Input shape is calculated from the selected Encoder's input size, scaled to the user
selected Input Scaling, rounded down to the nearest 16 pixels.
Notes
-----
Some models (NasNet) require the input size to be of a certain dimension if loading
imagenet weights. In these instances resize inputs and raise warning message
Returns
-------
tuple
The shape tuple for the input size to the Phaze-A model
|
1,574 | def get_form_options(self):
options = {}
if not getattr(self.widget_overrides, "is_original_method", False):
warn(
"The `widget_overrides` method (on %r) is deprecated; "
"these should be returned from `get_form_options` as a "
"`widgets` item instead." % type(self),
category=RemovedInWagtail219Warning,
)
options["widgets"] = self.widget_overrides()
if not getattr(self.required_fields, "is_original_method", False):
warn(
"The `required_fields` method (on %r) is deprecated; "
"these should be returned from `get_form_options` as a "
"`fields` item instead." % type(self),
category=RemovedInWagtail219Warning,
)
options["fields"] = self.required_fields()
if not getattr(self.required_formsets, "is_original_method", False):
warn(
"The `required_formsets` method (on %r) is deprecated; "
"these should be returned from `get_form_options` as a "
"`formsets` item instead." % type(self),
category=RemovedInWagtail219Warning,
)
options["formsets"] = self.required_formsets()
if not getattr(self.field_permissions, "is_original_method", False):
warn(
"The `field_permissions` method (on %r) is deprecated; "
"these should be returned from `get_form_options` as a "
"`field_permissions` item instead." % type(self),
category=RemovedInWagtail219Warning,
)
options["field_permissions"] = self.field_permissions()
return options
# RemovedInWagtail219Warning - edit handlers should override get_form_options instead |
Return a dictionary of attributes such as 'fields', 'formsets' and 'widgets'
which should be incorporated into the form class definition to generate a form
that this EditHandler can use.
This will only be called after binding to a model (i.e. self.model is available).
| 43 | 148 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_form_options(self):
options = {}
if not getattr(self.widget_overrides, "is_original_method", False):
warn(
"The `widget_overrides` method (on %r) is deprecated; "
"these should be returned from `get_form_options` as a "
"`widgets` item instead." % type(self),
category=RemovedInWagtail219Warning,
)
options["widgets"] = self.widget_overrides()
if not getattr(self.required_fields, "is_original_method", False):
warn(
"The `required_fields` method (on %r) is deprecated; "
"these should be returned from `get_form_options` as a "
"`fields` item instead." % type(self),
category=RemovedInWagtail219Warning,
)
options["fields"] = self.required_fields()
if not getattr(self.required_formsets, "is_original_method", False):
warn(
"The `required_formsets` method (on %r) is deprecated; "
"these should be returned from `get_form_options` as a "
"`formsets` item instead." % type(self),
category=RemovedInWagtail219Warning,
)
options["formsets"] = self.required_formsets()
if not getattr(self.field_permissions, "is_original_method", False):
warn(
"The `field_permissions` method (on %r) is deprecated; "
"these should be returned from `get_form_options` as a "
"`field_permissions` item instead." % type(self),
category=RemovedInWagtail219Warning,
)
options["field_permissions"] = self.field_permissions()
return options
# RemovedInWagtail219Warning - edit handlers should override get_form_options instead
```
###Assistant :
Return a dictionary of attributes such as 'fields', 'formsets' and 'widgets'
which should be incorporated into the form class definition to generate a form
that this EditHandler can use.
This will only be called after binding to a model (i.e. self.model is available).
|
1,575 | def evaluate_links(self, link_evaluator, links):
# type: (LinkEvaluator, Iterable[Link]) -> List[InstallationCandidate]
candidates = []
for link in self._sort_links(links):
candidate = self.get_install_candidate(link_evaluator, link)
if candidate is not None:
candidates.append(candidate)
return candidates
|
Convert links that are candidates to InstallationCandidate objects.
| 8 | 29 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def evaluate_links(self, link_evaluator, links):
# type: (LinkEvaluator, Iterable[Link]) -> List[InstallationCandidate]
candidates = []
for link in self._sort_links(links):
candidate = self.get_install_candidate(link_evaluator, link)
if candidate is not None:
candidates.append(candidate)
return candidates
```
###Assistant :
Convert links that are candidates to InstallationCandidate objects.
|
1,576 | def columnarize(self):
if len(self.columns) != 1 or (
len(self.index) == 1 and self.index[0] == MODIN_UNNAMED_SERIES_LABEL
):
return self.transpose()
return self
|
Transpose this QueryCompiler if it has a single row but multiple columns.
This method should be called for QueryCompilers representing a Series object,
i.e. ``self.is_series_like()`` should be True.
Returns
-------
BaseQueryCompiler
Transposed new QueryCompiler or self.
| 36 | 20 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def columnarize(self):
if len(self.columns) != 1 or (
len(self.index) == 1 and self.index[0] == MODIN_UNNAMED_SERIES_LABEL
):
return self.transpose()
return self
```
###Assistant :
Transpose this QueryCompiler if it has a single row but multiple columns.
This method should be called for QueryCompilers representing a Series object,
i.e. ``self.is_series_like()`` should be True.
Returns
-------
BaseQueryCompiler
Transposed new QueryCompiler or self.
|
1,577 | def get_formatted_file_tags(self):
# type: () -> List[str]
return sorted(str(tag) for tag in self.file_tags)
| Return the wheel's tags as a sorted list of strings. | 10 | 13 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_formatted_file_tags(self):
# type: () -> List[str]
return sorted(str(tag) for tag in self.file_tags)
```
###Assistant : Return the wheel's tags as a sorted list of strings.
|
1,578 | def test_python_render():
syntax = Panel.fit(
Syntax(
CODE,
lexer="python",
line_numbers=True,
line_range=(2, 10),
theme="monokai",
code_width=60,
word_wrap=True,
),
padding=0,
)
rendered_syntax = render(syntax)
print(repr(rendered_syntax))
expected = '╭─────────────────────────────────────────────────────────────────╮\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 2 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;230;219;116;48;2;39;40;34m\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 3 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34miter_values\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;249;38;114;48;2;39;40;34m=\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34miter\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m(\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mvalues\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m)\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 4 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mtry\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m:\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 5 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mprevious_value\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;249;38;114;48;2;39;40;34m=\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mnext\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m(\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34miter_values\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m)\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 6 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mexcept\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;166;226;46;48;2;39;40;34mStopIteration\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m:\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 7 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mreturn\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 8 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mfirst\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;249;38;114;48;2;39;40;34m=\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mTrue\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 9 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mfor\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mvalue\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;249;38;114;48;2;39;40;34min\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34miter_values\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m:\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m10 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34myield\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mfirst\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m,\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mFalse\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m,\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mprevious_value\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n╰─────────────────────────────────────────────────────────────────╯\n'
assert rendered_syntax == expected
| Iterate and generate a tuple with a flag for first \x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[48;2;39;40;34m \x1b[0m\x1b[38;2;230;219;116;48;2;39;40;34mand last value. | 15 | 85 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_python_render():
syntax = Panel.fit(
Syntax(
CODE,
lexer="python",
line_numbers=True,
line_range=(2, 10),
theme="monokai",
code_width=60,
word_wrap=True,
),
padding=0,
)
rendered_syntax = render(syntax)
print(repr(rendered_syntax))
expected = '╭─────────────────────────────────────────────────────────────────╮\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 2 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;230;219;116;48;2;39;40;34m\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 3 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34miter_values\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;249;38;114;48;2;39;40;34m=\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34miter\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m(\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mvalues\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m)\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 4 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mtry\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m:\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 5 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mprevious_value\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;249;38;114;48;2;39;40;34m=\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mnext\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m(\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34miter_values\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m)\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 6 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mexcept\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;166;226;46;48;2;39;40;34mStopIteration\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m:\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 7 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mreturn\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 8 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mfirst\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;249;38;114;48;2;39;40;34m=\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mTrue\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m 9 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mfor\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mvalue\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;249;38;114;48;2;39;40;34min\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34miter_values\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m:\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[1;38;2;227;227;221;48;2;39;40;34m \x1b[0m\x1b[38;2;101;102;96;48;2;39;40;34m10 \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34myield\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mfirst\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m,\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;102;217;239;48;2;39;40;34mFalse\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m,\x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34m \x1b[0m\x1b[38;2;248;248;242;48;2;39;40;34mprevious_value\x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n╰─────────────────────────────────────────────────────────────────╯\n'
assert rendered_syntax == expected
```
###Assistant : Iterate and generate a tuple with a flag for first \x1b[0m\x1b[48;2;39;40;34m \x1b[0m│\n│\x1b[48;2;39;40;34m \x1b[0m\x1b[38;2;230;219;116;48;2;39;40;34mand last value.
|
1,579 | def test_state_changes_during_period_multiple_entities_single_test(hass_recorder):
hass = hass_recorder()
start = dt_util.utcnow()
test_entites = {f"sensor.{i}": str(i) for i in range(30)}
for entity_id, value in test_entites.items():
hass.states.set(entity_id, value)
wait_recording_done(hass)
end = dt_util.utcnow()
hist = history.state_changes_during_period(hass, start, end, None)
for entity_id, value in test_entites.items():
hist[entity_id][0].state == value
for entity_id, value in test_entites.items():
hist = history.state_changes_during_period(hass, start, end, entity_id)
assert len(hist) == 1
hist[entity_id][0].state == value
hist = history.state_changes_during_period(hass, start, end, None)
for entity_id, value in test_entites.items():
hist[entity_id][0].state == value
| Test state change during period with multiple entities in the same test.
This test ensures the sqlalchemy query cache does not
generate incorrect results.
| 24 | 73 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_state_changes_during_period_multiple_entities_single_test(hass_recorder):
hass = hass_recorder()
start = dt_util.utcnow()
test_entites = {f"sensor.{i}": str(i) for i in range(30)}
for entity_id, value in test_entites.items():
hass.states.set(entity_id, value)
wait_recording_done(hass)
end = dt_util.utcnow()
hist = history.state_changes_during_period(hass, start, end, None)
for entity_id, value in test_entites.items():
hist[entity_id][0].state == value
for entity_id, value in test_entites.items():
hist = history.state_changes_during_period(hass, start, end, entity_id)
assert len(hist) == 1
hist[entity_id][0].state == value
hist = history.state_changes_during_period(hass, start, end, None)
for entity_id, value in test_entites.items():
hist[entity_id][0].state == value
```
###Assistant : Test state change during period with multiple entities in the same test.
This test ensures the sqlalchemy query cache does not
generate incorrect results.
|
1,580 | def O(self): # NOQA: E743, E741
if self._no_timezone_or_datetime_is_ambiguous_or_imaginary:
return ""
seconds = self.Z()
sign = "-" if seconds < 0 else "+"
seconds = abs(seconds)
return "%s%02d%02d" % (sign, seconds // 3600, (seconds // 60) % 60)
|
Difference to Greenwich time in hours; e.g. '+0200', '-0430'.
If timezone information is not available, return an empty string.
| 19 | 37 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def O(self): # NOQA: E743, E741
if self._no_timezone_or_datetime_is_ambiguous_or_imaginary:
return ""
seconds = self.Z()
sign = "-" if seconds < 0 else "+"
seconds = abs(seconds)
return "%s%02d%02d" % (sign, seconds // 3600, (seconds // 60) % 60)
```
###Assistant :
Difference to Greenwich time in hours; e.g. '+0200', '-0430'.
If timezone information is not available, return an empty string.
|
1,581 | def convert_mem_str_to_bytes(mem_str):
# If there is no suffix, the memory sourced from the request is in bytes
if mem_str.isdigit():
return int(mem_str)
conversions = {
'Ei': lambda x: x * 2**60,
'E': lambda x: x * 10**18,
'Pi': lambda x: x * 2**50,
'P': lambda x: x * 10**15,
'Ti': lambda x: x * 2**40,
'T': lambda x: x * 10**12,
'Gi': lambda x: x * 2**30,
'G': lambda x: x * 10**9,
'Mi': lambda x: x * 2**20,
'M': lambda x: x * 10**6,
'Ki': lambda x: x * 2**10,
'K': lambda x: x * 10**3,
}
mem = 0
mem_unit = None
for i, char in enumerate(mem_str):
if not char.isdigit():
mem_unit = mem_str[i:]
mem = int(mem_str[:i])
break
if not mem_unit or mem_unit not in conversions.keys():
error = f"Unsupported value for SYSTEM_TASK_ABS_MEM: {mem_str}, memory must be expressed in bytes or with known suffix: {conversions.keys()}. Falling back to 1 byte"
logger.warning(error)
return 1
return max(1, conversions[mem_unit](mem))
| Convert string with suffix indicating units to memory in bytes (base 2)
Useful for dealing with memory setting that may be expressed in units compatible with
kubernetes.
See https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory
| 29 | 155 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def convert_mem_str_to_bytes(mem_str):
# If there is no suffix, the memory sourced from the request is in bytes
if mem_str.isdigit():
return int(mem_str)
conversions = {
'Ei': lambda x: x * 2**60,
'E': lambda x: x * 10**18,
'Pi': lambda x: x * 2**50,
'P': lambda x: x * 10**15,
'Ti': lambda x: x * 2**40,
'T': lambda x: x * 10**12,
'Gi': lambda x: x * 2**30,
'G': lambda x: x * 10**9,
'Mi': lambda x: x * 2**20,
'M': lambda x: x * 10**6,
'Ki': lambda x: x * 2**10,
'K': lambda x: x * 10**3,
}
mem = 0
mem_unit = None
for i, char in enumerate(mem_str):
if not char.isdigit():
mem_unit = mem_str[i:]
mem = int(mem_str[:i])
break
if not mem_unit or mem_unit not in conversions.keys():
error = f"Unsupported value for SYSTEM_TASK_ABS_MEM: {mem_str}, memory must be expressed in bytes or with known suffix: {conversions.keys()}. Falling back to 1 byte"
logger.warning(error)
return 1
return max(1, conversions[mem_unit](mem))
```
###Assistant : Convert string with suffix indicating units to memory in bytes (base 2)
Useful for dealing with memory setting that may be expressed in units compatible with
kubernetes.
See https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory
|
1,582 | def sync_status_outbound(self, external_issue, is_resolved, project_id, **kwargs):
client = self.get_client()
jira_issue = client.get_issue(external_issue.key)
jira_project = jira_issue["fields"]["project"]
try:
external_project = IntegrationExternalProject.objects.get(
external_id=jira_project["id"],
organization_integration_id__in=OrganizationIntegration.objects.filter(
organization_id=external_issue.organization_id,
integration_id=external_issue.integration_id,
),
)
except IntegrationExternalProject.DoesNotExist:
return
jira_status = (
external_project.resolved_status if is_resolved else external_project.unresolved_status
)
# don't bother updating if it's already the status we'd change it to
if jira_issue["fields"]["status"]["id"] == jira_status:
return
try:
transitions = client.get_transitions(external_issue.key)
except ApiHostError:
raise IntegrationError("Could not reach host to get transitions.")
try:
transition = [t for t in transitions if t.get("to", {}).get("id") == jira_status][0]
except IndexError:
# TODO(jess): Email for failure
logger.warning(
"jira.status-sync-fail",
extra={
"organization_id": external_issue.organization_id,
"integration_id": external_issue.integration_id,
"issue_key": external_issue.key,
},
)
return
client.transition_issue(external_issue.key, transition["id"])
|
Propagate a sentry issue's status to a linked issue's status.
| 10 | 103 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def sync_status_outbound(self, external_issue, is_resolved, project_id, **kwargs):
client = self.get_client()
jira_issue = client.get_issue(external_issue.key)
jira_project = jira_issue["fields"]["project"]
try:
external_project = IntegrationExternalProject.objects.get(
external_id=jira_project["id"],
organization_integration_id__in=OrganizationIntegration.objects.filter(
organization_id=external_issue.organization_id,
integration_id=external_issue.integration_id,
),
)
except IntegrationExternalProject.DoesNotExist:
return
jira_status = (
external_project.resolved_status if is_resolved else external_project.unresolved_status
)
# don't bother updating if it's already the status we'd change it to
if jira_issue["fields"]["status"]["id"] == jira_status:
return
try:
transitions = client.get_transitions(external_issue.key)
except ApiHostError:
raise IntegrationError("Could not reach host to get transitions.")
try:
transition = [t for t in transitions if t.get("to", {}).get("id") == jira_status][0]
except IndexError:
# TODO(jess): Email for failure
logger.warning(
"jira.status-sync-fail",
extra={
"organization_id": external_issue.organization_id,
"integration_id": external_issue.integration_id,
"issue_key": external_issue.key,
},
)
return
client.transition_issue(external_issue.key, transition["id"])
```
###Assistant :
Propagate a sentry issue's status to a linked issue's status.
|
1,583 | def _sci(self, im):
_api.check_isinstance(
(mpl.contour.ContourSet, mcoll.Collection, mimage.AxesImage),
im=im)
if isinstance(im, mpl.contour.ContourSet):
if im.collections[0] not in self._children:
raise ValueError("ContourSet must be in current Axes")
elif im not in self._children:
raise ValueError("Argument must be an image, collection, or "
"ContourSet in this Axes")
self._current_image = im
|
Set the current image.
This image will be the target of colormap functions like
``pyplot.viridis``, and other functions such as `~.pyplot.clim`. The
current image is an attribute of the current Axes.
| 31 | 44 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _sci(self, im):
_api.check_isinstance(
(mpl.contour.ContourSet, mcoll.Collection, mimage.AxesImage),
im=im)
if isinstance(im, mpl.contour.ContourSet):
if im.collections[0] not in self._children:
raise ValueError("ContourSet must be in current Axes")
elif im not in self._children:
raise ValueError("Argument must be an image, collection, or "
"ContourSet in this Axes")
self._current_image = im
```
###Assistant :
Set the current image.
This image will be the target of colormap functions like
``pyplot.viridis``, and other functions such as `~.pyplot.clim`. The
current image is an attribute of the current Axes.
|
1,584 | def __dask_postpersist__(self) -> tuple[PostPersistCallable, tuple]:
raise NotImplementedError("Inheriting class must implement this method.")
| Rebuilder function and optional arguments to contruct a persisted collection.
Returns
-------
PostPersistCallable
Callable that rebuilds the collection. The signature
should be
``rebuild(dsk: Mapping, *args: Any, rename: Mapping[str, str] | None)``.
The callable should return an equivalent Dask collection
with the same keys as `self`, but with results that are
computed through a different graph. In the case of
:py:func:`dask.persist`, the new graph will have just the
output keys and the values already computed.
tuple[Any, ...]
Optional arugments passed to the rebuild callable. If no
additional arguments are to be passed then this must be an
empty tuple.
| 98 | 12 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def __dask_postpersist__(self) -> tuple[PostPersistCallable, tuple]:
raise NotImplementedError("Inheriting class must implement this method.")
```
###Assistant : Rebuilder function and optional arguments to contruct a persisted collection.
Returns
-------
PostPersistCallable
Callable that rebuilds the collection. The signature
should be
``rebuild(dsk: Mapping, *args: Any, rename: Mapping[str, str] | None)``.
The callable should return an equivalent Dask collection
with the same keys as `self`, but with results that are
computed through a different graph. In the case of
:py:func:`dask.persist`, the new graph will have just the
output keys and the values already computed.
tuple[Any, ...]
Optional arugments passed to the rebuild callable. If no
additional arguments are to be passed then this must be an
empty tuple.
|
1,585 | def execute():
for doctype in ("Sales Order Item", "Bin"):
frappe.reload_doctype(doctype)
repost_for = frappe.db.sql()
for item_code, warehouse in repost_for:
if not (item_code and warehouse):
continue
update_bin_qty(item_code, warehouse, {
"reserved_qty": get_reserved_qty(item_code, warehouse)
})
frappe.db.sql()
|
select
distinct item_code, warehouse
from
(
(
select distinct item_code, warehouse
from `tabSales Order Item` where docstatus=1
) UNION (
select distinct item_code, warehouse
from `tabPacked Item` where docstatus=1 and parenttype='Sales Order'
)
) so_item
where
exists(select name from tabItem where name=so_item.item_code and ifnull(is_stock_item, 0)=1)
delete from tabBin
where exists(
select name from tabItem where name=tabBin.item_code and ifnull(is_stock_item, 0) = 0
)
| 62 | 32 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def execute():
for doctype in ("Sales Order Item", "Bin"):
frappe.reload_doctype(doctype)
repost_for = frappe.db.sql()
for item_code, warehouse in repost_for:
if not (item_code and warehouse):
continue
update_bin_qty(item_code, warehouse, {
"reserved_qty": get_reserved_qty(item_code, warehouse)
})
frappe.db.sql()
```
###Assistant :
select
distinct item_code, warehouse
from
(
(
select distinct item_code, warehouse
from `tabSales Order Item` where docstatus=1
) UNION (
select distinct item_code, warehouse
from `tabPacked Item` where docstatus=1 and parenttype='Sales Order'
)
) so_item
where
exists(select name from tabItem where name=so_item.item_code and ifnull(is_stock_item, 0)=1)
delete from tabBin
where exists(
select name from tabItem where name=tabBin.item_code and ifnull(is_stock_item, 0) = 0
)
|
1,586 | def rename_group_tables_reverse(apps, schema_editor):
Group = apps.get_model("auth", "Group")
schema_editor.alter_db_table(
Group,
"account_group",
"auth_group",
)
PermissionGroup = Group.permissions.through
schema_editor.alter_db_table(
PermissionGroup,
"account_group_permissions",
"auth_group_permissions",
)
RENAME_CONSTRAINTS_AND_INDEX_REVERSE =
DROP_OLD_CONSTRAINTS_REVERSE_FROM_0072 =
DROP_OLD_CONSTRAINTS_REVERSE_FROM_APP_0018 =
|
ALTER TABLE account_group RENAME CONSTRAINT account_group_pkey
TO auth_group_pkey;
ALTER TABLE account_group RENAME CONSTRAINT account_group_name_key
TO auth_group_name_key;
ALTER INDEX IF EXISTS account_group_name_034e9f3f_like
RENAME TO auth_group_name_a6ea08ec_like;
ALTER TABLE auth_group_permissions
ADD CONSTRAINT auth_group_permissions_group_id_permission_id_0cd325b0_uniq
UNIQUE (group_id, permission_id);
ALTER TABLE auth_group_permissions
ADD CONSTRAINT auth_group_permissions_group_id_b120cbf9_fk_auth_group_id
FOREIGN KEY (group_id) REFERENCES auth_group (id) DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE auth_group_permissions
ADD CONSTRAINT auth_group_permissio_permission_id_84c5c92e_fk_auth_perm
FOREIGN KEY (permission_id) REFERENCES auth_permission (id)
DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE account_user_groups
ADD CONSTRAINT userprofile_user_groups_group_id_c7eec74e_fk_auth_group_id
FOREIGN KEY (group_id) REFERENCES auth_group (id) DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE account_user_user_permissions
ADD CONSTRAINT userprofile_user_use_permission_id_1caa8a71_fk_auth_perm
FOREIGN KEY (permission_id) REFERENCES auth_permission (id)
DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE app_app_permissions
ADD CONSTRAINT account_serviceaccou_permission_id_449791f0_fk_auth_perm
FOREIGN KEY (permission_id) REFERENCES auth_permission (id)
DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE app_appextension_permissions
ADD CONSTRAINT app_appextension_per_permission_id_cb6c3ce0_fk_auth_perm
FOREIGN KEY (permission_id) REFERENCES auth_permission (id)
DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE app_appinstallation_permissions
ADD CONSTRAINT app_appinstallation__permission_id_4ee9f6c8_fk_auth_perm
FOREIGN KEY (permission_id) REFERENCES auth_permission (id)
DEFERRABLE INITIALLY DEFERRED;
| 138 | 26 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def rename_group_tables_reverse(apps, schema_editor):
Group = apps.get_model("auth", "Group")
schema_editor.alter_db_table(
Group,
"account_group",
"auth_group",
)
PermissionGroup = Group.permissions.through
schema_editor.alter_db_table(
PermissionGroup,
"account_group_permissions",
"auth_group_permissions",
)
RENAME_CONSTRAINTS_AND_INDEX_REVERSE =
DROP_OLD_CONSTRAINTS_REVERSE_FROM_0072 =
DROP_OLD_CONSTRAINTS_REVERSE_FROM_APP_0018 =
```
###Assistant :
ALTER TABLE account_group RENAME CONSTRAINT account_group_pkey
TO auth_group_pkey;
ALTER TABLE account_group RENAME CONSTRAINT account_group_name_key
TO auth_group_name_key;
ALTER INDEX IF EXISTS account_group_name_034e9f3f_like
RENAME TO auth_group_name_a6ea08ec_like;
ALTER TABLE auth_group_permissions
ADD CONSTRAINT auth_group_permissions_group_id_permission_id_0cd325b0_uniq
UNIQUE (group_id, permission_id);
ALTER TABLE auth_group_permissions
ADD CONSTRAINT auth_group_permissions_group_id_b120cbf9_fk_auth_group_id
FOREIGN KEY (group_id) REFERENCES auth_group (id) DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE auth_group_permissions
ADD CONSTRAINT auth_group_permissio_permission_id_84c5c92e_fk_auth_perm
FOREIGN KEY (permission_id) REFERENCES auth_permission (id)
DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE account_user_groups
ADD CONSTRAINT userprofile_user_groups_group_id_c7eec74e_fk_auth_group_id
FOREIGN KEY (group_id) REFERENCES auth_group (id) DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE account_user_user_permissions
ADD CONSTRAINT userprofile_user_use_permission_id_1caa8a71_fk_auth_perm
FOREIGN KEY (permission_id) REFERENCES auth_permission (id)
DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE app_app_permissions
ADD CONSTRAINT account_serviceaccou_permission_id_449791f0_fk_auth_perm
FOREIGN KEY (permission_id) REFERENCES auth_permission (id)
DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE app_appextension_permissions
ADD CONSTRAINT app_appextension_per_permission_id_cb6c3ce0_fk_auth_perm
FOREIGN KEY (permission_id) REFERENCES auth_permission (id)
DEFERRABLE INITIALLY DEFERRED;
ALTER TABLE app_appinstallation_permissions
ADD CONSTRAINT app_appinstallation__permission_id_4ee9f6c8_fk_auth_perm
FOREIGN KEY (permission_id) REFERENCES auth_permission (id)
DEFERRABLE INITIALLY DEFERRED;
|
1,587 | def test_session_is_accessed(self):
response = self.client.get("/auth_processor_attr_access/")
self.assertContains(response, "Session accessed")
|
The session is accessed if the auth context processor
is used and relevant attributes accessed.
| 15 | 8 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_session_is_accessed(self):
response = self.client.get("/auth_processor_attr_access/")
self.assertContains(response, "Session accessed")
```
###Assistant :
The session is accessed if the auth context processor
is used and relevant attributes accessed.
|
1,588 | def _find_vc2017():
root = os.environ.get("ProgramFiles(x86)") or os.environ.get("ProgramFiles")
if not root:
return None, None
try:
path = subprocess.check_output([
os.path.join(root, "Microsoft Visual Studio", "Installer", "vswhere.exe"),
"-latest",
"-prerelease",
"-requires", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64",
"-property", "installationPath",
"-products", "*",
], encoding="mbcs", errors="strict").strip()
except (subprocess.CalledProcessError, OSError, UnicodeDecodeError):
return None, None
path = os.path.join(path, "VC", "Auxiliary", "Build")
if os.path.isdir(path):
return 15, path
return None, None
PLAT_SPEC_TO_RUNTIME = {
'x86' : 'x86',
'x86_amd64' : 'x64',
'x86_arm' : 'arm',
'x86_arm64' : 'arm64'
}
| Returns "15, path" based on the result of invoking vswhere.exe
If no install is found, returns "None, None"
The version is returned to avoid unnecessarily changing the function
result. It may be ignored when the path is not None.
If vswhere.exe is not available, by definition, VS 2017 is not
installed.
| 51 | 71 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _find_vc2017():
root = os.environ.get("ProgramFiles(x86)") or os.environ.get("ProgramFiles")
if not root:
return None, None
try:
path = subprocess.check_output([
os.path.join(root, "Microsoft Visual Studio", "Installer", "vswhere.exe"),
"-latest",
"-prerelease",
"-requires", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64",
"-property", "installationPath",
"-products", "*",
], encoding="mbcs", errors="strict").strip()
except (subprocess.CalledProcessError, OSError, UnicodeDecodeError):
return None, None
path = os.path.join(path, "VC", "Auxiliary", "Build")
if os.path.isdir(path):
return 15, path
return None, None
PLAT_SPEC_TO_RUNTIME = {
'x86' : 'x86',
'x86_amd64' : 'x64',
'x86_arm' : 'arm',
'x86_arm64' : 'arm64'
}
```
###Assistant : Returns "15, path" based on the result of invoking vswhere.exe
If no install is found, returns "None, None"
The version is returned to avoid unnecessarily changing the function
result. It may be ignored when the path is not None.
If vswhere.exe is not available, by definition, VS 2017 is not
installed.
|
1,589 | def save_attributes_to_hdf5_group(group, name, data):
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
bad_attributes = [x for x in data if len(x) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"The following attributes cannot be saved to HDF5 file because they "
f"are larger than {HDF5_OBJECT_HEADER_LIMIT} bytes: {bad_attributes}"
)
data_npy = np.asarray(data)
num_chunks = 1
chunked_data = np.array_split(data_npy, num_chunks)
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data):
num_chunks += 1
chunked_data = np.array_split(data_npy, num_chunks)
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(chunked_data):
group.attrs["%s%d" % (name, chunk_id)] = chunk_data
else:
group.attrs[name] = data
| Saves attributes (data) of the specified name into the HDF5 group.
This method deals with an inherent problem of HDF5 file which is not
able to store data larger than HDF5_OBJECT_HEADER_LIMIT bytes.
Args:
group: A pointer to a HDF5 group.
name: A name of the attributes to save.
data: Attributes data to store.
Raises:
RuntimeError: If any single attribute is too large to be saved.
| 65 | 127 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def save_attributes_to_hdf5_group(group, name, data):
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
bad_attributes = [x for x in data if len(x) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"The following attributes cannot be saved to HDF5 file because they "
f"are larger than {HDF5_OBJECT_HEADER_LIMIT} bytes: {bad_attributes}"
)
data_npy = np.asarray(data)
num_chunks = 1
chunked_data = np.array_split(data_npy, num_chunks)
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data):
num_chunks += 1
chunked_data = np.array_split(data_npy, num_chunks)
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(chunked_data):
group.attrs["%s%d" % (name, chunk_id)] = chunk_data
else:
group.attrs[name] = data
```
###Assistant : Saves attributes (data) of the specified name into the HDF5 group.
This method deals with an inherent problem of HDF5 file which is not
able to store data larger than HDF5_OBJECT_HEADER_LIMIT bytes.
Args:
group: A pointer to a HDF5 group.
name: A name of the attributes to save.
data: Attributes data to store.
Raises:
RuntimeError: If any single attribute is too large to be saved.
|
1,590 | def dispatch_hook(cls, _pkt=None, *args, **kargs):
if _pkt is not None:
plen = len(_pkt)
if plen >= 2:
byte0, byte1 = struct.unpack("BB", _pkt[:2])
s = kargs.get("tls_session", None)
if byte0 not in _tls_type or byte1 != 3: # Unknown type
# Check SSLv2: either the session is already SSLv2,
# either the packet looks like one. As said above, this
# isn't 100% reliable, but Wireshark does the same
if s and (s.tls_version == 0x0002 or
s.advertised_tls_version == 0x0002) or \
(_ssl_looks_like_sslv2(_pkt) and (not s or
s.tls_version is None)):
from scapy.layers.tls.record_sslv2 import SSLv2
return SSLv2
# Not SSLv2: continuation
return _TLSEncryptedContent
# Check TLS 1.3
if s and _tls_version_check(s.tls_version, 0x0304):
_has_cipher = lambda x: (
x and not isinstance(x.cipher, Cipher_NULL)
)
if (_has_cipher(s.rcs) or _has_cipher(s.prcs)) and \
byte0 == 0x17:
from scapy.layers.tls.record_tls13 import TLS13
return TLS13
if plen < 5:
# Layer detected as TLS but too small to be a
# parsed. Scapy should not try to decode them
return _TLSEncryptedContent
return TLS
# Parsing methods
|
If the TLS class was called on raw SSLv2 data, we want to return an
SSLv2 record instance. We acknowledge the risk of SSLv2 packets with a
msglen of 0x1403, 0x1503, 0x1603 or 0x1703 which will never be casted
as SSLv2 records but TLS ones instead, but hey, we can't be held
responsible for low-minded extensibility choices.
| 57 | 165 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def dispatch_hook(cls, _pkt=None, *args, **kargs):
if _pkt is not None:
plen = len(_pkt)
if plen >= 2:
byte0, byte1 = struct.unpack("BB", _pkt[:2])
s = kargs.get("tls_session", None)
if byte0 not in _tls_type or byte1 != 3: # Unknown type
# Check SSLv2: either the session is already SSLv2,
# either the packet looks like one. As said above, this
# isn't 100% reliable, but Wireshark does the same
if s and (s.tls_version == 0x0002 or
s.advertised_tls_version == 0x0002) or \
(_ssl_looks_like_sslv2(_pkt) and (not s or
s.tls_version is None)):
from scapy.layers.tls.record_sslv2 import SSLv2
return SSLv2
# Not SSLv2: continuation
return _TLSEncryptedContent
# Check TLS 1.3
if s and _tls_version_check(s.tls_version, 0x0304):
_has_cipher = lambda x: (
x and not isinstance(x.cipher, Cipher_NULL)
)
if (_has_cipher(s.rcs) or _has_cipher(s.prcs)) and \
byte0 == 0x17:
from scapy.layers.tls.record_tls13 import TLS13
return TLS13
if plen < 5:
# Layer detected as TLS but too small to be a
# parsed. Scapy should not try to decode them
return _TLSEncryptedContent
return TLS
# Parsing methods
```
###Assistant :
If the TLS class was called on raw SSLv2 data, we want to return an
SSLv2 record instance. We acknowledge the risk of SSLv2 packets with a
msglen of 0x1403, 0x1503, 0x1603 or 0x1703 which will never be casted
as SSLv2 records but TLS ones instead, but hey, we can't be held
responsible for low-minded extensibility choices.
|
1,591 | def get_leave_period(from_date, to_date, company):
leave_period = frappe.db.sql(
,
{"from_date": from_date, "to_date": to_date, "company": company},
as_dict=1,
)
if leave_period:
return leave_period
|
select name, from_date, to_date
from `tabLeave Period`
where company=%(company)s and is_active=1
and (from_date between %(from_date)s and %(to_date)s
or to_date between %(from_date)s and %(to_date)s
or (from_date < %(from_date)s and to_date > %(to_date)s))
| 31 | 20 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def get_leave_period(from_date, to_date, company):
leave_period = frappe.db.sql(
,
{"from_date": from_date, "to_date": to_date, "company": company},
as_dict=1,
)
if leave_period:
return leave_period
```
###Assistant :
select name, from_date, to_date
from `tabLeave Period`
where company=%(company)s and is_active=1
and (from_date between %(from_date)s and %(to_date)s
or to_date between %(from_date)s and %(to_date)s
or (from_date < %(from_date)s and to_date > %(to_date)s))
|
1,592 | def rows(self) -> Iterator[Dict[str, TensorType]]:
# Do we add seq_lens=[1] to each row?
seq_lens = None if self.get(SampleBatch.SEQ_LENS) is None else np.array([1])
self_as_dict = {k: v for k, v in self.items()}
for i in range(self.count):
yield tree.map_structure_with_path(
lambda p, v: v[i] if p[0] != self.SEQ_LENS else seq_lens,
self_as_dict,
)
| Returns an iterator over data rows, i.e. dicts with column values.
Note that if `seq_lens` is set in self, we set it to [1] in the rows.
Yields:
The column values of the row in this iteration.
Examples:
>>> batch = SampleBatch({
... "a": [1, 2, 3],
... "b": [4, 5, 6],
... "seq_lens": [1, 2]
... })
>>> for row in batch.rows():
print(row)
{"a": 1, "b": 4, "seq_lens": [1]}
{"a": 2, "b": 5, "seq_lens": [1]}
{"a": 3, "b": 6, "seq_lens": [1]}
| 82 | 49 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def rows(self) -> Iterator[Dict[str, TensorType]]:
# Do we add seq_lens=[1] to each row?
seq_lens = None if self.get(SampleBatch.SEQ_LENS) is None else np.array([1])
self_as_dict = {k: v for k, v in self.items()}
for i in range(self.count):
yield tree.map_structure_with_path(
lambda p, v: v[i] if p[0] != self.SEQ_LENS else seq_lens,
self_as_dict,
)
```
###Assistant : Returns an iterator over data rows, i.e. dicts with column values.
Note that if `seq_lens` is set in self, we set it to [1] in the rows.
Yields:
The column values of the row in this iteration.
Examples:
>>> batch = SampleBatch({
... "a": [1, 2, 3],
... "b": [4, 5, 6],
... "seq_lens": [1, 2]
... })
>>> for row in batch.rows():
print(row)
{"a": 1, "b": 4, "seq_lens": [1]}
{"a": 2, "b": 5, "seq_lens": [1]}
{"a": 3, "b": 6, "seq_lens": [1]}
|
1,593 | def _dedup_weights(self, weights):
output, seen_ids = [], set()
for w in weights:
if id(w) not in seen_ids:
output.append(w)
# Track the Variable's identity to avoid __eq__ issues.
seen_ids.add(id(w))
return output
# SavedModel properties. Please see keras/saving/saved_model for details.
| Dedupe weights while maintaining order as much as possible. | 9 | 38 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _dedup_weights(self, weights):
output, seen_ids = [], set()
for w in weights:
if id(w) not in seen_ids:
output.append(w)
# Track the Variable's identity to avoid __eq__ issues.
seen_ids.add(id(w))
return output
# SavedModel properties. Please see keras/saving/saved_model for details.
```
###Assistant : Dedupe weights while maintaining order as much as possible.
|
1,594 | def ancestors_with_self(self) -> list[DOMNode]:
nodes: list[MessagePump | None] = []
add_node = nodes.append
node: MessagePump | None = self
while node is not None:
add_node(node)
node = node._parent
return cast("list[DOMNode]", nodes)
| list[DOMNode]: A list of Nodes by tracing a path all the way back to App.
Note: This is inclusive of ``self``.
| 21 | 31 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def ancestors_with_self(self) -> list[DOMNode]:
nodes: list[MessagePump | None] = []
add_node = nodes.append
node: MessagePump | None = self
while node is not None:
add_node(node)
node = node._parent
return cast("list[DOMNode]", nodes)
```
###Assistant : list[DOMNode]: A list of Nodes by tracing a path all the way back to App.
Note: This is inclusive of ``self``.
|
1,595 | def function_converter(self) -> Mapping[str, fields.MetricsFunction]:
resolve_metric_id = {
"name": "metric_id",
"fn": lambda args: self.resolve_metric(args["column"]),
}
function_converter = {
function.name: function
for function in [
# Note while the discover version of apdex, count_miserable, user_misery
# accepts arguments, because this is precomputed with tags no parameters
# are available
fields.MetricsFunction(
"apdex",
optional_args=[fields.NullableNumberRange("satisfaction", 0, None)],
snql_distribution=self._resolve_apdex_function,
default_result_type="number",
),
fields.MetricsFunction(
"avg",
required_args=[
fields.MetricArg(
"column",
allowed_columns=constants.METRIC_DURATION_COLUMNS,
)
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: Function(
"avgIf",
[
Column("value"),
Function(
"equals",
[
Column("metric_id"),
args["metric_id"],
],
),
],
alias,
),
result_type_fn=self.reflective_result_type(),
default_result_type="integer",
),
fields.MetricsFunction(
"count_miserable",
required_args=[
fields.MetricArg(
"column", allowed_columns=["user"], allow_custom_measurements=False
)
],
optional_args=[fields.NullableNumberRange("satisfaction", 0, None)],
calculated_args=[resolve_metric_id],
snql_set=self._resolve_count_miserable_function,
default_result_type="integer",
),
fields.MetricsFunction(
"count_unparameterized_transactions",
snql_distribution=lambda args, alias: Function(
"countIf",
[
Column("value"),
Function(
"and",
[
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
Function(
"equals",
[
self.builder.column("transaction"),
self.builder.resolve_tag_value("<< unparameterized >>"),
],
),
],
),
],
alias,
),
# Not yet exposed, need to add far more validation around tag&value
private=True,
default_result_type="integer",
),
fields.MetricsFunction(
"count_null_transactions",
snql_distribution=lambda args, alias: Function(
"countIf",
[
Column("value"),
Function(
"and",
[
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
Function(
"equals",
[
self.builder.column("transaction"),
"" if self.builder.tag_values_are_strings else 0,
],
),
],
),
],
alias,
),
private=True,
),
fields.MetricsFunction(
"count_has_transaction_name",
snql_distribution=lambda args, alias: Function(
"countIf",
[
Column("value"),
Function(
"and",
[
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
Function(
"and",
[
Function(
"notEquals",
[
self.builder.column("transaction"),
""
if self.builder.tag_values_are_strings
else 0,
],
),
Function(
"notEquals",
[
self.builder.column("transaction"),
self.builder.resolve_tag_value(
"<< unparameterized >>"
),
],
),
],
),
],
),
],
alias,
),
private=True,
default_result_type="integer",
),
fields.MetricsFunction(
"user_misery",
optional_args=[
fields.NullableNumberRange("satisfaction", 0, None),
fields.with_default(
constants.MISERY_ALPHA, fields.NumberRange("alpha", 0, None)
),
fields.with_default(
constants.MISERY_BETA, fields.NumberRange("beta", 0, None)
),
],
calculated_args=[],
snql_set=self._resolve_user_misery_function,
default_result_type="number",
),
fields.MetricsFunction(
"p50",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(
args, alias, 0.5
),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"p75",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(
args, alias, 0.75
),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"p90",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(
args, alias, 0.90
),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"p95",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(
args, alias, 0.95
),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"p99",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(
args, alias, 0.99
),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"p100",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(args, alias, 1),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"max",
required_args=[
fields.MetricArg("column"),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: Function(
"maxIf",
[
Column("value"),
Function("equals", [Column("metric_id"), args["metric_id"]]),
],
alias,
),
result_type_fn=self.reflective_result_type(),
),
fields.MetricsFunction(
"min",
required_args=[
fields.MetricArg("column"),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: Function(
"minIf",
[
Column("value"),
Function("equals", [Column("metric_id"), args["metric_id"]]),
],
alias,
),
result_type_fn=self.reflective_result_type(),
),
fields.MetricsFunction(
"sum",
required_args=[
fields.MetricArg("column"),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: Function(
"sumIf",
[
Column("value"),
Function("equals", [Column("metric_id"), args["metric_id"]]),
],
alias,
),
result_type_fn=self.reflective_result_type(),
),
fields.MetricsFunction(
"sumIf",
required_args=[
fields.ColumnTagArg("if_col"),
fields.FunctionArg("if_val"),
],
calculated_args=[
{
"name": "resolved_val",
"fn": lambda args: self.builder.resolve_tag_value(args["if_val"]),
}
],
snql_counter=lambda args, alias: Function(
"sumIf",
[
Column("value"),
Function("equals", [args["if_col"], args["resolved_val"]]),
],
alias,
),
default_result_type="integer",
),
fields.MetricsFunction(
"percentile",
required_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
fields.NumberRange("percentile", 0, 1),
],
calculated_args=[resolve_metric_id],
snql_distribution=self._resolve_percentile,
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"count_unique",
required_args=[
fields.MetricArg(
"column", allowed_columns=["user"], allow_custom_measurements=False
)
],
calculated_args=[resolve_metric_id],
snql_set=lambda args, alias: Function(
"uniqIf",
[
Column("value"),
Function("equals", [Column("metric_id"), args["metric_id"]]),
],
alias,
),
default_result_type="integer",
),
fields.MetricsFunction(
"uniq",
snql_set=lambda args, alias: Function(
"uniq",
[Column("value")],
alias,
),
),
fields.MetricsFunction(
"uniqIf",
required_args=[
fields.ColumnTagArg("if_col"),
fields.FunctionArg("if_val"),
],
calculated_args=[
{
"name": "resolved_val",
"fn": lambda args: self.builder.resolve_tag_value(args["if_val"]),
}
],
snql_set=lambda args, alias: Function(
"uniqIf",
[
Column("value"),
Function("equals", [args["if_col"], args["resolved_val"]]),
],
alias,
),
default_result_type="integer",
),
fields.MetricsFunction(
"count",
snql_distribution=lambda args, alias: Function(
"countIf",
[
Column("value"),
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
],
alias,
),
default_result_type="integer",
),
fields.MetricsFunction(
"count_web_vitals",
required_args=[
fields.MetricArg(
"column",
allowed_columns=[
"measurements.fp",
"measurements.fcp",
"measurements.lcp",
"measurements.fid",
"measurements.cls",
],
allow_custom_measurements=False,
),
fields.SnQLStringArg(
"quality", allowed_strings=["good", "meh", "poor", "any"]
),
],
calculated_args=[resolve_metric_id],
snql_distribution=self._resolve_web_vital_function,
default_result_type="integer",
),
fields.MetricsFunction(
"epm",
snql_distribution=lambda args, alias: Function(
"divide",
[
Function(
"countIf",
[
Column("value"),
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
],
),
Function("divide", [args["interval"], 60]),
],
alias,
),
optional_args=[fields.IntervalDefault("interval", 1, None)],
default_result_type="number",
),
fields.MetricsFunction(
"eps",
snql_distribution=lambda args, alias: Function(
"divide",
[
Function(
"countIf",
[
Column("value"),
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
],
),
args["interval"],
],
alias,
),
optional_args=[fields.IntervalDefault("interval", 1, None)],
default_result_type="number",
),
fields.MetricsFunction(
"failure_count",
snql_distribution=self._resolve_failure_count,
default_result_type="integer",
),
fields.MetricsFunction(
"failure_rate",
snql_distribution=lambda args, alias: Function(
"divide",
[
self._resolve_failure_count(args),
Function(
"countIf",
[
Column("value"),
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
],
),
],
alias,
),
default_result_type="percentage",
),
fields.MetricsFunction(
"histogram",
required_args=[fields.MetricArg("column")],
calculated_args=[resolve_metric_id],
snql_distribution=self._resolve_histogram_function,
default_result_type="number",
private=True,
),
]
}
for alias, name in constants.FUNCTION_ALIASES.items():
if name in function_converter:
function_converter[alias] = function_converter[name].alias_as(alias)
return function_converter
# Field Aliases | While the final functions in clickhouse must have their -Merge combinators in order to function, we don't
need to add them here since snuba has a FunctionMapper that will add it for us. Basically it turns expressions
like quantiles(0.9)(value) into quantilesMerge(0.9)(percentiles)
Make sure to update METRIC_FUNCTION_LIST_BY_TYPE when adding functions here, can't be a dynamic list since the
Metric Layer will actually handle which dataset each function goes to
| 68 | 747 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def function_converter(self) -> Mapping[str, fields.MetricsFunction]:
resolve_metric_id = {
"name": "metric_id",
"fn": lambda args: self.resolve_metric(args["column"]),
}
function_converter = {
function.name: function
for function in [
# Note while the discover version of apdex, count_miserable, user_misery
# accepts arguments, because this is precomputed with tags no parameters
# are available
fields.MetricsFunction(
"apdex",
optional_args=[fields.NullableNumberRange("satisfaction", 0, None)],
snql_distribution=self._resolve_apdex_function,
default_result_type="number",
),
fields.MetricsFunction(
"avg",
required_args=[
fields.MetricArg(
"column",
allowed_columns=constants.METRIC_DURATION_COLUMNS,
)
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: Function(
"avgIf",
[
Column("value"),
Function(
"equals",
[
Column("metric_id"),
args["metric_id"],
],
),
],
alias,
),
result_type_fn=self.reflective_result_type(),
default_result_type="integer",
),
fields.MetricsFunction(
"count_miserable",
required_args=[
fields.MetricArg(
"column", allowed_columns=["user"], allow_custom_measurements=False
)
],
optional_args=[fields.NullableNumberRange("satisfaction", 0, None)],
calculated_args=[resolve_metric_id],
snql_set=self._resolve_count_miserable_function,
default_result_type="integer",
),
fields.MetricsFunction(
"count_unparameterized_transactions",
snql_distribution=lambda args, alias: Function(
"countIf",
[
Column("value"),
Function(
"and",
[
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
Function(
"equals",
[
self.builder.column("transaction"),
self.builder.resolve_tag_value("<< unparameterized >>"),
],
),
],
),
],
alias,
),
# Not yet exposed, need to add far more validation around tag&value
private=True,
default_result_type="integer",
),
fields.MetricsFunction(
"count_null_transactions",
snql_distribution=lambda args, alias: Function(
"countIf",
[
Column("value"),
Function(
"and",
[
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
Function(
"equals",
[
self.builder.column("transaction"),
"" if self.builder.tag_values_are_strings else 0,
],
),
],
),
],
alias,
),
private=True,
),
fields.MetricsFunction(
"count_has_transaction_name",
snql_distribution=lambda args, alias: Function(
"countIf",
[
Column("value"),
Function(
"and",
[
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
Function(
"and",
[
Function(
"notEquals",
[
self.builder.column("transaction"),
""
if self.builder.tag_values_are_strings
else 0,
],
),
Function(
"notEquals",
[
self.builder.column("transaction"),
self.builder.resolve_tag_value(
"<< unparameterized >>"
),
],
),
],
),
],
),
],
alias,
),
private=True,
default_result_type="integer",
),
fields.MetricsFunction(
"user_misery",
optional_args=[
fields.NullableNumberRange("satisfaction", 0, None),
fields.with_default(
constants.MISERY_ALPHA, fields.NumberRange("alpha", 0, None)
),
fields.with_default(
constants.MISERY_BETA, fields.NumberRange("beta", 0, None)
),
],
calculated_args=[],
snql_set=self._resolve_user_misery_function,
default_result_type="number",
),
fields.MetricsFunction(
"p50",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(
args, alias, 0.5
),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"p75",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(
args, alias, 0.75
),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"p90",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(
args, alias, 0.90
),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"p95",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(
args, alias, 0.95
),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"p99",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(
args, alias, 0.99
),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"p100",
optional_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: self._resolve_percentile(args, alias, 1),
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"max",
required_args=[
fields.MetricArg("column"),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: Function(
"maxIf",
[
Column("value"),
Function("equals", [Column("metric_id"), args["metric_id"]]),
],
alias,
),
result_type_fn=self.reflective_result_type(),
),
fields.MetricsFunction(
"min",
required_args=[
fields.MetricArg("column"),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: Function(
"minIf",
[
Column("value"),
Function("equals", [Column("metric_id"), args["metric_id"]]),
],
alias,
),
result_type_fn=self.reflective_result_type(),
),
fields.MetricsFunction(
"sum",
required_args=[
fields.MetricArg("column"),
],
calculated_args=[resolve_metric_id],
snql_distribution=lambda args, alias: Function(
"sumIf",
[
Column("value"),
Function("equals", [Column("metric_id"), args["metric_id"]]),
],
alias,
),
result_type_fn=self.reflective_result_type(),
),
fields.MetricsFunction(
"sumIf",
required_args=[
fields.ColumnTagArg("if_col"),
fields.FunctionArg("if_val"),
],
calculated_args=[
{
"name": "resolved_val",
"fn": lambda args: self.builder.resolve_tag_value(args["if_val"]),
}
],
snql_counter=lambda args, alias: Function(
"sumIf",
[
Column("value"),
Function("equals", [args["if_col"], args["resolved_val"]]),
],
alias,
),
default_result_type="integer",
),
fields.MetricsFunction(
"percentile",
required_args=[
fields.with_default(
"transaction.duration",
fields.MetricArg(
"column", allowed_columns=constants.METRIC_DURATION_COLUMNS
),
),
fields.NumberRange("percentile", 0, 1),
],
calculated_args=[resolve_metric_id],
snql_distribution=self._resolve_percentile,
result_type_fn=self.reflective_result_type(),
default_result_type="duration",
),
fields.MetricsFunction(
"count_unique",
required_args=[
fields.MetricArg(
"column", allowed_columns=["user"], allow_custom_measurements=False
)
],
calculated_args=[resolve_metric_id],
snql_set=lambda args, alias: Function(
"uniqIf",
[
Column("value"),
Function("equals", [Column("metric_id"), args["metric_id"]]),
],
alias,
),
default_result_type="integer",
),
fields.MetricsFunction(
"uniq",
snql_set=lambda args, alias: Function(
"uniq",
[Column("value")],
alias,
),
),
fields.MetricsFunction(
"uniqIf",
required_args=[
fields.ColumnTagArg("if_col"),
fields.FunctionArg("if_val"),
],
calculated_args=[
{
"name": "resolved_val",
"fn": lambda args: self.builder.resolve_tag_value(args["if_val"]),
}
],
snql_set=lambda args, alias: Function(
"uniqIf",
[
Column("value"),
Function("equals", [args["if_col"], args["resolved_val"]]),
],
alias,
),
default_result_type="integer",
),
fields.MetricsFunction(
"count",
snql_distribution=lambda args, alias: Function(
"countIf",
[
Column("value"),
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
],
alias,
),
default_result_type="integer",
),
fields.MetricsFunction(
"count_web_vitals",
required_args=[
fields.MetricArg(
"column",
allowed_columns=[
"measurements.fp",
"measurements.fcp",
"measurements.lcp",
"measurements.fid",
"measurements.cls",
],
allow_custom_measurements=False,
),
fields.SnQLStringArg(
"quality", allowed_strings=["good", "meh", "poor", "any"]
),
],
calculated_args=[resolve_metric_id],
snql_distribution=self._resolve_web_vital_function,
default_result_type="integer",
),
fields.MetricsFunction(
"epm",
snql_distribution=lambda args, alias: Function(
"divide",
[
Function(
"countIf",
[
Column("value"),
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
],
),
Function("divide", [args["interval"], 60]),
],
alias,
),
optional_args=[fields.IntervalDefault("interval", 1, None)],
default_result_type="number",
),
fields.MetricsFunction(
"eps",
snql_distribution=lambda args, alias: Function(
"divide",
[
Function(
"countIf",
[
Column("value"),
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
],
),
args["interval"],
],
alias,
),
optional_args=[fields.IntervalDefault("interval", 1, None)],
default_result_type="number",
),
fields.MetricsFunction(
"failure_count",
snql_distribution=self._resolve_failure_count,
default_result_type="integer",
),
fields.MetricsFunction(
"failure_rate",
snql_distribution=lambda args, alias: Function(
"divide",
[
self._resolve_failure_count(args),
Function(
"countIf",
[
Column("value"),
Function(
"equals",
[
Column("metric_id"),
self.resolve_metric("transaction.duration"),
],
),
],
),
],
alias,
),
default_result_type="percentage",
),
fields.MetricsFunction(
"histogram",
required_args=[fields.MetricArg("column")],
calculated_args=[resolve_metric_id],
snql_distribution=self._resolve_histogram_function,
default_result_type="number",
private=True,
),
]
}
for alias, name in constants.FUNCTION_ALIASES.items():
if name in function_converter:
function_converter[alias] = function_converter[name].alias_as(alias)
return function_converter
# Field Aliases
```
###Assistant : While the final functions in clickhouse must have their -Merge combinators in order to function, we don't
need to add them here since snuba has a FunctionMapper that will add it for us. Basically it turns expressions
like quantiles(0.9)(value) into quantilesMerge(0.9)(percentiles)
Make sure to update METRIC_FUNCTION_LIST_BY_TYPE when adding functions here, can't be a dynamic list since the
Metric Layer will actually handle which dataset each function goes to
|
1,596 | def copyUsedDLLs(source_dir, dist_dir, standalone_entry_points):
# This is terribly complex, because we check the list of used DLLs
# trying to avoid duplicates, and detecting errors with them not
# being binary identical, so we can report them. And then of course
# we also need to handle OS specifics.
# pylint: disable=too-many-branches,too-many-locals,too-many-statements
used_dlls = detectUsedDLLs(
source_dir=source_dir,
standalone_entry_points=standalone_entry_points,
use_cache=not Options.shallNotUseDependsExeCachedResults()
and not Options.getWindowsDependencyTool() == "depends.exe",
update_cache=not Options.shallNotStoreDependsExeCachedResults()
and not Options.getWindowsDependencyTool() == "depends.exe",
)
removed_dlls = set()
warned_about = set()
# Fist make checks and remove some.
for dll_filename1, sources1 in tuple(iterItems(used_dlls)):
if dll_filename1 in removed_dlls:
continue
for dll_filename2, sources2 in tuple(iterItems(used_dlls)):
if dll_filename1 == dll_filename2:
continue
if dll_filename2 in removed_dlls:
continue
# Colliding basenames are an issue to us.
if os.path.basename(dll_filename1) != os.path.basename(dll_filename2):
continue
# May already have been removed earlier
if dll_filename1 not in used_dlls:
continue
if dll_filename2 not in used_dlls:
continue
dll_name = os.path.basename(dll_filename1)
if Options.isShowInclusion():
inclusion_logger.info(
% (dll_name, dll_filename1, dll_filename2)
)
# Check that if a DLL has the same name, if it's identical, then it's easy.
if haveSameFileContents(dll_filename1, dll_filename2):
del used_dlls[dll_filename2]
removed_dlls.add(dll_filename2)
continue
# For Win32 we can check out file versions.
if Utils.isWin32Windows():
dll_version1 = getWindowsDLLVersion(dll_filename1)
dll_version2 = getWindowsDLLVersion(dll_filename2)
if dll_version2 < dll_version1:
del used_dlls[dll_filename2]
removed_dlls.add(dll_filename2)
solved = True
elif dll_version1 < dll_version2:
del used_dlls[dll_filename1]
removed_dlls.add(dll_filename1)
solved = True
else:
solved = False
if solved:
if dll_name not in warned_about and dll_name not in ms_runtime_dlls:
warned_about.add(dll_name)
inclusion_logger.warning(
"Conflicting DLLs for '%s' in your installation, newest file version used, hoping for the best."
% dll_name
)
continue
# So we have conflicting DLLs, in which case we do report the fact.
inclusion_logger.warning(
% (
dll_name,
dll_filename1,
"\n ".join(sources1),
dll_filename2,
"\n ".join(sources2),
)
)
del used_dlls[dll_filename2]
removed_dlls.add(dll_filename2)
dll_map = []
for dll_filename, sources in iterItems(used_dlls):
dll_name = os.path.basename(dll_filename)
target_path = os.path.join(dist_dir, dll_name)
# Sometimes DLL dependencies were copied there already.
if not os.path.exists(target_path):
copyFile(dll_filename, target_path)
dll_map.append((dll_filename, dll_name))
if Options.isShowInclusion():
inclusion_logger.info(
"Included used shared library '%s' (used by %s)."
% (dll_filename, ", ".join(sources))
)
if Utils.isMacOS():
# For macOS, the binary and the DLLs needs to be changed to reflect
# the relative DLL location in the ".dist" folder.
for standalone_entry_point in standalone_entry_points:
fixupBinaryDLLPathsMacOS(
binary_filename=standalone_entry_point.dest_path,
dll_map=dll_map,
original_location=standalone_entry_point.source_path,
)
for original_path, dll_filename in dll_map:
fixupBinaryDLLPathsMacOS(
binary_filename=os.path.join(dist_dir, dll_filename),
dll_map=dll_map,
original_location=original_path,
)
# Remove code signature from CPython installed library
candidate = os.path.join(
dist_dir,
"Python",
)
if os.path.exists(candidate):
removeMacOSCodeSignature(candidate)
# Remove or update rpath settings.
if Utils.getOS() in ("Linux", "Darwin"):
# For Linux, the "rpath" of libraries may be an issue and must be
# removed.
if Utils.isMacOS():
start = 0
else:
start = 1
for standalone_entry_point in standalone_entry_points[start:]:
count = relpath(
path=standalone_entry_point.dest_path, start=dist_dir
).count(os.path.sep)
rpath = os.path.join("$ORIGIN", *([".."] * count))
setSharedLibraryRPATH(standalone_entry_point.dest_path, rpath)
for _original_path, dll_filename in dll_map:
setSharedLibraryRPATH(os.path.join(dist_dir, dll_filename), "$ORIGIN")
if Utils.isWin32Windows():
if python_version < 0x300:
# For Win32, we might have to remove SXS paths
for standalone_entry_point in standalone_entry_points[1:]:
removeSxsFromDLL(standalone_entry_point.dest_path)
for _original_path, dll_filename in dll_map:
removeSxsFromDLL(os.path.join(dist_dir, dll_filename))
| Colliding DLL names for %s, checking identity of \
'%s' <-> '%s'.\
Ignoring non-identical DLLs for '%s'.
%s used by:
%s
different from
%s used by
%s | 27 | 477 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def copyUsedDLLs(source_dir, dist_dir, standalone_entry_points):
# This is terribly complex, because we check the list of used DLLs
# trying to avoid duplicates, and detecting errors with them not
# being binary identical, so we can report them. And then of course
# we also need to handle OS specifics.
# pylint: disable=too-many-branches,too-many-locals,too-many-statements
used_dlls = detectUsedDLLs(
source_dir=source_dir,
standalone_entry_points=standalone_entry_points,
use_cache=not Options.shallNotUseDependsExeCachedResults()
and not Options.getWindowsDependencyTool() == "depends.exe",
update_cache=not Options.shallNotStoreDependsExeCachedResults()
and not Options.getWindowsDependencyTool() == "depends.exe",
)
removed_dlls = set()
warned_about = set()
# Fist make checks and remove some.
for dll_filename1, sources1 in tuple(iterItems(used_dlls)):
if dll_filename1 in removed_dlls:
continue
for dll_filename2, sources2 in tuple(iterItems(used_dlls)):
if dll_filename1 == dll_filename2:
continue
if dll_filename2 in removed_dlls:
continue
# Colliding basenames are an issue to us.
if os.path.basename(dll_filename1) != os.path.basename(dll_filename2):
continue
# May already have been removed earlier
if dll_filename1 not in used_dlls:
continue
if dll_filename2 not in used_dlls:
continue
dll_name = os.path.basename(dll_filename1)
if Options.isShowInclusion():
inclusion_logger.info(
% (dll_name, dll_filename1, dll_filename2)
)
# Check that if a DLL has the same name, if it's identical, then it's easy.
if haveSameFileContents(dll_filename1, dll_filename2):
del used_dlls[dll_filename2]
removed_dlls.add(dll_filename2)
continue
# For Win32 we can check out file versions.
if Utils.isWin32Windows():
dll_version1 = getWindowsDLLVersion(dll_filename1)
dll_version2 = getWindowsDLLVersion(dll_filename2)
if dll_version2 < dll_version1:
del used_dlls[dll_filename2]
removed_dlls.add(dll_filename2)
solved = True
elif dll_version1 < dll_version2:
del used_dlls[dll_filename1]
removed_dlls.add(dll_filename1)
solved = True
else:
solved = False
if solved:
if dll_name not in warned_about and dll_name not in ms_runtime_dlls:
warned_about.add(dll_name)
inclusion_logger.warning(
"Conflicting DLLs for '%s' in your installation, newest file version used, hoping for the best."
% dll_name
)
continue
# So we have conflicting DLLs, in which case we do report the fact.
inclusion_logger.warning(
% (
dll_name,
dll_filename1,
"\n ".join(sources1),
dll_filename2,
"\n ".join(sources2),
)
)
del used_dlls[dll_filename2]
removed_dlls.add(dll_filename2)
dll_map = []
for dll_filename, sources in iterItems(used_dlls):
dll_name = os.path.basename(dll_filename)
target_path = os.path.join(dist_dir, dll_name)
# Sometimes DLL dependencies were copied there already.
if not os.path.exists(target_path):
copyFile(dll_filename, target_path)
dll_map.append((dll_filename, dll_name))
if Options.isShowInclusion():
inclusion_logger.info(
"Included used shared library '%s' (used by %s)."
% (dll_filename, ", ".join(sources))
)
if Utils.isMacOS():
# For macOS, the binary and the DLLs needs to be changed to reflect
# the relative DLL location in the ".dist" folder.
for standalone_entry_point in standalone_entry_points:
fixupBinaryDLLPathsMacOS(
binary_filename=standalone_entry_point.dest_path,
dll_map=dll_map,
original_location=standalone_entry_point.source_path,
)
for original_path, dll_filename in dll_map:
fixupBinaryDLLPathsMacOS(
binary_filename=os.path.join(dist_dir, dll_filename),
dll_map=dll_map,
original_location=original_path,
)
# Remove code signature from CPython installed library
candidate = os.path.join(
dist_dir,
"Python",
)
if os.path.exists(candidate):
removeMacOSCodeSignature(candidate)
# Remove or update rpath settings.
if Utils.getOS() in ("Linux", "Darwin"):
# For Linux, the "rpath" of libraries may be an issue and must be
# removed.
if Utils.isMacOS():
start = 0
else:
start = 1
for standalone_entry_point in standalone_entry_points[start:]:
count = relpath(
path=standalone_entry_point.dest_path, start=dist_dir
).count(os.path.sep)
rpath = os.path.join("$ORIGIN", *([".."] * count))
setSharedLibraryRPATH(standalone_entry_point.dest_path, rpath)
for _original_path, dll_filename in dll_map:
setSharedLibraryRPATH(os.path.join(dist_dir, dll_filename), "$ORIGIN")
if Utils.isWin32Windows():
if python_version < 0x300:
# For Win32, we might have to remove SXS paths
for standalone_entry_point in standalone_entry_points[1:]:
removeSxsFromDLL(standalone_entry_point.dest_path)
for _original_path, dll_filename in dll_map:
removeSxsFromDLL(os.path.join(dist_dir, dll_filename))
```
###Assistant : Colliding DLL names for %s, checking identity of \
'%s' <-> '%s'.\
Ignoring non-identical DLLs for '%s'.
%s used by:
%s
different from
%s used by
%s
|
1,597 | def _laplace_rule_diff(f, t, s, doit=True, **hints):
hints.pop('simplify', True)
a = Wild('a', exclude=[t])
y = Wild('y')
n = Wild('n', exclude=[t])
g = WildFunction('g', nargs=1)
ma1 = f.match(a*Derivative(g, (t, n)))
if ma1 and ma1[g].args[0] == t and ma1[n].is_integer:
debug('_laplace_apply_rules match:')
debug(' f: %s'%(f,))
debug(' rule: time derivative (1.11, 1.12)')
d = []
for k in range(ma1[n]):
if k==0:
y = ma1[g].func(t).subs(t, 0)
else:
y = Derivative(ma1[g].func(t), (t, k)).subs(t, 0)
d.append(s**(ma1[n]-k-1)*y)
r = s**ma1[n]*_laplace_apply_rules(ma1[g].func(t), t, s, doit=doit,
**hints)
return ma1[a]*(r - Add(*d))
return None
|
This internal helper function tries to transform an expression containing
a derivative of an undefined function and returns `None` if it cannot
do it.
| 24 | 81 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _laplace_rule_diff(f, t, s, doit=True, **hints):
hints.pop('simplify', True)
a = Wild('a', exclude=[t])
y = Wild('y')
n = Wild('n', exclude=[t])
g = WildFunction('g', nargs=1)
ma1 = f.match(a*Derivative(g, (t, n)))
if ma1 and ma1[g].args[0] == t and ma1[n].is_integer:
debug('_laplace_apply_rules match:')
debug(' f: %s'%(f,))
debug(' rule: time derivative (1.11, 1.12)')
d = []
for k in range(ma1[n]):
if k==0:
y = ma1[g].func(t).subs(t, 0)
else:
y = Derivative(ma1[g].func(t), (t, k)).subs(t, 0)
d.append(s**(ma1[n]-k-1)*y)
r = s**ma1[n]*_laplace_apply_rules(ma1[g].func(t), t, s, doit=doit,
**hints)
return ma1[a]*(r - Add(*d))
return None
```
###Assistant :
This internal helper function tries to transform an expression containing
a derivative of an undefined function and returns `None` if it cannot
do it.
|
1,598 | def _check_flag(user, flag, attributes, user_flags_settings):
new_flag = False
is_role_key = "is_%s_role" % (flag)
is_attr_key = "is_%s_attr" % (flag)
is_value_key = "is_%s_value" % (flag)
remove_setting = "remove_%ss" % (flag)
# Check to see if we are respecting a role and, if so, does our user have that role?
required_roles = user_flags_settings.get(is_role_key, None)
if required_roles:
matching_roles = _get_matches(required_roles, attributes.get('Role', []))
# We do a 2 layer check here so that we don't spit out the else message if there is no role defined
if matching_roles:
logger.debug("User %s has %s role(s) %s" % (user.username, flag, ', '.join(matching_roles)))
new_flag = True
else:
logger.debug("User %s is missing the %s role(s) %s" % (user.username, flag, ', '.join(required_roles)))
# Next, check to see if we are respecting an attribute; this will take priority over the role if its defined
attr_setting = user_flags_settings.get(is_attr_key, None)
if attr_setting and attributes.get(attr_setting, None):
# Do we have a required value for the attribute
required_value = user_flags_settings.get(is_value_key, None)
if required_value:
# If so, check and see if the value of the attr matches the required value
saml_user_attribute_value = attributes.get(attr_setting, None)
matching_values = _get_matches(required_value, saml_user_attribute_value)
if matching_values:
logger.debug("Giving %s %s from attribute %s with matching values %s" % (user.username, flag, attr_setting, ', '.join(matching_values)))
new_flag = True
# if they don't match make sure that new_flag is false
else:
logger.debug(
"Refusing %s for %s because attr %s (%s) did not match value(s) %s"
% (flag, user.username, attr_setting, ", ".join(saml_user_attribute_value), ', '.join(required_value))
)
new_flag = False
# If there was no required value then we can just allow them in because of the attribute
else:
logger.debug("Giving %s %s from attribute %s" % (user.username, flag, attr_setting))
new_flag = True
# Get the users old flag
old_value = getattr(user, "is_%s" % (flag))
# If we are not removing the flag and they were a system admin and now we don't want them to be just return
remove_flag = user_flags_settings.get(remove_setting, True)
if not remove_flag and (old_value and not new_flag):
logger.debug("Remove flag %s preventing removal of %s for %s" % (remove_flag, flag, user.username))
return old_value, False
# If the user was flagged and we are going to make them not flagged make sure there is a message
if old_value and not new_flag:
logger.debug("Revoking %s from %s" % (flag, user.username))
return new_flag, old_value != new_flag
|
Helper function to set the is_superuser is_system_auditor flags for the SAML adapter
Returns the new flag and whether or not it changed the flag
| 24 | 374 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def _check_flag(user, flag, attributes, user_flags_settings):
new_flag = False
is_role_key = "is_%s_role" % (flag)
is_attr_key = "is_%s_attr" % (flag)
is_value_key = "is_%s_value" % (flag)
remove_setting = "remove_%ss" % (flag)
# Check to see if we are respecting a role and, if so, does our user have that role?
required_roles = user_flags_settings.get(is_role_key, None)
if required_roles:
matching_roles = _get_matches(required_roles, attributes.get('Role', []))
# We do a 2 layer check here so that we don't spit out the else message if there is no role defined
if matching_roles:
logger.debug("User %s has %s role(s) %s" % (user.username, flag, ', '.join(matching_roles)))
new_flag = True
else:
logger.debug("User %s is missing the %s role(s) %s" % (user.username, flag, ', '.join(required_roles)))
# Next, check to see if we are respecting an attribute; this will take priority over the role if its defined
attr_setting = user_flags_settings.get(is_attr_key, None)
if attr_setting and attributes.get(attr_setting, None):
# Do we have a required value for the attribute
required_value = user_flags_settings.get(is_value_key, None)
if required_value:
# If so, check and see if the value of the attr matches the required value
saml_user_attribute_value = attributes.get(attr_setting, None)
matching_values = _get_matches(required_value, saml_user_attribute_value)
if matching_values:
logger.debug("Giving %s %s from attribute %s with matching values %s" % (user.username, flag, attr_setting, ', '.join(matching_values)))
new_flag = True
# if they don't match make sure that new_flag is false
else:
logger.debug(
"Refusing %s for %s because attr %s (%s) did not match value(s) %s"
% (flag, user.username, attr_setting, ", ".join(saml_user_attribute_value), ', '.join(required_value))
)
new_flag = False
# If there was no required value then we can just allow them in because of the attribute
else:
logger.debug("Giving %s %s from attribute %s" % (user.username, flag, attr_setting))
new_flag = True
# Get the users old flag
old_value = getattr(user, "is_%s" % (flag))
# If we are not removing the flag and they were a system admin and now we don't want them to be just return
remove_flag = user_flags_settings.get(remove_setting, True)
if not remove_flag and (old_value and not new_flag):
logger.debug("Remove flag %s preventing removal of %s for %s" % (remove_flag, flag, user.username))
return old_value, False
# If the user was flagged and we are going to make them not flagged make sure there is a message
if old_value and not new_flag:
logger.debug("Revoking %s from %s" % (flag, user.username))
return new_flag, old_value != new_flag
```
###Assistant :
Helper function to set the is_superuser is_system_auditor flags for the SAML adapter
Returns the new flag and whether or not it changed the flag
|
1,599 | def test_get_backfill_points_in_room(self):
setup_info = self._setup_room_for_backfill_tests()
room_id = setup_info.room_id
backfill_points = self.get_success(
self.store.get_backfill_points_in_room(room_id)
)
backfill_event_ids = [backfill_point[0] for backfill_point in backfill_points]
self.assertListEqual(
backfill_event_ids, ["b6", "b5", "b4", "2", "b3", "b2", "b1"]
)
|
Test to make sure we get some backfill points
| 9 | 30 | Python |
###User : Below is a Python method which does a task. Create a documentation for the below code :
```Python
def test_get_backfill_points_in_room(self):
setup_info = self._setup_room_for_backfill_tests()
room_id = setup_info.room_id
backfill_points = self.get_success(
self.store.get_backfill_points_in_room(room_id)
)
backfill_event_ids = [backfill_point[0] for backfill_point in backfill_points]
self.assertListEqual(
backfill_event_ids, ["b6", "b5", "b4", "2", "b3", "b2", "b1"]
)
```
###Assistant :
Test to make sure we get some backfill points
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.