Unnamed: 0
int64
0
2.93k
code
stringlengths
101
62.2k
docs
stringlengths
51
10.7k
doc_len
int64
4
1.74k
words
int64
4
4.82k
lang
stringclasses
1 value
prompt
stringlengths
320
71.2k
1,700
def progress(self, msg): if self.paras.verbose: sys.stdout.write("\033[K") # Clear line print('[{}] {}'.format(human_format(self.step), msg), end='\r')
Verbose function for updating progress on stdout (do not include newline)
11
13
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def progress(self, msg): if self.paras.verbose: sys.stdout.write("\033[K") # Clear line print('[{}] {}'.format(human_format(self.step), msg), end='\r') ``` ###Assistant : Verbose function for updating progress on stdout (do not include newline)
1,701
def test_customize_compiler_before_get_config_vars(self): # Issue #21923: test that a Distribution compiler # instance can be called without an explicit call to # get_config_vars(). with open(TESTFN, 'w') as f: f.writelines(textwrap.dedent()) p = subprocess.Popen([str(sys.executable), TESTFN], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) outs, errs = p.communicate() self.assertEqual(0, p.returncode, "Subprocess failed: " + outs)
\ from distutils.core import Distribution config = Distribution().get_command_obj('config') # try_compile may pass or it may fail if no compiler # is found but it should not raise an exception. rc = config.try_compile('int x;')
33
46
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_customize_compiler_before_get_config_vars(self): # Issue #21923: test that a Distribution compiler # instance can be called without an explicit call to # get_config_vars(). with open(TESTFN, 'w') as f: f.writelines(textwrap.dedent()) p = subprocess.Popen([str(sys.executable), TESTFN], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) outs, errs = p.communicate() self.assertEqual(0, p.returncode, "Subprocess failed: " + outs) ``` ###Assistant : \ from distutils.core import Distribution config = Distribution().get_command_obj('config') # try_compile may pass or it may fail if no compiler # is found but it should not raise an exception. rc = config.try_compile('int x;')
1,702
def siren_platform_only(): with patch( "homeassistant.components.zha.PLATFORMS", ( Platform.DEVICE_TRACKER, Platform.NUMBER, Platform.SENSOR, Platform.SELECT, Platform.SIREN, ), ): yield @pytest.fixture
Only setup the siren and required base platforms to speed up tests.
12
15
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def siren_platform_only(): with patch( "homeassistant.components.zha.PLATFORMS", ( Platform.DEVICE_TRACKER, Platform.NUMBER, Platform.SENSOR, Platform.SELECT, Platform.SIREN, ), ): yield @pytest.fixture ``` ###Assistant : Only setup the siren and required base platforms to speed up tests.
1,703
def test_maybe_send_server_notice_when_alerting_suppressed_room_blocked(self): self._rlsn._auth.check_auth_blocking = Mock( return_value=make_awaitable(None), side_effect=ResourceLimitError( 403, "foo", limit_type=LimitBlockingTypes.MONTHLY_ACTIVE_USER ), ) self._rlsn._server_notices_manager.__is_room_currently_blocked = Mock( return_value=make_awaitable((True, [])) ) mock_event = Mock( type=EventTypes.Message, content={"msgtype": ServerNoticeMsgType} ) self._rlsn._store.get_events = Mock( return_value=make_awaitable({"123": mock_event}) ) self.get_success(self._rlsn.maybe_send_server_notice_to_user(self.user_id)) self._send_notice.assert_called_once()
When the room is already in a blocked state, test that when alerting is suppressed that the room is returned to an unblocked state.
24
33
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_maybe_send_server_notice_when_alerting_suppressed_room_blocked(self): self._rlsn._auth.check_auth_blocking = Mock( return_value=make_awaitable(None), side_effect=ResourceLimitError( 403, "foo", limit_type=LimitBlockingTypes.MONTHLY_ACTIVE_USER ), ) self._rlsn._server_notices_manager.__is_room_currently_blocked = Mock( return_value=make_awaitable((True, [])) ) mock_event = Mock( type=EventTypes.Message, content={"msgtype": ServerNoticeMsgType} ) self._rlsn._store.get_events = Mock( return_value=make_awaitable({"123": mock_event}) ) self.get_success(self._rlsn.maybe_send_server_notice_to_user(self.user_id)) self._send_notice.assert_called_once() ``` ###Assistant : When the room is already in a blocked state, test that when alerting is suppressed that the room is returned to an unblocked state.
1,704
def test_send(event_listener, salt_master, salt_minion, salt_call_cli): event_tag = random_string("salt/test/event/") data = {"event.fire": "just test it!!!!"} start_time = time.time() ret = salt_call_cli.run( "event.send", event_tag, data=data, with_grains=True, with_pillar=True, preload={"foo": "bar"}, ) assert ret.exitcode == 0 assert ret.json assert ret.json is True event_pattern = (salt_master.id, event_tag) matched_events = event_listener.wait_for_events( [event_pattern], after_time=start_time, timeout=30 ) assert matched_events.found_all_events for event in matched_events: assert event.data["id"] == salt_minion.id assert event.data["cmd"] == "_minion_event" assert "event.fire" in event.data["data"] assert event.data["foo"] == "bar" assert event.data["data"]["grains"]["test_grain"] == "cheese" assert event.data["data"]["pillar"]["ext_spam"] == "eggs"
Test sending an event to the master event bus
9
79
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_send(event_listener, salt_master, salt_minion, salt_call_cli): event_tag = random_string("salt/test/event/") data = {"event.fire": "just test it!!!!"} start_time = time.time() ret = salt_call_cli.run( "event.send", event_tag, data=data, with_grains=True, with_pillar=True, preload={"foo": "bar"}, ) assert ret.exitcode == 0 assert ret.json assert ret.json is True event_pattern = (salt_master.id, event_tag) matched_events = event_listener.wait_for_events( [event_pattern], after_time=start_time, timeout=30 ) assert matched_events.found_all_events for event in matched_events: assert event.data["id"] == salt_minion.id assert event.data["cmd"] == "_minion_event" assert "event.fire" in event.data["data"] assert event.data["foo"] == "bar" assert event.data["data"]["grains"]["test_grain"] == "cheese" assert event.data["data"]["pillar"]["ext_spam"] == "eggs" ``` ###Assistant : Test sending an event to the master event bus
1,705
def _check_tree_and_avals(what, tree1, avals1, tree2, avals2): if tree1 != tree2: raise TypeError( f"{what} must have same type structure, got {tree1} and {tree2}.") if not all(_map(core.typematch, avals1, avals2)): diff = tree_map(_show_diff, tree_unflatten(tree1, avals1), tree_unflatten(tree2, avals2)) raise TypeError(f"{what} must have identical types, got\n{diff}.")
Raises TypeError if (tree1, avals1) does not match (tree2, avals2). Corresponding `tree` and `avals` must match in the sense that the number of leaves in `tree` must be equal to the length of `avals`. `what` will be prepended to details of the mismatch in TypeError.
45
41
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _check_tree_and_avals(what, tree1, avals1, tree2, avals2): if tree1 != tree2: raise TypeError( f"{what} must have same type structure, got {tree1} and {tree2}.") if not all(_map(core.typematch, avals1, avals2)): diff = tree_map(_show_diff, tree_unflatten(tree1, avals1), tree_unflatten(tree2, avals2)) raise TypeError(f"{what} must have identical types, got\n{diff}.") ``` ###Assistant : Raises TypeError if (tree1, avals1) does not match (tree2, avals2). Corresponding `tree` and `avals` must match in the sense that the number of leaves in `tree` must be equal to the length of `avals`. `what` will be prepended to details of the mismatch in TypeError.
1,706
def test_load_global_local_flag_config(self): global_config = local_config = global_config_path = "/mock/home/folder/.streamlit/config.toml" local_config_path = os.path.join(os.getcwd(), ".streamlit/config.toml") global_open = mock_open(read_data=global_config) local_open = mock_open(read_data=local_config) open = mock_open() open.side_effect = [global_open.return_value, local_open.return_value] open_patch = patch("streamlit.config.open", open) # patch streamlit.*.os.* instead of os.* for py35 compat makedirs_patch = patch("streamlit.config.os.makedirs") makedirs_patch.return_value = True pathexists_patch = patch("streamlit.config.os.path.exists") pathexists_patch.side_effect = lambda path: path in [ global_config_path, local_config_path, ] with open_patch, makedirs_patch, pathexists_patch: config.get_config_options(options_from_flags={"theme.font": "monospace"}) self.assertEqual("light", config.get_option("theme.base")) self.assertEqual("#FFFFFF", config.get_option("theme.textColor")) self.assertEqual("monospace", config.get_option("theme.font"))
Test that CLI flags have higher priority than both ~/.streamlit/config.toml and $CWD/.streamlit/config.toml at parse time. [theme] base = "dark" font = "sans serif" textColor = "#FFFFFF" [theme] base = "light" font = "serif"
33
70
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_load_global_local_flag_config(self): global_config = local_config = global_config_path = "/mock/home/folder/.streamlit/config.toml" local_config_path = os.path.join(os.getcwd(), ".streamlit/config.toml") global_open = mock_open(read_data=global_config) local_open = mock_open(read_data=local_config) open = mock_open() open.side_effect = [global_open.return_value, local_open.return_value] open_patch = patch("streamlit.config.open", open) # patch streamlit.*.os.* instead of os.* for py35 compat makedirs_patch = patch("streamlit.config.os.makedirs") makedirs_patch.return_value = True pathexists_patch = patch("streamlit.config.os.path.exists") pathexists_patch.side_effect = lambda path: path in [ global_config_path, local_config_path, ] with open_patch, makedirs_patch, pathexists_patch: config.get_config_options(options_from_flags={"theme.font": "monospace"}) self.assertEqual("light", config.get_option("theme.base")) self.assertEqual("#FFFFFF", config.get_option("theme.textColor")) self.assertEqual("monospace", config.get_option("theme.font")) ``` ###Assistant : Test that CLI flags have higher priority than both ~/.streamlit/config.toml and $CWD/.streamlit/config.toml at parse time. [theme] base = "dark" font = "sans serif" textColor = "#FFFFFF" [theme] base = "light" font = "serif"
1,707
def get_valid_filename(name): s = str(name).strip().replace(" ", "_") s = re.sub(r"(?u)[^-\w.]", "", s) if s in {"", ".", ".."}: raise SuspiciousFileOperation("Could not derive file name from '%s'" % name) return s @keep_lazy_text
Return the given string converted to a string that can be used for a clean filename. Remove leading and trailing spaces; convert other spaces to underscores; and remove anything that is not an alphanumeric, dash, underscore, or dot. >>> get_valid_filename("john's portrait in 2004.jpg") 'johns_portrait_in_2004.jpg'
44
31
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_valid_filename(name): s = str(name).strip().replace(" ", "_") s = re.sub(r"(?u)[^-\w.]", "", s) if s in {"", ".", ".."}: raise SuspiciousFileOperation("Could not derive file name from '%s'" % name) return s @keep_lazy_text ``` ###Assistant : Return the given string converted to a string that can be used for a clean filename. Remove leading and trailing spaces; convert other spaces to underscores; and remove anything that is not an alphanumeric, dash, underscore, or dot. >>> get_valid_filename("john's portrait in 2004.jpg") 'johns_portrait_in_2004.jpg'
1,708
def test_no_duplicates_for_m2m_in_list_filter(self): blues = Genre.objects.create(name="Blues") band = Band.objects.create(name="B.B. King Review", nr_of_members=11) band.genres.add(blues) band.genres.add(blues) m = BandAdmin(Band, custom_site) request = self.factory.get("/band/", data={"genres": blues.pk}) request.user = self.superuser cl = m.get_changelist_instance(request) cl.get_results(request) # There's only one Group instance self.assertEqual(cl.result_count, 1) # Queryset must be deletable. self.assertIs(cl.queryset.query.distinct, False) cl.queryset.delete() self.assertEqual(cl.queryset.count(), 0)
Regression test for #13902: When using a ManyToMany in list_filter, results shouldn't appear more than once. Basic ManyToMany.
18
47
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_no_duplicates_for_m2m_in_list_filter(self): blues = Genre.objects.create(name="Blues") band = Band.objects.create(name="B.B. King Review", nr_of_members=11) band.genres.add(blues) band.genres.add(blues) m = BandAdmin(Band, custom_site) request = self.factory.get("/band/", data={"genres": blues.pk}) request.user = self.superuser cl = m.get_changelist_instance(request) cl.get_results(request) # There's only one Group instance self.assertEqual(cl.result_count, 1) # Queryset must be deletable. self.assertIs(cl.queryset.query.distinct, False) cl.queryset.delete() self.assertEqual(cl.queryset.count(), 0) ``` ###Assistant : Regression test for #13902: When using a ManyToMany in list_filter, results shouldn't appear more than once. Basic ManyToMany.
1,709
def add_flex_arithmetic_methods(cls) -> None: flex_arith_method, flex_comp_method = _get_method_wrappers(cls) new_methods = _create_methods(cls, flex_arith_method, flex_comp_method) new_methods.update( { "multiply": new_methods["mul"], "subtract": new_methods["sub"], "divide": new_methods["div"], } ) # opt out of bool flex methods for now assert not any(kname in new_methods for kname in ("ror_", "rxor", "rand_")) _add_methods(cls, new_methods=new_methods)
Adds the full suite of flex arithmetic methods (``pow``, ``mul``, ``add``) to the class. Parameters ---------- cls : class flex methods will be defined and pinned to this class
29
45
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def add_flex_arithmetic_methods(cls) -> None: flex_arith_method, flex_comp_method = _get_method_wrappers(cls) new_methods = _create_methods(cls, flex_arith_method, flex_comp_method) new_methods.update( { "multiply": new_methods["mul"], "subtract": new_methods["sub"], "divide": new_methods["div"], } ) # opt out of bool flex methods for now assert not any(kname in new_methods for kname in ("ror_", "rxor", "rand_")) _add_methods(cls, new_methods=new_methods) ``` ###Assistant : Adds the full suite of flex arithmetic methods (``pow``, ``mul``, ``add``) to the class. Parameters ---------- cls : class flex methods will be defined and pinned to this class
1,710
def get_collected_keypoint(self): output = [] for tracker_id in self.id_to_pop: output.append([tracker_id, self.keypoint_saver[tracker_id]]) del (self.keypoint_saver[tracker_id]) self.flag_to_pop = False self.id_to_pop.clear() return output
Output (List): List of keypoint results for Action Recognition task, where the format of each element is [tracker_id, KeyPointSequence of tracker_id]
21
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_collected_keypoint(self): output = [] for tracker_id in self.id_to_pop: output.append([tracker_id, self.keypoint_saver[tracker_id]]) del (self.keypoint_saver[tracker_id]) self.flag_to_pop = False self.id_to_pop.clear() return output ``` ###Assistant : Output (List): List of keypoint results for Action Recognition task, where the format of each element is [tracker_id, KeyPointSequence of tracker_id]
1,711
def get_course_schedule_events(start, end, filters=None): from frappe.desk.calendar import get_event_conditions conditions = get_event_conditions("Course Schedule", filters) data = frappe.db.sql(.format(conditions=conditions), { "start": start, "end": end }, as_dict=True, update={"allDay": 0}) return data @frappe.whitelist()
Returns events for Course Schedule Calendar view rendering. :param start: Start date-time. :param end: End date-time. :param filters: Filters (JSON). select name, course, color, timestamp(schedule_date, from_time) as from_time, timestamp(schedule_date, to_time) as to_time, room, student_group, 0 as 'allDay' from `tabCourse Schedule` where ( schedule_date between %(start)s and %(end)s ) {conditions}
49
28
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_course_schedule_events(start, end, filters=None): from frappe.desk.calendar import get_event_conditions conditions = get_event_conditions("Course Schedule", filters) data = frappe.db.sql(.format(conditions=conditions), { "start": start, "end": end }, as_dict=True, update={"allDay": 0}) return data @frappe.whitelist() ``` ###Assistant : Returns events for Course Schedule Calendar view rendering. :param start: Start date-time. :param end: End date-time. :param filters: Filters (JSON). select name, course, color, timestamp(schedule_date, from_time) as from_time, timestamp(schedule_date, to_time) as to_time, room, student_group, 0 as 'allDay' from `tabCourse Schedule` where ( schedule_date between %(start)s and %(end)s ) {conditions}
1,712
def check_keys_split(self, decoded) -> None: bad_keys = set(decoded.keys()).difference(set(self._split_keys)) if bad_keys: bad_keys_joined = ", ".join(bad_keys) raise ValueError(f"JSON data had unexpected key(s): {bad_keys_joined}")
Checks that dict has only the appropriate keys for orient='split'.
10
21
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def check_keys_split(self, decoded) -> None: bad_keys = set(decoded.keys()).difference(set(self._split_keys)) if bad_keys: bad_keys_joined = ", ".join(bad_keys) raise ValueError(f"JSON data had unexpected key(s): {bad_keys_joined}") ``` ###Assistant : Checks that dict has only the appropriate keys for orient='split'.
1,713
def adapt_datetimefield_value(self, value): if value is None: return None # Expression values are adapted by the database. if hasattr(value, "resolve_expression"): return value # cx_Oracle doesn't support tz-aware datetimes if timezone.is_aware(value): if settings.USE_TZ: value = timezone.make_naive(value, self.connection.timezone) else: raise ValueError( "Oracle backend does not support timezone-aware datetimes when USE_TZ is False." ) return Oracle_datetime.from_datetime(value)
Transform a datetime value to an object compatible with what is expected by the backend driver for datetime columns. If naive datetime is passed assumes that is in UTC. Normally Django models.DateTimeField makes sure that if USE_TZ is True passed datetime is timezone aware.
44
53
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def adapt_datetimefield_value(self, value): if value is None: return None # Expression values are adapted by the database. if hasattr(value, "resolve_expression"): return value # cx_Oracle doesn't support tz-aware datetimes if timezone.is_aware(value): if settings.USE_TZ: value = timezone.make_naive(value, self.connection.timezone) else: raise ValueError( "Oracle backend does not support timezone-aware datetimes when USE_TZ is False." ) return Oracle_datetime.from_datetime(value) ``` ###Assistant : Transform a datetime value to an object compatible with what is expected by the backend driver for datetime columns. If naive datetime is passed assumes that is in UTC. Normally Django models.DateTimeField makes sure that if USE_TZ is True passed datetime is timezone aware.
1,714
def __pow__(a, b): if isinstance(b, numbers.Rational): if b.denominator == 1: power = b.numerator if power >= 0: return Fraction(a._numerator ** power, a._denominator ** power, _normalize=False) elif a._numerator >= 0: return Fraction(a._denominator ** -power, a._numerator ** -power, _normalize=False) else: return Fraction((-a._denominator) ** -power, (-a._numerator) ** -power, _normalize=False) else: # A fractional power will generally produce an # irrational number. return float(a) ** float(b) else: return float(a) ** b
a ** b If b is not an integer, the result will be a float or complex since roots are generally irrational. If b is an integer, the result will be rational.
32
67
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def __pow__(a, b): if isinstance(b, numbers.Rational): if b.denominator == 1: power = b.numerator if power >= 0: return Fraction(a._numerator ** power, a._denominator ** power, _normalize=False) elif a._numerator >= 0: return Fraction(a._denominator ** -power, a._numerator ** -power, _normalize=False) else: return Fraction((-a._denominator) ** -power, (-a._numerator) ** -power, _normalize=False) else: # A fractional power will generally produce an # irrational number. return float(a) ** float(b) else: return float(a) ** b ``` ###Assistant : a ** b If b is not an integer, the result will be a float or complex since roots are generally irrational. If b is an integer, the result will be rational.
1,715
def fit(self, X, y, sample_weight=None): self._validate_params() super().fit(X, y, sample_weight=sample_weight) return self
Fit Ridge regression model with cv. Parameters ---------- X : ndarray of shape (n_samples, n_features) Training data. If using GCV, will be cast to float64 if necessary. y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target values. Will be cast to X's dtype if necessary. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. Returns ------- self : object Fitted estimator. Notes ----- When sample_weight is provided, the selected hyperparameter may depend on whether we use leave-one-out cross-validation (cv=None or cv='auto') or another form of cross-validation, because only leave-one-out cross-validation takes the sample weights into account when computing the validation score.
118
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def fit(self, X, y, sample_weight=None): self._validate_params() super().fit(X, y, sample_weight=sample_weight) return self ``` ###Assistant : Fit Ridge regression model with cv. Parameters ---------- X : ndarray of shape (n_samples, n_features) Training data. If using GCV, will be cast to float64 if necessary. y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target values. Will be cast to X's dtype if necessary. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. Returns ------- self : object Fitted estimator. Notes ----- When sample_weight is provided, the selected hyperparameter may depend on whether we use leave-one-out cross-validation (cv=None or cv='auto') or another form of cross-validation, because only leave-one-out cross-validation takes the sample weights into account when computing the validation score.
1,716
def calc_position(self, x): if x < self.x[0]: return None elif x > self.x[-1]: return None i = self.__search_index(x) dx = x - self.x[i] position = self.a[i] + self.b[i] * dx + \ self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0 return position
Calc `y` position for given `x`. if `x` is outside the data point's `x` range, return None. Returns ------- y : float y position for given x.
27
45
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def calc_position(self, x): if x < self.x[0]: return None elif x > self.x[-1]: return None i = self.__search_index(x) dx = x - self.x[i] position = self.a[i] + self.b[i] * dx + \ self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0 return position ``` ###Assistant : Calc `y` position for given `x`. if `x` is outside the data point's `x` range, return None. Returns ------- y : float y position for given x.
1,717
def get_daily_sector_prices(start_date, end_date) -> dict: # sector ticker information sp500_tickers = { "S&P 500 Materials (Sector)": "^SP500-15", "S&P 500 Industrials (Sector)": "^SP500-20", "S&P 500 Consumer Discretionary (Sector)": "^SP500-25", "S&P 500 Consumer Staples (Sector)": "^SP500-30", "S&P 500 Health Care (Sector)": "^SP500-35", "S&P 500 Financials (Sector)": "^SP500-40", "S&P 500 Information Technology (Sector)": "^SP500-45", "S&P 500 Telecommunication Services (Sector)": "^SP500-50", "S&P 500 Utilities (Sector)": "^SP500-55", "S&P 500 Real Estate (Sector)": "^SP500-60", "S&P 500 Energy (Sector)": "^GSPE", } sp500_tickers_data = {} # to store data for ( sector, sector_ticker, ) in sp500_tickers.items(): # iterate thru the sectors # load the data required from yfinance sp500_tickers_data[ sector ] = { # builds a dictionary entry for the sector with adj close data "sector_data": yf.download( sector_ticker, start=start_date, end=end_date, progress=False, )["Adj Close"] } # stores the data here return sp500_tickers_data
fetches daily sector prices for S&P500 for a fixed time period Parameters ---------- start_date : str ('yyyy-mm-dd') or datetime.date start date for fetching data end_date : str ('yyyy-mm-dd') or datetime.date end date for fetching data Returns ------- sp500_tickers_data : dict dictionary of dataframes with SPY daily sector prices
48
133
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_daily_sector_prices(start_date, end_date) -> dict: # sector ticker information sp500_tickers = { "S&P 500 Materials (Sector)": "^SP500-15", "S&P 500 Industrials (Sector)": "^SP500-20", "S&P 500 Consumer Discretionary (Sector)": "^SP500-25", "S&P 500 Consumer Staples (Sector)": "^SP500-30", "S&P 500 Health Care (Sector)": "^SP500-35", "S&P 500 Financials (Sector)": "^SP500-40", "S&P 500 Information Technology (Sector)": "^SP500-45", "S&P 500 Telecommunication Services (Sector)": "^SP500-50", "S&P 500 Utilities (Sector)": "^SP500-55", "S&P 500 Real Estate (Sector)": "^SP500-60", "S&P 500 Energy (Sector)": "^GSPE", } sp500_tickers_data = {} # to store data for ( sector, sector_ticker, ) in sp500_tickers.items(): # iterate thru the sectors # load the data required from yfinance sp500_tickers_data[ sector ] = { # builds a dictionary entry for the sector with adj close data "sector_data": yf.download( sector_ticker, start=start_date, end=end_date, progress=False, )["Adj Close"] } # stores the data here return sp500_tickers_data ``` ###Assistant : fetches daily sector prices for S&P500 for a fixed time period Parameters ---------- start_date : str ('yyyy-mm-dd') or datetime.date start date for fetching data end_date : str ('yyyy-mm-dd') or datetime.date end date for fetching data Returns ------- sp500_tickers_data : dict dictionary of dataframes with SPY daily sector prices
1,718
def get_unpositioned_tip(self, tip_shape=None, tip_length=None): from manim.mobject.geometry.tips import ArrowTriangleFilledTip if tip_shape is None: tip_shape = ArrowTriangleFilledTip if tip_length is None: tip_length = self.get_default_tip_length() color = self.get_color() style = {"fill_color": color, "stroke_color": color} style.update(self.tip_style) tip = tip_shape(length=tip_length, **style) return tip
Returns a tip that has been stylistically configured, but has not yet been given a position in space.
18
38
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_unpositioned_tip(self, tip_shape=None, tip_length=None): from manim.mobject.geometry.tips import ArrowTriangleFilledTip if tip_shape is None: tip_shape = ArrowTriangleFilledTip if tip_length is None: tip_length = self.get_default_tip_length() color = self.get_color() style = {"fill_color": color, "stroke_color": color} style.update(self.tip_style) tip = tip_shape(length=tip_length, **style) return tip ``` ###Assistant : Returns a tip that has been stylistically configured, but has not yet been given a position in space.
1,719
def test_parse_due_date_without_timezone_uses_offset(): data: DueDate = { "date": "2022-02-02T14:00:00", "is_recurring": False, "lang": "en", "string": "Feb 2 2:00 PM", "timezone": None, } actual = _parse_due_date(data, timezone_offset=-8) assert datetime(2022, 2, 2, 22, 0, 0, tzinfo=dt.UTC) == actual
Test due date uses user local timezone offset when it has no timezone.
13
34
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_parse_due_date_without_timezone_uses_offset(): data: DueDate = { "date": "2022-02-02T14:00:00", "is_recurring": False, "lang": "en", "string": "Feb 2 2:00 PM", "timezone": None, } actual = _parse_due_date(data, timezone_offset=-8) assert datetime(2022, 2, 2, 22, 0, 0, tzinfo=dt.UTC) == actual ``` ###Assistant : Test due date uses user local timezone offset when it has no timezone.
1,720
def serving_output(self, output): hidden_states = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attentions = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutput( last_hidden_state=output.last_hidden_state, hidden_states=hidden_states, attentions=attentions ) @add_start_docstrings( , HUBERT_START_DOCSTRING, )
TFHubert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).
14
27
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def serving_output(self, output): hidden_states = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attentions = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutput( last_hidden_state=output.last_hidden_state, hidden_states=hidden_states, attentions=attentions ) @add_start_docstrings( , HUBERT_START_DOCSTRING, ) ``` ###Assistant : TFHubert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).
1,721
def _unique_np(values, return_inverse=False, return_counts=False): uniques = np.unique( values, return_inverse=return_inverse, return_counts=return_counts ) inverse, counts = None, None if return_counts: *uniques, counts = uniques if return_inverse: *uniques, inverse = uniques if return_counts or return_inverse: uniques = uniques[0] # np.unique will have duplicate missing values at the end of `uniques` # here we clip the nans and remove it from uniques if uniques.size and is_scalar_nan(uniques[-1]): nan_idx = np.searchsorted(uniques, np.nan) uniques = uniques[: nan_idx + 1] if return_inverse: inverse[inverse > nan_idx] = nan_idx if return_counts: counts[nan_idx] = np.sum(counts[nan_idx:]) counts = counts[: nan_idx + 1] ret = (uniques,) if return_inverse: ret += (inverse,) if return_counts: ret += (counts,) return ret[0] if len(ret) == 1 else ret
Helper function to find unique values for numpy arrays that correctly accounts for nans. See `_unique` documentation for details.
19
111
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _unique_np(values, return_inverse=False, return_counts=False): uniques = np.unique( values, return_inverse=return_inverse, return_counts=return_counts ) inverse, counts = None, None if return_counts: *uniques, counts = uniques if return_inverse: *uniques, inverse = uniques if return_counts or return_inverse: uniques = uniques[0] # np.unique will have duplicate missing values at the end of `uniques` # here we clip the nans and remove it from uniques if uniques.size and is_scalar_nan(uniques[-1]): nan_idx = np.searchsorted(uniques, np.nan) uniques = uniques[: nan_idx + 1] if return_inverse: inverse[inverse > nan_idx] = nan_idx if return_counts: counts[nan_idx] = np.sum(counts[nan_idx:]) counts = counts[: nan_idx + 1] ret = (uniques,) if return_inverse: ret += (inverse,) if return_counts: ret += (counts,) return ret[0] if len(ret) == 1 else ret ``` ###Assistant : Helper function to find unique values for numpy arrays that correctly accounts for nans. See `_unique` documentation for details.
1,722
def switch_to_live(self) -> None: self.logbook_run.event_cache.clear() self.logbook_run.context_lookup.clear()
Switch to live stream. Clear caches so we can reduce memory pressure.
12
6
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def switch_to_live(self) -> None: self.logbook_run.event_cache.clear() self.logbook_run.context_lookup.clear() ``` ###Assistant : Switch to live stream. Clear caches so we can reduce memory pressure.
1,723
def require_comet_ml(test_case): return unittest.skipUnless(is_comet_ml_available(), "test requires comet_ml")(test_case)
Decorator marking a test that requires comet_ml installed. These tests are skipped when comet_ml isn't installed
16
7
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def require_comet_ml(test_case): return unittest.skipUnless(is_comet_ml_available(), "test requires comet_ml")(test_case) ``` ###Assistant : Decorator marking a test that requires comet_ml installed. These tests are skipped when comet_ml isn't installed
1,724
def triggered_id(self): component_id = None if self.triggered: prop_id = self.triggered_prop_ids.first() component_id = self.triggered_prop_ids[prop_id] return component_id
Returns the component id (str or dict) of the Input component that triggered the callback. Note - use `triggered_prop_ids` if you need both the component id and the prop that triggered the callback or if multiple Inputs triggered the callback. Example usage: `if "btn-1" == ctx.triggered_id: do_something()`
47
15
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def triggered_id(self): component_id = None if self.triggered: prop_id = self.triggered_prop_ids.first() component_id = self.triggered_prop_ids[prop_id] return component_id ``` ###Assistant : Returns the component id (str or dict) of the Input component that triggered the callback. Note - use `triggered_prop_ids` if you need both the component id and the prop that triggered the callback or if multiple Inputs triggered the callback. Example usage: `if "btn-1" == ctx.triggered_id: do_something()`
1,725
def _solve_W(self, X, H, max_iter): avg = np.sqrt(X.mean() / self._n_components) W = np.full((X.shape[0], self._n_components), avg, dtype=X.dtype) W_buffer = W.copy() # Get scaled regularization terms. Done for each minibatch to take into account # variable sizes of minibatches. l1_reg_W, _, l2_reg_W, _ = self._scale_regularization(X) for _ in range(max_iter): W, *_ = _multiplicative_update_w( X, W, H, self._beta_loss, l1_reg_W, l2_reg_W, self._gamma ) W_diff = linalg.norm(W - W_buffer) / linalg.norm(W) if self.tol > 0 and W_diff <= self.tol: break W_buffer[:] = W return W
Minimize the objective function w.r.t W. Update W with H being fixed, until convergence. This is the heart of `transform` but it's also used during `fit` when doing fresh restarts.
30
80
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _solve_W(self, X, H, max_iter): avg = np.sqrt(X.mean() / self._n_components) W = np.full((X.shape[0], self._n_components), avg, dtype=X.dtype) W_buffer = W.copy() # Get scaled regularization terms. Done for each minibatch to take into account # variable sizes of minibatches. l1_reg_W, _, l2_reg_W, _ = self._scale_regularization(X) for _ in range(max_iter): W, *_ = _multiplicative_update_w( X, W, H, self._beta_loss, l1_reg_W, l2_reg_W, self._gamma ) W_diff = linalg.norm(W - W_buffer) / linalg.norm(W) if self.tol > 0 and W_diff <= self.tol: break W_buffer[:] = W return W ``` ###Assistant : Minimize the objective function w.r.t W. Update W with H being fixed, until convergence. This is the heart of `transform` but it's also used during `fit` when doing fresh restarts.
1,726
def convert_bbox_to_z(bbox): w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w / 2. y = bbox[1] + h / 2. s = w * h # scale is just area r = w / float(h + 1e-6) return np.array([x, y, s, r]).reshape((4, 1))
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio
34
49
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def convert_bbox_to_z(bbox): w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w / 2. y = bbox[1] + h / 2. s = w * h # scale is just area r = w / float(h + 1e-6) return np.array([x, y, s, r]).reshape((4, 1)) ``` ###Assistant : Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio
1,727
def remove_whitespace(string, leading=False, trailing=False): # Remove any leading new line characters along with any surrounding white space if leading: string = re.sub(r'^\s*\n+\s*', '', string) # Remove any trailing new line characters along with any surrounding white space if trailing: string = re.sub(r'\s*\n+\s*$', '', string) # Replace new line characters and absorb any surrounding space. string = re.sub(r'\s*\n\s*', ' ', string) # TODO need some way to get rid of extra spaces in e.g. text <span> </span> text return re.sub(r'\s+', ' ', string)
Remove white space from a string. Args: string(str): The string to remove white space from. leading(bool, optional): Remove leading new lines when True. trailing(bool, optional): Remove trailing new lines when False. Returns: str: The input string with new line characters removed and white space squashed. Examples: Single or multiple new line characters are replaced with space. >>> remove_whitespace("abc\\ndef") 'abc def' >>> remove_whitespace("abc\\n\\n\\ndef") 'abc def' New line characters surrounded by white space are replaced with a single space. >>> remove_whitespace("abc \\n \\n \\n def") 'abc def' >>> remove_whitespace("abc \\n \\n \\n def") 'abc def' Leading and trailing new lines are replaced with a single space. >>> remove_whitespace("\\nabc") ' abc' >>> remove_whitespace(" \\n abc") ' abc' >>> remove_whitespace("abc\\n") 'abc ' >>> remove_whitespace("abc \\n ") 'abc ' Use ``leading=True`` to remove leading new line characters, including any surrounding white space: >>> remove_whitespace("\\nabc", leading=True) 'abc' >>> remove_whitespace(" \\n abc", leading=True) 'abc' Use ``trailing=True`` to remove trailing new line characters, including any surrounding white space: >>> remove_whitespace("abc \\n ", trailing=True) 'abc'
166
82
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def remove_whitespace(string, leading=False, trailing=False): # Remove any leading new line characters along with any surrounding white space if leading: string = re.sub(r'^\s*\n+\s*', '', string) # Remove any trailing new line characters along with any surrounding white space if trailing: string = re.sub(r'\s*\n+\s*$', '', string) # Replace new line characters and absorb any surrounding space. string = re.sub(r'\s*\n\s*', ' ', string) # TODO need some way to get rid of extra spaces in e.g. text <span> </span> text return re.sub(r'\s+', ' ', string) ``` ###Assistant : Remove white space from a string. Args: string(str): The string to remove white space from. leading(bool, optional): Remove leading new lines when True. trailing(bool, optional): Remove trailing new lines when False. Returns: str: The input string with new line characters removed and white space squashed. Examples: Single or multiple new line characters are replaced with space. >>> remove_whitespace("abc\\ndef") 'abc def' >>> remove_whitespace("abc\\n\\n\\ndef") 'abc def' New line characters surrounded by white space are replaced with a single space. >>> remove_whitespace("abc \\n \\n \\n def") 'abc def' >>> remove_whitespace("abc \\n \\n \\n def") 'abc def' Leading and trailing new lines are replaced with a single space. >>> remove_whitespace("\\nabc") ' abc' >>> remove_whitespace(" \\n abc") ' abc' >>> remove_whitespace("abc\\n") 'abc ' >>> remove_whitespace("abc \\n ") 'abc ' Use ``leading=True`` to remove leading new line characters, including any surrounding white space: >>> remove_whitespace("\\nabc", leading=True) 'abc' >>> remove_whitespace(" \\n abc", leading=True) 'abc' Use ``trailing=True`` to remove trailing new line characters, including any surrounding white space: >>> remove_whitespace("abc \\n ", trailing=True) 'abc'
1,728
def selectionChanged(self, selected, deselected): if not self._active: return super().selectionChanged(selected, deselected) indexes = selected.indexes() if not indexes: return data = str(self._model().data(indexes[0])) self.selection_changed.emit(data)
Extend selectionChanged to call completers selection_changed.
6
21
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def selectionChanged(self, selected, deselected): if not self._active: return super().selectionChanged(selected, deselected) indexes = selected.indexes() if not indexes: return data = str(self._model().data(indexes[0])) self.selection_changed.emit(data) ``` ###Assistant : Extend selectionChanged to call completers selection_changed.
1,729
def __mul__(self, other): newlist = [v for v in self.args] other = sympify(other) for i, v in enumerate(newlist): newlist[i] = (other * newlist[i][0], newlist[i][1]) return Vector(newlist)
Multiplies the Vector by a sympifyable expression. Parameters ========== other : Sympifyable The scalar to multiply this Vector with Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> b = Symbol('b') >>> V = 10 * b * N.x >>> print(V) 10*b*N.x
50
26
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def __mul__(self, other): newlist = [v for v in self.args] other = sympify(other) for i, v in enumerate(newlist): newlist[i] = (other * newlist[i][0], newlist[i][1]) return Vector(newlist) ``` ###Assistant : Multiplies the Vector by a sympifyable expression. Parameters ========== other : Sympifyable The scalar to multiply this Vector with Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> b = Symbol('b') >>> V = 10 * b * N.x >>> print(V) 10*b*N.x
1,730
def to_dict(self) -> Dict: return serve_application_to_schema(self._deployments.values()).dict()
Returns this Application's deployments as a dictionary. This dictionary adheres to the Serve REST API schema. It can be deployed via the Serve REST API. Returns: Dict: The Application's deployments formatted in a dictionary.
34
6
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def to_dict(self) -> Dict: return serve_application_to_schema(self._deployments.values()).dict() ``` ###Assistant : Returns this Application's deployments as a dictionary. This dictionary adheres to the Serve REST API schema. It can be deployed via the Serve REST API. Returns: Dict: The Application's deployments formatted in a dictionary.
1,731
def get_shift_details(shift_type_name, for_timestamp=None): if not shift_type_name: return None if not for_timestamp: for_timestamp = now_datetime() shift_type = frappe.get_doc('Shift Type', shift_type_name) shift_actual_start = shift_type.start_time - timedelta(minutes=shift_type.begin_check_in_before_shift_start_time) if shift_type.start_time > shift_type.end_time: # shift spans accross 2 different days if get_time(for_timestamp.time()) >= get_time(shift_actual_start): # if for_timestamp is greater than start time, its in the first day start_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.start_time for_timestamp = for_timestamp + timedelta(days=1) end_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.end_time elif get_time(for_timestamp.time()) < get_time(shift_actual_start): # if for_timestamp is less than start time, its in the second day end_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.end_time for_timestamp = for_timestamp + timedelta(days=-1) start_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.start_time else: # start and end times fall on the same day start_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.start_time end_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.end_time actual_start = start_datetime - timedelta(minutes=shift_type.begin_check_in_before_shift_start_time) actual_end = end_datetime + timedelta(minutes=shift_type.allow_check_out_after_shift_end_time) return frappe._dict({ 'shift_type': shift_type, 'start_datetime': start_datetime, 'end_datetime': end_datetime, 'actual_start': actual_start, 'actual_end': actual_end })
Returns Shift Details which contain some additional information as described below. 'shift_details' contains the following keys: 'shift_type' - Object of DocType Shift Type, 'start_datetime' - Date and Time of shift start on given date, 'end_datetime' - Date and Time of shift end on given date, 'actual_start' - datetime of shift start after adding 'begin_check_in_before_shift_start_time', 'actual_end' - datetime of shift end after adding 'allow_check_out_after_shift_end_time'(None is returned if this is zero) :param shift_type_name: shift type name for which shift_details is required. :param for_timestamp: DateTime value on which shift_details are required
88
149
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_shift_details(shift_type_name, for_timestamp=None): if not shift_type_name: return None if not for_timestamp: for_timestamp = now_datetime() shift_type = frappe.get_doc('Shift Type', shift_type_name) shift_actual_start = shift_type.start_time - timedelta(minutes=shift_type.begin_check_in_before_shift_start_time) if shift_type.start_time > shift_type.end_time: # shift spans accross 2 different days if get_time(for_timestamp.time()) >= get_time(shift_actual_start): # if for_timestamp is greater than start time, its in the first day start_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.start_time for_timestamp = for_timestamp + timedelta(days=1) end_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.end_time elif get_time(for_timestamp.time()) < get_time(shift_actual_start): # if for_timestamp is less than start time, its in the second day end_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.end_time for_timestamp = for_timestamp + timedelta(days=-1) start_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.start_time else: # start and end times fall on the same day start_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.start_time end_datetime = datetime.combine(for_timestamp, datetime.min.time()) + shift_type.end_time actual_start = start_datetime - timedelta(minutes=shift_type.begin_check_in_before_shift_start_time) actual_end = end_datetime + timedelta(minutes=shift_type.allow_check_out_after_shift_end_time) return frappe._dict({ 'shift_type': shift_type, 'start_datetime': start_datetime, 'end_datetime': end_datetime, 'actual_start': actual_start, 'actual_end': actual_end }) ``` ###Assistant : Returns Shift Details which contain some additional information as described below. 'shift_details' contains the following keys: 'shift_type' - Object of DocType Shift Type, 'start_datetime' - Date and Time of shift start on given date, 'end_datetime' - Date and Time of shift end on given date, 'actual_start' - datetime of shift start after adding 'begin_check_in_before_shift_start_time', 'actual_end' - datetime of shift end after adding 'allow_check_out_after_shift_end_time'(None is returned if this is zero) :param shift_type_name: shift type name for which shift_details is required. :param for_timestamp: DateTime value on which shift_details are required
1,732
def subprocess_run_helper(func, *args, timeout, extra_env=None): target = func.__name__ module = func.__module__ proc = subprocess.run( [sys.executable, "-c", f"from {module} import {target}; {target}()", *args], env={**os.environ, "SOURCE_DATE_EPOCH": "0", **(extra_env or {})}, timeout=timeout, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) return proc
Run a function in a sub-process. Parameters ---------- func : function The function to be run. It must be in a module that is importable. *args : str Any additional command line arguments to be passed in the first argument to ``subprocess.run``. extra_env : dict[str, str] Any additional environment variables to be set for the subprocess.
56
35
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def subprocess_run_helper(func, *args, timeout, extra_env=None): target = func.__name__ module = func.__module__ proc = subprocess.run( [sys.executable, "-c", f"from {module} import {target}; {target}()", *args], env={**os.environ, "SOURCE_DATE_EPOCH": "0", **(extra_env or {})}, timeout=timeout, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) return proc ``` ###Assistant : Run a function in a sub-process. Parameters ---------- func : function The function to be run. It must be in a module that is importable. *args : str Any additional command line arguments to be passed in the first argument to ``subprocess.run``. extra_env : dict[str, str] Any additional environment variables to be set for the subprocess.
1,733
def add_preheated_app_session(self) -> None: session = self._create_or_reuse_app_session(ws=None) session.handle_rerun_script_request(is_preheat=True)
Register a fake browser with the server and run the script. This is used to start running the user's script even before the first browser connects.
26
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def add_preheated_app_session(self) -> None: session = self._create_or_reuse_app_session(ws=None) session.handle_rerun_script_request(is_preheat=True) ``` ###Assistant : Register a fake browser with the server and run the script. This is used to start running the user's script even before the first browser connects.
1,734
def score(self, testing_features, testing_target): if self.fitted_pipeline_ is None: raise RuntimeError( "A pipeline has not yet been optimized. Please call fit() first." ) testing_features, testing_target = self._check_dataset( testing_features, testing_target, sample_weight=None ) # If the scoring function is a string, we must adjust to use the sklearn # scoring interface if isinstance(self.scoring_function, str): scorer = SCORERS[self.scoring_function] elif callable(self.scoring_function): scorer = self.scoring_function else: raise RuntimeError( "The scoring function should either be the name of a scikit-learn scorer or a scorer object" ) score = scorer( self.fitted_pipeline_, testing_features.astype(np.float64), testing_target.astype(np.float64), ) return score
Return the score on the given testing data using the user-specified scoring function. Parameters ---------- testing_features: array-like {n_samples, n_features} Feature matrix of the testing set testing_target: array-like {n_samples} List of class labels for prediction in the testing set Returns ------- accuracy_score: float The estimated test set accuracy
47
88
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def score(self, testing_features, testing_target): if self.fitted_pipeline_ is None: raise RuntimeError( "A pipeline has not yet been optimized. Please call fit() first." ) testing_features, testing_target = self._check_dataset( testing_features, testing_target, sample_weight=None ) # If the scoring function is a string, we must adjust to use the sklearn # scoring interface if isinstance(self.scoring_function, str): scorer = SCORERS[self.scoring_function] elif callable(self.scoring_function): scorer = self.scoring_function else: raise RuntimeError( "The scoring function should either be the name of a scikit-learn scorer or a scorer object" ) score = scorer( self.fitted_pipeline_, testing_features.astype(np.float64), testing_target.astype(np.float64), ) return score ``` ###Assistant : Return the score on the given testing data using the user-specified scoring function. Parameters ---------- testing_features: array-like {n_samples, n_features} Feature matrix of the testing set testing_target: array-like {n_samples} List of class labels for prediction in the testing set Returns ------- accuracy_score: float The estimated test set accuracy
1,735
def test_as_dict(): expected = { LENGTH: UnitOfLength.KILOMETERS, WIND_SPEED: UnitOfSpeed.METERS_PER_SECOND, TEMPERATURE: UnitOfTemperature.CELSIUS, VOLUME: UnitOfVolume.LITERS, MASS: UnitOfMass.GRAMS, PRESSURE: UnitOfPressure.PA, ACCUMULATED_PRECIPITATION: UnitOfLength.MILLIMETERS, } assert expected == METRIC_SYSTEM.as_dict()
Test that the as_dict() method returns the expected dictionary.
9
24
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_as_dict(): expected = { LENGTH: UnitOfLength.KILOMETERS, WIND_SPEED: UnitOfSpeed.METERS_PER_SECOND, TEMPERATURE: UnitOfTemperature.CELSIUS, VOLUME: UnitOfVolume.LITERS, MASS: UnitOfMass.GRAMS, PRESSURE: UnitOfPressure.PA, ACCUMULATED_PRECIPITATION: UnitOfLength.MILLIMETERS, } assert expected == METRIC_SYSTEM.as_dict() ``` ###Assistant : Test that the as_dict() method returns the expected dictionary.
1,736
def _get_inputs(self): logger.debug("Getting inputs") if len(self.input_shape) == 3: input_shapes = [self.input_shape, self.input_shape] else: input_shapes = self.input_shape inputs = [Input(shape=shape, name=f"face_in_{side}") for side, shape in zip(("a", "b"), input_shapes)] logger.debug("inputs: %s", inputs) return inputs
Obtain the standardized inputs for the model. The inputs will be returned for the "A" and "B" sides in the shape as defined by :attr:`input_shape`. Returns ------- list A list of :class:`keras.layers.Input` tensors. This will be a list of 2 tensors (one for each side) each of shapes :attr:`input_shape`.
49
32
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_inputs(self): logger.debug("Getting inputs") if len(self.input_shape) == 3: input_shapes = [self.input_shape, self.input_shape] else: input_shapes = self.input_shape inputs = [Input(shape=shape, name=f"face_in_{side}") for side, shape in zip(("a", "b"), input_shapes)] logger.debug("inputs: %s", inputs) return inputs ``` ###Assistant : Obtain the standardized inputs for the model. The inputs will be returned for the "A" and "B" sides in the shape as defined by :attr:`input_shape`. Returns ------- list A list of :class:`keras.layers.Input` tensors. This will be a list of 2 tensors (one for each side) each of shapes :attr:`input_shape`.
1,737
def collect_units_install() -> t.List[PipInstall]: requirements_paths = [] # type: t.List[t.Tuple[str, str]] constraints_paths = [] # type: t.List[t.Tuple[str, str]] path = os.path.join(data_context().content.unit_path, 'requirements.txt') requirements_paths.append((data_context().content.root, path)) path = os.path.join(data_context().content.unit_path, 'constraints.txt') constraints_paths.append((data_context().content.root, path)) return collect_install(requirements_paths, constraints_paths)
Return details necessary for the specified units pip install(s).
9
33
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def collect_units_install() -> t.List[PipInstall]: requirements_paths = [] # type: t.List[t.Tuple[str, str]] constraints_paths = [] # type: t.List[t.Tuple[str, str]] path = os.path.join(data_context().content.unit_path, 'requirements.txt') requirements_paths.append((data_context().content.root, path)) path = os.path.join(data_context().content.unit_path, 'constraints.txt') constraints_paths.append((data_context().content.root, path)) return collect_install(requirements_paths, constraints_paths) ``` ###Assistant : Return details necessary for the specified units pip install(s).
1,738
def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( , YOSO_START_DOCSTRING, )
YOSO Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
23
37
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( , YOSO_START_DOCSTRING, ) ``` ###Assistant : YOSO Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
1,739
def delete_batch(self, pk_list, using): # number of objects deleted num_deleted = 0 field = self.get_meta().pk for offset in range(0, len(pk_list), GET_ITERATOR_CHUNK_SIZE): self.clear_where() self.add_filter( f"{field.attname}__in", pk_list[offset : offset + GET_ITERATOR_CHUNK_SIZE], ) num_deleted += self.do_query( self.get_meta().db_table, self.where, using=using ) return num_deleted
Set up and execute delete queries for all the objects in pk_list. More than one physical query may be executed if there are a lot of values in pk_list.
29
39
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def delete_batch(self, pk_list, using): # number of objects deleted num_deleted = 0 field = self.get_meta().pk for offset in range(0, len(pk_list), GET_ITERATOR_CHUNK_SIZE): self.clear_where() self.add_filter( f"{field.attname}__in", pk_list[offset : offset + GET_ITERATOR_CHUNK_SIZE], ) num_deleted += self.do_query( self.get_meta().db_table, self.where, using=using ) return num_deleted ``` ###Assistant : Set up and execute delete queries for all the objects in pk_list. More than one physical query may be executed if there are a lot of values in pk_list.
1,740
def generate_ansible_coverage_config() -> str: coverage_config = return coverage_config
Generate code coverage configuration for Ansible tests. [run] branch = True concurrency = multiprocessing parallel = True omit = */python*/dist-packages/* */python*/site-packages/* */python*/distutils/* */pyshared/* */pytest */AnsiballZ_*.py */test/results/*
26
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def generate_ansible_coverage_config() -> str: coverage_config = return coverage_config ``` ###Assistant : Generate code coverage configuration for Ansible tests. [run] branch = True concurrency = multiprocessing parallel = True omit = */python*/dist-packages/* */python*/site-packages/* */python*/distutils/* */pyshared/* */pytest */AnsiballZ_*.py */test/results/*
1,741
def get_allowed_roles_to_invite(self): return [ r for r in organization_roles.get_all() if r.priority <= organization_roles.get(self.role).priority ]
Return a list of roles which that member could invite Must check if member member has member:admin first before checking
20
14
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_allowed_roles_to_invite(self): return [ r for r in organization_roles.get_all() if r.priority <= organization_roles.get(self.role).priority ] ``` ###Assistant : Return a list of roles which that member could invite Must check if member member has member:admin first before checking
1,742
def search_space_spec(self) -> Dict[str, ParameterSpec]: raise NotImplementedError()
Space specification (sample points). Mapping from spec name to ParameterSpec. The names in choices should be in the same format of export. For example: :: {"layer1": ParameterSpec(values=["conv", "pool"])}
28
7
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def search_space_spec(self) -> Dict[str, ParameterSpec]: raise NotImplementedError() ``` ###Assistant : Space specification (sample points). Mapping from spec name to ParameterSpec. The names in choices should be in the same format of export. For example: :: {"layer1": ParameterSpec(values=["conv", "pool"])}
1,743
def test_context_as_admin(self) -> None: # Create a room. We're not part of it. user_id = self.register_user("test", "test") user_tok = self.login("test", "test") room_id = self.helper.create_room_as(user_id, tok=user_tok) # Populate the room with events. events = [] for i in range(30): events.append( self.helper.send_event( room_id, "com.example.test", content={"index": i}, tok=user_tok ) ) # Now let's fetch the context for this room. midway = (len(events) - 1) // 2 channel = self.make_request( "GET", "/_synapse/admin/v1/rooms/%s/context/%s" % (room_id, events[midway]["event_id"]), access_token=self.admin_user_tok, ) self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body) self.assertEqual( channel.json_body["event"]["event_id"], events[midway]["event_id"] ) for found_event in channel.json_body["events_before"]: for j, posted_event in enumerate(events): if found_event["event_id"] == posted_event["event_id"]: self.assertTrue(j < midway) break else: self.fail("Event %s from events_before not found" % j) for found_event in channel.json_body["events_after"]: for j, posted_event in enumerate(events): if found_event["event_id"] == posted_event["event_id"]: self.assertTrue(j > midway) break else: self.fail("Event %s from events_after not found" % j)
Test that, as admin, we can find the context of an event without having joined the room.
17
132
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_context_as_admin(self) -> None: # Create a room. We're not part of it. user_id = self.register_user("test", "test") user_tok = self.login("test", "test") room_id = self.helper.create_room_as(user_id, tok=user_tok) # Populate the room with events. events = [] for i in range(30): events.append( self.helper.send_event( room_id, "com.example.test", content={"index": i}, tok=user_tok ) ) # Now let's fetch the context for this room. midway = (len(events) - 1) // 2 channel = self.make_request( "GET", "/_synapse/admin/v1/rooms/%s/context/%s" % (room_id, events[midway]["event_id"]), access_token=self.admin_user_tok, ) self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body) self.assertEqual( channel.json_body["event"]["event_id"], events[midway]["event_id"] ) for found_event in channel.json_body["events_before"]: for j, posted_event in enumerate(events): if found_event["event_id"] == posted_event["event_id"]: self.assertTrue(j < midway) break else: self.fail("Event %s from events_before not found" % j) for found_event in channel.json_body["events_after"]: for j, posted_event in enumerate(events): if found_event["event_id"] == posted_event["event_id"]: self.assertTrue(j > midway) break else: self.fail("Event %s from events_after not found" % j) ``` ###Assistant : Test that, as admin, we can find the context of an event without having joined the room.
1,744
def marginal_std(self, t): return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
Compute sigma_t of a given continuous-time label t in [0, T].
11
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def marginal_std(self, t): return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) ``` ###Assistant : Compute sigma_t of a given continuous-time label t in [0, T].
1,745
def for_request(cls, request): attr_name = cls.get_cache_attr_name() if hasattr(request, attr_name): return getattr(request, attr_name) site = Site.find_for_request(request) site_settings = cls.for_site(site) # to allow more efficient page url generation site_settings._request = request setattr(request, attr_name, site_settings) return site_settings
Get or create an instance of this model for the request, and cache the result on the request for faster repeat access.
22
34
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def for_request(cls, request): attr_name = cls.get_cache_attr_name() if hasattr(request, attr_name): return getattr(request, attr_name) site = Site.find_for_request(request) site_settings = cls.for_site(site) # to allow more efficient page url generation site_settings._request = request setattr(request, attr_name, site_settings) return site_settings ``` ###Assistant : Get or create an instance of this model for the request, and cache the result on the request for faster repeat access.
1,746
def _enable_ocsp_stapling(self, ssl_vhost, unused_options): min_apache_ver = (2, 3, 3) if self.get_version() < min_apache_ver: raise errors.PluginError( "Unable to set OCSP directives.\n" "Apache version is below 2.3.3.") if "socache_shmcb_module" not in self.parser.modules: self.enable_mod("socache_shmcb") # Check if there's an existing SSLUseStapling directive on. use_stapling_aug_path = self.parser.find_dir("SSLUseStapling", "on", start=ssl_vhost.path) if not use_stapling_aug_path: self.parser.add_dir(ssl_vhost.path, "SSLUseStapling", "on") ssl_vhost_aug_path = self._escape(parser.get_aug_path(ssl_vhost.filep)) # Check if there's an existing SSLStaplingCache directive. stapling_cache_aug_path = self.parser.find_dir('SSLStaplingCache', None, ssl_vhost_aug_path) # We'll simply delete the directive, so that we'll have a # consistent OCSP cache path. if stapling_cache_aug_path: self.parser.aug.remove( re.sub(r"/\w*$", "", stapling_cache_aug_path[0])) self.parser.add_dir_to_ifmodssl(ssl_vhost_aug_path, "SSLStaplingCache", ["shmcb:/var/run/apache2/stapling_cache(128000)"]) msg = "OCSP Stapling was enabled on SSL Vhost: %s.\n"%( ssl_vhost.filep) self.save_notes += msg self.save() logger.info(msg)
Enables OCSP Stapling In OCSP, each client (e.g. browser) would have to query the OCSP Responder to validate that the site certificate was not revoked. Enabling OCSP Stapling, would allow the web-server to query the OCSP Responder, and staple its response to the offered certificate during TLS. i.e. clients would not have to query the OCSP responder. OCSP Stapling enablement on Apache implicitly depends on SSLCertificateChainFile being set by other code. .. note:: This function saves the configuration :param ssl_vhost: Destination of traffic, an ssl enabled vhost :type ssl_vhost: :class:`~certbot_apache._internal.obj.VirtualHost` :param unused_options: Not currently used :type unused_options: Not Available :returns: Success, general_vhost (HTTP vhost) :rtype: (bool, :class:`~certbot_apache._internal.obj.VirtualHost`)
107
108
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _enable_ocsp_stapling(self, ssl_vhost, unused_options): min_apache_ver = (2, 3, 3) if self.get_version() < min_apache_ver: raise errors.PluginError( "Unable to set OCSP directives.\n" "Apache version is below 2.3.3.") if "socache_shmcb_module" not in self.parser.modules: self.enable_mod("socache_shmcb") # Check if there's an existing SSLUseStapling directive on. use_stapling_aug_path = self.parser.find_dir("SSLUseStapling", "on", start=ssl_vhost.path) if not use_stapling_aug_path: self.parser.add_dir(ssl_vhost.path, "SSLUseStapling", "on") ssl_vhost_aug_path = self._escape(parser.get_aug_path(ssl_vhost.filep)) # Check if there's an existing SSLStaplingCache directive. stapling_cache_aug_path = self.parser.find_dir('SSLStaplingCache', None, ssl_vhost_aug_path) # We'll simply delete the directive, so that we'll have a # consistent OCSP cache path. if stapling_cache_aug_path: self.parser.aug.remove( re.sub(r"/\w*$", "", stapling_cache_aug_path[0])) self.parser.add_dir_to_ifmodssl(ssl_vhost_aug_path, "SSLStaplingCache", ["shmcb:/var/run/apache2/stapling_cache(128000)"]) msg = "OCSP Stapling was enabled on SSL Vhost: %s.\n"%( ssl_vhost.filep) self.save_notes += msg self.save() logger.info(msg) ``` ###Assistant : Enables OCSP Stapling In OCSP, each client (e.g. browser) would have to query the OCSP Responder to validate that the site certificate was not revoked. Enabling OCSP Stapling, would allow the web-server to query the OCSP Responder, and staple its response to the offered certificate during TLS. i.e. clients would not have to query the OCSP responder. OCSP Stapling enablement on Apache implicitly depends on SSLCertificateChainFile being set by other code. .. note:: This function saves the configuration :param ssl_vhost: Destination of traffic, an ssl enabled vhost :type ssl_vhost: :class:`~certbot_apache._internal.obj.VirtualHost` :param unused_options: Not currently used :type unused_options: Not Available :returns: Success, general_vhost (HTTP vhost) :rtype: (bool, :class:`~certbot_apache._internal.obj.VirtualHost`)
1,747
def make_regional_gl_entries(gl_entries, doc): country = frappe.get_cached_value("Company", doc.company, "country") if country != "United Arab Emirates": return gl_entries if doc.reverse_charge == "Y": tax_accounts = get_tax_accounts(doc.company) for tax in doc.get("taxes"): if tax.category not in ("Total", "Valuation and Total"): continue gl_entries = make_gl_entry(tax, gl_entries, doc, tax_accounts) return gl_entries
Hooked to make_regional_gl_entries in Purchase Invoice.It appends the region specific general ledger entries to the list of GL Entries.
19
44
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def make_regional_gl_entries(gl_entries, doc): country = frappe.get_cached_value("Company", doc.company, "country") if country != "United Arab Emirates": return gl_entries if doc.reverse_charge == "Y": tax_accounts = get_tax_accounts(doc.company) for tax in doc.get("taxes"): if tax.category not in ("Total", "Valuation and Total"): continue gl_entries = make_gl_entry(tax, gl_entries, doc, tax_accounts) return gl_entries ``` ###Assistant : Hooked to make_regional_gl_entries in Purchase Invoice.It appends the region specific general ledger entries to the list of GL Entries.
1,748
def private_param(param): return pytest.param( *param, marks=pytest.mark.skipif( not _run_private_tests, reason="Skipping: this test is marked private, set RUN_PRIVATE=1 in your environment to run", ), )
Wrap param to mark it as private, meaning it requires credentials to run. Private tests are skipped by default. Set the RUN_PRIVATE environment variable to a truth value to run them.
31
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def private_param(param): return pytest.param( *param, marks=pytest.mark.skipif( not _run_private_tests, reason="Skipping: this test is marked private, set RUN_PRIVATE=1 in your environment to run", ), ) ``` ###Assistant : Wrap param to mark it as private, meaning it requires credentials to run. Private tests are skipped by default. Set the RUN_PRIVATE environment variable to a truth value to run them.
1,749
def minimal_d_separator(G, u, v): if not nx.is_directed_acyclic_graph(G): raise nx.NetworkXError("graph should be directed acyclic") union_uv = {u, v} if any(n not in G.nodes for n in union_uv): raise nx.NodeNotFound("one or more specified nodes not found in the graph") # first construct the set of ancestors of X and Y x_anc = nx.ancestors(G, u) y_anc = nx.ancestors(G, v) D_anc_xy = x_anc.union(y_anc) D_anc_xy.update((u, v)) # second, construct the moralization of the subgraph of Anc(X,Y) moral_G = nx.moral_graph(G.subgraph(D_anc_xy)) # find a separating set Z' in moral_G Z_prime = set(G.predecessors(u)).union(set(G.predecessors(v))) # perform BFS on the graph from 'x' to mark Z_dprime = _bfs_with_marks(moral_G, u, Z_prime) Z = _bfs_with_marks(moral_G, v, Z_dprime) return Z @not_implemented_for("undirected")
Compute a minimal d-separating set between 'u' and 'v'. A d-separating set in a DAG is a set of nodes that blocks all paths between the two nodes, 'u' and 'v'. This function constructs a d-separating set that is "minimal", meaning it is the smallest d-separating set for 'u' and 'v'. This is not necessarily unique. For more details, see Notes. Parameters ---------- G : graph A networkx DAG. u : node A node in the graph, G. v : node A node in the graph, G. Raises ------ NetworkXError Raises a :exc:`NetworkXError` if the input graph is not a DAG. NodeNotFound If any of the input nodes are not found in the graph, a :exc:`NodeNotFound` exception is raised. References ---------- .. [1] Tian, J., & Paz, A. (1998). Finding Minimal D-separators. Notes ----- This function only finds ``a`` minimal d-separator. It does not guarantee uniqueness, since in a DAG there may be more than one minimal d-separator between two nodes. Moreover, this only checks for minimal separators between two nodes, not two sets. Finding minimal d-separators between two sets of nodes is not supported. Uses the algorithm presented in [1]_. The complexity of the algorithm is :math:`O(|E_{An}^m|)`, where :math:`|E_{An}^m|` stands for the number of edges in the moralized graph of the sub-graph consisting of only the ancestors of 'u' and 'v'. For full details, see [1]_. The algorithm works by constructing the moral graph consisting of just the ancestors of `u` and `v`. Then it constructs a candidate for a separating set ``Z'`` from the predecessors of `u` and `v`. Then BFS is run starting from `u` and marking nodes found from ``Z'`` and calling those nodes ``Z''``. Then BFS is run again starting from `v` and marking nodes if they are present in ``Z''``. Those marked nodes are the returned minimal d-separating set. https://en.wikipedia.org/wiki/Bayesian_network#d-separation
306
108
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def minimal_d_separator(G, u, v): if not nx.is_directed_acyclic_graph(G): raise nx.NetworkXError("graph should be directed acyclic") union_uv = {u, v} if any(n not in G.nodes for n in union_uv): raise nx.NodeNotFound("one or more specified nodes not found in the graph") # first construct the set of ancestors of X and Y x_anc = nx.ancestors(G, u) y_anc = nx.ancestors(G, v) D_anc_xy = x_anc.union(y_anc) D_anc_xy.update((u, v)) # second, construct the moralization of the subgraph of Anc(X,Y) moral_G = nx.moral_graph(G.subgraph(D_anc_xy)) # find a separating set Z' in moral_G Z_prime = set(G.predecessors(u)).union(set(G.predecessors(v))) # perform BFS on the graph from 'x' to mark Z_dprime = _bfs_with_marks(moral_G, u, Z_prime) Z = _bfs_with_marks(moral_G, v, Z_dprime) return Z @not_implemented_for("undirected") ``` ###Assistant : Compute a minimal d-separating set between 'u' and 'v'. A d-separating set in a DAG is a set of nodes that blocks all paths between the two nodes, 'u' and 'v'. This function constructs a d-separating set that is "minimal", meaning it is the smallest d-separating set for 'u' and 'v'. This is not necessarily unique. For more details, see Notes. Parameters ---------- G : graph A networkx DAG. u : node A node in the graph, G. v : node A node in the graph, G. Raises ------ NetworkXError Raises a :exc:`NetworkXError` if the input graph is not a DAG. NodeNotFound If any of the input nodes are not found in the graph, a :exc:`NodeNotFound` exception is raised. References ---------- .. [1] Tian, J., & Paz, A. (1998). Finding Minimal D-separators. Notes ----- This function only finds ``a`` minimal d-separator. It does not guarantee uniqueness, since in a DAG there may be more than one minimal d-separator between two nodes. Moreover, this only checks for minimal separators between two nodes, not two sets. Finding minimal d-separators between two sets of nodes is not supported. Uses the algorithm presented in [1]_. The complexity of the algorithm is :math:`O(|E_{An}^m|)`, where :math:`|E_{An}^m|` stands for the number of edges in the moralized graph of the sub-graph consisting of only the ancestors of 'u' and 'v'. For full details, see [1]_. The algorithm works by constructing the moral graph consisting of just the ancestors of `u` and `v`. Then it constructs a candidate for a separating set ``Z'`` from the predecessors of `u` and `v`. Then BFS is run starting from `u` and marking nodes found from ``Z'`` and calling those nodes ``Z''``. Then BFS is run again starting from `v` and marking nodes if they are present in ``Z''``. Those marked nodes are the returned minimal d-separating set. https://en.wikipedia.org/wiki/Bayesian_network#d-separation
1,750
def _change_alignment_for_a_line(self, alignment, line_no): self.lines[1][line_no] = alignment if self.lines[1][line_no] == "center": self[line_no].move_to( np.array([self.get_center()[0], self[line_no].get_center()[1], 0]), ) elif self.lines[1][line_no] == "right": self[line_no].move_to( np.array( [ self.get_right()[0] - self[line_no].width / 2, self[line_no].get_center()[1], 0, ], ), ) elif self.lines[1][line_no] == "left": self[line_no].move_to( np.array( [ self.get_left()[0] + self[line_no].width / 2, self[line_no].get_center()[1], 0, ], ), )
Function to change one line's alignment to a specific value. Parameters ---------- alignment : :class:`str` Defines the alignment of paragraph. Possible values are "left", "right", "center". line_no : :class:`int` Defines the line number for which we want to set given alignment.
41
50
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _change_alignment_for_a_line(self, alignment, line_no): self.lines[1][line_no] = alignment if self.lines[1][line_no] == "center": self[line_no].move_to( np.array([self.get_center()[0], self[line_no].get_center()[1], 0]), ) elif self.lines[1][line_no] == "right": self[line_no].move_to( np.array( [ self.get_right()[0] - self[line_no].width / 2, self[line_no].get_center()[1], 0, ], ), ) elif self.lines[1][line_no] == "left": self[line_no].move_to( np.array( [ self.get_left()[0] + self[line_no].width / 2, self[line_no].get_center()[1], 0, ], ), ) ``` ###Assistant : Function to change one line's alignment to a specific value. Parameters ---------- alignment : :class:`str` Defines the alignment of paragraph. Possible values are "left", "right", "center". line_no : :class:`int` Defines the line number for which we want to set given alignment.
1,751
def test_rejoin_forgotten_by_user(self) -> None: self.helper.join(self.room_id, user=self.bob, tok=self.bob_token) self.helper.leave(self.room_id, user=self.alice, tok=self.alice_token) self.get_success(self.handler.forget(self.alice_ID, self.room_id)) self.assertTrue( self.get_success(self.store.did_forget(self.alice, self.room_id)) ) # the server has not forgotten the room self.assertFalse( self.get_success(self.store.is_locally_forgotten_room(self.room_id)) ) self.helper.join(self.room_id, user=self.alice, tok=self.alice_token) # TODO: A join to a room does not invalidate the forgotten cache # see https://github.com/matrix-org/synapse/issues/13262 self.store.did_forget.invalidate_all() self.assertFalse( self.get_success(self.store.did_forget(self.alice, self.room_id)) )
Test that a user that has forgotten a room can do a re-join. The room was not forgotten from the local server. One local user is still member of the room.
31
51
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_rejoin_forgotten_by_user(self) -> None: self.helper.join(self.room_id, user=self.bob, tok=self.bob_token) self.helper.leave(self.room_id, user=self.alice, tok=self.alice_token) self.get_success(self.handler.forget(self.alice_ID, self.room_id)) self.assertTrue( self.get_success(self.store.did_forget(self.alice, self.room_id)) ) # the server has not forgotten the room self.assertFalse( self.get_success(self.store.is_locally_forgotten_room(self.room_id)) ) self.helper.join(self.room_id, user=self.alice, tok=self.alice_token) # TODO: A join to a room does not invalidate the forgotten cache # see https://github.com/matrix-org/synapse/issues/13262 self.store.did_forget.invalidate_all() self.assertFalse( self.get_success(self.store.did_forget(self.alice, self.room_id)) ) ``` ###Assistant : Test that a user that has forgotten a room can do a re-join. The room was not forgotten from the local server. One local user is still member of the room.
1,752
def std_call(func): if os.name == "nt": return lwingdal[func] else: return lgdal[func] # #### Version-information functions. #### # Return GDAL library version information with the given key. _version_info = std_call("GDALVersionInfo") _version_info.argtypes = [c_char_p] _version_info.restype = c_char_p
Return the correct STDCALL function for certain OSR routines on Win32 platforms.
12
35
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def std_call(func): if os.name == "nt": return lwingdal[func] else: return lgdal[func] # #### Version-information functions. #### # Return GDAL library version information with the given key. _version_info = std_call("GDALVersionInfo") _version_info.argtypes = [c_char_p] _version_info.restype = c_char_p ``` ###Assistant : Return the correct STDCALL function for certain OSR routines on Win32 platforms.
1,753
def __getitem__(self, key): use_func = key.startswith(self.prefix) if use_func: key = key[len(self.prefix) :] value = super().__getitem__(key) if use_func: return self.func(value) return value
Retrieve the real value after stripping the prefix string (if present). If the prefix is present, pass the value through self.func before returning, otherwise return the raw value.
28
21
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def __getitem__(self, key): use_func = key.startswith(self.prefix) if use_func: key = key[len(self.prefix) :] value = super().__getitem__(key) if use_func: return self.func(value) return value ``` ###Assistant : Retrieve the real value after stripping the prefix string (if present). If the prefix is present, pass the value through self.func before returning, otherwise return the raw value.
1,754
def not_enough_open_files() -> bool: try: import resource except ImportError: # resource limits is not a concept on all systems, notably Windows return False soft_limit, hard_limit = resource.getrlimit(resource.RLIMIT_NOFILE) return soft_limit < 512 or hard_limit < 512
The current process does not currently allow enough open files for this test. You can increase the number of open files with `ulimit -n 512`.
25
35
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def not_enough_open_files() -> bool: try: import resource except ImportError: # resource limits is not a concept on all systems, notably Windows return False soft_limit, hard_limit = resource.getrlimit(resource.RLIMIT_NOFILE) return soft_limit < 512 or hard_limit < 512 ``` ###Assistant : The current process does not currently allow enough open files for this test. You can increase the number of open files with `ulimit -n 512`.
1,755
def configure(self, request): # Save ordering preference if request.user.is_authenticated: table_name = self.__class__.__name__ if self.prefixed_order_by_field in request.GET: # If an ordering has been specified as a query parameter, save it as the # user's preferred ordering for this table. ordering = request.GET.getlist(self.prefixed_order_by_field) request.user.config.set(f'tables.{table_name}.ordering', ordering, commit=True) elif ordering := request.user.config.get(f'tables.{table_name}.ordering'): # If no ordering has been specified, set the preferred ordering (if any). self.order_by = ordering # Paginate the table results paginate = { 'paginator_class': EnhancedPaginator, 'per_page': get_paginate_count(request) } tables.RequestConfig(request, paginate).configure(self)
Configure the table for a specific request context. This performs pagination and records the user's preferred ordering logic.
18
79
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def configure(self, request): # Save ordering preference if request.user.is_authenticated: table_name = self.__class__.__name__ if self.prefixed_order_by_field in request.GET: # If an ordering has been specified as a query parameter, save it as the # user's preferred ordering for this table. ordering = request.GET.getlist(self.prefixed_order_by_field) request.user.config.set(f'tables.{table_name}.ordering', ordering, commit=True) elif ordering := request.user.config.get(f'tables.{table_name}.ordering'): # If no ordering has been specified, set the preferred ordering (if any). self.order_by = ordering # Paginate the table results paginate = { 'paginator_class': EnhancedPaginator, 'per_page': get_paginate_count(request) } tables.RequestConfig(request, paginate).configure(self) ``` ###Assistant : Configure the table for a specific request context. This performs pagination and records the user's preferred ordering logic.
1,756
def _shard_arg(arg, devices, arg_indices): if isinstance(arg, ShardedDeviceArray) and arg_indices == arg.indices: # The shard_arg_handlers allow an extensible set of types to be sharded, but # inline handling for ShardedDeviceArray as a special case for performance # NOTE: we compare indices instead of sharding_spec because # pmap_benchmark.pmap_shard_args_benchmark indicates this is faster. return [ buf if buf.device() == d else buf.copy_to_device(d) for d, buf in zip(devices, arg.device_buffers) ] else: arg = xla.canonicalize_dtype(arg) return shard_arg_handlers[type(arg)](arg, devices, arg_indices) @profiler.annotate_function
Returns a list of size len(devices) containing per-device buffers. For the C++ pmap path, we fallback to Python (this function) to shard arguments that are not supported by the C++ `ShardArg`. Arrgs: arg: The Python argument. devices: The list of devices to shard over. arg_indices: A list of `len(devices)` indices to use to shard the argument.
56
75
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _shard_arg(arg, devices, arg_indices): if isinstance(arg, ShardedDeviceArray) and arg_indices == arg.indices: # The shard_arg_handlers allow an extensible set of types to be sharded, but # inline handling for ShardedDeviceArray as a special case for performance # NOTE: we compare indices instead of sharding_spec because # pmap_benchmark.pmap_shard_args_benchmark indicates this is faster. return [ buf if buf.device() == d else buf.copy_to_device(d) for d, buf in zip(devices, arg.device_buffers) ] else: arg = xla.canonicalize_dtype(arg) return shard_arg_handlers[type(arg)](arg, devices, arg_indices) @profiler.annotate_function ``` ###Assistant : Returns a list of size len(devices) containing per-device buffers. For the C++ pmap path, we fallback to Python (this function) to shard arguments that are not supported by the C++ `ShardArg`. Arrgs: arg: The Python argument. devices: The list of devices to shard over. arg_indices: A list of `len(devices)` indices to use to shard the argument.
1,757
def test_rect(self): n3x3 = coord_net_spec(ks=3, stride=1, pad=0) n5x5 = coord_net_spec(ks=5, stride=2, pad=10) n3x5 = coord_net_spec(ks=[3, 5], stride=[1, 2], pad=[0, 10]) ax_3x3, a_3x3, b_3x3 = coord_map_from_to(n3x3.deconv, n3x3.data) ax_5x5, a_5x5, b_5x5 = coord_map_from_to(n5x5.deconv, n5x5.data) ax_3x5, a_3x5, b_3x5 = coord_map_from_to(n3x5.deconv, n3x5.data) self.assertTrue(ax_3x3 == ax_5x5 == ax_3x5) self.assertEquals(a_3x3, a_3x5[0]) self.assertEquals(b_3x3, b_3x5[0]) self.assertEquals(a_5x5, a_3x5[1]) self.assertEquals(b_5x5, b_3x5[1])
Anisotropic mapping is equivalent to its isotropic parts.
8
51
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_rect(self): n3x3 = coord_net_spec(ks=3, stride=1, pad=0) n5x5 = coord_net_spec(ks=5, stride=2, pad=10) n3x5 = coord_net_spec(ks=[3, 5], stride=[1, 2], pad=[0, 10]) ax_3x3, a_3x3, b_3x3 = coord_map_from_to(n3x3.deconv, n3x3.data) ax_5x5, a_5x5, b_5x5 = coord_map_from_to(n5x5.deconv, n5x5.data) ax_3x5, a_3x5, b_3x5 = coord_map_from_to(n3x5.deconv, n3x5.data) self.assertTrue(ax_3x3 == ax_5x5 == ax_3x5) self.assertEquals(a_3x3, a_3x5[0]) self.assertEquals(b_3x3, b_3x5[0]) self.assertEquals(a_5x5, a_3x5[1]) self.assertEquals(b_5x5, b_3x5[1]) ``` ###Assistant : Anisotropic mapping is equivalent to its isotropic parts.
1,758
def test_get_page_url_when_for_settings_fetched_via_for_site(self): self._create_importantpages_object() settings = ImportantPages.for_site(self.default_site) # Force site root paths query beforehand self.default_site.root_page._get_site_root_paths() for page_fk_field, expected_result in ( ("sign_up_page", "http://localhost/"), ("general_terms_page", "http://localhost/"), ("privacy_policy_page", "http://other/"), ): with self.subTest(page_fk_field=page_fk_field): # only the first request for each URL will trigger queries. # 2 are triggered instead of 1 here, because tests use the # database cache backed, and the cache is queried each time # to fetch site root paths (because there's no 'request' to # store them on) with self.assertNumQueries(2): self.assertEqual( settings.get_page_url(page_fk_field), expected_result ) # when called directly self.assertEqual( settings.get_page_url(page_fk_field), expected_result ) # when called indirectly via shortcut self.assertEqual( getattr(settings.page_url, page_fk_field), expected_result )
ImportantPages.for_site() cannot make the settings object request-aware, so things are a little less efficient, and the URLs returned will not be site-relative
22
102
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_get_page_url_when_for_settings_fetched_via_for_site(self): self._create_importantpages_object() settings = ImportantPages.for_site(self.default_site) # Force site root paths query beforehand self.default_site.root_page._get_site_root_paths() for page_fk_field, expected_result in ( ("sign_up_page", "http://localhost/"), ("general_terms_page", "http://localhost/"), ("privacy_policy_page", "http://other/"), ): with self.subTest(page_fk_field=page_fk_field): # only the first request for each URL will trigger queries. # 2 are triggered instead of 1 here, because tests use the # database cache backed, and the cache is queried each time # to fetch site root paths (because there's no 'request' to # store them on) with self.assertNumQueries(2): self.assertEqual( settings.get_page_url(page_fk_field), expected_result ) # when called directly self.assertEqual( settings.get_page_url(page_fk_field), expected_result ) # when called indirectly via shortcut self.assertEqual( getattr(settings.page_url, page_fk_field), expected_result ) ``` ###Assistant : ImportantPages.for_site() cannot make the settings object request-aware, so things are a little less efficient, and the URLs returned will not be site-relative
1,759
def test_send_receipts_with_backoff(self): mock_send_transaction = ( self.hs.get_federation_transport_client().send_transaction ) mock_send_transaction.return_value = make_awaitable({}) sender = self.hs.get_federation_sender() receipt = ReadReceipt( "room_id", "m.read", "user_id", ["event_id"], {"ts": 1234} ) self.successResultOf(defer.ensureDeferred(sender.send_read_receipt(receipt))) self.pump() # expect a call to send_transaction mock_send_transaction.assert_called_once() json_cb = mock_send_transaction.call_args[0][1] data = json_cb() self.assertEqual( data["edus"], [ { "edu_type": EduTypes.RECEIPT, "content": { "room_id": { "m.read": { "user_id": { "event_ids": ["event_id"], "data": {"ts": 1234}, } } } }, } ], ) mock_send_transaction.reset_mock() # send the second RR receipt = ReadReceipt( "room_id", "m.read", "user_id", ["other_id"], {"ts": 1234} ) self.successResultOf(defer.ensureDeferred(sender.send_read_receipt(receipt))) self.pump() mock_send_transaction.assert_not_called() self.reactor.advance(19) mock_send_transaction.assert_not_called() self.reactor.advance(10) mock_send_transaction.assert_called_once() json_cb = mock_send_transaction.call_args[0][1] data = json_cb() self.assertEqual( data["edus"], [ { "edu_type": EduTypes.RECEIPT, "content": { "room_id": { "m.read": { "user_id": { "event_ids": ["other_id"], "data": {"ts": 1234}, } } } }, } ], )
Send two receipts in quick succession; the second should be flushed, but only after 20ms
15
119
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_send_receipts_with_backoff(self): mock_send_transaction = ( self.hs.get_federation_transport_client().send_transaction ) mock_send_transaction.return_value = make_awaitable({}) sender = self.hs.get_federation_sender() receipt = ReadReceipt( "room_id", "m.read", "user_id", ["event_id"], {"ts": 1234} ) self.successResultOf(defer.ensureDeferred(sender.send_read_receipt(receipt))) self.pump() # expect a call to send_transaction mock_send_transaction.assert_called_once() json_cb = mock_send_transaction.call_args[0][1] data = json_cb() self.assertEqual( data["edus"], [ { "edu_type": EduTypes.RECEIPT, "content": { "room_id": { "m.read": { "user_id": { "event_ids": ["event_id"], "data": {"ts": 1234}, } } } }, } ], ) mock_send_transaction.reset_mock() # send the second RR receipt = ReadReceipt( "room_id", "m.read", "user_id", ["other_id"], {"ts": 1234} ) self.successResultOf(defer.ensureDeferred(sender.send_read_receipt(receipt))) self.pump() mock_send_transaction.assert_not_called() self.reactor.advance(19) mock_send_transaction.assert_not_called() self.reactor.advance(10) mock_send_transaction.assert_called_once() json_cb = mock_send_transaction.call_args[0][1] data = json_cb() self.assertEqual( data["edus"], [ { "edu_type": EduTypes.RECEIPT, "content": { "room_id": { "m.read": { "user_id": { "event_ids": ["other_id"], "data": {"ts": 1234}, } } } }, } ], ) ``` ###Assistant : Send two receipts in quick succession; the second should be flushed, but only after 20ms
1,760
def process_frame(self, processable_frame, processing_task): frame = processable_frame.frame token = None cache = self.cache sourcemaps = self.sourcemaps all_errors = [] sourcemap_applied = False # can't demangle if there's no filename or line number present if not frame.get("abs_path") or not frame.get("lineno"): return # also can't demangle node's internal modules # therefore we only process user-land frames (starting with /) # or those created by bundle/webpack internals if self.data.get("platform") == "node" and not frame.get("abs_path").startswith( ("/", "app:", "webpack:") ): return errors = cache.get_errors(frame["abs_path"]) if errors: all_errors.extend(errors) # This might fail but that's okay, we try with a different path a # bit later down the road. source = self.get_sourceview(frame["abs_path"]) in_app = None new_frame = dict(frame) raw_frame = dict(frame) sourcemap_url, sourcemap_view = sourcemaps.get_link(frame["abs_path"]) self.sourcemaps_touched.add(sourcemap_url) if sourcemap_view and frame.get("colno") is None: all_errors.append( {"type": EventError.JS_NO_COLUMN, "url": http.expose_url(frame["abs_path"])} ) elif sourcemap_view: if is_data_uri(sourcemap_url): sourcemap_label = frame["abs_path"] else: sourcemap_label = sourcemap_url sourcemap_label = http.expose_url(sourcemap_label) if frame.get("function"): minified_function_name = frame["function"] minified_source = self.get_sourceview(frame["abs_path"]) else: minified_function_name = minified_source = None try: # Errors are 1-indexed in the frames, so we need to -1 to get # zero-indexed value from tokens. assert frame["lineno"] > 0, "line numbers are 1-indexed" token = sourcemap_view.lookup( frame["lineno"] - 1, frame["colno"] - 1, minified_function_name, minified_source ) except Exception: token = None all_errors.append( { "type": EventError.JS_INVALID_SOURCEMAP_LOCATION, "column": frame.get("colno"), "row": frame.get("lineno"), "source": frame["abs_path"], "sourcemap": sourcemap_label, } ) # persist the token so that we can find it later processable_frame.data["token"] = token # Store original data in annotation new_frame["data"] = dict(frame.get("data") or {}, sourcemap=sourcemap_label) sourcemap_applied = True if token is not None: abs_path = non_standard_url_join(sourcemap_url, token.src) logger.debug( "Mapping compressed source %r to mapping in %r", frame["abs_path"], abs_path ) source = self.get_sourceview(abs_path) if source is None: errors = cache.get_errors(abs_path) if errors: all_errors.extend(errors) else: all_errors.append( {"type": EventError.JS_MISSING_SOURCE, "url": http.expose_url(abs_path)} ) # the tokens are zero indexed, so offset correctly new_frame["lineno"] = token.src_line + 1 new_frame["colno"] = token.src_col + 1 # Try to use the function name we got from symbolic original_function_name = token.function_name # In the ideal case we can use the function name from the # frame and the location to resolve the original name # through the heuristics in our sourcemap library. if original_function_name is None: last_token = None # Find the previous token for function name handling as a # fallback. if ( processable_frame.previous_frame and processable_frame.previous_frame.processor is self ): last_token = processable_frame.previous_frame.data.get("token") if last_token: original_function_name = last_token.name if original_function_name is not None: new_frame["function"] = original_function_name filename = token.src # special case webpack support # abs_path will always be the full path with webpack:/// prefix. # filename will be relative to that if abs_path.startswith("webpack:"): filename = abs_path # webpack seems to use ~ to imply "relative to resolver root" # which is generally seen for third party deps # (i.e. node_modules) if "/~/" in filename: filename = "~/" + abs_path.split("/~/", 1)[-1] elif WEBPACK_NAMESPACE_RE.match(filename): filename = re.sub(WEBPACK_NAMESPACE_RE, "./", abs_path) else: filename = filename.split("webpack:///", 1)[-1] # As noted above: # * [js/node] '~/' means they're coming from node_modules, so these are not app dependencies # * [node] sames goes for `./node_modules/` and '../node_modules/', which is used when bundling node apps # * [node] and webpack, which includes it's own code to bootstrap all modules and its internals # eg. webpack:///webpack/bootstrap, webpack:///external if ( filename.startswith("~/") or "/node_modules/" in filename or not filename.startswith("./") ): in_app = False # And conversely, local dependencies start with './' elif filename.startswith("./"): in_app = True # We want to explicitly generate a webpack module name new_frame["module"] = generate_module(filename) # while you could technically use a subpath of 'node_modules' for your libraries, # it would be an extremely complicated decision and we've not seen anyone do it # so instead we assume if node_modules is in the path its part of the vendored code elif "/node_modules/" in abs_path: in_app = False if abs_path.startswith("app:"): if filename and NODE_MODULES_RE.search(filename): in_app = False else: in_app = True new_frame["abs_path"] = abs_path new_frame["filename"] = filename if not frame.get("module") and abs_path.startswith( ("http:", "https:", "webpack:", "app:") ): new_frame["module"] = generate_module(abs_path) elif sourcemap_url: new_frame["data"] = dict( new_frame.get("data") or {}, sourcemap=http.expose_url(sourcemap_url) ) # TODO: theoretically a minified source could point to # another mapped, minified source changed_frame = self.expand_frame(new_frame, source=source) # If we did not manage to match but we do have a line or column # we want to report an error here. if not new_frame.get("context_line") and source and new_frame.get("colno") is not None: all_errors.append( { "type": EventError.JS_INVALID_SOURCEMAP_LOCATION, "column": new_frame["colno"], "row": new_frame["lineno"], "source": new_frame["abs_path"], } ) changed_raw = sourcemap_applied and self.expand_frame(raw_frame) if sourcemap_applied or all_errors or changed_frame or changed_raw: # In case we are done processing, we iterate over all errors that we got # and we filter out all `JS_MISSING_SOURCE` errors since we consider if we have # a `context_line` we have a symbolicated frame and we don't need to show the error has_context_line = bool(new_frame.get("context_line")) if has_context_line: all_errors[:] = [ x for x in all_errors if x.get("type") is not EventError.JS_MISSING_SOURCE ] if in_app is not None: new_frame["in_app"] = in_app raw_frame["in_app"] = in_app # Run new processor only for frames that were actually modified in any way. if should_run_smcache(self) and new_frame != raw_frame: smcache_rv = self.smcache_processor.process_frame(processable_frame, None) set_path(new_frame, "data", "smcache_frame", value=smcache_rv[0][0]) new_frames = [new_frame] raw_frames = [raw_frame] if changed_raw else None return new_frames, raw_frames, all_errors
Attempt to demangle the given frame.
6
857
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def process_frame(self, processable_frame, processing_task): frame = processable_frame.frame token = None cache = self.cache sourcemaps = self.sourcemaps all_errors = [] sourcemap_applied = False # can't demangle if there's no filename or line number present if not frame.get("abs_path") or not frame.get("lineno"): return # also can't demangle node's internal modules # therefore we only process user-land frames (starting with /) # or those created by bundle/webpack internals if self.data.get("platform") == "node" and not frame.get("abs_path").startswith( ("/", "app:", "webpack:") ): return errors = cache.get_errors(frame["abs_path"]) if errors: all_errors.extend(errors) # This might fail but that's okay, we try with a different path a # bit later down the road. source = self.get_sourceview(frame["abs_path"]) in_app = None new_frame = dict(frame) raw_frame = dict(frame) sourcemap_url, sourcemap_view = sourcemaps.get_link(frame["abs_path"]) self.sourcemaps_touched.add(sourcemap_url) if sourcemap_view and frame.get("colno") is None: all_errors.append( {"type": EventError.JS_NO_COLUMN, "url": http.expose_url(frame["abs_path"])} ) elif sourcemap_view: if is_data_uri(sourcemap_url): sourcemap_label = frame["abs_path"] else: sourcemap_label = sourcemap_url sourcemap_label = http.expose_url(sourcemap_label) if frame.get("function"): minified_function_name = frame["function"] minified_source = self.get_sourceview(frame["abs_path"]) else: minified_function_name = minified_source = None try: # Errors are 1-indexed in the frames, so we need to -1 to get # zero-indexed value from tokens. assert frame["lineno"] > 0, "line numbers are 1-indexed" token = sourcemap_view.lookup( frame["lineno"] - 1, frame["colno"] - 1, minified_function_name, minified_source ) except Exception: token = None all_errors.append( { "type": EventError.JS_INVALID_SOURCEMAP_LOCATION, "column": frame.get("colno"), "row": frame.get("lineno"), "source": frame["abs_path"], "sourcemap": sourcemap_label, } ) # persist the token so that we can find it later processable_frame.data["token"] = token # Store original data in annotation new_frame["data"] = dict(frame.get("data") or {}, sourcemap=sourcemap_label) sourcemap_applied = True if token is not None: abs_path = non_standard_url_join(sourcemap_url, token.src) logger.debug( "Mapping compressed source %r to mapping in %r", frame["abs_path"], abs_path ) source = self.get_sourceview(abs_path) if source is None: errors = cache.get_errors(abs_path) if errors: all_errors.extend(errors) else: all_errors.append( {"type": EventError.JS_MISSING_SOURCE, "url": http.expose_url(abs_path)} ) # the tokens are zero indexed, so offset correctly new_frame["lineno"] = token.src_line + 1 new_frame["colno"] = token.src_col + 1 # Try to use the function name we got from symbolic original_function_name = token.function_name # In the ideal case we can use the function name from the # frame and the location to resolve the original name # through the heuristics in our sourcemap library. if original_function_name is None: last_token = None # Find the previous token for function name handling as a # fallback. if ( processable_frame.previous_frame and processable_frame.previous_frame.processor is self ): last_token = processable_frame.previous_frame.data.get("token") if last_token: original_function_name = last_token.name if original_function_name is not None: new_frame["function"] = original_function_name filename = token.src # special case webpack support # abs_path will always be the full path with webpack:/// prefix. # filename will be relative to that if abs_path.startswith("webpack:"): filename = abs_path # webpack seems to use ~ to imply "relative to resolver root" # which is generally seen for third party deps # (i.e. node_modules) if "/~/" in filename: filename = "~/" + abs_path.split("/~/", 1)[-1] elif WEBPACK_NAMESPACE_RE.match(filename): filename = re.sub(WEBPACK_NAMESPACE_RE, "./", abs_path) else: filename = filename.split("webpack:///", 1)[-1] # As noted above: # * [js/node] '~/' means they're coming from node_modules, so these are not app dependencies # * [node] sames goes for `./node_modules/` and '../node_modules/', which is used when bundling node apps # * [node] and webpack, which includes it's own code to bootstrap all modules and its internals # eg. webpack:///webpack/bootstrap, webpack:///external if ( filename.startswith("~/") or "/node_modules/" in filename or not filename.startswith("./") ): in_app = False # And conversely, local dependencies start with './' elif filename.startswith("./"): in_app = True # We want to explicitly generate a webpack module name new_frame["module"] = generate_module(filename) # while you could technically use a subpath of 'node_modules' for your libraries, # it would be an extremely complicated decision and we've not seen anyone do it # so instead we assume if node_modules is in the path its part of the vendored code elif "/node_modules/" in abs_path: in_app = False if abs_path.startswith("app:"): if filename and NODE_MODULES_RE.search(filename): in_app = False else: in_app = True new_frame["abs_path"] = abs_path new_frame["filename"] = filename if not frame.get("module") and abs_path.startswith( ("http:", "https:", "webpack:", "app:") ): new_frame["module"] = generate_module(abs_path) elif sourcemap_url: new_frame["data"] = dict( new_frame.get("data") or {}, sourcemap=http.expose_url(sourcemap_url) ) # TODO: theoretically a minified source could point to # another mapped, minified source changed_frame = self.expand_frame(new_frame, source=source) # If we did not manage to match but we do have a line or column # we want to report an error here. if not new_frame.get("context_line") and source and new_frame.get("colno") is not None: all_errors.append( { "type": EventError.JS_INVALID_SOURCEMAP_LOCATION, "column": new_frame["colno"], "row": new_frame["lineno"], "source": new_frame["abs_path"], } ) changed_raw = sourcemap_applied and self.expand_frame(raw_frame) if sourcemap_applied or all_errors or changed_frame or changed_raw: # In case we are done processing, we iterate over all errors that we got # and we filter out all `JS_MISSING_SOURCE` errors since we consider if we have # a `context_line` we have a symbolicated frame and we don't need to show the error has_context_line = bool(new_frame.get("context_line")) if has_context_line: all_errors[:] = [ x for x in all_errors if x.get("type") is not EventError.JS_MISSING_SOURCE ] if in_app is not None: new_frame["in_app"] = in_app raw_frame["in_app"] = in_app # Run new processor only for frames that were actually modified in any way. if should_run_smcache(self) and new_frame != raw_frame: smcache_rv = self.smcache_processor.process_frame(processable_frame, None) set_path(new_frame, "data", "smcache_frame", value=smcache_rv[0][0]) new_frames = [new_frame] raw_frames = [raw_frame] if changed_raw else None return new_frames, raw_frames, all_errors ``` ###Assistant : Attempt to demangle the given frame.
1,761
def validate_csv(headers, fields, required_fields): # Validate provided column headers is_update = False for field, to_field in headers.items(): if field == "id": is_update = True continue if field not in fields: raise forms.ValidationError(f'Unexpected column header "{field}" found.') if to_field and not hasattr(fields[field], 'to_field_name'): raise forms.ValidationError(f'Column "{field}" is not a related object; cannot use dots') if to_field and not hasattr(fields[field].queryset.model, to_field): raise forms.ValidationError(f'Invalid related object attribute for column "{field}": {to_field}') # Validate required fields (if not an update) if not is_update: for f in required_fields: if f not in headers: raise forms.ValidationError(f'Required column header "{f}" not found.')
Validate that parsed csv data conforms to the object's available fields. Raise validation errors if parsed csv data contains invalid headers or does not contain required headers.
27
95
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def validate_csv(headers, fields, required_fields): # Validate provided column headers is_update = False for field, to_field in headers.items(): if field == "id": is_update = True continue if field not in fields: raise forms.ValidationError(f'Unexpected column header "{field}" found.') if to_field and not hasattr(fields[field], 'to_field_name'): raise forms.ValidationError(f'Column "{field}" is not a related object; cannot use dots') if to_field and not hasattr(fields[field].queryset.model, to_field): raise forms.ValidationError(f'Invalid related object attribute for column "{field}": {to_field}') # Validate required fields (if not an update) if not is_update: for f in required_fields: if f not in headers: raise forms.ValidationError(f'Required column header "{f}" not found.') ``` ###Assistant : Validate that parsed csv data conforms to the object's available fields. Raise validation errors if parsed csv data contains invalid headers or does not contain required headers.
1,762
def bernoulli_poly(n, x=None, polys=False): return appell_poly(n, [[1], [1, QQ(-1,2)]], QQ(1,2), lambda p, i: p * QQ(1<<(i-1), 1-(1<<i)), QQ, x, polys) @public
Generates the Bernoulli polynomial of degree `n` in `x`. Parameters ========== n : int Degree of the polynomial. x : optional polys : bool, optional If True, return a Poly, otherwise (default) return an expression.
35
21
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def bernoulli_poly(n, x=None, polys=False): return appell_poly(n, [[1], [1, QQ(-1,2)]], QQ(1,2), lambda p, i: p * QQ(1<<(i-1), 1-(1<<i)), QQ, x, polys) @public ``` ###Assistant : Generates the Bernoulli polynomial of degree `n` in `x`. Parameters ========== n : int Degree of the polynomial. x : optional polys : bool, optional If True, return a Poly, otherwise (default) return an expression.
1,763
def test_calculate_max_drawdown_abs(values, relative, result, result_rel): dates = [Arrow(2020, 1, 1).shift(days=i) for i in range(len(values))] df = DataFrame(zip(values, dates), columns=['profit_abs', 'open_date']) # sort by profit and reset index df = df.sort_values('profit_abs').reset_index(drop=True) df1 = df.copy() drawdown, hdate, ldate, hval, lval, drawdown_rel = calculate_max_drawdown( df, date_col='open_date', starting_balance=1000, relative=relative) # Ensure df has not been altered. assert df.equals(df1) assert isinstance(drawdown, float) assert isinstance(drawdown_rel, float) # High must be before low assert hdate < ldate # High value must be higher than low value assert hval > lval assert drawdown == result assert pytest.approx(drawdown_rel) == result_rel
Test case from issue https://github.com/freqtrade/freqtrade/issues/6655 [1000, 500, 1000, 11000, 10000] # absolute results [1000, 50%, 0%, 0%, ~9%] # Relative drawdowns
21
91
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_calculate_max_drawdown_abs(values, relative, result, result_rel): dates = [Arrow(2020, 1, 1).shift(days=i) for i in range(len(values))] df = DataFrame(zip(values, dates), columns=['profit_abs', 'open_date']) # sort by profit and reset index df = df.sort_values('profit_abs').reset_index(drop=True) df1 = df.copy() drawdown, hdate, ldate, hval, lval, drawdown_rel = calculate_max_drawdown( df, date_col='open_date', starting_balance=1000, relative=relative) # Ensure df has not been altered. assert df.equals(df1) assert isinstance(drawdown, float) assert isinstance(drawdown_rel, float) # High must be before low assert hdate < ldate # High value must be higher than low value assert hval > lval assert drawdown == result assert pytest.approx(drawdown_rel) == result_rel ``` ###Assistant : Test case from issue https://github.com/freqtrade/freqtrade/issues/6655 [1000, 500, 1000, 11000, 10000] # absolute results [1000, 50%, 0%, 0%, ~9%] # Relative drawdowns
1,764
def testOnCheckpointUnavailableAttribute(self): checkpoint_manager = self.checkpoint_manager(keep_checkpoints_num=1) no_attr_checkpoint = Checkpoint(Checkpoint.PERSISTENT, 0, {}) with patch.object(logger, "error") as log_error_mock: checkpoint_manager.on_checkpoint(no_attr_checkpoint) log_error_mock.assert_called_once() # The newest checkpoint should still be set despite this error. self.assertEqual( checkpoint_manager.newest_persistent_checkpoint, no_attr_checkpoint )
Tests that an error is logged when the associated result of the checkpoint has no checkpoint score attribute.
18
32
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def testOnCheckpointUnavailableAttribute(self): checkpoint_manager = self.checkpoint_manager(keep_checkpoints_num=1) no_attr_checkpoint = Checkpoint(Checkpoint.PERSISTENT, 0, {}) with patch.object(logger, "error") as log_error_mock: checkpoint_manager.on_checkpoint(no_attr_checkpoint) log_error_mock.assert_called_once() # The newest checkpoint should still be set despite this error. self.assertEqual( checkpoint_manager.newest_persistent_checkpoint, no_attr_checkpoint ) ``` ###Assistant : Tests that an error is logged when the associated result of the checkpoint has no checkpoint score attribute.
1,765
def subscription_app_status_changed_webhook(subscription_webhook): return subscription_webhook( APP_STATUS_CHANGED_SUBSCRIPTION_QUERY, WebhookEventAsyncType.APP_STATUS_CHANGED, ) CATEGORY_CREATED_SUBSCRIPTION_QUERY = @pytest.fixture
subscription{ event{ ...on CategoryCreated{ category{ id } } } }
10
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def subscription_app_status_changed_webhook(subscription_webhook): return subscription_webhook( APP_STATUS_CHANGED_SUBSCRIPTION_QUERY, WebhookEventAsyncType.APP_STATUS_CHANGED, ) CATEGORY_CREATED_SUBSCRIPTION_QUERY = @pytest.fixture ``` ###Assistant : subscription{ event{ ...on CategoryCreated{ category{ id } } } }
1,766
def binary_op(self, op, right_frame, join_type="outer"): left_parts, right_parts, joined_index, row_lengths = self._copartition( 0, right_frame, join_type, sort=True ) # unwrap list returned by `copartition`. right_parts = right_parts[0] new_frame = self._partition_mgr_cls.binary_operation( 1, left_parts, lambda l, r: op(l, r), right_parts ) new_columns = self.columns.join(right_frame.columns, how=join_type) return self.__constructor__( new_frame, joined_index, new_columns, row_lengths, column_widths=self._column_widths_cache, )
Perform an operation that requires joining with another Modin DataFrame. Parameters ---------- op : callable Function to apply after the join. right_frame : PandasDataframe Modin DataFrame to join with. join_type : str, default: "outer" Type of join to apply. Returns ------- PandasDataframe New Modin DataFrame.
45
49
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def binary_op(self, op, right_frame, join_type="outer"): left_parts, right_parts, joined_index, row_lengths = self._copartition( 0, right_frame, join_type, sort=True ) # unwrap list returned by `copartition`. right_parts = right_parts[0] new_frame = self._partition_mgr_cls.binary_operation( 1, left_parts, lambda l, r: op(l, r), right_parts ) new_columns = self.columns.join(right_frame.columns, how=join_type) return self.__constructor__( new_frame, joined_index, new_columns, row_lengths, column_widths=self._column_widths_cache, ) ``` ###Assistant : Perform an operation that requires joining with another Modin DataFrame. Parameters ---------- op : callable Function to apply after the join. right_frame : PandasDataframe Modin DataFrame to join with. join_type : str, default: "outer" Type of join to apply. Returns ------- PandasDataframe New Modin DataFrame.
1,767
def rc_file(fname, *, use_default_template=True): # Deprecation warnings were already handled in rc_params_from_file, no need # to reemit them here. with _api.suppress_matplotlib_deprecation_warning(): from .style.core import STYLE_BLACKLIST rc_from_file = rc_params_from_file( fname, use_default_template=use_default_template) rcParams.update({k: rc_from_file[k] for k in rc_from_file if k not in STYLE_BLACKLIST}) @contextlib.contextmanager
Update `.rcParams` from file. Style-blacklisted `.rcParams` (defined in ``matplotlib.style.core.STYLE_BLACKLIST``) are not updated. Parameters ---------- fname : str or path-like A file with Matplotlib rc settings. use_default_template : bool If True, initialize with default parameters before updating with those in the given file. If False, the current configuration persists and only the parameters specified in the file are updated.
58
42
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def rc_file(fname, *, use_default_template=True): # Deprecation warnings were already handled in rc_params_from_file, no need # to reemit them here. with _api.suppress_matplotlib_deprecation_warning(): from .style.core import STYLE_BLACKLIST rc_from_file = rc_params_from_file( fname, use_default_template=use_default_template) rcParams.update({k: rc_from_file[k] for k in rc_from_file if k not in STYLE_BLACKLIST}) @contextlib.contextmanager ``` ###Assistant : Update `.rcParams` from file. Style-blacklisted `.rcParams` (defined in ``matplotlib.style.core.STYLE_BLACKLIST``) are not updated. Parameters ---------- fname : str or path-like A file with Matplotlib rc settings. use_default_template : bool If True, initialize with default parameters before updating with those in the given file. If False, the current configuration persists and only the parameters specified in the file are updated.
1,768
def create_gloo_context(rank, world_size): context = pygloo.rendezvous.Context(rank, world_size) return context
Create a GLOO context using GLOO APIs. Args: rank: the rank of this process. world_size: the number of processes of this collective group. Returns: context (pygloo.Context): a GLOO context.
29
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def create_gloo_context(rank, world_size): context = pygloo.rendezvous.Context(rank, world_size) return context ``` ###Assistant : Create a GLOO context using GLOO APIs. Args: rank: the rank of this process. world_size: the number of processes of this collective group. Returns: context (pygloo.Context): a GLOO context.
1,769
def require_bitsandbytes(test_case): if not is_bitsandbytes_available(): return unittest.skip("test requires bnb")(test_case) else: return test_case
Decorator for bits and bytes (bnb) dependency
7
12
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def require_bitsandbytes(test_case): if not is_bitsandbytes_available(): return unittest.skip("test requires bnb")(test_case) else: return test_case ``` ###Assistant : Decorator for bits and bytes (bnb) dependency
1,770
def copy_func(f) -> Callable: g = types.FunctionType( f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__, ) g = functools.update_wrapper(g, f) g.__kwdefaults__ = f.__kwdefaults__ return g
Copies the contents and attributes of the entered function. Based on https://stackoverflow.com/a/13503277 Parameters ---------- f: Callable Function to be copied Returns ------- g: Callable New function
26
22
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def copy_func(f) -> Callable: g = types.FunctionType( f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__, ) g = functools.update_wrapper(g, f) g.__kwdefaults__ = f.__kwdefaults__ return g ``` ###Assistant : Copies the contents and attributes of the entered function. Based on https://stackoverflow.com/a/13503277 Parameters ---------- f: Callable Function to be copied Returns ------- g: Callable New function
1,771
def evaluate(self, expr, context): if isinstance(expr, string_types): if expr[0] in '\'"': result = expr[1:-1] else: if expr not in context: raise SyntaxError('unknown variable: %s' % expr) result = context[expr] else: assert isinstance(expr, dict) op = expr['op'] if op not in self.operations: raise NotImplementedError('op not implemented: %s' % op) elhs = expr['lhs'] erhs = expr['rhs'] if _is_literal(expr['lhs']) and _is_literal(expr['rhs']): raise SyntaxError('invalid comparison: %s %s %s' % (elhs, op, erhs)) lhs = self.evaluate(elhs, context) rhs = self.evaluate(erhs, context) if ((elhs == 'python_version' or erhs == 'python_version') and op in ('<', '<=', '>', '>=', '===', '==', '!=', '~=')): lhs = NV(lhs) rhs = NV(rhs) elif elhs == 'python_version' and op in ('in', 'not in'): lhs = NV(lhs) rhs = _get_versions(rhs) result = self.operations[op](lhs, rhs) return result
Evaluate a marker expression returned by the :func:`parse_requirement` function in the specified context.
13
123
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def evaluate(self, expr, context): if isinstance(expr, string_types): if expr[0] in '\'"': result = expr[1:-1] else: if expr not in context: raise SyntaxError('unknown variable: %s' % expr) result = context[expr] else: assert isinstance(expr, dict) op = expr['op'] if op not in self.operations: raise NotImplementedError('op not implemented: %s' % op) elhs = expr['lhs'] erhs = expr['rhs'] if _is_literal(expr['lhs']) and _is_literal(expr['rhs']): raise SyntaxError('invalid comparison: %s %s %s' % (elhs, op, erhs)) lhs = self.evaluate(elhs, context) rhs = self.evaluate(erhs, context) if ((elhs == 'python_version' or erhs == 'python_version') and op in ('<', '<=', '>', '>=', '===', '==', '!=', '~=')): lhs = NV(lhs) rhs = NV(rhs) elif elhs == 'python_version' and op in ('in', 'not in'): lhs = NV(lhs) rhs = _get_versions(rhs) result = self.operations[op](lhs, rhs) return result ``` ###Assistant : Evaluate a marker expression returned by the :func:`parse_requirement` function in the specified context.
1,772
def track_tf_optimizer(tf_optimizer): if tf.executing_eagerly(): return optimizers = _GRAPH_TF_OPTIMIZERS[None] optimizers.add(tf_optimizer) @keras_export("keras.__internal__.backend.track_variable", v1=[])
Tracks the given TF optimizer for initialization of its variables.
10
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def track_tf_optimizer(tf_optimizer): if tf.executing_eagerly(): return optimizers = _GRAPH_TF_OPTIMIZERS[None] optimizers.add(tf_optimizer) @keras_export("keras.__internal__.backend.track_variable", v1=[]) ``` ###Assistant : Tracks the given TF optimizer for initialization of its variables.
1,773
def _galois_group_degree_5(T, max_tries=30, randomize=False): r from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.named_groups import ( CyclicGroup, DihedralGroup, AlternatingGroup, SymmetricGroup ) # The ideas here are all the same as in the degree-4 method. # The specific resolvents we use, and how we interpret the results, are # adapted to the degree-5 case. X = symbols('X0 X1 X2 X3 X4') # For the first resolvent, we have G = S5, # and stabilizer H = M20 = < (01234), (1234) >. F1 = (X[0]**2*(X[1]*X[4] + X[2]*X[3]) + X[1]**2*(X[2]*X[0] + X[3]*X[4]) + X[2]**2*(X[3]*X[1] + X[4]*X[0]) + X[3]**2*(X[4]*X[2] + X[0]*X[1]) + X[4]**2*(X[0]*X[3] + X[1]*X[2])) s1 = [ Permutation(4), Permutation(4)(0, 1), Permutation(4)(0, 2), Permutation(4)(0, 3), Permutation(4)(0, 4), Permutation(4)(1, 4) ] R1 = Resolvent(F1, X, s1) # For the second resolvent, we'll have G = D5, H = C5. F2_pre = X[0]*X[1]**2 + X[1]*X[2]**2 + X[2]*X[3]**2 + X[3]*X[4]**2 + X[4]*X[0]**2 s2_pre = [ Permutation(4), Permutation(4)(0, 1)(2, 4) ] history = set() for i in range(max_tries): if i > 0: _, T = tschirnhausen_transformation(T, max_tries=max_tries, history=history, fixed_order=not randomize) R_dup, _, i0 = R1.eval_for_poly(T, find_integer_root=True) if not dup_sqf_p(R_dup, ZZ): continue sq_disc = has_square_disc(T) if i0 is None: return (AlternatingGroup(5), True) if sq_disc else (SymmetricGroup(5), False) if not sq_disc: return (M20(), False) sigma = s1[i0] F2 = F2_pre.subs(zip(X, sigma(X)), simultaneous=True) s2 = [sigma*tau*sigma for tau in s2_pre] R2 = Resolvent(F2, X, s2) R_dup, _, _ = R2.eval_for_poly(T) d = dup_discriminant(R_dup, ZZ) if d == 0: continue if is_square(d): return (CyclicGroup(5), True) else: return (DihedralGroup(5), True) raise MaxTriesException
Compute the Galois group of a polynomial of degree 5, following Alg 6.3.9 of Cohen. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*.
28
247
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _galois_group_degree_5(T, max_tries=30, randomize=False): r from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.named_groups import ( CyclicGroup, DihedralGroup, AlternatingGroup, SymmetricGroup ) # The ideas here are all the same as in the degree-4 method. # The specific resolvents we use, and how we interpret the results, are # adapted to the degree-5 case. X = symbols('X0 X1 X2 X3 X4') # For the first resolvent, we have G = S5, # and stabilizer H = M20 = < (01234), (1234) >. F1 = (X[0]**2*(X[1]*X[4] + X[2]*X[3]) + X[1]**2*(X[2]*X[0] + X[3]*X[4]) + X[2]**2*(X[3]*X[1] + X[4]*X[0]) + X[3]**2*(X[4]*X[2] + X[0]*X[1]) + X[4]**2*(X[0]*X[3] + X[1]*X[2])) s1 = [ Permutation(4), Permutation(4)(0, 1), Permutation(4)(0, 2), Permutation(4)(0, 3), Permutation(4)(0, 4), Permutation(4)(1, 4) ] R1 = Resolvent(F1, X, s1) # For the second resolvent, we'll have G = D5, H = C5. F2_pre = X[0]*X[1]**2 + X[1]*X[2]**2 + X[2]*X[3]**2 + X[3]*X[4]**2 + X[4]*X[0]**2 s2_pre = [ Permutation(4), Permutation(4)(0, 1)(2, 4) ] history = set() for i in range(max_tries): if i > 0: _, T = tschirnhausen_transformation(T, max_tries=max_tries, history=history, fixed_order=not randomize) R_dup, _, i0 = R1.eval_for_poly(T, find_integer_root=True) if not dup_sqf_p(R_dup, ZZ): continue sq_disc = has_square_disc(T) if i0 is None: return (AlternatingGroup(5), True) if sq_disc else (SymmetricGroup(5), False) if not sq_disc: return (M20(), False) sigma = s1[i0] F2 = F2_pre.subs(zip(X, sigma(X)), simultaneous=True) s2 = [sigma*tau*sigma for tau in s2_pre] R2 = Resolvent(F2, X, s2) R_dup, _, _ = R2.eval_for_poly(T) d = dup_discriminant(R_dup, ZZ) if d == 0: continue if is_square(d): return (CyclicGroup(5), True) else: return (DihedralGroup(5), True) raise MaxTriesException ``` ###Assistant : Compute the Galois group of a polynomial of degree 5, following Alg 6.3.9 of Cohen. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*.
1,774
def error(self, message): self.print_usage(_sys.stderr) args = {'prog': self.prog, 'message': message} self.exit(2, _('%(prog)s: error: %(message)s\n') % args)
error(message: string) Prints a usage message incorporating the message to stderr and exits. If you override this in a subclass, it should not return -- it should either exit or raise an exception.
33
16
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def error(self, message): self.print_usage(_sys.stderr) args = {'prog': self.prog, 'message': message} self.exit(2, _('%(prog)s: error: %(message)s\n') % args) ``` ###Assistant : error(message: string) Prints a usage message incorporating the message to stderr and exits. If you override this in a subclass, it should not return -- it should either exit or raise an exception.
1,775
def preprocess_input(x, data_format=None): # pylint: disable=unused-argument return x @keras_export("keras.applications.regnet.decode_predictions")
A placeholder method for backward compatibility. The preprocessing logic has been included in the regnet model implementation. Users are no longer required to call this method to normalize the input data. This method does nothing and only kept as a placeholder to align the API surface between old and new version of model. Args: x: A floating point `numpy.array` or a `tf.Tensor`. data_format: Optional data format of the image tensor/array. Defaults to None, in which case the global setting `tf.keras.backend.image_data_format()` is used (unless you changed it, it defaults to "channels_last").{mode} Returns: Unchanged `numpy.array` or `tf.Tensor`.
95
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def preprocess_input(x, data_format=None): # pylint: disable=unused-argument return x @keras_export("keras.applications.regnet.decode_predictions") ``` ###Assistant : A placeholder method for backward compatibility. The preprocessing logic has been included in the regnet model implementation. Users are no longer required to call this method to normalize the input data. This method does nothing and only kept as a placeholder to align the API surface between old and new version of model. Args: x: A floating point `numpy.array` or a `tf.Tensor`. data_format: Optional data format of the image tensor/array. Defaults to None, in which case the global setting `tf.keras.backend.image_data_format()` is used (unless you changed it, it defaults to "channels_last").{mode} Returns: Unchanged `numpy.array` or `tf.Tensor`.
1,776
def test_edit_post(self): # Send request response = self.client.post( reverse("wagtaildocs:edit_multiple", args=(self.doc.id,)), { "doc-%d-%s" % (self.doc.id, field): data for field, data in self.edit_post_data.items() }, ) # Check response self.assertEqual(response.status_code, 200) self.assertEqual(response["Content-Type"], "application/json") # Check JSON response_json = json.loads(response.content.decode()) self.assertIn("doc_id", response_json) self.assertNotIn("form", response_json) self.assertIn("success", response_json) self.assertEqual(response_json["doc_id"], self.doc.id) self.assertTrue(response_json["success"]) self.check_doc_after_edit()
This tests that a POST request to the edit view edits the document
13
46
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_edit_post(self): # Send request response = self.client.post( reverse("wagtaildocs:edit_multiple", args=(self.doc.id,)), { "doc-%d-%s" % (self.doc.id, field): data for field, data in self.edit_post_data.items() }, ) # Check response self.assertEqual(response.status_code, 200) self.assertEqual(response["Content-Type"], "application/json") # Check JSON response_json = json.loads(response.content.decode()) self.assertIn("doc_id", response_json) self.assertNotIn("form", response_json) self.assertIn("success", response_json) self.assertEqual(response_json["doc_id"], self.doc.id) self.assertTrue(response_json["success"]) self.check_doc_after_edit() ``` ###Assistant : This tests that a POST request to the edit view edits the document
1,777
def test_message_hiding(qtbot, view): with qtbot.wait_signal(view._clear_timer.timeout): view.show_message(message.MessageInfo(usertypes.MessageLevel.info, 'test')) assert not view._messages
Messages should be hidden after the timer times out.
9
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_message_hiding(qtbot, view): with qtbot.wait_signal(view._clear_timer.timeout): view.show_message(message.MessageInfo(usertypes.MessageLevel.info, 'test')) assert not view._messages ``` ###Assistant : Messages should be hidden after the timer times out.
1,778
def test_avatar_allowed_mime_type_per_room(self): self._setup_local_files( { "good": {"mimetype": "image/png"}, "bad": {"mimetype": "application/octet-stream"}, } ) room_id = self.helper.create_room_as(tok=self.owner_tok) channel = self.make_request( "PUT", f"/rooms/{room_id}/state/m.room.member/{self.owner}", content={"membership": "join", "avatar_url": "mxc://test/bad"}, access_token=self.owner_tok, ) self.assertEqual(channel.code, 403, channel.result) self.assertEqual( channel.json_body["errcode"], Codes.FORBIDDEN, channel.json_body ) channel = self.make_request( "PUT", f"/rooms/{room_id}/state/m.room.member/{self.owner}", content={"membership": "join", "avatar_url": "mxc://test/good"}, access_token=self.owner_tok, ) self.assertEqual(channel.code, 200, channel.result)
Tests that the MIME type whitelist for avatars is enforced when updating a per-room profile.
15
48
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_avatar_allowed_mime_type_per_room(self): self._setup_local_files( { "good": {"mimetype": "image/png"}, "bad": {"mimetype": "application/octet-stream"}, } ) room_id = self.helper.create_room_as(tok=self.owner_tok) channel = self.make_request( "PUT", f"/rooms/{room_id}/state/m.room.member/{self.owner}", content={"membership": "join", "avatar_url": "mxc://test/bad"}, access_token=self.owner_tok, ) self.assertEqual(channel.code, 403, channel.result) self.assertEqual( channel.json_body["errcode"], Codes.FORBIDDEN, channel.json_body ) channel = self.make_request( "PUT", f"/rooms/{room_id}/state/m.room.member/{self.owner}", content={"membership": "join", "avatar_url": "mxc://test/good"}, access_token=self.owner_tok, ) self.assertEqual(channel.code, 200, channel.result) ``` ###Assistant : Tests that the MIME type whitelist for avatars is enforced when updating a per-room profile.
1,779
def container_name(self) -> t.Optional[str]: return self.state.get('container_name')
Return the stored container name, if any, otherwise None.
9
6
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def container_name(self) -> t.Optional[str]: return self.state.get('container_name') ``` ###Assistant : Return the stored container name, if any, otherwise None.
1,780
def get_scorer(scoring): if isinstance(scoring, str): try: scorer = copy.deepcopy(_SCORERS[scoring]) except KeyError: raise ValueError( "%r is not a valid scoring value. " "Use sklearn.metrics.get_scorer_names() " "to get valid options." % scoring ) else: scorer = scoring return scorer
Get a scorer from string. Read more in the :ref:`User Guide <scoring_parameter>`. :func:`~sklearn.metrics.get_scorer_names` can be used to retrieve the names of all available scorers. Parameters ---------- scoring : str or callable Scoring method as string. If callable it is returned as is. Returns ------- scorer : callable The scorer. Notes ----- When passed a string, this function always returns a copy of the scorer object. Calling `get_scorer` twice for the same scorer results in two separate scorer objects.
78
37
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_scorer(scoring): if isinstance(scoring, str): try: scorer = copy.deepcopy(_SCORERS[scoring]) except KeyError: raise ValueError( "%r is not a valid scoring value. " "Use sklearn.metrics.get_scorer_names() " "to get valid options." % scoring ) else: scorer = scoring return scorer ``` ###Assistant : Get a scorer from string. Read more in the :ref:`User Guide <scoring_parameter>`. :func:`~sklearn.metrics.get_scorer_names` can be used to retrieve the names of all available scorers. Parameters ---------- scoring : str or callable Scoring method as string. If callable it is returned as is. Returns ------- scorer : callable The scorer. Notes ----- When passed a string, this function always returns a copy of the scorer object. Calling `get_scorer` twice for the same scorer results in two separate scorer objects.
1,781
def fit(self, X, y): X, y = self._validate_data( X, y, ensure_min_samples=2, dtype=[np.float64, np.float32] ) self.classes_ = unique_labels(y) n_samples, _ = X.shape n_classes = len(self.classes_) if n_samples == n_classes: raise ValueError( "The number of samples must be more than the number of classes." ) if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = np.bincount(y_t) / float(len(y)) else: self.priors_ = np.asarray(self.priors) if (self.priors_ < 0).any(): raise ValueError("priors must be non-negative") if not np.isclose(self.priors_.sum(), 1.0): warnings.warn("The priors do not sum to 1. Renormalizing", UserWarning) self.priors_ = self.priors_ / self.priors_.sum() # Maximum number of components no matter what n_components is # specified: max_components = min(len(self.classes_) - 1, X.shape[1]) if self.n_components is None: self._max_components = max_components else: if self.n_components > max_components: raise ValueError( "n_components cannot be larger than min(n_features, n_classes - 1)." ) self._max_components = self.n_components if self.solver == "svd": if self.shrinkage is not None: raise NotImplementedError("shrinkage not supported") if self.covariance_estimator is not None: raise ValueError( "covariance estimator " "is not supported " "with svd solver. Try another solver" ) self._solve_svd(X, y) elif self.solver == "lsqr": self._solve_lsqr( X, y, shrinkage=self.shrinkage, covariance_estimator=self.covariance_estimator, ) elif self.solver == "eigen": self._solve_eigen( X, y, shrinkage=self.shrinkage, covariance_estimator=self.covariance_estimator, ) else: raise ValueError( "unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver) ) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array( self.coef_[1, :] - self.coef_[0, :], ndmin=2, dtype=X.dtype ) self.intercept_ = np.array( self.intercept_[1] - self.intercept_[0], ndmin=1, dtype=X.dtype ) self._n_features_out = self._max_components return self
Fit the Linear Discriminant Analysis model. .. versionchanged:: 0.19 *store_covariance* has been moved to main constructor. .. versionchanged:: 0.19 *tol* has been moved to main constructor. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. Returns ------- self : object Fitted estimator.
52
249
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def fit(self, X, y): X, y = self._validate_data( X, y, ensure_min_samples=2, dtype=[np.float64, np.float32] ) self.classes_ = unique_labels(y) n_samples, _ = X.shape n_classes = len(self.classes_) if n_samples == n_classes: raise ValueError( "The number of samples must be more than the number of classes." ) if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = np.bincount(y_t) / float(len(y)) else: self.priors_ = np.asarray(self.priors) if (self.priors_ < 0).any(): raise ValueError("priors must be non-negative") if not np.isclose(self.priors_.sum(), 1.0): warnings.warn("The priors do not sum to 1. Renormalizing", UserWarning) self.priors_ = self.priors_ / self.priors_.sum() # Maximum number of components no matter what n_components is # specified: max_components = min(len(self.classes_) - 1, X.shape[1]) if self.n_components is None: self._max_components = max_components else: if self.n_components > max_components: raise ValueError( "n_components cannot be larger than min(n_features, n_classes - 1)." ) self._max_components = self.n_components if self.solver == "svd": if self.shrinkage is not None: raise NotImplementedError("shrinkage not supported") if self.covariance_estimator is not None: raise ValueError( "covariance estimator " "is not supported " "with svd solver. Try another solver" ) self._solve_svd(X, y) elif self.solver == "lsqr": self._solve_lsqr( X, y, shrinkage=self.shrinkage, covariance_estimator=self.covariance_estimator, ) elif self.solver == "eigen": self._solve_eigen( X, y, shrinkage=self.shrinkage, covariance_estimator=self.covariance_estimator, ) else: raise ValueError( "unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver) ) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array( self.coef_[1, :] - self.coef_[0, :], ndmin=2, dtype=X.dtype ) self.intercept_ = np.array( self.intercept_[1] - self.intercept_[0], ndmin=1, dtype=X.dtype ) self._n_features_out = self._max_components return self ``` ###Assistant : Fit the Linear Discriminant Analysis model. .. versionchanged:: 0.19 *store_covariance* has been moved to main constructor. .. versionchanged:: 0.19 *tol* has been moved to main constructor. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. Returns ------- self : object Fitted estimator.
1,782
def test_pr_opened_with_multiple_reviewers(self) -> None: expected_topic = "sandbox / PR #6 sample_file: Add sample_file.txt." expected_message = self.check_webhook( "pull_request_opened_with_multiple_reviewers", expected_topic, expected_message )
[hypro999](http://139.59.64.214:7990/users/hypro999) opened [PR #6](http://139.59.64.214:7990/projects/SBOX/repos/sandbox/pull-requests/6) from `master` to `master` (assigned to [sougo](http://139.59.64.214:7990/users/sougo), [zura](http://139.59.64.214:7990/users/zura) and [shimura](http://139.59.64.214:7990/users/shimura) for review):\n\n~~~ quote\nAdd a simple text file for further testing purposes.\n~~~
25
20
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_pr_opened_with_multiple_reviewers(self) -> None: expected_topic = "sandbox / PR #6 sample_file: Add sample_file.txt." expected_message = self.check_webhook( "pull_request_opened_with_multiple_reviewers", expected_topic, expected_message ) ``` ###Assistant : [hypro999](http://139.59.64.214:7990/users/hypro999) opened [PR #6](http://139.59.64.214:7990/projects/SBOX/repos/sandbox/pull-requests/6) from `master` to `master` (assigned to [sougo](http://139.59.64.214:7990/users/sougo), [zura](http://139.59.64.214:7990/users/zura) and [shimura](http://139.59.64.214:7990/users/shimura) for review):\n\n~~~ quote\nAdd a simple text file for further testing purposes.\n~~~
1,783
def make_grouping_by_key(schema, source, default=None): return map_grouping(lambda s: source.get(s, default), schema)
Create a grouping from a schema by using the schema's scalar values to look up items in the provided source object. :param schema: A grouping of potential keys in source :param source: Dict-like object to use to look up scalar grouping value using scalar grouping values as keys :param default: Default scalar value to use if grouping scalar key is not present in source :return: grouping
66
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def make_grouping_by_key(schema, source, default=None): return map_grouping(lambda s: source.get(s, default), schema) ``` ###Assistant : Create a grouping from a schema by using the schema's scalar values to look up items in the provided source object. :param schema: A grouping of potential keys in source :param source: Dict-like object to use to look up scalar grouping value using scalar grouping values as keys :param default: Default scalar value to use if grouping scalar key is not present in source :return: grouping
1,784
def taxicab_distance(self, p): s, p = Point._normalize_dimension(self, Point(p)) return Add(*(abs(a - b) for a, b in zip(s, p)))
The Taxicab Distance from self to point p. Returns the sum of the horizontal and vertical distances to point p. Parameters ========== p : Point Returns ======= taxicab_distance : The sum of the horizontal and vertical distances to point p. See Also ======== sympy.geometry.point.Point.distance Examples ======== >>> from sympy import Point >>> p1, p2 = Point(1, 1), Point(4, 5) >>> p1.taxicab_distance(p2) 7
62
18
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def taxicab_distance(self, p): s, p = Point._normalize_dimension(self, Point(p)) return Add(*(abs(a - b) for a, b in zip(s, p))) ``` ###Assistant : The Taxicab Distance from self to point p. Returns the sum of the horizontal and vertical distances to point p. Parameters ========== p : Point Returns ======= taxicab_distance : The sum of the horizontal and vertical distances to point p. See Also ======== sympy.geometry.point.Point.distance Examples ======== >>> from sympy import Point >>> p1, p2 = Point(1, 1), Point(4, 5) >>> p1.taxicab_distance(p2) 7
1,785
def cosine_similarity(y_true, y_pred, axis=-1): y_true = tf.linalg.l2_normalize(y_true, axis=axis) y_pred = tf.linalg.l2_normalize(y_pred, axis=axis) return tf.reduce_sum(y_true * y_pred, axis=axis)
Computes the cosine similarity between labels and predictions. Args: y_true: The ground truth values. y_pred: The prediction values. axis: (Optional) Defaults to -1. The dimension along which the cosine similarity is computed. Returns: Cosine similarity value.
36
17
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def cosine_similarity(y_true, y_pred, axis=-1): y_true = tf.linalg.l2_normalize(y_true, axis=axis) y_pred = tf.linalg.l2_normalize(y_pred, axis=axis) return tf.reduce_sum(y_true * y_pred, axis=axis) ``` ###Assistant : Computes the cosine similarity between labels and predictions. Args: y_true: The ground truth values. y_pred: The prediction values. axis: (Optional) Defaults to -1. The dimension along which the cosine similarity is computed. Returns: Cosine similarity value.
1,786
def rotate(self, theta): a = math.cos(theta) b = math.sin(theta) mtx = self._mtx # Operating and assigning one scalar at a time is much faster. (xx, xy, x0), (yx, yy, y0), _ = mtx.tolist() # mtx = [[a -b 0], [b a 0], [0 0 1]] * mtx mtx[0, 0] = a * xx - b * yx mtx[0, 1] = a * xy - b * yy mtx[0, 2] = a * x0 - b * y0 mtx[1, 0] = b * xx + a * yx mtx[1, 1] = b * xy + a * yy mtx[1, 2] = b * x0 + a * y0 self.invalidate() return self
Add a rotation (in radians) to this transform in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`.
28
110
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def rotate(self, theta): a = math.cos(theta) b = math.sin(theta) mtx = self._mtx # Operating and assigning one scalar at a time is much faster. (xx, xy, x0), (yx, yy, y0), _ = mtx.tolist() # mtx = [[a -b 0], [b a 0], [0 0 1]] * mtx mtx[0, 0] = a * xx - b * yx mtx[0, 1] = a * xy - b * yy mtx[0, 2] = a * x0 - b * y0 mtx[1, 0] = b * xx + a * yx mtx[1, 1] = b * xy + a * yy mtx[1, 2] = b * x0 + a * y0 self.invalidate() return self ``` ###Assistant : Add a rotation (in radians) to this transform in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`.
1,787
def call_load(self, other_args): parser = argparse.ArgumentParser( add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, prog="load", description=, ) parser.add_argument( "-c", "--coin", help="Coin to get. Must be coin symbol (e.g., btc, eth)", dest="coin", type=str, required="-h" not in other_args, ) parser.add_argument( "-s", "--start", type=valid_date, default=(datetime.now() - timedelta(days=1100)).strftime("%Y-%m-%d"), dest="start", help="The starting date (format YYYY-MM-DD) of the crypto", ) parser.add_argument( "--exchange", help="Exchange to search", dest="exchange", type=str, default="binance", choices=self.exchanges, ) parser.add_argument( "-e", "--end", type=valid_date, default=datetime.now().strftime("%Y-%m-%d"), dest="end", help="The ending date (format YYYY-MM-DD) of the crypto", ) parser.add_argument( "-i", "--interval", action="store", dest="interval", type=str, default="1440", choices=["1", "5", "15", "30", "60", "240", "1440", "10080", "43200"], help="The interval of the crypto", ) parser.add_argument( "--vs", help="Quote currency (what to view coin vs). e.g., usdc, usdt, ... if source is ccxt, usd, eur, ... otherwise", # noqa dest="vs", default="usdt", type=str, ) if other_args and "-" not in other_args[0][0]: other_args.insert(0, "-c") ns_parser = self.parse_known_args_and_warn( parser, other_args, export_allowed=EXPORT_ONLY_RAW_DATA_ALLOWED ) if ns_parser: if ns_parser.source in ("YahooFinance", "CoinGecko"): if ns_parser.vs == "usdt": ns_parser.vs = "usd" (self.current_df) = cryptocurrency_helpers.load( symbol=ns_parser.coin.lower(), vs_currency=ns_parser.vs, end_date=ns_parser.end.strftime("%Y-%m-%d"), start_date=ns_parser.start.strftime("%Y-%m-%d"), interval=ns_parser.interval, source=ns_parser.source, exchange=ns_parser.exchange, ) if not self.current_df.empty: self.vs = ns_parser.vs self.exchange = ns_parser.exchange self.source = ns_parser.source self.current_interval = ns_parser.interval self.current_currency = ns_parser.vs self.symbol = ns_parser.coin.lower() cryptocurrency_helpers.show_quick_performance( self.current_df, self.symbol, self.current_currency, ns_parser.source, ns_parser.exchange, self.current_interval, ) export_data( ns_parser.export, os.path.dirname(os.path.abspath(__file__)), "load", self.current_df.copy(), )
Process load command.Load crypto currency to perform analysis on. Yahoo Finance is used as default source. Other sources can be used such as 'ccxt' or 'cg' with --source. If you select 'ccxt', you can then select any exchange with --exchange. You can also select a specific interval with --interval.
49
198
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def call_load(self, other_args): parser = argparse.ArgumentParser( add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, prog="load", description=, ) parser.add_argument( "-c", "--coin", help="Coin to get. Must be coin symbol (e.g., btc, eth)", dest="coin", type=str, required="-h" not in other_args, ) parser.add_argument( "-s", "--start", type=valid_date, default=(datetime.now() - timedelta(days=1100)).strftime("%Y-%m-%d"), dest="start", help="The starting date (format YYYY-MM-DD) of the crypto", ) parser.add_argument( "--exchange", help="Exchange to search", dest="exchange", type=str, default="binance", choices=self.exchanges, ) parser.add_argument( "-e", "--end", type=valid_date, default=datetime.now().strftime("%Y-%m-%d"), dest="end", help="The ending date (format YYYY-MM-DD) of the crypto", ) parser.add_argument( "-i", "--interval", action="store", dest="interval", type=str, default="1440", choices=["1", "5", "15", "30", "60", "240", "1440", "10080", "43200"], help="The interval of the crypto", ) parser.add_argument( "--vs", help="Quote currency (what to view coin vs). e.g., usdc, usdt, ... if source is ccxt, usd, eur, ... otherwise", # noqa dest="vs", default="usdt", type=str, ) if other_args and "-" not in other_args[0][0]: other_args.insert(0, "-c") ns_parser = self.parse_known_args_and_warn( parser, other_args, export_allowed=EXPORT_ONLY_RAW_DATA_ALLOWED ) if ns_parser: if ns_parser.source in ("YahooFinance", "CoinGecko"): if ns_parser.vs == "usdt": ns_parser.vs = "usd" (self.current_df) = cryptocurrency_helpers.load( symbol=ns_parser.coin.lower(), vs_currency=ns_parser.vs, end_date=ns_parser.end.strftime("%Y-%m-%d"), start_date=ns_parser.start.strftime("%Y-%m-%d"), interval=ns_parser.interval, source=ns_parser.source, exchange=ns_parser.exchange, ) if not self.current_df.empty: self.vs = ns_parser.vs self.exchange = ns_parser.exchange self.source = ns_parser.source self.current_interval = ns_parser.interval self.current_currency = ns_parser.vs self.symbol = ns_parser.coin.lower() cryptocurrency_helpers.show_quick_performance( self.current_df, self.symbol, self.current_currency, ns_parser.source, ns_parser.exchange, self.current_interval, ) export_data( ns_parser.export, os.path.dirname(os.path.abspath(__file__)), "load", self.current_df.copy(), ) ``` ###Assistant : Process load command.Load crypto currency to perform analysis on. Yahoo Finance is used as default source. Other sources can be used such as 'ccxt' or 'cg' with --source. If you select 'ccxt', you can then select any exchange with --exchange. You can also select a specific interval with --interval.
1,788
def render_markdown(value): schemes = '|'.join(get_config().ALLOWED_URL_SCHEMES) # Strip HTML tags value = strip_tags(value) # Sanitize Markdown links pattern = fr'\[([^\]]+)\]\((?!({schemes})).*:(.+)\)' value = re.sub(pattern, '[\\1](\\3)', value, flags=re.IGNORECASE) # Sanitize Markdown reference links pattern = fr'\[(.+)\]:\s*(?!({schemes}))\w*:(.+)' value = re.sub(pattern, '[\\1]: \\3', value, flags=re.IGNORECASE) # Render Markdown html = markdown(value, extensions=['fenced_code', 'tables', StrikethroughExtension()]) # If the string is not empty wrap it in rendered-markdown to style tables if html: html = f'<div class="rendered-markdown">{html}</div>' return mark_safe(html) @register.filter('json')
Render a string as Markdown. This filter is invoked as "markdown": {{ md_source_text|markdown }}
14
72
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def render_markdown(value): schemes = '|'.join(get_config().ALLOWED_URL_SCHEMES) # Strip HTML tags value = strip_tags(value) # Sanitize Markdown links pattern = fr'\[([^\]]+)\]\((?!({schemes})).*:(.+)\)' value = re.sub(pattern, '[\\1](\\3)', value, flags=re.IGNORECASE) # Sanitize Markdown reference links pattern = fr'\[(.+)\]:\s*(?!({schemes}))\w*:(.+)' value = re.sub(pattern, '[\\1]: \\3', value, flags=re.IGNORECASE) # Render Markdown html = markdown(value, extensions=['fenced_code', 'tables', StrikethroughExtension()]) # If the string is not empty wrap it in rendered-markdown to style tables if html: html = f'<div class="rendered-markdown">{html}</div>' return mark_safe(html) @register.filter('json') ``` ###Assistant : Render a string as Markdown. This filter is invoked as "markdown": {{ md_source_text|markdown }}
1,789
def _try_breadth_first(tasks, user): tasks = tasks.annotate(annotations_count=Count('annotations')) max_annotations_count = tasks.aggregate(Max('annotations_count'))['annotations_count__max'] if max_annotations_count == 0: # there is no any labeled tasks found return # find any task with maximal amount of created annotations not_solved_tasks_labeling_started = tasks.annotate( reach_max_annotations_count=Case( When(annotations_count=max_annotations_count, then=Value(True)), default=Value(False), output_field=BooleanField(), ) ) not_solved_tasks_labeling_with_max_annotations = not_solved_tasks_labeling_started.filter( reach_max_annotations_count=True ) if not_solved_tasks_labeling_with_max_annotations.exists(): # try to complete tasks that are already in progress return _get_random_unlocked(not_solved_tasks_labeling_with_max_annotations, user)
Try to find tasks with maximum amount of annotations, since we are trying to label tasks as fast as possible
20
62
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _try_breadth_first(tasks, user): tasks = tasks.annotate(annotations_count=Count('annotations')) max_annotations_count = tasks.aggregate(Max('annotations_count'))['annotations_count__max'] if max_annotations_count == 0: # there is no any labeled tasks found return # find any task with maximal amount of created annotations not_solved_tasks_labeling_started = tasks.annotate( reach_max_annotations_count=Case( When(annotations_count=max_annotations_count, then=Value(True)), default=Value(False), output_field=BooleanField(), ) ) not_solved_tasks_labeling_with_max_annotations = not_solved_tasks_labeling_started.filter( reach_max_annotations_count=True ) if not_solved_tasks_labeling_with_max_annotations.exists(): # try to complete tasks that are already in progress return _get_random_unlocked(not_solved_tasks_labeling_with_max_annotations, user) ``` ###Assistant : Try to find tasks with maximum amount of annotations, since we are trying to label tasks as fast as possible
1,790
def test_pad_batch_dynamic_max(self): view_requirements = { "state_in_0": ViewRequirement( "state_out_0", shift=[-1], used_for_training=False, used_for_compute_actions=True, batch_repeat_value=1, ) } max_seq_len = 20 num_seqs = np.random.randint(1, 20) seq_lens = np.random.randint(1, max_seq_len, size=(num_seqs)) max_len = np.max(seq_lens) sum_seq_lens = np.sum(seq_lens) s1 = SampleBatch( { "a": np.arange(sum_seq_lens), "b": np.arange(sum_seq_lens), "seq_lens": seq_lens, "state_in_0": [[0]] * num_seqs, }, _max_seq_len=max_seq_len, ) pad_batch_to_sequences_of_same_size( s1, max_seq_len=max_seq_len, feature_keys=["a", "b"], view_requirements=view_requirements, ) check(s1.max_seq_len, max_len) check(s1["a"].shape[0], max_len * num_seqs) check(s1["b"].shape[0], max_len * num_seqs)
Test pad_batch_to_sequences_of_same_size when dynamic_max = True
6
66
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_pad_batch_dynamic_max(self): view_requirements = { "state_in_0": ViewRequirement( "state_out_0", shift=[-1], used_for_training=False, used_for_compute_actions=True, batch_repeat_value=1, ) } max_seq_len = 20 num_seqs = np.random.randint(1, 20) seq_lens = np.random.randint(1, max_seq_len, size=(num_seqs)) max_len = np.max(seq_lens) sum_seq_lens = np.sum(seq_lens) s1 = SampleBatch( { "a": np.arange(sum_seq_lens), "b": np.arange(sum_seq_lens), "seq_lens": seq_lens, "state_in_0": [[0]] * num_seqs, }, _max_seq_len=max_seq_len, ) pad_batch_to_sequences_of_same_size( s1, max_seq_len=max_seq_len, feature_keys=["a", "b"], view_requirements=view_requirements, ) check(s1.max_seq_len, max_len) check(s1["a"].shape[0], max_len * num_seqs) check(s1["b"].shape[0], max_len * num_seqs) ``` ###Assistant : Test pad_batch_to_sequences_of_same_size when dynamic_max = True
1,791
def sensors_fans(): ret = collections.defaultdict(list) basenames = glob.glob('/sys/class/hwmon/hwmon*/fan*_*') if not basenames: # CentOS has an intermediate /device directory: # https://github.com/giampaolo/psutil/issues/971 basenames = glob.glob('/sys/class/hwmon/hwmon*/device/fan*_*') basenames = sorted(set([x.split('_')[0] for x in basenames])) for base in basenames: try: current = int(bcat(base + '_input')) except (IOError, OSError) as err: debug(err) continue unit_name = cat(os.path.join(os.path.dirname(base), 'name')) label = cat(base + '_label', fallback='') ret[unit_name].append(_common.sfan(label, current)) return dict(ret)
Return hardware fans info (for CPU and other peripherals) as a dict including hardware label and current speed. Implementation notes: - /sys/class/hwmon looks like the most recent interface to retrieve this info, and this implementation relies on it only (old distros will probably use something else) - lm-sensors on Ubuntu 16.04 relies on /sys/class/hwmon
54
61
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def sensors_fans(): ret = collections.defaultdict(list) basenames = glob.glob('/sys/class/hwmon/hwmon*/fan*_*') if not basenames: # CentOS has an intermediate /device directory: # https://github.com/giampaolo/psutil/issues/971 basenames = glob.glob('/sys/class/hwmon/hwmon*/device/fan*_*') basenames = sorted(set([x.split('_')[0] for x in basenames])) for base in basenames: try: current = int(bcat(base + '_input')) except (IOError, OSError) as err: debug(err) continue unit_name = cat(os.path.join(os.path.dirname(base), 'name')) label = cat(base + '_label', fallback='') ret[unit_name].append(_common.sfan(label, current)) return dict(ret) ``` ###Assistant : Return hardware fans info (for CPU and other peripherals) as a dict including hardware label and current speed. Implementation notes: - /sys/class/hwmon looks like the most recent interface to retrieve this info, and this implementation relies on it only (old distros will probably use something else) - lm-sensors on Ubuntu 16.04 relies on /sys/class/hwmon
1,792
def factory(cls, loader): cls.__check_eager_loader(loader) return lambda *args, **kwargs: cls(loader(*args, **kwargs))
Construct a callable which returns the eager loader made lazy.
10
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def factory(cls, loader): cls.__check_eager_loader(loader) return lambda *args, **kwargs: cls(loader(*args, **kwargs)) ``` ###Assistant : Construct a callable which returns the eager loader made lazy.
1,793
def test_table_block_caption_render(self): value = { "table_caption": "caption", "first_row_is_table_header": False, "first_col_is_header": False, "data": [ ["Test 1", "Test 2", "Test 3"], [None, None, None], [None, None, None], ], } block = TableBlock() result = block.render(value) expected = self.assertHTMLEqual(result, expected) self.assertIn("Test 2", result)
Test a generic render with caption. <table> <caption>caption</caption> <tbody> <tr><td>Test 1</td><td>Test 2</td><td>Test 3</td></tr> <tr><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td></tr> </tbody> </table>
17
40
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_table_block_caption_render(self): value = { "table_caption": "caption", "first_row_is_table_header": False, "first_col_is_header": False, "data": [ ["Test 1", "Test 2", "Test 3"], [None, None, None], [None, None, None], ], } block = TableBlock() result = block.render(value) expected = self.assertHTMLEqual(result, expected) self.assertIn("Test 2", result) ``` ###Assistant : Test a generic render with caption. <table> <caption>caption</caption> <tbody> <tr><td>Test 1</td><td>Test 2</td><td>Test 3</td></tr> <tr><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td></tr> </tbody> </table>
1,794
def stream_config_without_start_date(): return { "client_id": "fake_client_id", "client_secret": "fake_client_secret", "refresh_token": "fake_refresh_token", "is_sandbox": False, "wait_timeout": 15, }
Generates streams settings for REST logic without start_date
8
15
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def stream_config_without_start_date(): return { "client_id": "fake_client_id", "client_secret": "fake_client_secret", "refresh_token": "fake_refresh_token", "is_sandbox": False, "wait_timeout": 15, } ``` ###Assistant : Generates streams settings for REST logic without start_date
1,795
async def relay(self): while True: message = await self.queue.get() try: await self.send(message) self.queue.task_done() except RuntimeError: # The connection was closed, just exit the task return
Relay messages from the channel's queue and send them out. This is started as a task.
16
25
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def relay(self): while True: message = await self.queue.get() try: await self.send(message) self.queue.task_done() except RuntimeError: # The connection was closed, just exit the task return ``` ###Assistant : Relay messages from the channel's queue and send them out. This is started as a task.
1,796
def q_sample(self, x_start, t, noise=None): if noise is None: # noise = th.randn_like(x_start) noise = paddle.randn(x_start.shape, x_start.dtype) assert noise.shape == x_start.shape return (_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
Diffuse the data for a given number of diffusion steps. In other words, sample from q(x_t | x_0). :param x_start: the initial data batch. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :param noise: if specified, the split-out normal noise. :return: A noisy version of x_start.
52
33
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def q_sample(self, x_start, t, noise=None): if noise is None: # noise = th.randn_like(x_start) noise = paddle.randn(x_start.shape, x_start.dtype) assert noise.shape == x_start.shape return (_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) ``` ###Assistant : Diffuse the data for a given number of diffusion steps. In other words, sample from q(x_t | x_0). :param x_start: the initial data batch. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :param noise: if specified, the split-out normal noise. :return: A noisy version of x_start.
1,797
def get_views(self): query = f"SELECT * FROM information_schema.views WHERE table_schema NOT IN ('information_schema', 'pg_catalog')" result = self.run_native_query(query) return result
List all views in PostgreSQL without the system views information_schema and pg_catalog
12
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_views(self): query = f"SELECT * FROM information_schema.views WHERE table_schema NOT IN ('information_schema', 'pg_catalog')" result = self.run_native_query(query) return result ``` ###Assistant : List all views in PostgreSQL without the system views information_schema and pg_catalog
1,798
def verify_ogr_field(self, ogr_field, model_field): if isinstance(ogr_field, OFTString) and isinstance( model_field, (models.CharField, models.TextField) ): if self.encoding and ogr_field.value is not None: # The encoding for OGR data sources may be specified here # (e.g., 'cp437' for Census Bureau boundary files). val = force_str(ogr_field.value, self.encoding) else: val = ogr_field.value if ( model_field.max_length and val is not None and len(val) > model_field.max_length ): raise InvalidString( "%s model field maximum string length is %s, given %s characters." % (model_field.name, model_field.max_length, len(val)) ) elif isinstance(ogr_field, OFTReal) and isinstance( model_field, models.DecimalField ): try: # Creating an instance of the Decimal value to use. d = Decimal(str(ogr_field.value)) except DecimalInvalidOperation: raise InvalidDecimal( "Could not construct decimal from: %s" % ogr_field.value ) # Getting the decimal value as a tuple. dtup = d.as_tuple() digits = dtup[1] d_idx = dtup[2] # index where the decimal is # Maximum amount of precision, or digits to the left of the decimal. max_prec = model_field.max_digits - model_field.decimal_places # Getting the digits to the left of the decimal place for the # given decimal. if d_idx < 0: n_prec = len(digits[:d_idx]) else: n_prec = len(digits) + d_idx # If we have more than the maximum digits allowed, then throw an # InvalidDecimal exception. if n_prec > max_prec: raise InvalidDecimal( "A DecimalField with max_digits %d, decimal_places %d must " "round to an absolute value less than 10^%d." % (model_field.max_digits, model_field.decimal_places, max_prec) ) val = d elif isinstance(ogr_field, (OFTReal, OFTString)) and isinstance( model_field, models.IntegerField ): # Attempt to convert any OFTReal and OFTString value to an OFTInteger. try: val = int(ogr_field.value) except ValueError: raise InvalidInteger( "Could not construct integer from: %s" % ogr_field.value ) else: val = ogr_field.value return val
Verify if the OGR Field contents are acceptable to the model field. If they are, return the verified value, otherwise raise an exception.
23
274
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def verify_ogr_field(self, ogr_field, model_field): if isinstance(ogr_field, OFTString) and isinstance( model_field, (models.CharField, models.TextField) ): if self.encoding and ogr_field.value is not None: # The encoding for OGR data sources may be specified here # (e.g., 'cp437' for Census Bureau boundary files). val = force_str(ogr_field.value, self.encoding) else: val = ogr_field.value if ( model_field.max_length and val is not None and len(val) > model_field.max_length ): raise InvalidString( "%s model field maximum string length is %s, given %s characters." % (model_field.name, model_field.max_length, len(val)) ) elif isinstance(ogr_field, OFTReal) and isinstance( model_field, models.DecimalField ): try: # Creating an instance of the Decimal value to use. d = Decimal(str(ogr_field.value)) except DecimalInvalidOperation: raise InvalidDecimal( "Could not construct decimal from: %s" % ogr_field.value ) # Getting the decimal value as a tuple. dtup = d.as_tuple() digits = dtup[1] d_idx = dtup[2] # index where the decimal is # Maximum amount of precision, or digits to the left of the decimal. max_prec = model_field.max_digits - model_field.decimal_places # Getting the digits to the left of the decimal place for the # given decimal. if d_idx < 0: n_prec = len(digits[:d_idx]) else: n_prec = len(digits) + d_idx # If we have more than the maximum digits allowed, then throw an # InvalidDecimal exception. if n_prec > max_prec: raise InvalidDecimal( "A DecimalField with max_digits %d, decimal_places %d must " "round to an absolute value less than 10^%d." % (model_field.max_digits, model_field.decimal_places, max_prec) ) val = d elif isinstance(ogr_field, (OFTReal, OFTString)) and isinstance( model_field, models.IntegerField ): # Attempt to convert any OFTReal and OFTString value to an OFTInteger. try: val = int(ogr_field.value) except ValueError: raise InvalidInteger( "Could not construct integer from: %s" % ogr_field.value ) else: val = ogr_field.value return val ``` ###Assistant : Verify if the OGR Field contents are acceptable to the model field. If they are, return the verified value, otherwise raise an exception.
1,799
def get_streamer(): if 'JINA_STREAMER_ARGS' in os.environ: args_dict = json.loads(os.environ['JINA_STREAMER_ARGS']) return GatewayStreamer(**args_dict) else: raise OSError('JINA_STREAMER_ARGS environment variable is not set')
Return a streamer object based on the current environment context. The streamer object is contructed using runtime arguments stored in the `JINA_STREAMER_ARGS` environment variable. If this method is used outside a Jina context (process not controlled/orchestrated by jina), this method will raise an error. The streamer object does not have tracing/instrumentation capabilities. :return: Returns an instance of `GatewayStreamer`
58
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_streamer(): if 'JINA_STREAMER_ARGS' in os.environ: args_dict = json.loads(os.environ['JINA_STREAMER_ARGS']) return GatewayStreamer(**args_dict) else: raise OSError('JINA_STREAMER_ARGS environment variable is not set') ``` ###Assistant : Return a streamer object based on the current environment context. The streamer object is contructed using runtime arguments stored in the `JINA_STREAMER_ARGS` environment variable. If this method is used outside a Jina context (process not controlled/orchestrated by jina), this method will raise an error. The streamer object does not have tracing/instrumentation capabilities. :return: Returns an instance of `GatewayStreamer`