Unnamed: 0
int64
0
2.93k
code
stringlengths
101
62.2k
docs
stringlengths
51
10.7k
doc_len
int64
4
1.74k
words
int64
4
4.82k
lang
stringclasses
1 value
prompt
stringlengths
320
71.2k
1,600
def find_asteroidal_triple(G): r V = set(G.nodes) if len(V) < 6: # An asteroidal triple cannot exist in a graph with 5 or less vertices. return None component_structure = create_component_structure(G) E_complement = set(nx.complement(G).edges) for e in E_complement: u = e[0] v = e[1] u_neighborhood = set(G[u]).union([u]) v_neighborhood = set(G[v]).union([v]) union_of_neighborhoods = u_neighborhood.union(v_neighborhood) for w in V - union_of_neighborhoods: # Check for each pair of vertices whether they belong to the # same connected component when the closed neighborhood of the # third is removed. if ( component_structure[u][v] == component_structure[u][w] and component_structure[v][u] == component_structure[v][w] and component_structure[w][u] == component_structure[w][v] ): return [u, v, w] return None @not_implemented_for("directed") @not_implemented_for("multigraph")
Find an asteroidal triple in the given graph. An asteroidal triple is a triple of non-adjacent vertices such that there exists a path between any two of them which avoids the closed neighborhood of the third. It checks all independent triples of vertices and whether they are an asteroidal triple or not. This is done with the help of a data structure called a component structure. A component structure encodes information about which vertices belongs to the same connected component when the closed neighborhood of a given vertex is removed from the graph. The algorithm used to check is the trivial one, outlined in [1]_, which has a runtime of :math:`O(|V||\overline{E} + |V||E|)`, where the second term is the creation of the component structure. Parameters ---------- G : NetworkX Graph The graph to check whether is AT-free or not Returns ------- list or None An asteroidal triple is returned as a list of nodes. If no asteroidal triple exists, i.e. the graph is AT-free, then None is returned. The returned value depends on the certificate parameter. The default option is a bool which is True if the graph is AT-free, i.e. the given graph contains no asteroidal triples, and False otherwise, i.e. if the graph contains at least one asteroidal triple. Notes ----- The component structure and the algorithm is described in [1]_. The current implementation implements the trivial algorithm for simple graphs. References ---------- .. [1] Ekkehard Köhler, "Recognizing Graphs without asteroidal triples", Journal of Discrete Algorithms 2, pages 439-452, 2004. https://www.sciencedirect.com/science/article/pii/S157086670400019X
253
105
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def find_asteroidal_triple(G): r V = set(G.nodes) if len(V) < 6: # An asteroidal triple cannot exist in a graph with 5 or less vertices. return None component_structure = create_component_structure(G) E_complement = set(nx.complement(G).edges) for e in E_complement: u = e[0] v = e[1] u_neighborhood = set(G[u]).union([u]) v_neighborhood = set(G[v]).union([v]) union_of_neighborhoods = u_neighborhood.union(v_neighborhood) for w in V - union_of_neighborhoods: # Check for each pair of vertices whether they belong to the # same connected component when the closed neighborhood of the # third is removed. if ( component_structure[u][v] == component_structure[u][w] and component_structure[v][u] == component_structure[v][w] and component_structure[w][u] == component_structure[w][v] ): return [u, v, w] return None @not_implemented_for("directed") @not_implemented_for("multigraph") ``` ###Assistant : Find an asteroidal triple in the given graph. An asteroidal triple is a triple of non-adjacent vertices such that there exists a path between any two of them which avoids the closed neighborhood of the third. It checks all independent triples of vertices and whether they are an asteroidal triple or not. This is done with the help of a data structure called a component structure. A component structure encodes information about which vertices belongs to the same connected component when the closed neighborhood of a given vertex is removed from the graph. The algorithm used to check is the trivial one, outlined in [1]_, which has a runtime of :math:`O(|V||\overline{E} + |V||E|)`, where the second term is the creation of the component structure. Parameters ---------- G : NetworkX Graph The graph to check whether is AT-free or not Returns ------- list or None An asteroidal triple is returned as a list of nodes. If no asteroidal triple exists, i.e. the graph is AT-free, then None is returned. The returned value depends on the certificate parameter. The default option is a bool which is True if the graph is AT-free, i.e. the given graph contains no asteroidal triples, and False otherwise, i.e. if the graph contains at least one asteroidal triple. Notes ----- The component structure and the algorithm is described in [1]_. The current implementation implements the trivial algorithm for simple graphs. References ---------- .. [1] Ekkehard Köhler, "Recognizing Graphs without asteroidal triples", Journal of Discrete Algorithms 2, pages 439-452, 2004. https://www.sciencedirect.com/science/article/pii/S157086670400019X
1,601
def get_leave_entries(employee, leave_type, from_date, to_date): return frappe.db.sql( , {"from_date": from_date, "to_date": to_date, "employee": employee, "leave_type": leave_type}, as_dict=1, ) @frappe.whitelist()
Returns leave entries between from_date and to_date. SELECT employee, leave_type, from_date, to_date, leaves, transaction_name, transaction_type, holiday_list, is_carry_forward, is_expired FROM `tabLeave Ledger Entry` WHERE employee=%(employee)s AND leave_type=%(leave_type)s AND docstatus=1 AND (leaves<0 OR is_expired=1) AND (from_date between %(from_date)s AND %(to_date)s OR to_date between %(from_date)s AND %(to_date)s OR (from_date < %(from_date)s AND to_date > %(to_date)s))
52
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_leave_entries(employee, leave_type, from_date, to_date): return frappe.db.sql( , {"from_date": from_date, "to_date": to_date, "employee": employee, "leave_type": leave_type}, as_dict=1, ) @frappe.whitelist() ``` ###Assistant : Returns leave entries between from_date and to_date. SELECT employee, leave_type, from_date, to_date, leaves, transaction_name, transaction_type, holiday_list, is_carry_forward, is_expired FROM `tabLeave Ledger Entry` WHERE employee=%(employee)s AND leave_type=%(leave_type)s AND docstatus=1 AND (leaves<0 OR is_expired=1) AND (from_date between %(from_date)s AND %(to_date)s OR to_date between %(from_date)s AND %(to_date)s OR (from_date < %(from_date)s AND to_date > %(to_date)s))
1,602
def addslashes(value): return value.replace("\\", "\\\\").replace('"', '\\"').replace("'", "\\'") @register.filter(is_safe=True) @stringfilter
Add slashes before quotes. Useful for escaping strings in CSV, for example. Less useful for escaping JavaScript; use the ``escapejs`` filter instead.
22
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def addslashes(value): return value.replace("\\", "\\\\").replace('"', '\\"').replace("'", "\\'") @register.filter(is_safe=True) @stringfilter ``` ###Assistant : Add slashes before quotes. Useful for escaping strings in CSV, for example. Less useful for escaping JavaScript; use the ``escapejs`` filter instead.
1,603
def _get_raw_from_config(cls) -> str: if cls.varname is None: raise TypeError("varname should not be None") return os.environ[cls.varname]
Read the value from environment variable. Returns ------- str Config raw value. Raises ------ TypeError If `varname` is None. KeyError If value is absent.
24
16
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_raw_from_config(cls) -> str: if cls.varname is None: raise TypeError("varname should not be None") return os.environ[cls.varname] ``` ###Assistant : Read the value from environment variable. Returns ------- str Config raw value. Raises ------ TypeError If `varname` is None. KeyError If value is absent.
1,604
def is_monotonic_decreasing(self): return SeriesDefault.register(pandas.Series.is_monotonic_decreasing)(self)
Return boolean if values in the object are monotonically decreasing. Returns ------- bool
13
4
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def is_monotonic_decreasing(self): return SeriesDefault.register(pandas.Series.is_monotonic_decreasing)(self) ``` ###Assistant : Return boolean if values in the object are monotonically decreasing. Returns ------- bool
1,605
def get(self, model, columns, filters): key = self._make_key(model, filters) conn = self.cluster.get_local_client_for_key(key) pipe = conn.pipeline() for col in columns: pipe.hget(key, f"i+{col}") results = pipe.execute() return { col: (int(results[i]) if results[i] is not None else 0) for i, col in enumerate(columns) }
Fetches buffered values for a model/filter. Passed columns must be integer columns.
12
41
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get(self, model, columns, filters): key = self._make_key(model, filters) conn = self.cluster.get_local_client_for_key(key) pipe = conn.pipeline() for col in columns: pipe.hget(key, f"i+{col}") results = pipe.execute() return { col: (int(results[i]) if results[i] is not None else 0) for i, col in enumerate(columns) } ``` ###Assistant : Fetches buffered values for a model/filter. Passed columns must be integer columns.
1,606
def test_non_ascii_subscription_for_principal(self) -> None: iago = self.example_user("iago") self.assert_adding_subscriptions_for_principal( iago.id, get_realm("zulip"), ["hümbüǵ"], policy_name="Public" )
You can subscribe other people to streams even if they containing non-ASCII characters.
13
13
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_non_ascii_subscription_for_principal(self) -> None: iago = self.example_user("iago") self.assert_adding_subscriptions_for_principal( iago.id, get_realm("zulip"), ["hümbüǵ"], policy_name="Public" ) ``` ###Assistant : You can subscribe other people to streams even if they containing non-ASCII characters.
1,607
def add_provs(self, reader): fileids = reader.fileids() for fileid in fileids: prov, langfile = os.path.split(fileid) file_name, file_extension = os.path.splitext(langfile) if file_extension == ".tab": lang = file_name.split("-")[-1] if lang in self.provenances.keys(): # We already have another resource for this lang, # so we need to further specify the lang id: lang = f"{lang}_{prov}" self.provenances[lang] = prov
Add languages from Multilingual Wordnet to the provenance dictionary
9
54
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def add_provs(self, reader): fileids = reader.fileids() for fileid in fileids: prov, langfile = os.path.split(fileid) file_name, file_extension = os.path.splitext(langfile) if file_extension == ".tab": lang = file_name.split("-")[-1] if lang in self.provenances.keys(): # We already have another resource for this lang, # so we need to further specify the lang id: lang = f"{lang}_{prov}" self.provenances[lang] = prov ``` ###Assistant : Add languages from Multilingual Wordnet to the provenance dictionary
1,608
def test_thread_with_bundled_aggregations_for_latest(self) -> None: self._send_relation(RelationTypes.THREAD, "m.room.test") channel = self._send_relation(RelationTypes.THREAD, "m.room.test") thread_2 = channel.json_body["event_id"] self._send_relation( RelationTypes.ANNOTATION, "m.reaction", "a", parent_id=thread_2 )
Bundled aggregations should get applied to the latest thread event.
10
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_thread_with_bundled_aggregations_for_latest(self) -> None: self._send_relation(RelationTypes.THREAD, "m.room.test") channel = self._send_relation(RelationTypes.THREAD, "m.room.test") thread_2 = channel.json_body["event_id"] self._send_relation( RelationTypes.ANNOTATION, "m.reaction", "a", parent_id=thread_2 ) ``` ###Assistant : Bundled aggregations should get applied to the latest thread event.
1,609
def from_environment(cls): return cls.from_file(path=KUBE_CONFIG_DEFAULT_LOCATION)
Factory method to produce an instance of this class using the default kube config location
15
4
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def from_environment(cls): return cls.from_file(path=KUBE_CONFIG_DEFAULT_LOCATION) ``` ###Assistant : Factory method to produce an instance of this class using the default kube config location
1,610
def test_thumbnail_repeated_thumbnail(self) -> None: self._test_thumbnail( "scale", self.test_image.expected_scaled, self.test_image.expected_found ) if not self.test_image.expected_found: return # Fetching again should work, without re-requesting the image from the # remote. params = "?width=32&height=32&method=scale" channel = make_request( self.reactor, FakeSite(self.thumbnail_resource, self.reactor), "GET", self.media_id + params, shorthand=False, await_result=False, ) self.pump() self.assertEqual(channel.code, 200) if self.test_image.expected_scaled: self.assertEqual( channel.result["body"], self.test_image.expected_scaled, channel.result["body"], ) # Deleting the thumbnail on disk then re-requesting it should work as # Synapse should regenerate missing thumbnails. origin, media_id = self.media_id.split("/") info = self.get_success(self.store.get_cached_remote_media(origin, media_id)) file_id = info["filesystem_id"] thumbnail_dir = self.media_repo.filepaths.remote_media_thumbnail_dir( origin, file_id ) shutil.rmtree(thumbnail_dir, ignore_errors=True) channel = make_request( self.reactor, FakeSite(self.thumbnail_resource, self.reactor), "GET", self.media_id + params, shorthand=False, await_result=False, ) self.pump() self.assertEqual(channel.code, 200) if self.test_image.expected_scaled: self.assertEqual( channel.result["body"], self.test_image.expected_scaled, channel.result["body"], )
Test that fetching the same thumbnail works, and deleting the on disk thumbnail regenerates it.
15
112
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_thumbnail_repeated_thumbnail(self) -> None: self._test_thumbnail( "scale", self.test_image.expected_scaled, self.test_image.expected_found ) if not self.test_image.expected_found: return # Fetching again should work, without re-requesting the image from the # remote. params = "?width=32&height=32&method=scale" channel = make_request( self.reactor, FakeSite(self.thumbnail_resource, self.reactor), "GET", self.media_id + params, shorthand=False, await_result=False, ) self.pump() self.assertEqual(channel.code, 200) if self.test_image.expected_scaled: self.assertEqual( channel.result["body"], self.test_image.expected_scaled, channel.result["body"], ) # Deleting the thumbnail on disk then re-requesting it should work as # Synapse should regenerate missing thumbnails. origin, media_id = self.media_id.split("/") info = self.get_success(self.store.get_cached_remote_media(origin, media_id)) file_id = info["filesystem_id"] thumbnail_dir = self.media_repo.filepaths.remote_media_thumbnail_dir( origin, file_id ) shutil.rmtree(thumbnail_dir, ignore_errors=True) channel = make_request( self.reactor, FakeSite(self.thumbnail_resource, self.reactor), "GET", self.media_id + params, shorthand=False, await_result=False, ) self.pump() self.assertEqual(channel.code, 200) if self.test_image.expected_scaled: self.assertEqual( channel.result["body"], self.test_image.expected_scaled, channel.result["body"], ) ``` ###Assistant : Test that fetching the same thumbnail works, and deleting the on disk thumbnail regenerates it.
1,611
def update(self) -> None: ping_cmd = [ "ping", "-c", "1", "-W", str(DEFAULT_PING_TIMEOUT), str(self._host), ] status = sp.call(ping_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL) self._state = not bool(status)
Check if device is on and update the state. Only called if assumed state is false.
16
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def update(self) -> None: ping_cmd = [ "ping", "-c", "1", "-W", str(DEFAULT_PING_TIMEOUT), str(self._host), ] status = sp.call(ping_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL) self._state = not bool(status) ``` ###Assistant : Check if device is on and update the state. Only called if assumed state is false.
1,612
def get_transactions(self): df = self.__transactions[ [ "Date", "Type", "Ticker", "Side", "Price", "Quantity", "Fees", "Investment", "Currency", "Sector", "Industry", "Country", "Region", ] ] df = df.replace(np.nan, "-") df["Date"] = df["Date"].dt.strftime("%Y-%m-%d") df.sort_values(by="Date", ascending=False, inplace=True) return df
Get formatted transactions Returns ------- pd.DataFrame: formatted transactions
8
33
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_transactions(self): df = self.__transactions[ [ "Date", "Type", "Ticker", "Side", "Price", "Quantity", "Fees", "Investment", "Currency", "Sector", "Industry", "Country", "Region", ] ] df = df.replace(np.nan, "-") df["Date"] = df["Date"].dt.strftime("%Y-%m-%d") df.sort_values(by="Date", ascending=False, inplace=True) return df ``` ###Assistant : Get formatted transactions Returns ------- pd.DataFrame: formatted transactions
1,613
def test_pick_colors(self) -> None: used_colors: Set[str] = set() color_map: Dict[int, str] = {} recipient_ids = list(range(30)) user_color_map = pick_colors(used_colors, color_map, recipient_ids) self.assertEqual( user_color_map, { 0: "#76ce90", 1: "#fae589", 2: "#a6c7e5", 3: "#e79ab5", 4: "#bfd56f", 5: "#f4ae55", 6: "#b0a5fd", 7: "#addfe5", 8: "#f5ce6e", 9: "#c2726a", 10: "#94c849", 11: "#bd86e5", 12: "#ee7e4a", 13: "#a6dcbf", 14: "#95a5fd", 15: "#53a063", 16: "#9987e1", 17: "#e4523d", 18: "#c2c2c2", 19: "#4f8de4", 20: "#c6a8ad", 21: "#e7cc4d", 22: "#c8bebf", 23: "#a47462", # start repeating 24: "#76ce90", 25: "#fae589", 26: "#a6c7e5", 27: "#e79ab5", 28: "#bfd56f", 29: "#f4ae55", }, ) color_map = {98: "color98", 99: "color99"} used_colors = set(STREAM_ASSIGNMENT_COLORS) - {"#c6a8ad", "#9987e1"} recipient_ids = [99, 98, 1, 2, 3, 4] user_color_map = pick_colors(used_colors, color_map, recipient_ids) self.assertEqual( user_color_map, {98: "color98", 99: "color99", 1: "#9987e1", 2: "#c6a8ad", 3: "#e79ab5", 4: "#bfd56f"}, ) used_colors = set(STREAM_ASSIGNMENT_COLORS) color_map = {} recipient_ids = [2, 26, 50, 74] user_color_map = pick_colors(used_colors, color_map, recipient_ids) self.assertEqual( user_color_map, {2: "#a6c7e5", 26: "#a6c7e5", 50: "#a6c7e5", 74: "#a6c7e5"}, )
If we are assigning colors to a user with 24+ streams, we have to start re-using old colors. Our algorithm basically uses recipient_id % 24, so the following code reflects the worse case scenario that our new streams have recipient ids spaced out by exact multiples of 24. We don't try to work around this edge case, since users who really depend on the stream colors can always just assign themselves custom colors for the streams that they really want to stand out. Even if recipient_ids were completely random, the odds of collisions are low, but it's often the case that bulk-adds are done for streams that either were or are being created at roughly the same time, so the recipient_ids tend to have even fewer collisions.
127
157
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_pick_colors(self) -> None: used_colors: Set[str] = set() color_map: Dict[int, str] = {} recipient_ids = list(range(30)) user_color_map = pick_colors(used_colors, color_map, recipient_ids) self.assertEqual( user_color_map, { 0: "#76ce90", 1: "#fae589", 2: "#a6c7e5", 3: "#e79ab5", 4: "#bfd56f", 5: "#f4ae55", 6: "#b0a5fd", 7: "#addfe5", 8: "#f5ce6e", 9: "#c2726a", 10: "#94c849", 11: "#bd86e5", 12: "#ee7e4a", 13: "#a6dcbf", 14: "#95a5fd", 15: "#53a063", 16: "#9987e1", 17: "#e4523d", 18: "#c2c2c2", 19: "#4f8de4", 20: "#c6a8ad", 21: "#e7cc4d", 22: "#c8bebf", 23: "#a47462", # start repeating 24: "#76ce90", 25: "#fae589", 26: "#a6c7e5", 27: "#e79ab5", 28: "#bfd56f", 29: "#f4ae55", }, ) color_map = {98: "color98", 99: "color99"} used_colors = set(STREAM_ASSIGNMENT_COLORS) - {"#c6a8ad", "#9987e1"} recipient_ids = [99, 98, 1, 2, 3, 4] user_color_map = pick_colors(used_colors, color_map, recipient_ids) self.assertEqual( user_color_map, {98: "color98", 99: "color99", 1: "#9987e1", 2: "#c6a8ad", 3: "#e79ab5", 4: "#bfd56f"}, ) used_colors = set(STREAM_ASSIGNMENT_COLORS) color_map = {} recipient_ids = [2, 26, 50, 74] user_color_map = pick_colors(used_colors, color_map, recipient_ids) self.assertEqual( user_color_map, {2: "#a6c7e5", 26: "#a6c7e5", 50: "#a6c7e5", 74: "#a6c7e5"}, ) ``` ###Assistant : If we are assigning colors to a user with 24+ streams, we have to start re-using old colors. Our algorithm basically uses recipient_id % 24, so the following code reflects the worse case scenario that our new streams have recipient ids spaced out by exact multiples of 24. We don't try to work around this edge case, since users who really depend on the stream colors can always just assign themselves custom colors for the streams that they really want to stand out. Even if recipient_ids were completely random, the odds of collisions are low, but it's often the case that bulk-adds are done for streams that either were or are being created at roughly the same time, so the recipient_ids tend to have even fewer collisions.
1,614
def test_import(self): data = ( ('name', 'slug', 'status', 'cf_text', 'cf_longtext', 'cf_integer', 'cf_boolean', 'cf_date', 'cf_url', 'cf_json', 'cf_select', 'cf_multiselect'), ('Site 1', 'site-1', 'active', 'ABC', 'Foo', '123', 'True', '2020-01-01', 'http://example.com/1', '{"foo": 123}', 'Choice A', '"Choice A,Choice B"'), ('Site 2', 'site-2', 'active', 'DEF', 'Bar', '456', 'False', '2020-01-02', 'http://example.com/2', '{"bar": 456}', 'Choice B', '"Choice B,Choice C"'), ('Site 3', 'site-3', 'active', '', '', '', '', '', '', '', '', ''), ) csv_data = '\n'.join(','.join(row) for row in data) response = self.client.post(reverse('dcim:site_import'), {'csv': csv_data}) self.assertEqual(response.status_code, 200) self.assertEqual(Site.objects.count(), 3) # Validate data for site 1 site1 = Site.objects.get(name='Site 1') self.assertEqual(len(site1.custom_field_data), 9) self.assertEqual(site1.custom_field_data['text'], 'ABC') self.assertEqual(site1.custom_field_data['longtext'], 'Foo') self.assertEqual(site1.custom_field_data['integer'], 123) self.assertEqual(site1.custom_field_data['boolean'], True) self.assertEqual(site1.custom_field_data['date'], '2020-01-01') self.assertEqual(site1.custom_field_data['url'], 'http://example.com/1') self.assertEqual(site1.custom_field_data['json'], {"foo": 123}) self.assertEqual(site1.custom_field_data['select'], 'Choice A') self.assertEqual(site1.custom_field_data['multiselect'], ['Choice A', 'Choice B']) # Validate data for site 2 site2 = Site.objects.get(name='Site 2') self.assertEqual(len(site2.custom_field_data), 9) self.assertEqual(site2.custom_field_data['text'], 'DEF') self.assertEqual(site2.custom_field_data['longtext'], 'Bar') self.assertEqual(site2.custom_field_data['integer'], 456) self.assertEqual(site2.custom_field_data['boolean'], False) self.assertEqual(site2.custom_field_data['date'], '2020-01-02') self.assertEqual(site2.custom_field_data['url'], 'http://example.com/2') self.assertEqual(site2.custom_field_data['json'], {"bar": 456}) self.assertEqual(site2.custom_field_data['select'], 'Choice B') self.assertEqual(site2.custom_field_data['multiselect'], ['Choice B', 'Choice C']) # No custom field data should be set for site 3 site3 = Site.objects.get(name='Site 3') self.assertFalse(any(site3.custom_field_data.values()))
Import a Site in CSV format, including a value for each CustomField.
12
167
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_import(self): data = ( ('name', 'slug', 'status', 'cf_text', 'cf_longtext', 'cf_integer', 'cf_boolean', 'cf_date', 'cf_url', 'cf_json', 'cf_select', 'cf_multiselect'), ('Site 1', 'site-1', 'active', 'ABC', 'Foo', '123', 'True', '2020-01-01', 'http://example.com/1', '{"foo": 123}', 'Choice A', '"Choice A,Choice B"'), ('Site 2', 'site-2', 'active', 'DEF', 'Bar', '456', 'False', '2020-01-02', 'http://example.com/2', '{"bar": 456}', 'Choice B', '"Choice B,Choice C"'), ('Site 3', 'site-3', 'active', '', '', '', '', '', '', '', '', ''), ) csv_data = '\n'.join(','.join(row) for row in data) response = self.client.post(reverse('dcim:site_import'), {'csv': csv_data}) self.assertEqual(response.status_code, 200) self.assertEqual(Site.objects.count(), 3) # Validate data for site 1 site1 = Site.objects.get(name='Site 1') self.assertEqual(len(site1.custom_field_data), 9) self.assertEqual(site1.custom_field_data['text'], 'ABC') self.assertEqual(site1.custom_field_data['longtext'], 'Foo') self.assertEqual(site1.custom_field_data['integer'], 123) self.assertEqual(site1.custom_field_data['boolean'], True) self.assertEqual(site1.custom_field_data['date'], '2020-01-01') self.assertEqual(site1.custom_field_data['url'], 'http://example.com/1') self.assertEqual(site1.custom_field_data['json'], {"foo": 123}) self.assertEqual(site1.custom_field_data['select'], 'Choice A') self.assertEqual(site1.custom_field_data['multiselect'], ['Choice A', 'Choice B']) # Validate data for site 2 site2 = Site.objects.get(name='Site 2') self.assertEqual(len(site2.custom_field_data), 9) self.assertEqual(site2.custom_field_data['text'], 'DEF') self.assertEqual(site2.custom_field_data['longtext'], 'Bar') self.assertEqual(site2.custom_field_data['integer'], 456) self.assertEqual(site2.custom_field_data['boolean'], False) self.assertEqual(site2.custom_field_data['date'], '2020-01-02') self.assertEqual(site2.custom_field_data['url'], 'http://example.com/2') self.assertEqual(site2.custom_field_data['json'], {"bar": 456}) self.assertEqual(site2.custom_field_data['select'], 'Choice B') self.assertEqual(site2.custom_field_data['multiselect'], ['Choice B', 'Choice C']) # No custom field data should be set for site 3 site3 = Site.objects.get(name='Site 3') self.assertFalse(any(site3.custom_field_data.values())) ``` ###Assistant : Import a Site in CSV format, including a value for each CustomField.
1,615
def build_pattern(): #bare = set() for module, replace in list(MAPPING.items()): for old_attr, new_attr in list(replace.items()): LOOKUP[(module, old_attr)] = new_attr #bare.add(module) #bare.add(old_attr) #yield % (module, module) yield % (module, old_attr, old_attr) yield % (module, old_attr) #yield % alternates(bare)
# import_name< 'import' (module=%r # | dotted_as_names< any* module=%r any* >) > # import_from< 'from' module_name=%r 'import' ( attr_name=%r | import_as_name< attr_name=%r 'as' any >) > power< module_name=%r trailer< '.' attr_name=%r > any* > bare_name=%s
35
37
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def build_pattern(): #bare = set() for module, replace in list(MAPPING.items()): for old_attr, new_attr in list(replace.items()): LOOKUP[(module, old_attr)] = new_attr #bare.add(module) #bare.add(old_attr) #yield % (module, module) yield % (module, old_attr, old_attr) yield % (module, old_attr) #yield % alternates(bare) ``` ###Assistant : # import_name< 'import' (module=%r # | dotted_as_names< any* module=%r any* >) > # import_from< 'from' module_name=%r 'import' ( attr_name=%r | import_as_name< attr_name=%r 'as' any >) > power< module_name=%r trailer< '.' attr_name=%r > any* > bare_name=%s
1,616
async def async_refresh_sensor(self) -> None: _LOGGER.debug("Refreshing library sensor for '%s'", self.name) try: await self.hass.async_add_executor_job(self._update_state_and_attrs) self._attr_available = True except NotFound: self._attr_available = False except requests.exceptions.RequestException as err: _LOGGER.error( "Could not update library sensor for '%s': %s", self.library_section.title, err, ) self._attr_available = False self.async_write_ha_state()
Update state and attributes for the library sensor.
8
42
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def async_refresh_sensor(self) -> None: _LOGGER.debug("Refreshing library sensor for '%s'", self.name) try: await self.hass.async_add_executor_job(self._update_state_and_attrs) self._attr_available = True except NotFound: self._attr_available = False except requests.exceptions.RequestException as err: _LOGGER.error( "Could not update library sensor for '%s': %s", self.library_section.title, err, ) self._attr_available = False self.async_write_ha_state() ``` ###Assistant : Update state and attributes for the library sensor.
1,617
def __hash__(self): return hash(self.name) + hash(self.version) + hash(self.source_url)
Compute hash in a way which matches the equality test.
10
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def __hash__(self): return hash(self.name) + hash(self.version) + hash(self.source_url) ``` ###Assistant : Compute hash in a way which matches the equality test.
1,618
def _min_nodes(self) -> int: if self._side == "gblock": return self._config["fc_gblock_min_nodes"] retval = self._scale_filters(self._config["fc_min_filters"]) retval = int(retval * self._config["fc_dimensions"] ** 2) return retval
int: The number of nodes for the first Dense. For non g-block layers this will be the given minimum filters multiplied by the dimensions squared. For g-block layers, this is the given value
33
22
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _min_nodes(self) -> int: if self._side == "gblock": return self._config["fc_gblock_min_nodes"] retval = self._scale_filters(self._config["fc_min_filters"]) retval = int(retval * self._config["fc_dimensions"] ** 2) return retval ``` ###Assistant : int: The number of nodes for the first Dense. For non g-block layers this will be the given minimum filters multiplied by the dimensions squared. For g-block layers, this is the given value
1,619
def _get(cls) -> dict: custom_parameters = super().get() result = cls.default.copy() result.update( {key.replace("-", "_"): value for key, value in custom_parameters.items()} ) return result
Get the resulted command-line options. Returns ------- dict Decoded and verified config value.
13
22
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get(cls) -> dict: custom_parameters = super().get() result = cls.default.copy() result.update( {key.replace("-", "_"): value for key, value in custom_parameters.items()} ) return result ``` ###Assistant : Get the resulted command-line options. Returns ------- dict Decoded and verified config value.
1,620
def add(self, node, *predecessors): if self._ready_nodes is not None: raise ValueError("Nodes cannot be added after a call to prepare()") # Create the node -> predecessor edges nodeinfo = self._get_nodeinfo(node) nodeinfo.npredecessors += len(predecessors) # Create the predecessor -> node edges for pred in predecessors: pred_info = self._get_nodeinfo(pred) pred_info.successors.append(node)
Add a new node and its predecessors to the graph. Both the *node* and all elements in *predecessors* must be hashable. If called multiple times with the same node argument, the set of dependencies will be the union of all dependencies passed in. It is possible to add a node with no dependencies (*predecessors* is not provided) as well as provide a dependency twice. If a node that has not been provided before is included among *predecessors* it will be automatically added to the graph with no predecessors of its own. Raises ValueError if called after "prepare".
97
47
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def add(self, node, *predecessors): if self._ready_nodes is not None: raise ValueError("Nodes cannot be added after a call to prepare()") # Create the node -> predecessor edges nodeinfo = self._get_nodeinfo(node) nodeinfo.npredecessors += len(predecessors) # Create the predecessor -> node edges for pred in predecessors: pred_info = self._get_nodeinfo(pred) pred_info.successors.append(node) ``` ###Assistant : Add a new node and its predecessors to the graph. Both the *node* and all elements in *predecessors* must be hashable. If called multiple times with the same node argument, the set of dependencies will be the union of all dependencies passed in. It is possible to add a node with no dependencies (*predecessors* is not provided) as well as provide a dependency twice. If a node that has not been provided before is included among *predecessors* it will be automatically added to the graph with no predecessors of its own. Raises ValueError if called after "prepare".
1,621
def test_stream_slices_with_state_and_slices(self, api, async_manager_mock, start_date): end_date = start_date + duration(days=10) cursor_value = start_date + duration(days=5) state = { AdsInsights.cursor_field: cursor_value.date().isoformat(), "slices": [(cursor_value + duration(days=1)).date().isoformat(), (cursor_value + duration(days=3)).date().isoformat()], } stream = AdsInsights(api=api, start_date=start_date, end_date=end_date) async_manager_mock.completed_jobs.return_value = [1, 2, 3] slices = list(stream.stream_slices(stream_state=state, sync_mode=SyncMode.incremental)) assert slices == [{"insight_job": 1}, {"insight_job": 2}, {"insight_job": 3}] async_manager_mock.assert_called_once() args, kwargs = async_manager_mock.call_args generated_jobs = list(kwargs["jobs"]) assert len(generated_jobs) == (end_date - cursor_value).days - 2, "should be 2 slices short because of state" assert generated_jobs[0].interval.start == cursor_value.date() + duration(days=2) assert generated_jobs[1].interval.start == cursor_value.date() + duration(days=4)
Stream will use cursor_value from state, but will skip saved slices
11
87
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_stream_slices_with_state_and_slices(self, api, async_manager_mock, start_date): end_date = start_date + duration(days=10) cursor_value = start_date + duration(days=5) state = { AdsInsights.cursor_field: cursor_value.date().isoformat(), "slices": [(cursor_value + duration(days=1)).date().isoformat(), (cursor_value + duration(days=3)).date().isoformat()], } stream = AdsInsights(api=api, start_date=start_date, end_date=end_date) async_manager_mock.completed_jobs.return_value = [1, 2, 3] slices = list(stream.stream_slices(stream_state=state, sync_mode=SyncMode.incremental)) assert slices == [{"insight_job": 1}, {"insight_job": 2}, {"insight_job": 3}] async_manager_mock.assert_called_once() args, kwargs = async_manager_mock.call_args generated_jobs = list(kwargs["jobs"]) assert len(generated_jobs) == (end_date - cursor_value).days - 2, "should be 2 slices short because of state" assert generated_jobs[0].interval.start == cursor_value.date() + duration(days=2) assert generated_jobs[1].interval.start == cursor_value.date() + duration(days=4) ``` ###Assistant : Stream will use cursor_value from state, but will skip saved slices
1,622
def _test_readonly_foreignkey_links(self, admin_site): chapter = Chapter.objects.create( title="Chapter 1", content="content", book=Book.objects.create(name="Book 1"), ) language = Language.objects.create(iso="_40", name="Test") obj = ReadOnlyRelatedField.objects.create( chapter=chapter, language=language, user=self.superuser, ) response = self.client.get( reverse( f"{admin_site}:admin_views_readonlyrelatedfield_change", args=(obj.pk,) ), ) # Related ForeignKey object registered in admin. user_url = reverse(f"{admin_site}:auth_user_change", args=(self.superuser.pk,)) self.assertContains( response, '<div class="readonly"><a href="%s">super</a></div>' % user_url, html=True, ) # Related ForeignKey with the string primary key registered in admin. language_url = reverse( f"{admin_site}:admin_views_language_change", args=(quote(language.pk),), ) self.assertContains( response, '<div class="readonly"><a href="%s">_40</a></div>' % language_url, html=True, ) # Related ForeignKey object not registered in admin. self.assertContains( response, '<div class="readonly">Chapter 1</div>', html=True )
ForeignKey readonly fields render as links if the target model is registered in admin.
14
92
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _test_readonly_foreignkey_links(self, admin_site): chapter = Chapter.objects.create( title="Chapter 1", content="content", book=Book.objects.create(name="Book 1"), ) language = Language.objects.create(iso="_40", name="Test") obj = ReadOnlyRelatedField.objects.create( chapter=chapter, language=language, user=self.superuser, ) response = self.client.get( reverse( f"{admin_site}:admin_views_readonlyrelatedfield_change", args=(obj.pk,) ), ) # Related ForeignKey object registered in admin. user_url = reverse(f"{admin_site}:auth_user_change", args=(self.superuser.pk,)) self.assertContains( response, '<div class="readonly"><a href="%s">super</a></div>' % user_url, html=True, ) # Related ForeignKey with the string primary key registered in admin. language_url = reverse( f"{admin_site}:admin_views_language_change", args=(quote(language.pk),), ) self.assertContains( response, '<div class="readonly"><a href="%s">_40</a></div>' % language_url, html=True, ) # Related ForeignKey object not registered in admin. self.assertContains( response, '<div class="readonly">Chapter 1</div>', html=True ) ``` ###Assistant : ForeignKey readonly fields render as links if the target model is registered in admin.
1,623
def execute(): for project in frappe.get_all("Project", fields=["name", "percent_complete_method"]): total = frappe.db.count("Task", dict(project=project.name)) if project.percent_complete_method == "Task Completion" and total > 0: completed = frappe.db.sql( , project.name, )[0][0] percent_complete = flt(flt(completed) / total * 100, 2) if project.percent_complete != percent_complete: frappe.db.set_value("Project", project.name, "percent_complete", percent_complete) if percent_complete == 100: frappe.db.set_value("Project", project.name, "status", "Completed")
select count(name) from tabTask where project=%s and status in ('Cancelled', 'Completed')
11
51
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def execute(): for project in frappe.get_all("Project", fields=["name", "percent_complete_method"]): total = frappe.db.count("Task", dict(project=project.name)) if project.percent_complete_method == "Task Completion" and total > 0: completed = frappe.db.sql( , project.name, )[0][0] percent_complete = flt(flt(completed) / total * 100, 2) if project.percent_complete != percent_complete: frappe.db.set_value("Project", project.name, "percent_complete", percent_complete) if percent_complete == 100: frappe.db.set_value("Project", project.name, "status", "Completed") ``` ###Assistant : select count(name) from tabTask where project=%s and status in ('Cancelled', 'Completed')
1,624
def mathematica(s, additional_translations=None): parser = MathematicaParser(additional_translations) if additional_translations is not None: SymPyDeprecationWarning( feature="additional_translations parameter for the Mathematica parser", last_supported_version="1.9", useinstead="Use SymPy's .replace( ) or .subs( ) methods on the output expression", issue="23042", ).warn() return sympify(parser._parse_old(s)) return parser.parse(s)
Translate a string containing a Wolfram Mathematica expression to a SymPy expression. If the translator is unable to find a suitable SymPy expression, the ``FullForm`` of the Mathematica expression will be output, using SymPy ``Function`` objects as nodes of the syntax tree. Examples ======== >>> from sympy.parsing.mathematica import mathematica >>> mathematica("Sin[x]^2 Tan[y]") sin(x)**2*tan(y) >>> e = mathematica("F[7,5,3]") >>> e F(7, 5, 3) >>> from sympy import Function, Max, Min >>> e.replace(Function("F"), lambda *x: Max(*x)*Min(*x)) 21 Both standard input form and Mathematica full form are supported: >>> mathematica("x*(a + b)") x*(a + b) >>> mathematica("Times[x, Plus[a, b]]") x*(a + b) To get a matrix from Wolfram's code: >>> m = mathematica("{{a, b}, {c, d}}") >>> m ((a, b), (c, d)) >>> from sympy import Matrix >>> Matrix(m) Matrix([ [a, b], [c, d]]) If the translation into equivalent SymPy expressions fails, an SymPy expression equivalent to Wolfram Mathematica's "FullForm" will be created: >>> mathematica("x_.") Optional(Pattern(x, Blank())) >>> mathematica("Plus @@ {x, y, z}") Apply(Plus, (x, y, z)) >>> mathematica("f[x_, 3] := x^3 /; x > 0") SetDelayed(f(Pattern(x, Blank()), 3), Condition(x**3, x > 0))
180
37
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def mathematica(s, additional_translations=None): parser = MathematicaParser(additional_translations) if additional_translations is not None: SymPyDeprecationWarning( feature="additional_translations parameter for the Mathematica parser", last_supported_version="1.9", useinstead="Use SymPy's .replace( ) or .subs( ) methods on the output expression", issue="23042", ).warn() return sympify(parser._parse_old(s)) return parser.parse(s) ``` ###Assistant : Translate a string containing a Wolfram Mathematica expression to a SymPy expression. If the translator is unable to find a suitable SymPy expression, the ``FullForm`` of the Mathematica expression will be output, using SymPy ``Function`` objects as nodes of the syntax tree. Examples ======== >>> from sympy.parsing.mathematica import mathematica >>> mathematica("Sin[x]^2 Tan[y]") sin(x)**2*tan(y) >>> e = mathematica("F[7,5,3]") >>> e F(7, 5, 3) >>> from sympy import Function, Max, Min >>> e.replace(Function("F"), lambda *x: Max(*x)*Min(*x)) 21 Both standard input form and Mathematica full form are supported: >>> mathematica("x*(a + b)") x*(a + b) >>> mathematica("Times[x, Plus[a, b]]") x*(a + b) To get a matrix from Wolfram's code: >>> m = mathematica("{{a, b}, {c, d}}") >>> m ((a, b), (c, d)) >>> from sympy import Matrix >>> Matrix(m) Matrix([ [a, b], [c, d]]) If the translation into equivalent SymPy expressions fails, an SymPy expression equivalent to Wolfram Mathematica's "FullForm" will be created: >>> mathematica("x_.") Optional(Pattern(x, Blank())) >>> mathematica("Plus @@ {x, y, z}") Apply(Plus, (x, y, z)) >>> mathematica("f[x_, 3] := x^3 /; x > 0") SetDelayed(f(Pattern(x, Blank()), 3), Condition(x**3, x > 0))
1,625
def update_company_current_month_sales(company): current_month_year = formatdate(today(), "MM-yyyy") results = frappe.db.sql( .format( current_month_year=current_month_year, company=frappe.db.escape(company) ), as_dict=True, ) monthly_total = results[0]["total"] if len(results) > 0 else 0 frappe.db.set_value("Company", company, "total_monthly_sales", monthly_total)
SELECT SUM(base_grand_total) AS total, DATE_FORMAT(`posting_date`, '%m-%Y') AS month_year FROM `tabSales Invoice` WHERE DATE_FORMAT(`posting_date`, '%m-%Y') = '{current_month_year}' AND docstatus = 1 AND company = {company} GROUP BY month_year
27
28
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def update_company_current_month_sales(company): current_month_year = formatdate(today(), "MM-yyyy") results = frappe.db.sql( .format( current_month_year=current_month_year, company=frappe.db.escape(company) ), as_dict=True, ) monthly_total = results[0]["total"] if len(results) > 0 else 0 frappe.db.set_value("Company", company, "total_monthly_sales", monthly_total) ``` ###Assistant : SELECT SUM(base_grand_total) AS total, DATE_FORMAT(`posting_date`, '%m-%Y') AS month_year FROM `tabSales Invoice` WHERE DATE_FORMAT(`posting_date`, '%m-%Y') = '{current_month_year}' AND docstatus = 1 AND company = {company} GROUP BY month_year
1,626
def metadata_version(self): # type: () -> Optional[str] raise NotImplementedError()
Value of "Metadata-Version:" in the distribution, if available.
8
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def metadata_version(self): # type: () -> Optional[str] raise NotImplementedError() ``` ###Assistant : Value of "Metadata-Version:" in the distribution, if available.
1,627
def call_ca(self, _): if self.screen_tickers: self.queue = ca_controller.ComparisonAnalysisController( self.screen_tickers, self.queue ).menu(custom_path_menu_above="/stocks/") else: print("Some tickers must be screened first through one of the presets!\n")
Call the comparison analysis menu with selected tickers
8
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def call_ca(self, _): if self.screen_tickers: self.queue = ca_controller.ComparisonAnalysisController( self.screen_tickers, self.queue ).menu(custom_path_menu_above="/stocks/") else: print("Some tickers must be screened first through one of the presets!\n") ``` ###Assistant : Call the comparison analysis menu with selected tickers
1,628
def delete_tasks_predictions(project, queryset, **kwargs): task_ids = queryset.values_list('id', flat=True) predictions = Prediction.objects.filter(task__id__in=task_ids) count = predictions.count() predictions.delete() queryset.update(updated_at=datetime.now()) return {'processed_items': count, 'detail': 'Deleted ' + str(count) + ' predictions'} actions = [ { 'entry_point': retrieve_tasks_predictions, 'permission': all_permissions.predictions_any, 'title': 'Retrieve Predictions', 'order': 90, 'dialog': { 'text': 'Send the selected tasks to all ML backends connected to the project.' 'This operation might be abruptly interrupted due to a timeout. ' 'The recommended way to get predictions is to update tasks using the Label Studio API.' '<a href="https://labelstud.io/guide/ml.html>See more in the documentation</a>.' 'Please confirm your action.', 'type': 'confirm' } }, { 'entry_point': delete_tasks, 'permission': all_permissions.tasks_delete, 'title': 'Delete Tasks', 'order': 100, 'reload': True, 'dialog': { 'text': 'You are going to delete the selected tasks. Please confirm your action.', 'type': 'confirm' } }, { 'entry_point': delete_tasks_annotations, 'permission': all_permissions.tasks_delete, 'title': 'Delete Annotations', 'order': 101, 'dialog': { 'text': 'You are going to delete all annotations from the selected tasks. Please confirm your action.', 'type': 'confirm' } }, { 'entry_point': delete_tasks_predictions, 'permission': all_permissions.predictions_any, 'title': 'Delete Predictions', 'order': 102, 'dialog': { 'text': 'You are going to delete all predictions from the selected tasks. Please confirm your action.', 'type': 'confirm' } } ]
Delete all predictions by tasks ids :param project: project instance :param queryset: filtered tasks db queryset
16
191
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def delete_tasks_predictions(project, queryset, **kwargs): task_ids = queryset.values_list('id', flat=True) predictions = Prediction.objects.filter(task__id__in=task_ids) count = predictions.count() predictions.delete() queryset.update(updated_at=datetime.now()) return {'processed_items': count, 'detail': 'Deleted ' + str(count) + ' predictions'} actions = [ { 'entry_point': retrieve_tasks_predictions, 'permission': all_permissions.predictions_any, 'title': 'Retrieve Predictions', 'order': 90, 'dialog': { 'text': 'Send the selected tasks to all ML backends connected to the project.' 'This operation might be abruptly interrupted due to a timeout. ' 'The recommended way to get predictions is to update tasks using the Label Studio API.' '<a href="https://labelstud.io/guide/ml.html>See more in the documentation</a>.' 'Please confirm your action.', 'type': 'confirm' } }, { 'entry_point': delete_tasks, 'permission': all_permissions.tasks_delete, 'title': 'Delete Tasks', 'order': 100, 'reload': True, 'dialog': { 'text': 'You are going to delete the selected tasks. Please confirm your action.', 'type': 'confirm' } }, { 'entry_point': delete_tasks_annotations, 'permission': all_permissions.tasks_delete, 'title': 'Delete Annotations', 'order': 101, 'dialog': { 'text': 'You are going to delete all annotations from the selected tasks. Please confirm your action.', 'type': 'confirm' } }, { 'entry_point': delete_tasks_predictions, 'permission': all_permissions.predictions_any, 'title': 'Delete Predictions', 'order': 102, 'dialog': { 'text': 'You are going to delete all predictions from the selected tasks. Please confirm your action.', 'type': 'confirm' } } ] ``` ###Assistant : Delete all predictions by tasks ids :param project: project instance :param queryset: filtered tasks db queryset
1,629
def clean_up(self): if not self._cleaned: for ref in self.referenced_paths(): self._reference_counter[ref] -= 1 if self._reference_counter[ref] <= 0: os.remove(ref) if self._reference_counter[ref] < 0: _logger.warning('Referance counter error, the number of %s is %d', ref, self._reference_counter[ref]) self._cleaned = True else: _logger.warning('Already clean up task %d', self.task_id)
Counter of referenced file paths subtract 1. If the counter reach 0, then delete the file.
16
42
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def clean_up(self): if not self._cleaned: for ref in self.referenced_paths(): self._reference_counter[ref] -= 1 if self._reference_counter[ref] <= 0: os.remove(ref) if self._reference_counter[ref] < 0: _logger.warning('Referance counter error, the number of %s is %d', ref, self._reference_counter[ref]) self._cleaned = True else: _logger.warning('Already clean up task %d', self.task_id) ``` ###Assistant : Counter of referenced file paths subtract 1. If the counter reach 0, then delete the file.
1,630
def load_backend(backend_name): # This backend was renamed in Django 1.9. if backend_name == "django.db.backends.postgresql_psycopg2": backend_name = "django.db.backends.postgresql" try: return import_module("%s.base" % backend_name) except ImportError as e_user: # The database backend wasn't found. Display a helpful error message # listing all built-in database backends. import django.db.backends builtin_backends = [ name for _, name, ispkg in pkgutil.iter_modules(django.db.backends.__path__) if ispkg and name not in {"base", "dummy"} ] if backend_name not in ["django.db.backends.%s" % b for b in builtin_backends]: backend_reprs = map(repr, sorted(builtin_backends)) raise ImproperlyConfigured( "%r isn't an available database backend or couldn't be " "imported. Check the above exception. To use one of the " "built-in backends, use 'django.db.backends.XXX', where XXX " "is one of:\n" " %s" % (backend_name, ", ".join(backend_reprs)) ) from e_user else: # If there's some other error, this must be an error in Django raise
Return a database backend's "base" module given a fully qualified database backend name, or raise an error if it doesn't exist.
21
136
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def load_backend(backend_name): # This backend was renamed in Django 1.9. if backend_name == "django.db.backends.postgresql_psycopg2": backend_name = "django.db.backends.postgresql" try: return import_module("%s.base" % backend_name) except ImportError as e_user: # The database backend wasn't found. Display a helpful error message # listing all built-in database backends. import django.db.backends builtin_backends = [ name for _, name, ispkg in pkgutil.iter_modules(django.db.backends.__path__) if ispkg and name not in {"base", "dummy"} ] if backend_name not in ["django.db.backends.%s" % b for b in builtin_backends]: backend_reprs = map(repr, sorted(builtin_backends)) raise ImproperlyConfigured( "%r isn't an available database backend or couldn't be " "imported. Check the above exception. To use one of the " "built-in backends, use 'django.db.backends.XXX', where XXX " "is one of:\n" " %s" % (backend_name, ", ".join(backend_reprs)) ) from e_user else: # If there's some other error, this must be an error in Django raise ``` ###Assistant : Return a database backend's "base" module given a fully qualified database backend name, or raise an error if it doesn't exist.
1,631
def explode_superdims(sizes, dims): strides_to_sizes = {stride: size for size, stride in zip(sizes, strides_for_sizes(sizes))} dims = list(reversed(dims)) final_dims = [] for size, stride in dims: target_size = strides_to_sizes[stride] new_dims = [] while size > target_size: assert target_size > 1 # Ensure progress assert size % target_size == 0 new_dims.append((target_size, stride)) size //= target_size stride *= target_size target_size = strides_to_sizes[stride] assert size == target_size new_dims.append((size, stride)) final_dims += reversed(new_dims) return final_dims
Explode superdims to fit a known shape. The unflattening process might mistakenly generate too few too large dimensions. For example, ``unflatten_superdims(np.arange(n))`` always returns ``[(n, 1)]``. This function takes a list of such contiguous super-dimensions and splits them into smaller dimensions such that:: set(map(fst, explode_superdims(sizes, dims))) == set(sizes)
47
69
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def explode_superdims(sizes, dims): strides_to_sizes = {stride: size for size, stride in zip(sizes, strides_for_sizes(sizes))} dims = list(reversed(dims)) final_dims = [] for size, stride in dims: target_size = strides_to_sizes[stride] new_dims = [] while size > target_size: assert target_size > 1 # Ensure progress assert size % target_size == 0 new_dims.append((target_size, stride)) size //= target_size stride *= target_size target_size = strides_to_sizes[stride] assert size == target_size new_dims.append((size, stride)) final_dims += reversed(new_dims) return final_dims ``` ###Assistant : Explode superdims to fit a known shape. The unflattening process might mistakenly generate too few too large dimensions. For example, ``unflatten_superdims(np.arange(n))`` always returns ``[(n, 1)]``. This function takes a list of such contiguous super-dimensions and splits them into smaller dimensions such that:: set(map(fst, explode_superdims(sizes, dims))) == set(sizes)
1,632
def path_weight(G, path, weight): multigraph = G.is_multigraph() cost = 0 if not nx.is_path(G, path): raise nx.NetworkXNoPath("path does not exist") for node, nbr in nx.utils.pairwise(path): if multigraph: cost += min(v[weight] for v in G[node][nbr].values()) else: cost += G[node][nbr][weight] return cost
Returns total cost associated with specified path and weight Parameters ---------- G : graph A NetworkX graph. path: list A list of node labels which defines the path to traverse weight: string A string indicating which edge attribute to use for path cost Returns ------- cost: int or float An integer or a float representing the total cost with respect to the specified weight of the specified path Raises ------ NetworkXNoPath If the specified edge does not exist.
78
39
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def path_weight(G, path, weight): multigraph = G.is_multigraph() cost = 0 if not nx.is_path(G, path): raise nx.NetworkXNoPath("path does not exist") for node, nbr in nx.utils.pairwise(path): if multigraph: cost += min(v[weight] for v in G[node][nbr].values()) else: cost += G[node][nbr][weight] return cost ``` ###Assistant : Returns total cost associated with specified path and weight Parameters ---------- G : graph A NetworkX graph. path: list A list of node labels which defines the path to traverse weight: string A string indicating which edge attribute to use for path cost Returns ------- cost: int or float An integer or a float representing the total cost with respect to the specified weight of the specified path Raises ------ NetworkXNoPath If the specified edge does not exist.
1,633
def _run_sql(self, sql, params, raw=True, output=False, latest=False): toget = 'source_raw' if raw else 'source' sqlfrom = "history" if output: sqlfrom = "history LEFT JOIN output_history USING (session, line)" toget = "history.%s, output_history.output" % toget if latest: toget += ", MAX(session * 128 * 1024 + line)" this_querry = "SELECT session, line, %s FROM %s " % (toget, sqlfrom) + sql cur = self.db.execute(this_querry, params) if latest: cur = (row[:-1] for row in cur) if output: # Regroup into 3-tuples, and parse JSON return ((ses, lin, (inp, out)) for ses, lin, inp, out in cur) return cur
Prepares and runs an SQL query for the history database. Parameters ---------- sql : str Any filtering expressions to go after SELECT ... FROM ... params : tuple Parameters passed to the SQL query (to replace "?") raw, output : bool See :meth:`get_range` latest : bool Select rows with max (session, line) Returns ------- Tuples as :meth:`get_range`
57
96
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _run_sql(self, sql, params, raw=True, output=False, latest=False): toget = 'source_raw' if raw else 'source' sqlfrom = "history" if output: sqlfrom = "history LEFT JOIN output_history USING (session, line)" toget = "history.%s, output_history.output" % toget if latest: toget += ", MAX(session * 128 * 1024 + line)" this_querry = "SELECT session, line, %s FROM %s " % (toget, sqlfrom) + sql cur = self.db.execute(this_querry, params) if latest: cur = (row[:-1] for row in cur) if output: # Regroup into 3-tuples, and parse JSON return ((ses, lin, (inp, out)) for ses, lin, inp, out in cur) return cur ``` ###Assistant : Prepares and runs an SQL query for the history database. Parameters ---------- sql : str Any filtering expressions to go after SELECT ... FROM ... params : tuple Parameters passed to the SQL query (to replace "?") raw, output : bool See :meth:`get_range` latest : bool Select rows with max (session, line) Returns ------- Tuples as :meth:`get_range`
1,634
def __add__(self, other): if isinstance(other, PathSpec): return PathSpec(self.patterns + other.patterns) else: return NotImplemented
Combines the :attr:`Pathspec.patterns` patterns from two :class:`PathSpec` instances.
8
13
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def __add__(self, other): if isinstance(other, PathSpec): return PathSpec(self.patterns + other.patterns) else: return NotImplemented ``` ###Assistant : Combines the :attr:`Pathspec.patterns` patterns from two :class:`PathSpec` instances.
1,635
def address(self): if use_gcs_for_bootstrap(): return self._gcs_address return self._redis_address
Get the address for bootstrapping, e.g. the address to pass to `ray start` or `ray.int()` to start worker nodes, that has been converted to ip:port format.
26
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def address(self): if use_gcs_for_bootstrap(): return self._gcs_address return self._redis_address ``` ###Assistant : Get the address for bootstrapping, e.g. the address to pass to `ray start` or `ray.int()` to start worker nodes, that has been converted to ip:port format.
1,636
def similarity(self, texts=[], data={}, use_gpu=False, batch_size=1): if use_gpu: try: _places = os.environ["CUDA_VISIBLE_DEVICES"] int(_places[0]) except: raise RuntimeError( "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) data = self.check_data(texts, data) start_idx = 0 iteration = int(math.ceil(len(data['text_1']) / batch_size)) results = [] for i in range(iteration): batch_data = {'text_1': [], 'text_2': []} if i < (iteration - 1): batch_data['text_1'] = data['text_1'][start_idx:(start_idx + batch_size)] batch_data['text_2'] = data['text_2'][start_idx:(start_idx + batch_size)] else: batch_data['text_1'] = data['text_1'][start_idx:(start_idx + batch_size)] batch_data['text_2'] = data['text_2'][start_idx:(start_idx + batch_size)] start_idx = start_idx + batch_size processed_results = preprocess(self.word_seg_module, self.vocab, batch_data, use_gpu, batch_size) data_1, lod_1, shape_1 = self._texts_process(processed_results["text_1"]) data_2, lod_2, shape_2 = self._texts_process(processed_results["text_2"]) predictor = self.gpu_predictor if use_gpu else self.cpu_predictor input_names = predictor.get_input_names() input_handle = predictor.get_input_handle(input_names[0]) input_handle.copy_from_cpu(data_1) input_handle.set_lod(lod_1) input_handle.reshape(shape_1) input_handle = predictor.get_input_handle(input_names[1]) input_handle.copy_from_cpu(data_2) input_handle.set_lod(lod_2) input_handle.reshape(shape_2) predictor.run() output_names = predictor.get_output_names() output_handle = predictor.get_output_handle(output_names[1]) batch_out = output_handle.copy_to_cpu() batch_result = postprocess(batch_out, processed_results) results += batch_result return results
Get the sentiment prediction results results with the texts as input Args: texts(list): the input texts to be predicted which the first element is text_1(list) and the second element is text_2(list), such as [['这道题很难'], ['这道题不简单']] if texts not data. data(dict): key must be 'text_1' and 'text_2', value is the texts(list) to be predicted use_gpu(bool): whether use gpu to predict or not batch_size(int): the program deals once with one batch Returns: results(list): the word segmentation results
75
149
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def similarity(self, texts=[], data={}, use_gpu=False, batch_size=1): if use_gpu: try: _places = os.environ["CUDA_VISIBLE_DEVICES"] int(_places[0]) except: raise RuntimeError( "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) data = self.check_data(texts, data) start_idx = 0 iteration = int(math.ceil(len(data['text_1']) / batch_size)) results = [] for i in range(iteration): batch_data = {'text_1': [], 'text_2': []} if i < (iteration - 1): batch_data['text_1'] = data['text_1'][start_idx:(start_idx + batch_size)] batch_data['text_2'] = data['text_2'][start_idx:(start_idx + batch_size)] else: batch_data['text_1'] = data['text_1'][start_idx:(start_idx + batch_size)] batch_data['text_2'] = data['text_2'][start_idx:(start_idx + batch_size)] start_idx = start_idx + batch_size processed_results = preprocess(self.word_seg_module, self.vocab, batch_data, use_gpu, batch_size) data_1, lod_1, shape_1 = self._texts_process(processed_results["text_1"]) data_2, lod_2, shape_2 = self._texts_process(processed_results["text_2"]) predictor = self.gpu_predictor if use_gpu else self.cpu_predictor input_names = predictor.get_input_names() input_handle = predictor.get_input_handle(input_names[0]) input_handle.copy_from_cpu(data_1) input_handle.set_lod(lod_1) input_handle.reshape(shape_1) input_handle = predictor.get_input_handle(input_names[1]) input_handle.copy_from_cpu(data_2) input_handle.set_lod(lod_2) input_handle.reshape(shape_2) predictor.run() output_names = predictor.get_output_names() output_handle = predictor.get_output_handle(output_names[1]) batch_out = output_handle.copy_to_cpu() batch_result = postprocess(batch_out, processed_results) results += batch_result return results ``` ###Assistant : Get the sentiment prediction results results with the texts as input Args: texts(list): the input texts to be predicted which the first element is text_1(list) and the second element is text_2(list), such as [['这道题很难'], ['这道题不简单']] if texts not data. data(dict): key must be 'text_1' and 'text_2', value is the texts(list) to be predicted use_gpu(bool): whether use gpu to predict or not batch_size(int): the program deals once with one batch Returns: results(list): the word segmentation results
1,637
def cli_collect_weights(sys_argv): parser = argparse.ArgumentParser( description="This script loads a pretrained model " "and uses it collect weights.", prog="ludwig collect_weights", usage="%(prog)s [options]", ) # ---------------- # Model parameters # ---------------- parser.add_argument("-m", "--model_path", help="model to load", required=True) parser.add_argument("-t", "--tensors", help="tensors to collect", nargs="+", required=True) # ------------------------- # Output results parameters # ------------------------- parser.add_argument( "-od", "--output_directory", type=str, default="results", help="directory that contains the results" ) # ------------------ # Runtime parameters # ------------------ parser.add_argument( "-l", "--logging_level", default="info", help="the level of logging to use", choices=["critical", "error", "warning", "info", "debug", "notset"], ) add_contrib_callback_args(parser) args = parser.parse_args(sys_argv) args.callbacks = args.callbacks or [] for callback in args.callbacks: callback.on_cmdline("collect_weights", *sys_argv) args.logging_level = get_logging_level_registry()[args.logging_level] logging.getLogger("ludwig").setLevel(args.logging_level) global logger logger = logging.getLogger("ludwig.collect") print_ludwig("Collect Weights", LUDWIG_VERSION) collect_weights(**vars(args))
Command Line Interface to collecting the weights for the model. --m: Input model that is necessary to collect to the tensors, this is a required *option* --t: Tensors to collect --od: Output directory of the model, defaults to results --v: Verbose: Defines the logging level that the user will be exposed to
52
113
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def cli_collect_weights(sys_argv): parser = argparse.ArgumentParser( description="This script loads a pretrained model " "and uses it collect weights.", prog="ludwig collect_weights", usage="%(prog)s [options]", ) # ---------------- # Model parameters # ---------------- parser.add_argument("-m", "--model_path", help="model to load", required=True) parser.add_argument("-t", "--tensors", help="tensors to collect", nargs="+", required=True) # ------------------------- # Output results parameters # ------------------------- parser.add_argument( "-od", "--output_directory", type=str, default="results", help="directory that contains the results" ) # ------------------ # Runtime parameters # ------------------ parser.add_argument( "-l", "--logging_level", default="info", help="the level of logging to use", choices=["critical", "error", "warning", "info", "debug", "notset"], ) add_contrib_callback_args(parser) args = parser.parse_args(sys_argv) args.callbacks = args.callbacks or [] for callback in args.callbacks: callback.on_cmdline("collect_weights", *sys_argv) args.logging_level = get_logging_level_registry()[args.logging_level] logging.getLogger("ludwig").setLevel(args.logging_level) global logger logger = logging.getLogger("ludwig.collect") print_ludwig("Collect Weights", LUDWIG_VERSION) collect_weights(**vars(args)) ``` ###Assistant : Command Line Interface to collecting the weights for the model. --m: Input model that is necessary to collect to the tensors, this is a required *option* --t: Tensors to collect --od: Output directory of the model, defaults to results --v: Verbose: Defines the logging level that the user will be exposed to
1,638
def get_user_emails_from_group(group): group_doc = group if isinstance(group_doc, str): group_doc = frappe.get_doc("Daily Work Summary Group", group) emails = get_users_email(group_doc) return emails
Returns list of email of enabled users from the given group :param group: Daily Work Summary Group `name`
18
20
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_user_emails_from_group(group): group_doc = group if isinstance(group_doc, str): group_doc = frappe.get_doc("Daily Work Summary Group", group) emails = get_users_email(group_doc) return emails ``` ###Assistant : Returns list of email of enabled users from the given group :param group: Daily Work Summary Group `name`
1,639
def adapt_unknown_value(self, value): if isinstance(value, datetime.datetime): # must be before date return self.adapt_datetimefield_value(value) elif isinstance(value, datetime.date): return self.adapt_datefield_value(value) elif isinstance(value, datetime.time): return self.adapt_timefield_value(value) elif isinstance(value, decimal.Decimal): return self.adapt_decimalfield_value(value) else: return value
Transform a value to something compatible with the backend driver. This method only depends on the type of the value. It's designed for cases where the target type isn't known, such as .raw() SQL queries. As a consequence it may not work perfectly in all circumstances.
46
31
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def adapt_unknown_value(self, value): if isinstance(value, datetime.datetime): # must be before date return self.adapt_datetimefield_value(value) elif isinstance(value, datetime.date): return self.adapt_datefield_value(value) elif isinstance(value, datetime.time): return self.adapt_timefield_value(value) elif isinstance(value, decimal.Decimal): return self.adapt_decimalfield_value(value) else: return value ``` ###Assistant : Transform a value to something compatible with the backend driver. This method only depends on the type of the value. It's designed for cases where the target type isn't known, such as .raw() SQL queries. As a consequence it may not work perfectly in all circumstances.
1,640
def test_get_settings_variable_assignment_request_context(self): request = self.get_request(site=self.other_site) context = Context({"request": request}) template = Template( "{% load wagtailsettings_tags %}" "{% get_settings as wagtail_settings %}" "{{ wagtail_settings.tests.testsetting.title}}" ) self.assertEqual(template.render(context), self.other_site_settings.title) # Also check that the default 'settings' variable hasn't been set template = Template( "{% load wagtailsettings_tags %}" "{% get_settings as wagtail_settings %}" "{{ settings.tests.testsetting.title}}" ) self.assertEqual(template.render(context), "")
Check that assigning the setting to a context variable with {% get_settings as wagtail_settings %} works.
16
54
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_get_settings_variable_assignment_request_context(self): request = self.get_request(site=self.other_site) context = Context({"request": request}) template = Template( "{% load wagtailsettings_tags %}" "{% get_settings as wagtail_settings %}" "{{ wagtail_settings.tests.testsetting.title}}" ) self.assertEqual(template.render(context), self.other_site_settings.title) # Also check that the default 'settings' variable hasn't been set template = Template( "{% load wagtailsettings_tags %}" "{% get_settings as wagtail_settings %}" "{{ settings.tests.testsetting.title}}" ) self.assertEqual(template.render(context), "") ``` ###Assistant : Check that assigning the setting to a context variable with {% get_settings as wagtail_settings %} works.
1,641
def get_dataset(cls, path, engine, storage_options): if engine == "auto": # We follow in concordance with pandas engine_classes = [PyArrowDataset, FastParquetDataset] error_msgs = "" for engine_class in engine_classes: try: return engine_class(path, storage_options) except ImportError as err: error_msgs += "\n - " + str(err) raise ImportError( "Unable to find a usable engine; " + "tried using: 'pyarrow', 'fastparquet'.\n" + "A suitable version of " + "pyarrow or fastparquet is required for parquet " + "support.\n" + "Trying to import the above resulted in these errors:" + f"{error_msgs}" ) elif engine == "pyarrow": return PyArrowDataset(path, storage_options) elif engine == "fastparquet": return FastParquetDataset(path, storage_options) else: raise ValueError("engine must be one of 'pyarrow', 'fastparquet'")
Retrieve Parquet engine specific Dataset implementation. Parameters ---------- path : str, path object or file-like object The filepath of the parquet file in local filesystem or hdfs. engine : str Parquet library to use (only 'PyArrow' is supported for now). storage_options : dict Parameters for specific storage engine. Returns ------- Dataset Either a PyArrowDataset or FastParquetDataset object.
57
109
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_dataset(cls, path, engine, storage_options): if engine == "auto": # We follow in concordance with pandas engine_classes = [PyArrowDataset, FastParquetDataset] error_msgs = "" for engine_class in engine_classes: try: return engine_class(path, storage_options) except ImportError as err: error_msgs += "\n - " + str(err) raise ImportError( "Unable to find a usable engine; " + "tried using: 'pyarrow', 'fastparquet'.\n" + "A suitable version of " + "pyarrow or fastparquet is required for parquet " + "support.\n" + "Trying to import the above resulted in these errors:" + f"{error_msgs}" ) elif engine == "pyarrow": return PyArrowDataset(path, storage_options) elif engine == "fastparquet": return FastParquetDataset(path, storage_options) else: raise ValueError("engine must be one of 'pyarrow', 'fastparquet'") ``` ###Assistant : Retrieve Parquet engine specific Dataset implementation. Parameters ---------- path : str, path object or file-like object The filepath of the parquet file in local filesystem or hdfs. engine : str Parquet library to use (only 'PyArrow' is supported for now). storage_options : dict Parameters for specific storage engine. Returns ------- Dataset Either a PyArrowDataset or FastParquetDataset object.
1,642
def test_causal_lm_model_past_with_attn_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs)
Test the causal LM model with `past_key_values` and `attention_mask`
9
6
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_causal_lm_model_past_with_attn_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs) ``` ###Assistant : Test the causal LM model with `past_key_values` and `attention_mask`
1,643
def _whatsnd(data): hdr = data[:512] fakefile = BytesIO(hdr) for testfn in sndhdr.tests: res = testfn(hdr, fakefile) if res is not None: return _sndhdr_MIMEmap.get(res[0]) return None
Try to identify a sound file type. sndhdr.what() has a pretty cruddy interface, unfortunately. This is why we re-do it here. It would be easier to reverse engineer the Unix 'file' command and use the standard 'magic' file, as shipped with a modern Unix.
44
25
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _whatsnd(data): hdr = data[:512] fakefile = BytesIO(hdr) for testfn in sndhdr.tests: res = testfn(hdr, fakefile) if res is not None: return _sndhdr_MIMEmap.get(res[0]) return None ``` ###Assistant : Try to identify a sound file type. sndhdr.what() has a pretty cruddy interface, unfortunately. This is why we re-do it here. It would be easier to reverse engineer the Unix 'file' command and use the standard 'magic' file, as shipped with a modern Unix.
1,644
async def test_protect_loop_debugger_sleep(caplog): block_async_io.enable() with patch( "homeassistant.util.async_.extract_stack", return_value=[ Mock( filename="/home/paulus/homeassistant/.venv/blah/pydevd.py", lineno="23", line="do_something()", ), Mock( filename="/home/paulus/homeassistant/util/async.py", lineno="123", line="protected_loop_func", ), Mock( filename="/home/paulus/homeassistant/util/async.py", lineno="123", line="check_loop()", ), ], ): time.sleep(0) assert "Detected blocking call inside the event loop" not in caplog.text
Test time.sleep injected by the debugger is not reported.
9
37
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def test_protect_loop_debugger_sleep(caplog): block_async_io.enable() with patch( "homeassistant.util.async_.extract_stack", return_value=[ Mock( filename="/home/paulus/homeassistant/.venv/blah/pydevd.py", lineno="23", line="do_something()", ), Mock( filename="/home/paulus/homeassistant/util/async.py", lineno="123", line="protected_loop_func", ), Mock( filename="/home/paulus/homeassistant/util/async.py", lineno="123", line="check_loop()", ), ], ): time.sleep(0) assert "Detected blocking call inside the event loop" not in caplog.text ``` ###Assistant : Test time.sleep injected by the debugger is not reported.
1,645
def update_worker_pea_args(self): self.peas_args['peas'] = self._set_peas_args(self.args)
Update args of all its worker peas based on Pod args. Does not touch head and tail
17
5
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def update_worker_pea_args(self): self.peas_args['peas'] = self._set_peas_args(self.args) ``` ###Assistant : Update args of all its worker peas based on Pod args. Does not touch head and tail
1,646
def prevprime(n): n = _as_int_ceiling(n) if n < 3: raise ValueError("no preceding primes") if n < 8: return {3: 2, 4: 3, 5: 3, 6: 5, 7: 5}[n] if n <= sieve._list[-1]: l, u = sieve.search(n) if l == u: return sieve[l-1] else: return sieve[l] nn = 6*(n//6) if n - nn <= 1: n = nn - 1 if isprime(n): return n n -= 4 else: n = nn + 1 while 1: if isprime(n): return n n -= 2 if isprime(n): return n n -= 4
Return the largest prime smaller than n. Notes ===== Potential primes are located at 6*j +/- 1. This property is used during searching. >>> from sympy import prevprime >>> [(i, prevprime(i)) for i in range(10, 15)] [(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)] See Also ======== nextprime : Return the ith prime greater than n primerange : Generates all primes in a given range
67
88
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def prevprime(n): n = _as_int_ceiling(n) if n < 3: raise ValueError("no preceding primes") if n < 8: return {3: 2, 4: 3, 5: 3, 6: 5, 7: 5}[n] if n <= sieve._list[-1]: l, u = sieve.search(n) if l == u: return sieve[l-1] else: return sieve[l] nn = 6*(n//6) if n - nn <= 1: n = nn - 1 if isprime(n): return n n -= 4 else: n = nn + 1 while 1: if isprime(n): return n n -= 2 if isprime(n): return n n -= 4 ``` ###Assistant : Return the largest prime smaller than n. Notes ===== Potential primes are located at 6*j +/- 1. This property is used during searching. >>> from sympy import prevprime >>> [(i, prevprime(i)) for i in range(10, 15)] [(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)] See Also ======== nextprime : Return the ith prime greater than n primerange : Generates all primes in a given range
1,647
def test_duplicate_statistics_handle_integrity_error(hass_recorder, caplog): hass = hass_recorder() wait_recording_done(hass) period1 = dt_util.as_utc(dt_util.parse_datetime("2021-09-01 00:00:00")) period2 = dt_util.as_utc(dt_util.parse_datetime("2021-09-30 23:00:00")) external_energy_metadata_1 = { "has_mean": False, "has_sum": True, "name": "Total imported energy", "source": "test", "state_unit_of_measurement": "kWh", "statistic_id": "test:total_energy_import_tariff_1", "unit_of_measurement": "kWh", } external_energy_statistics_1 = [ { "start": period1, "last_reset": None, "state": 3, "sum": 5, }, ] external_energy_statistics_2 = [ { "start": period2, "last_reset": None, "state": 3, "sum": 6, } ] with patch.object( statistics, "_statistics_exists", return_value=False ), patch.object( statistics, "_insert_statistics", wraps=statistics._insert_statistics ) as insert_statistics_mock: async_add_external_statistics( hass, external_energy_metadata_1, external_energy_statistics_1 ) async_add_external_statistics( hass, external_energy_metadata_1, external_energy_statistics_1 ) async_add_external_statistics( hass, external_energy_metadata_1, external_energy_statistics_2 ) wait_recording_done(hass) assert insert_statistics_mock.call_count == 3 with session_scope(hass=hass) as session: tmp = session.query(recorder.db_schema.Statistics).all() assert len(tmp) == 2 assert "Blocked attempt to insert duplicated statistic rows" in caplog.text
Test the recorder does not blow up if statistics is duplicated.
11
117
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_duplicate_statistics_handle_integrity_error(hass_recorder, caplog): hass = hass_recorder() wait_recording_done(hass) period1 = dt_util.as_utc(dt_util.parse_datetime("2021-09-01 00:00:00")) period2 = dt_util.as_utc(dt_util.parse_datetime("2021-09-30 23:00:00")) external_energy_metadata_1 = { "has_mean": False, "has_sum": True, "name": "Total imported energy", "source": "test", "state_unit_of_measurement": "kWh", "statistic_id": "test:total_energy_import_tariff_1", "unit_of_measurement": "kWh", } external_energy_statistics_1 = [ { "start": period1, "last_reset": None, "state": 3, "sum": 5, }, ] external_energy_statistics_2 = [ { "start": period2, "last_reset": None, "state": 3, "sum": 6, } ] with patch.object( statistics, "_statistics_exists", return_value=False ), patch.object( statistics, "_insert_statistics", wraps=statistics._insert_statistics ) as insert_statistics_mock: async_add_external_statistics( hass, external_energy_metadata_1, external_energy_statistics_1 ) async_add_external_statistics( hass, external_energy_metadata_1, external_energy_statistics_1 ) async_add_external_statistics( hass, external_energy_metadata_1, external_energy_statistics_2 ) wait_recording_done(hass) assert insert_statistics_mock.call_count == 3 with session_scope(hass=hass) as session: tmp = session.query(recorder.db_schema.Statistics).all() assert len(tmp) == 2 assert "Blocked attempt to insert duplicated statistic rows" in caplog.text ``` ###Assistant : Test the recorder does not blow up if statistics is duplicated.
1,648
def testRequestResourcesRaceConditionWithResourceDemands(self): config = copy.deepcopy(MULTI_WORKER_CLUSTER) config["available_node_types"].update( { "empty_node": { "node_config": {}, "resources": {"CPU": 2, "GPU": 1}, "max_workers": 1, }, "def_worker": { "node_config": {}, "resources": {"CPU": 2, "GPU": 1, "WORKER": 1}, "max_workers": 3, }, } ) config["idle_timeout_minutes"] = 0 config_path = self.write_config(config) self.provider = MockProvider() self.provider.create_node( {}, { TAG_RAY_NODE_KIND: "head", TAG_RAY_NODE_STATUS: STATUS_UP_TO_DATE, TAG_RAY_USER_NODE_TYPE: "empty_node", }, 1, ) runner = MockProcessRunner() runner.respond_to_call("json .Config.Env", ["[]" for i in range(2)]) lm = LoadMetrics() autoscaler = MockAutoscaler( config_path, lm, MockNodeInfoStub(), max_failures=0, process_runner=runner, update_interval_s=0, ) lm.update( "127.0.0.0", mock_raylet_id(), {"CPU": 2, "GPU": 1}, {"CPU": 2}, {}, waiting_bundles=[{"CPU": 2}], ) autoscaler.load_metrics.set_resource_requests([{"CPU": 2, "GPU": 1}] * 2) autoscaler.update() # 1 head, 1 worker. self.waitForNodes(2) lm.update( "127.0.0.0", mock_raylet_id(), {"CPU": 2, "GPU": 1}, {"CPU": 2}, {}, waiting_bundles=[{"CPU": 2}], ) # make sure it stays consistent. for _ in range(10): autoscaler.update() self.waitForNodes(2)
Test request_resources() with resource_demands. Tests when request_resources() is called simultaneously with resource demands in multiple orders.
16
130
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def testRequestResourcesRaceConditionWithResourceDemands(self): config = copy.deepcopy(MULTI_WORKER_CLUSTER) config["available_node_types"].update( { "empty_node": { "node_config": {}, "resources": {"CPU": 2, "GPU": 1}, "max_workers": 1, }, "def_worker": { "node_config": {}, "resources": {"CPU": 2, "GPU": 1, "WORKER": 1}, "max_workers": 3, }, } ) config["idle_timeout_minutes"] = 0 config_path = self.write_config(config) self.provider = MockProvider() self.provider.create_node( {}, { TAG_RAY_NODE_KIND: "head", TAG_RAY_NODE_STATUS: STATUS_UP_TO_DATE, TAG_RAY_USER_NODE_TYPE: "empty_node", }, 1, ) runner = MockProcessRunner() runner.respond_to_call("json .Config.Env", ["[]" for i in range(2)]) lm = LoadMetrics() autoscaler = MockAutoscaler( config_path, lm, MockNodeInfoStub(), max_failures=0, process_runner=runner, update_interval_s=0, ) lm.update( "127.0.0.0", mock_raylet_id(), {"CPU": 2, "GPU": 1}, {"CPU": 2}, {}, waiting_bundles=[{"CPU": 2}], ) autoscaler.load_metrics.set_resource_requests([{"CPU": 2, "GPU": 1}] * 2) autoscaler.update() # 1 head, 1 worker. self.waitForNodes(2) lm.update( "127.0.0.0", mock_raylet_id(), {"CPU": 2, "GPU": 1}, {"CPU": 2}, {}, waiting_bundles=[{"CPU": 2}], ) # make sure it stays consistent. for _ in range(10): autoscaler.update() self.waitForNodes(2) ``` ###Assistant : Test request_resources() with resource_demands. Tests when request_resources() is called simultaneously with resource demands in multiple orders.
1,649
def test_sitemap_unpublished_titles(self): sitemap = CMSSitemap() locations = [] urlset = sitemap.get_urls() unpublished_titles = set() for item in urlset: locations.append(item['location']) for page in Page.objects.drafts(): if page.get_public_object(): set1 = set(page.get_public_object().title_set.values_list('path', flat=True)) set2 = set(page.title_set.values_list('path', flat=True)) unpublished_titles.update(set2.difference(set1)) else: unpublished_titles.update(page.title_set.values_list('path', flat=True)) for path in unpublished_titles: title = Title.objects.get(path=path) if title.path: url = f'http://example.com/{title.language}/{title.path}/' else: url = f'http://example.com/{title.language}/{title.path}' self.assertFalse(url in locations)
Check that titles attached to unpublished pages are not in the urlset. As titles are 'published' depending on their attached page, we create a set of unpublished titles by checking titles attached to the draft and public version of each page
41
56
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_sitemap_unpublished_titles(self): sitemap = CMSSitemap() locations = [] urlset = sitemap.get_urls() unpublished_titles = set() for item in urlset: locations.append(item['location']) for page in Page.objects.drafts(): if page.get_public_object(): set1 = set(page.get_public_object().title_set.values_list('path', flat=True)) set2 = set(page.title_set.values_list('path', flat=True)) unpublished_titles.update(set2.difference(set1)) else: unpublished_titles.update(page.title_set.values_list('path', flat=True)) for path in unpublished_titles: title = Title.objects.get(path=path) if title.path: url = f'http://example.com/{title.language}/{title.path}/' else: url = f'http://example.com/{title.language}/{title.path}' self.assertFalse(url in locations) ``` ###Assistant : Check that titles attached to unpublished pages are not in the urlset. As titles are 'published' depending on their attached page, we create a set of unpublished titles by checking titles attached to the draft and public version of each page
1,650
def mixin_gateway_parser(parser): gp = add_arg_group(parser, title='Gateway') _add_host(gp) _add_proxy(gp) gp.add_argument( '--uses', type=str, default=None, # TODO: add Jina Hub Gateway help=, ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=, ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=, ) mixin_base_runtime_parser(gp) gp.add_argument( '--port-expose', type=int, dest='port', default=helper.random_port(), help='The port that the gateway exposes for clients for GRPC connections.', ) parser.add_argument( '--graph-description', type=str, help='Routing graph for the gateway', default='{}', ) parser.add_argument( '--graph-conditions', type=str, help='Dictionary stating which filtering conditions each Executor in the graph requires to receive Documents.', default='{}', ) parser.add_argument( '--deployments-addresses', type=str, help='dictionary JSON with the input addresses of each Deployment', default='{}', ) parser.add_argument( '--deployments-disable-reduce', type=str, help='list JSON disabling the built-in merging mechanism for each Deployment listed', default='[]', ) gp.add_argument( '--compression', choices=['NoCompression', 'Deflate', 'Gzip'], help='The compression mechanism used when sending requests from the Head to the WorkerRuntimes. For more details, ' 'check https://grpc.github.io/grpc/python/grpc.html#compression.', ) gp.add_argument( '--timeout-send', type=int, default=None, help='The timeout in milliseconds used when sending data requests to Executors, -1 means no timeout, disabled by default', )
Add the options for remote expose at the Gateway :param parser: the parser The config of the gateway, it could be one of the followings: * the string literal of an Gateway class name * a Gateway YAML file (.yml, .yaml, .jaml) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface Dictionary of keyword arguments that will override the `with` configuration in `uses` The customized python modules need to be imported before loading the gateway Note that the recommended way is to only import a single module - a simple python file, if your gateway can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package.
169
160
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def mixin_gateway_parser(parser): gp = add_arg_group(parser, title='Gateway') _add_host(gp) _add_proxy(gp) gp.add_argument( '--uses', type=str, default=None, # TODO: add Jina Hub Gateway help=, ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=, ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=, ) mixin_base_runtime_parser(gp) gp.add_argument( '--port-expose', type=int, dest='port', default=helper.random_port(), help='The port that the gateway exposes for clients for GRPC connections.', ) parser.add_argument( '--graph-description', type=str, help='Routing graph for the gateway', default='{}', ) parser.add_argument( '--graph-conditions', type=str, help='Dictionary stating which filtering conditions each Executor in the graph requires to receive Documents.', default='{}', ) parser.add_argument( '--deployments-addresses', type=str, help='dictionary JSON with the input addresses of each Deployment', default='{}', ) parser.add_argument( '--deployments-disable-reduce', type=str, help='list JSON disabling the built-in merging mechanism for each Deployment listed', default='[]', ) gp.add_argument( '--compression', choices=['NoCompression', 'Deflate', 'Gzip'], help='The compression mechanism used when sending requests from the Head to the WorkerRuntimes. For more details, ' 'check https://grpc.github.io/grpc/python/grpc.html#compression.', ) gp.add_argument( '--timeout-send', type=int, default=None, help='The timeout in milliseconds used when sending data requests to Executors, -1 means no timeout, disabled by default', ) ``` ###Assistant : Add the options for remote expose at the Gateway :param parser: the parser The config of the gateway, it could be one of the followings: * the string literal of an Gateway class name * a Gateway YAML file (.yml, .yaml, .jaml) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface Dictionary of keyword arguments that will override the `with` configuration in `uses` The customized python modules need to be imported before loading the gateway Note that the recommended way is to only import a single module - a simple python file, if your gateway can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package.
1,651
def _format_changelog(self, changelog): if not changelog: return changelog new_changelog = [] for line in changelog.strip().split('\n'): line = line.strip() if line[0] == '*': new_changelog.extend(['', line]) elif line[0] == '-': new_changelog.append(line) else: new_changelog.append(' ' + line) # strip trailing newline inserted by first changelog entry if not new_changelog[0]: del new_changelog[0] return new_changelog
Format the changelog correctly and convert it to a list of strings
12
50
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _format_changelog(self, changelog): if not changelog: return changelog new_changelog = [] for line in changelog.strip().split('\n'): line = line.strip() if line[0] == '*': new_changelog.extend(['', line]) elif line[0] == '-': new_changelog.append(line) else: new_changelog.append(' ' + line) # strip trailing newline inserted by first changelog entry if not new_changelog[0]: del new_changelog[0] return new_changelog ``` ###Assistant : Format the changelog correctly and convert it to a list of strings
1,652
def _get_time(self) -> float: # N.B. We could remove this method and always call `self._timer.get_time()` internally, # but it's handy to have in mocking situations return self._timer.get_time()
Get the current wall clock time, via the internal Timer.
10
27
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_time(self) -> float: # N.B. We could remove this method and always call `self._timer.get_time()` internally, # but it's handy to have in mocking situations return self._timer.get_time() ``` ###Assistant : Get the current wall clock time, via the internal Timer.
1,653
def _generate(self, pset, min_, max_, condition, type_=None): if type_ is None: type_ = pset.ret expr = [] height = np.random.randint(min_, max_) stack = [(0, type_)] while len(stack) != 0: depth, type_ = stack.pop() # We've added a type_ parameter to the condition function if condition(height, depth, type_): try: term = np.random.choice(pset.terminals[type_]) except IndexError: _, _, traceback = sys.exc_info() raise IndexError( "The gp.generate function tried to add " "a terminal of type {}, but there is" "none available. {}".format(type_, traceback) ) if inspect.isclass(term): term = term() expr.append(term) else: try: prim = np.random.choice(pset.primitives[type_]) except IndexError: _, _, traceback = sys.exc_info() raise IndexError( "The gp.generate function tried to add " "a primitive of type {}, but there is" "none available. {}".format(type_, traceback) ) expr.append(prim) for arg in reversed(prim.args): stack.append((depth + 1, arg)) return expr
Generate a Tree as a list of lists. The tree is build from the root to the leaves, and it stop growing when the condition is fulfilled. Parameters ---------- pset: PrimitiveSetTyped Primitive set from which primitives are selected. min_: int Minimum height of the produced trees. max_: int Maximum height of the produced trees. condition: function The condition is a function that takes two arguments, the height of the tree to build and the current depth in the tree. type_: class The type that should return the tree when called, when :obj:None (default) no return type is enforced. Returns ------- individual: list A grown tree with leaves at possibly different depths depending on the condition function.
116
131
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _generate(self, pset, min_, max_, condition, type_=None): if type_ is None: type_ = pset.ret expr = [] height = np.random.randint(min_, max_) stack = [(0, type_)] while len(stack) != 0: depth, type_ = stack.pop() # We've added a type_ parameter to the condition function if condition(height, depth, type_): try: term = np.random.choice(pset.terminals[type_]) except IndexError: _, _, traceback = sys.exc_info() raise IndexError( "The gp.generate function tried to add " "a terminal of type {}, but there is" "none available. {}".format(type_, traceback) ) if inspect.isclass(term): term = term() expr.append(term) else: try: prim = np.random.choice(pset.primitives[type_]) except IndexError: _, _, traceback = sys.exc_info() raise IndexError( "The gp.generate function tried to add " "a primitive of type {}, but there is" "none available. {}".format(type_, traceback) ) expr.append(prim) for arg in reversed(prim.args): stack.append((depth + 1, arg)) return expr ``` ###Assistant : Generate a Tree as a list of lists. The tree is build from the root to the leaves, and it stop growing when the condition is fulfilled. Parameters ---------- pset: PrimitiveSetTyped Primitive set from which primitives are selected. min_: int Minimum height of the produced trees. max_: int Maximum height of the produced trees. condition: function The condition is a function that takes two arguments, the height of the tree to build and the current depth in the tree. type_: class The type that should return the tree when called, when :obj:None (default) no return type is enforced. Returns ------- individual: list A grown tree with leaves at possibly different depths depending on the condition function.
1,654
def test_ohe_infrequent_multiple_categories_dtypes(): pd = pytest.importorskip("pandas") X = pd.DataFrame( { "str": ["a", "f", "c", "f", "f", "a", "c", "b", "b"], "int": [5, 3, 0, 10, 10, 12, 0, 3, 5], }, columns=["str", "int"], ) ohe = OneHotEncoder( categories="auto", max_categories=3, handle_unknown="infrequent_if_exist" ) # X[:, 0] 'a', 'b', 'c' have the same frequency. 'a' and 'b' will be # considered infrequent because they are greater # X[:, 1] 0, 3, 5, 10 has frequency 2 and 12 has frequency 1. # 0, 3, 12 will be considered infrequent X_trans = ohe.fit_transform(X).toarray() assert_array_equal(ohe.infrequent_categories_[0], ["a", "b"]) assert_array_equal(ohe.infrequent_categories_[1], [0, 3, 12]) expected = [ [0, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 1], [0, 0, 1, 1, 0, 0], ] assert_allclose(expected, X_trans) X_test = pd.DataFrame({"str": ["b", "f"], "int": [14, 12]}, columns=["str", "int"]) expected = [[0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 0, 1]] X_test_trans = ohe.transform(X_test) assert_allclose(expected, X_test_trans.toarray()) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [["infrequent_sklearn", "infrequent_sklearn"], ["f", "infrequent_sklearn"]], dtype=object, ) assert_array_equal(expected_inv, X_inv) # only infrequent or known categories X_test = pd.DataFrame({"str": ["c", "b"], "int": [12, 5]}, columns=["str", "int"]) X_test_trans = ohe.transform(X_test).toarray() expected = [[1, 0, 0, 0, 0, 1], [0, 0, 1, 1, 0, 0]] assert_allclose(expected, X_test_trans) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [["c", "infrequent_sklearn"], ["infrequent_sklearn", 5]], dtype=object ) assert_array_equal(expected_inv, X_inv) @pytest.mark.parametrize("kwargs", [{"min_frequency": 21, "max_categories": 1}])
Test infrequent categories with a pandas dataframe with multiple dtypes.
10
252
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_ohe_infrequent_multiple_categories_dtypes(): pd = pytest.importorskip("pandas") X = pd.DataFrame( { "str": ["a", "f", "c", "f", "f", "a", "c", "b", "b"], "int": [5, 3, 0, 10, 10, 12, 0, 3, 5], }, columns=["str", "int"], ) ohe = OneHotEncoder( categories="auto", max_categories=3, handle_unknown="infrequent_if_exist" ) # X[:, 0] 'a', 'b', 'c' have the same frequency. 'a' and 'b' will be # considered infrequent because they are greater # X[:, 1] 0, 3, 5, 10 has frequency 2 and 12 has frequency 1. # 0, 3, 12 will be considered infrequent X_trans = ohe.fit_transform(X).toarray() assert_array_equal(ohe.infrequent_categories_[0], ["a", "b"]) assert_array_equal(ohe.infrequent_categories_[1], [0, 3, 12]) expected = [ [0, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 1], [0, 0, 1, 1, 0, 0], ] assert_allclose(expected, X_trans) X_test = pd.DataFrame({"str": ["b", "f"], "int": [14, 12]}, columns=["str", "int"]) expected = [[0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 0, 1]] X_test_trans = ohe.transform(X_test) assert_allclose(expected, X_test_trans.toarray()) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [["infrequent_sklearn", "infrequent_sklearn"], ["f", "infrequent_sklearn"]], dtype=object, ) assert_array_equal(expected_inv, X_inv) # only infrequent or known categories X_test = pd.DataFrame({"str": ["c", "b"], "int": [12, 5]}, columns=["str", "int"]) X_test_trans = ohe.transform(X_test).toarray() expected = [[1, 0, 0, 0, 0, 1], [0, 0, 1, 1, 0, 0]] assert_allclose(expected, X_test_trans) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [["c", "infrequent_sklearn"], ["infrequent_sklearn", 5]], dtype=object ) assert_array_equal(expected_inv, X_inv) @pytest.mark.parametrize("kwargs", [{"min_frequency": 21, "max_categories": 1}]) ``` ###Assistant : Test infrequent categories with a pandas dataframe with multiple dtypes.
1,655
def _set_random_id(self): if getattr(self, "persistence", False): raise RuntimeError( ) if "dash_snapshots" in sys.modules: raise RuntimeError( ) if not hasattr(self, "id"): v = str(uuid.UUID(int=rd.randint(0, 2 ** 128))) setattr(self, "id", v) return getattr(self, "id")
Attempting to use an auto-generated ID with the `persistence` prop. This is prohibited because persistence is tied to component IDs and auto-generated IDs can easily change. Please assign an explicit ID to this component. Attempting to use an auto-generated ID in an app with `dash_snapshots`. This is prohibited because snapshots saves the whole app layout, including component IDs, and auto-generated IDs can easily change. Callbacks referencing the new IDs will not work old snapshots. Please assign an explicit ID to this component.
82
32
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _set_random_id(self): if getattr(self, "persistence", False): raise RuntimeError( ) if "dash_snapshots" in sys.modules: raise RuntimeError( ) if not hasattr(self, "id"): v = str(uuid.UUID(int=rd.randint(0, 2 ** 128))) setattr(self, "id", v) return getattr(self, "id") ``` ###Assistant : Attempting to use an auto-generated ID with the `persistence` prop. This is prohibited because persistence is tied to component IDs and auto-generated IDs can easily change. Please assign an explicit ID to this component. Attempting to use an auto-generated ID in an app with `dash_snapshots`. This is prohibited because snapshots saves the whole app layout, including component IDs, and auto-generated IDs can easily change. Callbacks referencing the new IDs will not work old snapshots. Please assign an explicit ID to this component.
1,656
def final(): head = [] head.append(("layernorm.weight", "norm.weight")) head.append(("layernorm.bias", "norm.bias")) head.append(("classifier.weight", "head.weight")) head.append(("classifier.bias", "head.bias")) return head
Function helps in renaming final classification layer
7
15
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def final(): head = [] head.append(("layernorm.weight", "norm.weight")) head.append(("layernorm.bias", "norm.bias")) head.append(("classifier.weight", "head.weight")) head.append(("classifier.bias", "head.bias")) return head ``` ###Assistant : Function helps in renaming final classification layer
1,657
def test_delete_index(self, ds, documents): ds.write_documents(documents, index="custom_index") assert ds.get_document_count(index="custom_index") == len(documents) ds.delete_index(index="custom_index") assert ds.get_document_count(index="custom_index") == 0
Contrary to other Document Stores, SQLDocumentStore doesn't raise if the index is empty
13
15
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_delete_index(self, ds, documents): ds.write_documents(documents, index="custom_index") assert ds.get_document_count(index="custom_index") == len(documents) ds.delete_index(index="custom_index") assert ds.get_document_count(index="custom_index") == 0 ``` ###Assistant : Contrary to other Document Stores, SQLDocumentStore doesn't raise if the index is empty
1,658
def add_holidays(events, start, end, employee, company): applicable_holiday_list = get_holiday_list_for_employee(employee, company) if not applicable_holiday_list: return for holiday in frappe.db.sql( , (applicable_holiday_list, start, end), as_dict=True, ): events.append( { "doctype": "Holiday", "from_date": holiday.holiday_date, "to_date": holiday.holiday_date, "title": _("Holiday") + ": " + cstr(holiday.description), "name": holiday.name, } ) @frappe.whitelist()
select name, holiday_date, description from `tabHoliday` where parent=%s and holiday_date between %s and %s
14
44
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def add_holidays(events, start, end, employee, company): applicable_holiday_list = get_holiday_list_for_employee(employee, company) if not applicable_holiday_list: return for holiday in frappe.db.sql( , (applicable_holiday_list, start, end), as_dict=True, ): events.append( { "doctype": "Holiday", "from_date": holiday.holiday_date, "to_date": holiday.holiday_date, "title": _("Holiday") + ": " + cstr(holiday.description), "name": holiday.name, } ) @frappe.whitelist() ``` ###Assistant : select name, holiday_date, description from `tabHoliday` where parent=%s and holiday_date between %s and %s
1,659
def get_video_input_devices_names() -> List[str]: # based on https://docs.microsoft.com/ru-ru/windows/win32/directshow/selecting-a-capture-device names = [] sys_dev_enum = strmif.ICreateDevEnum() if ole32.CoCreateInstance(uuids.CLSID_SystemDeviceEnum, None, ole32.CLSCTX.CLSCTX_INPROC_SERVER, strmif.ICreateDevEnum.IID, sys_dev_enum) == wintypes.ERROR.SUCCESS: pEnumCat = objidl.IEnumMoniker() if sys_dev_enum.CreateClassEnumerator(uuids.CLSID_VideoInputDeviceCategory, pEnumCat, 0) == wintypes.ERROR.SUCCESS: moniker = objidl.IMoniker() while pEnumCat.Next(1, moniker, None) == wintypes.ERROR.SUCCESS: prop_bag = oaidl.IPropertyBag() if moniker.BindToStorage(None, None, oaidl.IPropertyBag.IID, prop_bag) == wintypes.ERROR.SUCCESS: var = wintypes.VARIANT() hr = prop_bag.Read(wintypes.LPCOLESTR('Description'), var, None ) if hr != wintypes.ERROR.SUCCESS: hr = prop_bag.Read(wintypes.LPCOLESTR('FriendlyName'), var, None ) names.append(var.value.bstrVal.value if hr == wintypes.ERROR.SUCCESS else 'unnamed') prop_bag.Release() moniker.Release() pEnumCat.Release() sys_dev_enum.Release() return names
returns a list of available names of VideoInputDevice's ole32 should be initialized before use
14
82
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_video_input_devices_names() -> List[str]: # based on https://docs.microsoft.com/ru-ru/windows/win32/directshow/selecting-a-capture-device names = [] sys_dev_enum = strmif.ICreateDevEnum() if ole32.CoCreateInstance(uuids.CLSID_SystemDeviceEnum, None, ole32.CLSCTX.CLSCTX_INPROC_SERVER, strmif.ICreateDevEnum.IID, sys_dev_enum) == wintypes.ERROR.SUCCESS: pEnumCat = objidl.IEnumMoniker() if sys_dev_enum.CreateClassEnumerator(uuids.CLSID_VideoInputDeviceCategory, pEnumCat, 0) == wintypes.ERROR.SUCCESS: moniker = objidl.IMoniker() while pEnumCat.Next(1, moniker, None) == wintypes.ERROR.SUCCESS: prop_bag = oaidl.IPropertyBag() if moniker.BindToStorage(None, None, oaidl.IPropertyBag.IID, prop_bag) == wintypes.ERROR.SUCCESS: var = wintypes.VARIANT() hr = prop_bag.Read(wintypes.LPCOLESTR('Description'), var, None ) if hr != wintypes.ERROR.SUCCESS: hr = prop_bag.Read(wintypes.LPCOLESTR('FriendlyName'), var, None ) names.append(var.value.bstrVal.value if hr == wintypes.ERROR.SUCCESS else 'unnamed') prop_bag.Release() moniker.Release() pEnumCat.Release() sys_dev_enum.Release() return names ``` ###Assistant : returns a list of available names of VideoInputDevice's ole32 should be initialized before use
1,660
def check_for_updates(): version_message = get_update_status() print(version_message)
Check for updates to the current version.
7
6
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def check_for_updates(): version_message = get_update_status() print(version_message) ``` ###Assistant : Check for updates to the current version.
1,661
def _get_base_knot_positions(X, n_knots=10, knots="uniform", sample_weight=None): if knots == "quantile": percentiles = 100 * np.linspace( start=0, stop=1, num=n_knots, dtype=np.float64 ) if sample_weight is None: knots = np.percentile(X, percentiles, axis=0) else: knots = np.array( [ _weighted_percentile(X, sample_weight, percentile) for percentile in percentiles ] ) else: # knots == 'uniform': # Note that the variable `knots` has already been validated and # `else` is therefore safe. # Disregard observations with zero weight. mask = slice(None, None, 1) if sample_weight is None else sample_weight > 0 x_min = np.amin(X[mask], axis=0) x_max = np.amax(X[mask], axis=0) knots = np.linspace( start=x_min, stop=x_max, num=n_knots, endpoint=True, dtype=np.float64, ) return knots
Calculate base knot positions. Base knots such that first knot <= feature <= last knot. For the B-spline construction with scipy.interpolate.BSpline, 2*degree knots beyond the base interval are added. Returns ------- knots : ndarray of shape (n_knots, n_features), dtype=np.float64 Knot positions (points) of base interval.
45
101
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_base_knot_positions(X, n_knots=10, knots="uniform", sample_weight=None): if knots == "quantile": percentiles = 100 * np.linspace( start=0, stop=1, num=n_knots, dtype=np.float64 ) if sample_weight is None: knots = np.percentile(X, percentiles, axis=0) else: knots = np.array( [ _weighted_percentile(X, sample_weight, percentile) for percentile in percentiles ] ) else: # knots == 'uniform': # Note that the variable `knots` has already been validated and # `else` is therefore safe. # Disregard observations with zero weight. mask = slice(None, None, 1) if sample_weight is None else sample_weight > 0 x_min = np.amin(X[mask], axis=0) x_max = np.amax(X[mask], axis=0) knots = np.linspace( start=x_min, stop=x_max, num=n_knots, endpoint=True, dtype=np.float64, ) return knots ``` ###Assistant : Calculate base knot positions. Base knots such that first knot <= feature <= last knot. For the B-spline construction with scipy.interpolate.BSpline, 2*degree knots beyond the base interval are added. Returns ------- knots : ndarray of shape (n_knots, n_features), dtype=np.float64 Knot positions (points) of base interval.
1,662
def _num_tokens(self, data): if tf_utils.is_sparse(data): flat_values = data.values elif tf_utils.is_ragged(data): flat_values = data.flat_values else: flat_values = tf.reshape(data, [-1]) tokens, _, counts = tf.unique_with_counts(flat_values, out_idx=tf.int64) return tokens, counts
Count the number of tokens in a ragged, sparse or dense tensor.
12
27
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _num_tokens(self, data): if tf_utils.is_sparse(data): flat_values = data.values elif tf_utils.is_ragged(data): flat_values = data.flat_values else: flat_values = tf.reshape(data, [-1]) tokens, _, counts = tf.unique_with_counts(flat_values, out_idx=tf.int64) return tokens, counts ``` ###Assistant : Count the number of tokens in a ragged, sparse or dense tensor.
1,663
def no_devicess_fixture(): return json.loads(load_fixture("awair/no_devices.json")) @pytest.fixture(name="awair_offline", scope="session")
Fixture representing when no devices are found in Awair's cloud API.
11
6
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def no_devicess_fixture(): return json.loads(load_fixture("awair/no_devices.json")) @pytest.fixture(name="awair_offline", scope="session") ``` ###Assistant : Fixture representing when no devices are found in Awair's cloud API.
1,664
def data(): return pd.array( [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False], dtype="boolean", ) @pytest.mark.parametrize( "values, exp_any, exp_all, exp_any_noskip, exp_all_noskip", [ ([True, pd.NA], True, True, True, pd.NA), ([False, pd.NA], False, False, pd.NA, False), ([pd.NA], False, True, pd.NA, pd.NA), ([], False, True, False, True), # GH-33253: all True / all False values buggy with skipna=False ([True, True], True, True, True, True), ([False, False], False, False, False, False), ], )
Fixture returning boolean array, with valid and missing values.
9
76
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def data(): return pd.array( [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False], dtype="boolean", ) @pytest.mark.parametrize( "values, exp_any, exp_all, exp_any_noskip, exp_all_noskip", [ ([True, pd.NA], True, True, True, pd.NA), ([False, pd.NA], False, False, pd.NA, False), ([pd.NA], False, True, pd.NA, pd.NA), ([], False, True, False, True), # GH-33253: all True / all False values buggy with skipna=False ([True, True], True, True, True, True), ([False, False], False, False, False, False), ], ) ``` ###Assistant : Fixture returning boolean array, with valid and missing values.
1,665
def should_toggle_mask(self) -> bool: with self._lock: retval = self._toggle_mask if retval: logger.debug("Sending toggle mask") self._toggle_mask = False return retval
Check whether the mask should be toggled and return the value. If ``True`` is returned then resets :attr:`_toggle_mask` back to ``False`` Returns ------- bool ``True`` if the mask should be toggled otherwise ``False``.
33
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def should_toggle_mask(self) -> bool: with self._lock: retval = self._toggle_mask if retval: logger.debug("Sending toggle mask") self._toggle_mask = False return retval ``` ###Assistant : Check whether the mask should be toggled and return the value. If ``True`` is returned then resets :attr:`_toggle_mask` back to ``False`` Returns ------- bool ``True`` if the mask should be toggled otherwise ``False``.
1,666
def load_mtpl2(n_samples=100000): # freMTPL2freq dataset from https://www.openml.org/d/41214 df_freq = fetch_openml(data_id=41214, as_frame=True, parser="pandas").data df_freq["IDpol"] = df_freq["IDpol"].astype(int) df_freq.set_index("IDpol", inplace=True) # freMTPL2sev dataset from https://www.openml.org/d/41215 df_sev = fetch_openml(data_id=41215, as_frame=True, parser="pandas").data # sum ClaimAmount over identical IDs df_sev = df_sev.groupby("IDpol").sum() df = df_freq.join(df_sev, how="left") df["ClaimAmount"].fillna(0, inplace=True) # unquote string fields for column_name in df.columns[df.dtypes.values == object]: df[column_name] = df[column_name].str.strip("'") return df.iloc[:n_samples]
Fetch the French Motor Third-Party Liability Claims dataset. Parameters ---------- n_samples: int, default=100000 number of samples to select (for faster run time). Full dataset has 678013 samples.
27
57
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def load_mtpl2(n_samples=100000): # freMTPL2freq dataset from https://www.openml.org/d/41214 df_freq = fetch_openml(data_id=41214, as_frame=True, parser="pandas").data df_freq["IDpol"] = df_freq["IDpol"].astype(int) df_freq.set_index("IDpol", inplace=True) # freMTPL2sev dataset from https://www.openml.org/d/41215 df_sev = fetch_openml(data_id=41215, as_frame=True, parser="pandas").data # sum ClaimAmount over identical IDs df_sev = df_sev.groupby("IDpol").sum() df = df_freq.join(df_sev, how="left") df["ClaimAmount"].fillna(0, inplace=True) # unquote string fields for column_name in df.columns[df.dtypes.values == object]: df[column_name] = df[column_name].str.strip("'") return df.iloc[:n_samples] ``` ###Assistant : Fetch the French Motor Third-Party Liability Claims dataset. Parameters ---------- n_samples: int, default=100000 number of samples to select (for faster run time). Full dataset has 678013 samples.
1,667
def _get_driver(self) -> str: try: driver = pynvml.nvmlSystemGetDriverVersion().decode("utf-8") except pynvml.NVMLError as err: self._log("debug", f"Unable to obtain driver. Original error: {str(err)}") driver = "No Nvidia driver found" self._log("debug", f"GPU Driver: {driver}") return driver
Obtain the Nvidia driver version currently in use. Returns ------- str The current GPU driver version
16
32
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_driver(self) -> str: try: driver = pynvml.nvmlSystemGetDriverVersion().decode("utf-8") except pynvml.NVMLError as err: self._log("debug", f"Unable to obtain driver. Original error: {str(err)}") driver = "No Nvidia driver found" self._log("debug", f"GPU Driver: {driver}") return driver ``` ###Assistant : Obtain the Nvidia driver version currently in use. Returns ------- str The current GPU driver version
1,668
def _load_serializers(): global _serializers serializers = {} for format in BUILTIN_SERIALIZERS: register_serializer(format, BUILTIN_SERIALIZERS[format], serializers) if hasattr(settings, "SERIALIZATION_MODULES"): for format in settings.SERIALIZATION_MODULES: register_serializer( format, settings.SERIALIZATION_MODULES[format], serializers ) _serializers = serializers
Register built-in and settings-defined serializers. This is done lazily so that user code has a chance to (e.g.) set up custom settings without needing to be careful of import order.
30
29
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _load_serializers(): global _serializers serializers = {} for format in BUILTIN_SERIALIZERS: register_serializer(format, BUILTIN_SERIALIZERS[format], serializers) if hasattr(settings, "SERIALIZATION_MODULES"): for format in settings.SERIALIZATION_MODULES: register_serializer( format, settings.SERIALIZATION_MODULES[format], serializers ) _serializers = serializers ``` ###Assistant : Register built-in and settings-defined serializers. This is done lazily so that user code has a chance to (e.g.) set up custom settings without needing to be careful of import order.
1,669
def pop(self): if self.keyorder: value = self.keys()[0] self.remove(value) return value return None
Pops the top element from the sorted keys if it exists. Returns None otherwise.
14
12
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def pop(self): if self.keyorder: value = self.keys()[0] self.remove(value) return value return None ``` ###Assistant : Pops the top element from the sorted keys if it exists. Returns None otherwise.
1,670
def probs_to_pianoroll_viterbi(frame_probs, onset_probs, alpha=0.5): n, d = onset_probs.shape loss_matrix = np.zeros([n, d, 2], dtype=float) path_matrix = np.zeros([n, d, 2], dtype=bool) frame_losses = (1 - alpha) * -np.log(np.stack([1 - frame_probs, frame_probs], axis=-1)) onset_losses = alpha * -np.log(np.stack([1 - onset_probs, onset_probs], axis=-1)) loss_matrix[0, :, :] = frame_losses[0, :, :] + onset_losses[0, :, :] for i in range(1, n): transition_loss = np.tile(loss_matrix[i - 1, :, :][:, :, np.newaxis], [1, 1, 2]) transition_loss[:, 0, 0] += onset_losses[i, :, 0] transition_loss[:, 0, 1] += onset_losses[i, :, 1] transition_loss[:, 1, 0] += onset_losses[i, :, 0] transition_loss[:, 1, 1] += onset_losses[i, :, 0] path_matrix[i, :, :] = np.argmin(transition_loss, axis=1) loss_matrix[i, :, 0] = transition_loss[ np.arange(d), path_matrix[i, :, 0].astype(int), 0] loss_matrix[i, :, 1] = transition_loss[ np.arange(d), path_matrix[i, :, 1].astype(int), 1] loss_matrix[i, :, :] += frame_losses[i, :, :] pianoroll = np.zeros([n, d], dtype=bool) pianoroll[n - 1, :] = np.argmin(loss_matrix[n - 1, :, :], axis=-1) for i in range(n - 2, -1, -1): pianoroll[i, :] = path_matrix[ i + 1, np.arange(d), pianoroll[i + 1, :].astype(int)] return pianoroll
Viterbi decoding of frame & onset probabilities to pianoroll. Args: frame_probs: A numpy array (num-frames-by-num-pitches) of frame probabilities. onset_probs: A numpy array (num-frames-by-num-pitches) of onset probabilities. alpha: Relative weight of onset and frame loss, a float between 0 and 1. With alpha = 0, onset probabilities will be ignored. With alpha = 1, frame probabilities will be ignored. Returns: A numpy array (num-frames-by-num-pitches) representing the boolean-valued pianoroll.
67
167
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def probs_to_pianoroll_viterbi(frame_probs, onset_probs, alpha=0.5): n, d = onset_probs.shape loss_matrix = np.zeros([n, d, 2], dtype=float) path_matrix = np.zeros([n, d, 2], dtype=bool) frame_losses = (1 - alpha) * -np.log(np.stack([1 - frame_probs, frame_probs], axis=-1)) onset_losses = alpha * -np.log(np.stack([1 - onset_probs, onset_probs], axis=-1)) loss_matrix[0, :, :] = frame_losses[0, :, :] + onset_losses[0, :, :] for i in range(1, n): transition_loss = np.tile(loss_matrix[i - 1, :, :][:, :, np.newaxis], [1, 1, 2]) transition_loss[:, 0, 0] += onset_losses[i, :, 0] transition_loss[:, 0, 1] += onset_losses[i, :, 1] transition_loss[:, 1, 0] += onset_losses[i, :, 0] transition_loss[:, 1, 1] += onset_losses[i, :, 0] path_matrix[i, :, :] = np.argmin(transition_loss, axis=1) loss_matrix[i, :, 0] = transition_loss[ np.arange(d), path_matrix[i, :, 0].astype(int), 0] loss_matrix[i, :, 1] = transition_loss[ np.arange(d), path_matrix[i, :, 1].astype(int), 1] loss_matrix[i, :, :] += frame_losses[i, :, :] pianoroll = np.zeros([n, d], dtype=bool) pianoroll[n - 1, :] = np.argmin(loss_matrix[n - 1, :, :], axis=-1) for i in range(n - 2, -1, -1): pianoroll[i, :] = path_matrix[ i + 1, np.arange(d), pianoroll[i + 1, :].astype(int)] return pianoroll ``` ###Assistant : Viterbi decoding of frame & onset probabilities to pianoroll. Args: frame_probs: A numpy array (num-frames-by-num-pitches) of frame probabilities. onset_probs: A numpy array (num-frames-by-num-pitches) of onset probabilities. alpha: Relative weight of onset and frame loss, a float between 0 and 1. With alpha = 0, onset probabilities will be ignored. With alpha = 1, frame probabilities will be ignored. Returns: A numpy array (num-frames-by-num-pitches) representing the boolean-valued pianoroll.
1,671
def to_native_string(string, encoding="ascii"): if isinstance(string, builtin_str): out = string else: out = string.decode(encoding) return out
Given a string object, regardless of type, returns a representation of that string in the native string type, encoding and decoding where necessary. This assumes ASCII unless told otherwise.
29
15
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def to_native_string(string, encoding="ascii"): if isinstance(string, builtin_str): out = string else: out = string.decode(encoding) return out ``` ###Assistant : Given a string object, regardless of type, returns a representation of that string in the native string type, encoding and decoding where necessary. This assumes ASCII unless told otherwise.
1,672
def mathematica(s, additional_translations=None): parser = MathematicaParser(additional_translations) if additional_translations is not None: sympy_deprecation_warning( , deprecated_since_version="1.11", active_deprecations_target="mathematica-parser-additional-translations", ) return sympify(parser._parse_old(s)) return parser.parse(s)
Translate a string containing a Wolfram Mathematica expression to a SymPy expression. If the translator is unable to find a suitable SymPy expression, the ``FullForm`` of the Mathematica expression will be output, using SymPy ``Function`` objects as nodes of the syntax tree. Examples ======== >>> from sympy.parsing.mathematica import mathematica >>> mathematica("Sin[x]^2 Tan[y]") sin(x)**2*tan(y) >>> e = mathematica("F[7,5,3]") >>> e F(7, 5, 3) >>> from sympy import Function, Max, Min >>> e.replace(Function("F"), lambda *x: Max(*x)*Min(*x)) 21 Both standard input form and Mathematica full form are supported: >>> mathematica("x*(a + b)") x*(a + b) >>> mathematica("Times[x, Plus[a, b]]") x*(a + b) To get a matrix from Wolfram's code: >>> m = mathematica("{{a, b}, {c, d}}") >>> m ((a, b), (c, d)) >>> from sympy import Matrix >>> Matrix(m) Matrix([ [a, b], [c, d]]) If the translation into equivalent SymPy expressions fails, an SymPy expression equivalent to Wolfram Mathematica's "FullForm" will be created: >>> mathematica("x_.") Optional(Pattern(x, Blank())) >>> mathematica("Plus @@ {x, y, z}") Apply(Plus, (x, y, z)) >>> mathematica("f[x_, 3] := x^3 /; x > 0") SetDelayed(f(Pattern(x, Blank()), 3), Condition(x**3, x > 0)) The ``additional_translations`` parameter for the Mathematica parser is now deprecated. Use SymPy's .replace( ) or .subs( ) methods on the output expression instead.
203
20
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def mathematica(s, additional_translations=None): parser = MathematicaParser(additional_translations) if additional_translations is not None: sympy_deprecation_warning( , deprecated_since_version="1.11", active_deprecations_target="mathematica-parser-additional-translations", ) return sympify(parser._parse_old(s)) return parser.parse(s) ``` ###Assistant : Translate a string containing a Wolfram Mathematica expression to a SymPy expression. If the translator is unable to find a suitable SymPy expression, the ``FullForm`` of the Mathematica expression will be output, using SymPy ``Function`` objects as nodes of the syntax tree. Examples ======== >>> from sympy.parsing.mathematica import mathematica >>> mathematica("Sin[x]^2 Tan[y]") sin(x)**2*tan(y) >>> e = mathematica("F[7,5,3]") >>> e F(7, 5, 3) >>> from sympy import Function, Max, Min >>> e.replace(Function("F"), lambda *x: Max(*x)*Min(*x)) 21 Both standard input form and Mathematica full form are supported: >>> mathematica("x*(a + b)") x*(a + b) >>> mathematica("Times[x, Plus[a, b]]") x*(a + b) To get a matrix from Wolfram's code: >>> m = mathematica("{{a, b}, {c, d}}") >>> m ((a, b), (c, d)) >>> from sympy import Matrix >>> Matrix(m) Matrix([ [a, b], [c, d]]) If the translation into equivalent SymPy expressions fails, an SymPy expression equivalent to Wolfram Mathematica's "FullForm" will be created: >>> mathematica("x_.") Optional(Pattern(x, Blank())) >>> mathematica("Plus @@ {x, y, z}") Apply(Plus, (x, y, z)) >>> mathematica("f[x_, 3] := x^3 /; x > 0") SetDelayed(f(Pattern(x, Blank()), 3), Condition(x**3, x > 0)) The ``additional_translations`` parameter for the Mathematica parser is now deprecated. Use SymPy's .replace( ) or .subs( ) methods on the output expression instead.
1,673
def evaluation(self): # adding info about the eval tasks if self.eval_tasks == self.train_tasks: msg = "For evalution, we used the same training datasets; check the [Datasets Used](#datasets-used) section for more information" eval_list = '' else: msg = f"This model was evaluated on the datasets below (use the `parlai display_data` commands to show data). Visit the {make_link('task (dataset) list', task_site)} for more details about the datasets.\n" eval_list = get_dataset_info(self.eval_tasks) eval_list = '\n' + '\n'.join(eval_list) content = [msg + eval_list] # validation metric info: getting metric name and description splitted = re.sub(r'_+', ' ', self.valid_metric).split() key = splitted[-1] if extra_metric_info.get(key): mname, description = extra_metric_info[key] elif METRICS_DISPLAY_DATA.get(key): mname = METRICS_DISPLAY_DATA[key].title description = METRICS_DISPLAY_DATA[key].description else: description, mname = (None, None) # adding description for validation metric and re-wording it: msg = f"\n\nWe used the metric {metric_format(self.valid_metric)}" if len(splitted) == 3 and splitted[0] == 'class' and mname: msg += f", the {mname.lower()} scores for the class {splitted[1]}" content.append(msg + ' as the validation metric. ') if description: description = description[0].lower() + description[1:] content[-1] += f"Recall that `{self.valid_metric}` is {description}." # evaluation table # getting list of subtasks and making columns eval_tasks = self.eval_tasks if len(self.eval_tasks) > 1: eval_tasks.insert(0, 'All') columns = [' '] + [taskname(subtask) for subtask in eval_tasks] # only one row: validation row = [metric_format(self.valid_metric)] for subtask in eval_tasks: # creating the key to get metric and formatting pre = '' if subtask == 'All' or len(eval_tasks) == 1 else subtask + '/' key = pre + self.valid_metric fmt = '{:.4f}' if self.valid_metric in not_percent else '{:.2%}' row.append(fmt.format(self.eval_results[key])) return '\n'.join(content) + '\n\n' + '\n'.join(make_md_table([row], columns))
returns a section with dataset info about the eval tasks if they exist, information about the validation metric if it exists, and create a table with the validation metric.
29
262
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def evaluation(self): # adding info about the eval tasks if self.eval_tasks == self.train_tasks: msg = "For evalution, we used the same training datasets; check the [Datasets Used](#datasets-used) section for more information" eval_list = '' else: msg = f"This model was evaluated on the datasets below (use the `parlai display_data` commands to show data). Visit the {make_link('task (dataset) list', task_site)} for more details about the datasets.\n" eval_list = get_dataset_info(self.eval_tasks) eval_list = '\n' + '\n'.join(eval_list) content = [msg + eval_list] # validation metric info: getting metric name and description splitted = re.sub(r'_+', ' ', self.valid_metric).split() key = splitted[-1] if extra_metric_info.get(key): mname, description = extra_metric_info[key] elif METRICS_DISPLAY_DATA.get(key): mname = METRICS_DISPLAY_DATA[key].title description = METRICS_DISPLAY_DATA[key].description else: description, mname = (None, None) # adding description for validation metric and re-wording it: msg = f"\n\nWe used the metric {metric_format(self.valid_metric)}" if len(splitted) == 3 and splitted[0] == 'class' and mname: msg += f", the {mname.lower()} scores for the class {splitted[1]}" content.append(msg + ' as the validation metric. ') if description: description = description[0].lower() + description[1:] content[-1] += f"Recall that `{self.valid_metric}` is {description}." # evaluation table # getting list of subtasks and making columns eval_tasks = self.eval_tasks if len(self.eval_tasks) > 1: eval_tasks.insert(0, 'All') columns = [' '] + [taskname(subtask) for subtask in eval_tasks] # only one row: validation row = [metric_format(self.valid_metric)] for subtask in eval_tasks: # creating the key to get metric and formatting pre = '' if subtask == 'All' or len(eval_tasks) == 1 else subtask + '/' key = pre + self.valid_metric fmt = '{:.4f}' if self.valid_metric in not_percent else '{:.2%}' row.append(fmt.format(self.eval_results[key])) return '\n'.join(content) + '\n\n' + '\n'.join(make_md_table([row], columns)) ``` ###Assistant : returns a section with dataset info about the eval tasks if they exist, information about the validation metric if it exists, and create a table with the validation metric.
1,674
def _train_with_recompute(n_steps): img_dim, n_channels, batch_size = 256, 1, 4 x, y = _get_dummy_data(img_dim, n_channels, batch_size) # This model is the same model as _get_big_cnn_model but split into 3 parts. models = _get_split_cnn_model( img_dim, n_channels, num_partitions=3, blocks_per_partition=2 ) model1, model2, model3 = models # Apply gradient checkpointing to the submodels using tf.recompute_grad. model1_re = tf.recompute_grad(model1) model2_re = tf.recompute_grad(model2) model3_re = tf.recompute_grad(model3) optimizer = optimizers.SGD() tr_vars = ( model1.trainable_variables + model2.trainable_variables + model3.trainable_variables ) losses = [] for _ in range(n_steps): with tf.GradientTape() as tape: logits1 = model1_re(x) logits2 = model2_re(logits1) logits3 = model3_re(logits2) loss = _compute_loss(logits3, y) losses.append(loss) grads = tape.gradient(loss, tr_vars) # tr_vars optimizer.apply_gradients(zip(grads, tr_vars)) del grads return losses @tf_test_utils.with_eager_op_as_function
Trains a single large model with gradient checkpointing using tf.recompute_grad.
10
110
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _train_with_recompute(n_steps): img_dim, n_channels, batch_size = 256, 1, 4 x, y = _get_dummy_data(img_dim, n_channels, batch_size) # This model is the same model as _get_big_cnn_model but split into 3 parts. models = _get_split_cnn_model( img_dim, n_channels, num_partitions=3, blocks_per_partition=2 ) model1, model2, model3 = models # Apply gradient checkpointing to the submodels using tf.recompute_grad. model1_re = tf.recompute_grad(model1) model2_re = tf.recompute_grad(model2) model3_re = tf.recompute_grad(model3) optimizer = optimizers.SGD() tr_vars = ( model1.trainable_variables + model2.trainable_variables + model3.trainable_variables ) losses = [] for _ in range(n_steps): with tf.GradientTape() as tape: logits1 = model1_re(x) logits2 = model2_re(logits1) logits3 = model3_re(logits2) loss = _compute_loss(logits3, y) losses.append(loss) grads = tape.gradient(loss, tr_vars) # tr_vars optimizer.apply_gradients(zip(grads, tr_vars)) del grads return losses @tf_test_utils.with_eager_op_as_function ``` ###Assistant : Trains a single large model with gradient checkpointing using tf.recompute_grad.
1,675
def test_syncer_callback_dead_node_log_error(caplog, ray_start_2_cpus, temp_data_dirs): caplog.set_level(logging.ERROR, logger="ray.tune.syncer") tmp_source, tmp_target = temp_data_dirs syncer_callback = TestSyncerCallback( sync_period=0, local_logdir_override=tmp_target, ) trial1 = MockTrial(trial_id="a", logdir=tmp_source, on_dead_node=True) syncer_callback.on_trial_result(iteration=1, trials=[], trial=trial1, result={}) assert ( "An error occurred when trying to get the node ip where this trial is running" in caplog.text )
Check that we catch + log errors when trying syncing with a dead remote node.
15
45
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_syncer_callback_dead_node_log_error(caplog, ray_start_2_cpus, temp_data_dirs): caplog.set_level(logging.ERROR, logger="ray.tune.syncer") tmp_source, tmp_target = temp_data_dirs syncer_callback = TestSyncerCallback( sync_period=0, local_logdir_override=tmp_target, ) trial1 = MockTrial(trial_id="a", logdir=tmp_source, on_dead_node=True) syncer_callback.on_trial_result(iteration=1, trials=[], trial=trial1, result={}) assert ( "An error occurred when trying to get the node ip where this trial is running" in caplog.text ) ``` ###Assistant : Check that we catch + log errors when trying syncing with a dead remote node.
1,676
def directed_modularity_matrix(G, nodelist=None, weight=None): import numpy as np if nodelist is None: nodelist = list(G) A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr") k_in = A.sum(axis=0) k_out = A.sum(axis=1) m = k_in.sum() # Expected adjacency matrix X = np.outer(k_out, k_in) / m return A - X
Returns the directed modularity matrix of G. The modularity matrix is the matrix B = A - <A>, where A is the adjacency matrix and <A> is the expected adjacency matrix, assuming that the graph is described by the configuration model. More specifically, the element B_ij of B is defined as .. math:: B_{ij} = A_{ij} - k_i^{out} k_j^{in} / m where :math:`k_i^{in}` is the in degree of node i, and :math:`k_j^{out}` is the out degree of node j, with m the number of edges in the graph. When weight is set to a name of an attribute edge, Aij, k_i, k_j and m are computed using its value. Parameters ---------- G : DiGraph A NetworkX DiGraph nodelist : list, optional The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). weight : string or None, optional (default=None) The edge attribute that holds the numerical value used for the edge weight. If None then all edge weights are 1. Returns ------- B : Numpy array The modularity matrix of G. Examples -------- >>> G = nx.DiGraph() >>> G.add_edges_from( ... ( ... (1, 2), ... (1, 3), ... (3, 1), ... (3, 2), ... (3, 5), ... (4, 5), ... (4, 6), ... (5, 4), ... (5, 6), ... (6, 4), ... ) ... ) >>> B = nx.directed_modularity_matrix(G) Notes ----- NetworkX defines the element A_ij of the adjacency matrix as 1 if there is a link going from node i to node j. Leicht and Newman use the opposite definition. This explains the different expression for B_ij. See Also -------- to_numpy_array modularity_spectrum adjacency_matrix modularity_matrix References ---------- .. [1] E. A. Leicht, M. E. J. Newman, "Community structure in directed networks", Phys. Rev Lett., vol. 100, no. 11, p. 118703, 2008.
303
44
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def directed_modularity_matrix(G, nodelist=None, weight=None): import numpy as np if nodelist is None: nodelist = list(G) A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr") k_in = A.sum(axis=0) k_out = A.sum(axis=1) m = k_in.sum() # Expected adjacency matrix X = np.outer(k_out, k_in) / m return A - X ``` ###Assistant : Returns the directed modularity matrix of G. The modularity matrix is the matrix B = A - <A>, where A is the adjacency matrix and <A> is the expected adjacency matrix, assuming that the graph is described by the configuration model. More specifically, the element B_ij of B is defined as .. math:: B_{ij} = A_{ij} - k_i^{out} k_j^{in} / m where :math:`k_i^{in}` is the in degree of node i, and :math:`k_j^{out}` is the out degree of node j, with m the number of edges in the graph. When weight is set to a name of an attribute edge, Aij, k_i, k_j and m are computed using its value. Parameters ---------- G : DiGraph A NetworkX DiGraph nodelist : list, optional The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). weight : string or None, optional (default=None) The edge attribute that holds the numerical value used for the edge weight. If None then all edge weights are 1. Returns ------- B : Numpy array The modularity matrix of G. Examples -------- >>> G = nx.DiGraph() >>> G.add_edges_from( ... ( ... (1, 2), ... (1, 3), ... (3, 1), ... (3, 2), ... (3, 5), ... (4, 5), ... (4, 6), ... (5, 4), ... (5, 6), ... (6, 4), ... ) ... ) >>> B = nx.directed_modularity_matrix(G) Notes ----- NetworkX defines the element A_ij of the adjacency matrix as 1 if there is a link going from node i to node j. Leicht and Newman use the opposite definition. This explains the different expression for B_ij. See Also -------- to_numpy_array modularity_spectrum adjacency_matrix modularity_matrix References ---------- .. [1] E. A. Leicht, M. E. J. Newman, "Community structure in directed networks", Phys. Rev Lett., vol. 100, no. 11, p. 118703, 2008.
1,677
def project_columns(self, columns): if columns == self.columns: return self return ParquetFunctionWrapper( self.engine, self.fs, self.meta, columns, self.index, None, # Already merged into common_kwargs self.common_kwargs, )
Return a new ParquetFunctionWrapper object with a sub-column projection.
9
24
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def project_columns(self, columns): if columns == self.columns: return self return ParquetFunctionWrapper( self.engine, self.fs, self.meta, columns, self.index, None, # Already merged into common_kwargs self.common_kwargs, ) ``` ###Assistant : Return a new ParquetFunctionWrapper object with a sub-column projection.
1,678
def sort_args_by_name(self): expr = self.expr if not isinstance(expr, ArrayTensorProduct): return self args = expr.args sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1])) pos_sorted, args_sorted = zip(*sorted_data) reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)} contraction_tuples = self._get_contraction_tuples() contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples] c_tp = _array_tensor_product(*args_sorted) new_contr_indices = self._contraction_tuples_to_contraction_indices( c_tp, contraction_tuples ) return _array_contraction(c_tp, *new_contr_indices)
Sort arguments in the tensor product so that their order is lexicographical. Examples ======== >>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array >>> from sympy import MatrixSymbol >>> from sympy.abc import N >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> cg = convert_matrix_to_array(C*D*A*B) >>> cg ArrayContraction(ArrayTensorProduct(A, D, C, B), (0, 3), (1, 6), (2, 5)) >>> cg.sort_args_by_name() ArrayContraction(ArrayTensorProduct(A, D, B, C), (0, 3), (1, 4), (2, 7))
81
61
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def sort_args_by_name(self): expr = self.expr if not isinstance(expr, ArrayTensorProduct): return self args = expr.args sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1])) pos_sorted, args_sorted = zip(*sorted_data) reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)} contraction_tuples = self._get_contraction_tuples() contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples] c_tp = _array_tensor_product(*args_sorted) new_contr_indices = self._contraction_tuples_to_contraction_indices( c_tp, contraction_tuples ) return _array_contraction(c_tp, *new_contr_indices) ``` ###Assistant : Sort arguments in the tensor product so that their order is lexicographical. Examples ======== >>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array >>> from sympy import MatrixSymbol >>> from sympy.abc import N >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> cg = convert_matrix_to_array(C*D*A*B) >>> cg ArrayContraction(ArrayTensorProduct(A, D, C, B), (0, 3), (1, 6), (2, 5)) >>> cg.sort_args_by_name() ArrayContraction(ArrayTensorProduct(A, D, B, C), (0, 3), (1, 4), (2, 7))
1,679
def gather_async(self, batch_ms=0, num_async=1) -> "LocalIterator[T]": if num_async < 1: raise ValueError("queue depth must be positive") if batch_ms < 0: raise ValueError("batch time must be positive") # Forward reference to the returned iterator. local_iter = None
Returns a local iterable for asynchronous iteration. New items will be fetched from the shards asynchronously as soon as the previous one is computed. Items arrive in non-deterministic order. Arguments: batch_ms (int): Batches items for batch_ms milliseconds on each shard before retrieving it. Increasing batch_ms increases latency but improves throughput. If this value is 0, then items are returned immediately. num_async (int): The max number of async requests in flight per actor. Increasing this improves the amount of pipeline parallelism in the iterator. Examples: >>> it = from_range(100, 1).gather_async() >>> next(it) ... 3 >>> next(it) ... 0 >>> next(it) ... 1
101
36
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def gather_async(self, batch_ms=0, num_async=1) -> "LocalIterator[T]": if num_async < 1: raise ValueError("queue depth must be positive") if batch_ms < 0: raise ValueError("batch time must be positive") # Forward reference to the returned iterator. local_iter = None ``` ###Assistant : Returns a local iterable for asynchronous iteration. New items will be fetched from the shards asynchronously as soon as the previous one is computed. Items arrive in non-deterministic order. Arguments: batch_ms (int): Batches items for batch_ms milliseconds on each shard before retrieving it. Increasing batch_ms increases latency but improves throughput. If this value is 0, then items are returned immediately. num_async (int): The max number of async requests in flight per actor. Increasing this improves the amount of pipeline parallelism in the iterator. Examples: >>> it = from_range(100, 1).gather_async() >>> next(it) ... 3 >>> next(it) ... 0 >>> next(it) ... 1
1,680
def test_dict_checkpoint_dict(self): checkpoint = self._prepare_dict_checkpoint() # Convert into dict checkpoint data_dict = checkpoint.to_dict() self.assertIsInstance(data_dict, dict) # Create from dict checkpoint = Checkpoint.from_dict(data_dict) self.assertTrue(checkpoint._data_dict) self._assert_dict_checkpoint(checkpoint)
Test conversion from dict to dict checkpoint and back.
9
24
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_dict_checkpoint_dict(self): checkpoint = self._prepare_dict_checkpoint() # Convert into dict checkpoint data_dict = checkpoint.to_dict() self.assertIsInstance(data_dict, dict) # Create from dict checkpoint = Checkpoint.from_dict(data_dict) self.assertTrue(checkpoint._data_dict) self._assert_dict_checkpoint(checkpoint) ``` ###Assistant : Test conversion from dict to dict checkpoint and back.
1,681
def test_5_model(self): query = predict_query = for cid, char in [(CID_A, 'a'), (CID_B, 'b')]: self.sql_via_http( query.format(char, char), company_id=cid, expected_resp_type=RESPONSE_TYPE.OK ) response = self.sql_via_http( predict_query.format(char), company_id=cid, expected_resp_type=RESPONSE_TYPE.TABLE ) self.assertTrue(len(response['data']), 1)
CREATE MODEL mindsdb.model_{} FROM test_integration_{} ( select * from test_data.home_rentals limit 50 ) PREDICT rental_price USING join_learn_process=true, time_aim=5 select * from mindsdb.model_{} where sqft = 100
26
29
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_5_model(self): query = predict_query = for cid, char in [(CID_A, 'a'), (CID_B, 'b')]: self.sql_via_http( query.format(char, char), company_id=cid, expected_resp_type=RESPONSE_TYPE.OK ) response = self.sql_via_http( predict_query.format(char), company_id=cid, expected_resp_type=RESPONSE_TYPE.TABLE ) self.assertTrue(len(response['data']), 1) ``` ###Assistant : CREATE MODEL mindsdb.model_{} FROM test_integration_{} ( select * from test_data.home_rentals limit 50 ) PREDICT rental_price USING join_learn_process=true, time_aim=5 select * from mindsdb.model_{} where sqft = 100
1,682
def putpalette(self, data, rawmode="RGB"): from . import ImagePalette if self.mode not in ("L", "LA", "P", "PA"): raise ValueError("illegal image mode") if isinstance(data, ImagePalette.ImagePalette): palette = ImagePalette.raw(data.rawmode, data.palette) else: if not isinstance(data, bytes): data = bytes(data) palette = ImagePalette.raw(rawmode, data) self.mode = "PA" if "A" in self.mode else "P" self.palette = palette self.palette.mode = "RGB" self.load() # install new palette
Attaches a palette to this image. The image must be a "P", "PA", "L" or "LA" image. The palette sequence must contain at most 256 colors, made up of one integer value for each channel in the raw mode. For example, if the raw mode is "RGB", then it can contain at most 768 values, made up of red, green and blue values for the corresponding pixel index in the 256 colors. If the raw mode is "RGBA", then it can contain at most 1024 values, containing red, green, blue and alpha values. Alternatively, an 8-bit string may be used instead of an integer sequence. :param data: A palette sequence (either a list or a string). :param rawmode: The raw mode of the palette. Either "RGB", "RGBA", or a mode that can be transformed to "RGB" or "RGBA" (e.g. "R", "BGR;15", "RGBA;L").
142
59
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def putpalette(self, data, rawmode="RGB"): from . import ImagePalette if self.mode not in ("L", "LA", "P", "PA"): raise ValueError("illegal image mode") if isinstance(data, ImagePalette.ImagePalette): palette = ImagePalette.raw(data.rawmode, data.palette) else: if not isinstance(data, bytes): data = bytes(data) palette = ImagePalette.raw(rawmode, data) self.mode = "PA" if "A" in self.mode else "P" self.palette = palette self.palette.mode = "RGB" self.load() # install new palette ``` ###Assistant : Attaches a palette to this image. The image must be a "P", "PA", "L" or "LA" image. The palette sequence must contain at most 256 colors, made up of one integer value for each channel in the raw mode. For example, if the raw mode is "RGB", then it can contain at most 768 values, made up of red, green and blue values for the corresponding pixel index in the 256 colors. If the raw mode is "RGBA", then it can contain at most 1024 values, containing red, green, blue and alpha values. Alternatively, an 8-bit string may be used instead of an integer sequence. :param data: A palette sequence (either a list or a string). :param rawmode: The raw mode of the palette. Either "RGB", "RGBA", or a mode that can be transformed to "RGB" or "RGBA" (e.g. "R", "BGR;15", "RGBA;L").
1,683
def get_timeout() -> t.Optional[t.Dict[str, t.Any]]: if not os.path.exists(TIMEOUT_PATH): return None data = read_json_file(TIMEOUT_PATH) data['deadline'] = datetime.datetime.strptime(data['deadline'], '%Y-%m-%dT%H:%M:%SZ') return data
Return details about the currently set timeout, if any, otherwise return None.
12
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_timeout() -> t.Optional[t.Dict[str, t.Any]]: if not os.path.exists(TIMEOUT_PATH): return None data = read_json_file(TIMEOUT_PATH) data['deadline'] = datetime.datetime.strptime(data['deadline'], '%Y-%m-%dT%H:%M:%SZ') return data ``` ###Assistant : Return details about the currently set timeout, if any, otherwise return None.
1,684
def my_mean_squared_error(y_true, y_pred): return backend.mean(tf.math.squared_difference(y_pred, y_true), axis=-1) module_my_mean_squared_error = my_mean_squared_error @test_utils.run_v2_only
Identical to built-in `mean_squared_error`, added here as a custom func.
10
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def my_mean_squared_error(y_true, y_pred): return backend.mean(tf.math.squared_difference(y_pred, y_true), axis=-1) module_my_mean_squared_error = my_mean_squared_error @test_utils.run_v2_only ``` ###Assistant : Identical to built-in `mean_squared_error`, added here as a custom func.
1,685
def _amd_predict_with_optimized_batchsizes(self, feed, batch_size): if isinstance(feed, np.ndarray): feed = [feed] items = feed[0].shape[0] done_items = 0 results = [] while done_items < items: if batch_size < 4: # Not much difference in BS < 4 batch_size = 1 batch_items = ((items - done_items) // batch_size) * batch_size if batch_items: pred_data = [x[done_items:done_items + batch_items] for x in feed] pred = self._model.predict(pred_data, batch_size=batch_size) done_items += batch_items results.append(pred) batch_size //= 2 if isinstance(results[0], np.ndarray): return np.concatenate(results) return [np.concatenate(x) for x in zip(*results)]
Minimizes the amount of kernels to be compiled when using the ``amd`` backend with varying batch sizes while trying to keep the batchsize as high as possible. Parameters ---------- feed: numpy.ndarray or list The feed to be provided to the model as input. This should be a ``numpy.ndarray`` for single inputs or a ``list`` of ``numpy.ndarray`` objects for multiple inputs. batch_size: int The upper batchsize to use.
67
80
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _amd_predict_with_optimized_batchsizes(self, feed, batch_size): if isinstance(feed, np.ndarray): feed = [feed] items = feed[0].shape[0] done_items = 0 results = [] while done_items < items: if batch_size < 4: # Not much difference in BS < 4 batch_size = 1 batch_items = ((items - done_items) // batch_size) * batch_size if batch_items: pred_data = [x[done_items:done_items + batch_items] for x in feed] pred = self._model.predict(pred_data, batch_size=batch_size) done_items += batch_items results.append(pred) batch_size //= 2 if isinstance(results[0], np.ndarray): return np.concatenate(results) return [np.concatenate(x) for x in zip(*results)] ``` ###Assistant : Minimizes the amount of kernels to be compiled when using the ``amd`` backend with varying batch sizes while trying to keep the batchsize as high as possible. Parameters ---------- feed: numpy.ndarray or list The feed to be provided to the model as input. This should be a ``numpy.ndarray`` for single inputs or a ``list`` of ``numpy.ndarray`` objects for multiple inputs. batch_size: int The upper batchsize to use.
1,686
def set_positions(self, posA, posB): if posA is not None: self._posA_posB[0] = posA if posB is not None: self._posA_posB[1] = posB self.stale = True
Set the start and end positions of the connecting path. Parameters ---------- posA, posB : None, tuple (x, y) coordinates of arrow tail and arrow head respectively. If `None` use current value.
32
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def set_positions(self, posA, posB): if posA is not None: self._posA_posB[0] = posA if posB is not None: self._posA_posB[1] = posB self.stale = True ``` ###Assistant : Set the start and end positions of the connecting path. Parameters ---------- posA, posB : None, tuple (x, y) coordinates of arrow tail and arrow head respectively. If `None` use current value.
1,687
def test_orderby_percentile_with_many_fields_multiple_entities_with_missing_data(self): for tag, value, numbers in ( ("transaction", "/foo/", [10, 11, 12]), ("transaction", "/bar/", [4, 5, 6]), ): for subvalue in numbers: self.store_performance_metric( name=TransactionMRI.MEASUREMENTS_LCP.value, tags={tag: value}, value=subvalue, ) response = self.get_success_response( self.organization.slug, field=[ f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})", f"count_unique({TransactionMetricKey.USER.value})", ], statsPeriod="1h", interval="1h", groupBy=["project_id", "transaction"], orderBy=f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})", useCase="performance", ) groups = response.data["groups"] assert len(groups) == 2 expected = [ ("/bar/", 5.0, 5), ("/foo/", 11.0, 1), ] for (expected_tag_value, expected_lcp_count, users), group in zip(expected, groups): # With orderBy, you only get totals: assert group["by"] == {"transaction": expected_tag_value, "project_id": self.project.id} assert group["totals"] == { f"count_unique({TransactionMetricKey.USER.value})": 0, f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})": expected_lcp_count, } assert group["series"] == { f"count_unique({TransactionMetricKey.USER.value})": [0], f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})": [expected_lcp_count], }
Test that ensures when transactions table has null values for some fields (i.e. fields with a different entity than the entity of the field in the order by), then the table gets populated accordingly
34
101
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_orderby_percentile_with_many_fields_multiple_entities_with_missing_data(self): for tag, value, numbers in ( ("transaction", "/foo/", [10, 11, 12]), ("transaction", "/bar/", [4, 5, 6]), ): for subvalue in numbers: self.store_performance_metric( name=TransactionMRI.MEASUREMENTS_LCP.value, tags={tag: value}, value=subvalue, ) response = self.get_success_response( self.organization.slug, field=[ f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})", f"count_unique({TransactionMetricKey.USER.value})", ], statsPeriod="1h", interval="1h", groupBy=["project_id", "transaction"], orderBy=f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})", useCase="performance", ) groups = response.data["groups"] assert len(groups) == 2 expected = [ ("/bar/", 5.0, 5), ("/foo/", 11.0, 1), ] for (expected_tag_value, expected_lcp_count, users), group in zip(expected, groups): # With orderBy, you only get totals: assert group["by"] == {"transaction": expected_tag_value, "project_id": self.project.id} assert group["totals"] == { f"count_unique({TransactionMetricKey.USER.value})": 0, f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})": expected_lcp_count, } assert group["series"] == { f"count_unique({TransactionMetricKey.USER.value})": [0], f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})": [expected_lcp_count], } ``` ###Assistant : Test that ensures when transactions table has null values for some fields (i.e. fields with a different entity than the entity of the field in the order by), then the table gets populated accordingly
1,688
def get_earning_components_max_benefits(employee, date, earning_component): salary_structure = get_assigned_salary_structure(employee, date) amount = frappe.db.sql( , salary_structure, earning_component, ) return amount if amount else 0
select amount from `tabSalary Detail` where parent = %s and is_flexible_benefit = 1 and salary_component = %s order by name
20
21
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_earning_components_max_benefits(employee, date, earning_component): salary_structure = get_assigned_salary_structure(employee, date) amount = frappe.db.sql( , salary_structure, earning_component, ) return amount if amount else 0 ``` ###Assistant : select amount from `tabSalary Detail` where parent = %s and is_flexible_benefit = 1 and salary_component = %s order by name
1,689
def get_input_mask_at(self, node_index): inputs = self.get_input_at(node_index) if isinstance(inputs, list): return [getattr(x, "_keras_mask", None) for x in inputs] else: return getattr(inputs, "_keras_mask", None)
Retrieves the input mask tensor(s) of a layer at a given node. Args: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A mask tensor (or list of tensors if the layer has multiple inputs).
51
22
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_input_mask_at(self, node_index): inputs = self.get_input_at(node_index) if isinstance(inputs, list): return [getattr(x, "_keras_mask", None) for x in inputs] else: return getattr(inputs, "_keras_mask", None) ``` ###Assistant : Retrieves the input mask tensor(s) of a layer at a given node. Args: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A mask tensor (or list of tensors if the layer has multiple inputs).
1,690
def get_default_grpc_options(): return [ ('grpc.max_send_message_length', -1), ('grpc.max_receive_message_length', -1), ]
Returns a list of default options used for creating grpc channels. Documentation is here https://github.com/grpc/grpc/blob/master/include/grpc/impl/codegen/grpc_types.h :returns: list of tuples defining grpc parameters
22
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_default_grpc_options(): return [ ('grpc.max_send_message_length', -1), ('grpc.max_receive_message_length', -1), ] ``` ###Assistant : Returns a list of default options used for creating grpc channels. Documentation is here https://github.com/grpc/grpc/blob/master/include/grpc/impl/codegen/grpc_types.h :returns: list of tuples defining grpc parameters
1,691
def _cancel_futures_kwargs(self): if sys.version_info[:2] < (3, 9): return {} return dict(cancel_futures=True)
Shim older Pythons that do not have Executor.shutdown(...cancel_futures=). Remove this code when support for Python 3.8 is dropped.
18
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _cancel_futures_kwargs(self): if sys.version_info[:2] < (3, 9): return {} return dict(cancel_futures=True) ``` ###Assistant : Shim older Pythons that do not have Executor.shutdown(...cancel_futures=). Remove this code when support for Python 3.8 is dropped.
1,692
def _estimate_available_parallelism() -> int: cur_pg = ray.util.get_current_placement_group() return _estimate_avail_cpus(cur_pg)
Estimates the available CPU parallelism for this Dataset in the cluster. If we are currently in a placement group, take that into account.
23
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _estimate_available_parallelism() -> int: cur_pg = ray.util.get_current_placement_group() return _estimate_avail_cpus(cur_pg) ``` ###Assistant : Estimates the available CPU parallelism for this Dataset in the cluster. If we are currently in a placement group, take that into account.
1,693
def bin(num, max_bits=None): ceiling = 2 ** (num).bit_length() if num >= 0: s = bltns.bin(num + ceiling).replace('1', '0', 1) else: s = bltns.bin(~num ^ (ceiling - 1) + ceiling) sign = s[:3] digits = s[3:] if max_bits is not None: if len(digits) < max_bits: digits = (sign[-1] * max_bits + digits)[-max_bits:] return "%s %s" % (sign, digits)
Like built-in bin(), except negative values are represented in twos-compliment, and the leading bit always indicates sign (0=positive, 1=negative). >>> bin(10) '0b0 1010' >>> bin(~10) # ~10 is -11 '0b1 0101'
31
57
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def bin(num, max_bits=None): ceiling = 2 ** (num).bit_length() if num >= 0: s = bltns.bin(num + ceiling).replace('1', '0', 1) else: s = bltns.bin(~num ^ (ceiling - 1) + ceiling) sign = s[:3] digits = s[3:] if max_bits is not None: if len(digits) < max_bits: digits = (sign[-1] * max_bits + digits)[-max_bits:] return "%s %s" % (sign, digits) ``` ###Assistant : Like built-in bin(), except negative values are represented in twos-compliment, and the leading bit always indicates sign (0=positive, 1=negative). >>> bin(10) '0b0 1010' >>> bin(~10) # ~10 is -11 '0b1 0101'
1,694
def axis0_safe_slice(X, mask, len_mask): if len_mask != 0: return X[safe_mask(X, mask), :] return np.zeros(shape=(0, X.shape[1]))
Return a mask which is safer to use on X than safe_mask. This mask is safer than safe_mask since it returns an empty array, when a sparse matrix is sliced with a boolean mask with all False, instead of raising an unhelpful error in older versions of SciPy. See: https://github.com/scipy/scipy/issues/5361 Also note that we can avoid doing the dot product by checking if the len_mask is not zero in _huber_loss_and_gradient but this is not going to be the bottleneck, since the number of outliers and non_outliers are typically non-zero and it makes the code tougher to follow. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask : ndarray Mask to be used on X. len_mask : int The length of the mask. Returns ------- mask : ndarray Array that is safe to use on X.
140
15
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def axis0_safe_slice(X, mask, len_mask): if len_mask != 0: return X[safe_mask(X, mask), :] return np.zeros(shape=(0, X.shape[1])) ``` ###Assistant : Return a mask which is safer to use on X than safe_mask. This mask is safer than safe_mask since it returns an empty array, when a sparse matrix is sliced with a boolean mask with all False, instead of raising an unhelpful error in older versions of SciPy. See: https://github.com/scipy/scipy/issues/5361 Also note that we can avoid doing the dot product by checking if the len_mask is not zero in _huber_loss_and_gradient but this is not going to be the bottleneck, since the number of outliers and non_outliers are typically non-zero and it makes the code tougher to follow. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask : ndarray Mask to be used on X. len_mask : int The length of the mask. Returns ------- mask : ndarray Array that is safe to use on X.
1,695
def _most_frequent(array, extra_value, n_repeat): # Compute the most frequent value in array only if array.size > 0: if array.dtype == object: # scipy.stats.mode is slow with object dtype array. # Python Counter is more efficient counter = Counter(array) most_frequent_count = counter.most_common(1)[0][1] # tie breaking similarly to scipy.stats.mode most_frequent_value = min( value for value, count in counter.items() if count == most_frequent_count ) else: mode = _mode(array) most_frequent_value = mode[0][0] most_frequent_count = mode[1][0] else: most_frequent_value = 0 most_frequent_count = 0 # Compare to array + [extra_value] * n_repeat if most_frequent_count == 0 and n_repeat == 0: return np.nan elif most_frequent_count < n_repeat: return extra_value elif most_frequent_count > n_repeat: return most_frequent_value elif most_frequent_count == n_repeat: # tie breaking similarly to scipy.stats.mode return min(most_frequent_value, extra_value)
Compute the most frequent value in a 1d array extended with [extra_value] * n_repeat, where extra_value is assumed to be not part of the array.
25
121
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _most_frequent(array, extra_value, n_repeat): # Compute the most frequent value in array only if array.size > 0: if array.dtype == object: # scipy.stats.mode is slow with object dtype array. # Python Counter is more efficient counter = Counter(array) most_frequent_count = counter.most_common(1)[0][1] # tie breaking similarly to scipy.stats.mode most_frequent_value = min( value for value, count in counter.items() if count == most_frequent_count ) else: mode = _mode(array) most_frequent_value = mode[0][0] most_frequent_count = mode[1][0] else: most_frequent_value = 0 most_frequent_count = 0 # Compare to array + [extra_value] * n_repeat if most_frequent_count == 0 and n_repeat == 0: return np.nan elif most_frequent_count < n_repeat: return extra_value elif most_frequent_count > n_repeat: return most_frequent_value elif most_frequent_count == n_repeat: # tie breaking similarly to scipy.stats.mode return min(most_frequent_value, extra_value) ``` ###Assistant : Compute the most frequent value in a 1d array extended with [extra_value] * n_repeat, where extra_value is assumed to be not part of the array.
1,696
def _cov(X, shrinkage=None, covariance_estimator=None): if covariance_estimator is None: shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, str): if shrinkage == "auto": sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = ledoit_wolf(X)[0] # rescale s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :] elif shrinkage == "empirical": s = empirical_covariance(X) else: raise ValueError("unknown shrinkage parameter") elif isinstance(shrinkage, Real): if shrinkage < 0 or shrinkage > 1: raise ValueError("shrinkage parameter must be between 0 and 1") s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError("shrinkage must be a float or a string") else: if shrinkage is not None and shrinkage != 0: raise ValueError( "covariance_estimator and shrinkage parameters " "are not None. Only one of the two can be set." ) covariance_estimator.fit(X) if not hasattr(covariance_estimator, "covariance_"): raise ValueError( "%s does not have a covariance_ attribute" % covariance_estimator.__class__.__name__ ) s = covariance_estimator.covariance_ return s
Estimate covariance matrix (using optional covariance_estimator). Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. shrinkage : {'empirical', 'auto'} or float, default=None Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Shrinkage parameter is ignored if `covariance_estimator` is not None. covariance_estimator : estimator, default=None If not None, `covariance_estimator` is used to estimate the covariance matrices instead of relying on the empirical covariance estimator (with potential shrinkage). The object should have a fit method and a ``covariance_`` attribute like the estimators in :mod:`sklearn.covariance``. if None the shrinkage parameter drives the estimate. .. versionadded:: 0.24 Returns ------- s : ndarray of shape (n_features, n_features) Estimated covariance matrix.
126
144
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _cov(X, shrinkage=None, covariance_estimator=None): if covariance_estimator is None: shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, str): if shrinkage == "auto": sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = ledoit_wolf(X)[0] # rescale s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :] elif shrinkage == "empirical": s = empirical_covariance(X) else: raise ValueError("unknown shrinkage parameter") elif isinstance(shrinkage, Real): if shrinkage < 0 or shrinkage > 1: raise ValueError("shrinkage parameter must be between 0 and 1") s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError("shrinkage must be a float or a string") else: if shrinkage is not None and shrinkage != 0: raise ValueError( "covariance_estimator and shrinkage parameters " "are not None. Only one of the two can be set." ) covariance_estimator.fit(X) if not hasattr(covariance_estimator, "covariance_"): raise ValueError( "%s does not have a covariance_ attribute" % covariance_estimator.__class__.__name__ ) s = covariance_estimator.covariance_ return s ``` ###Assistant : Estimate covariance matrix (using optional covariance_estimator). Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. shrinkage : {'empirical', 'auto'} or float, default=None Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Shrinkage parameter is ignored if `covariance_estimator` is not None. covariance_estimator : estimator, default=None If not None, `covariance_estimator` is used to estimate the covariance matrices instead of relying on the empirical covariance estimator (with potential shrinkage). The object should have a fit method and a ``covariance_`` attribute like the estimators in :mod:`sklearn.covariance``. if None the shrinkage parameter drives the estimate. .. versionadded:: 0.24 Returns ------- s : ndarray of shape (n_features, n_features) Estimated covariance matrix.
1,697
def from_key_val_list(value): if value is None: return None if isinstance(value, (str, bytes, bool, int)): raise ValueError("cannot encode objects that are not 2-tuples") return OrderedDict(value)
Take an object and test to see if it can be represented as a dictionary. Unless it can not be represented as such, return an OrderedDict, e.g., :: >>> from_key_val_list([('key', 'val')]) OrderedDict([('key', 'val')]) >>> from_key_val_list('string') Traceback (most recent call last): ... ValueError: cannot encode objects that are not 2-tuples >>> from_key_val_list({'key': 'val'}) OrderedDict([('key', 'val')]) :rtype: OrderedDict
56
24
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def from_key_val_list(value): if value is None: return None if isinstance(value, (str, bytes, bool, int)): raise ValueError("cannot encode objects that are not 2-tuples") return OrderedDict(value) ``` ###Assistant : Take an object and test to see if it can be represented as a dictionary. Unless it can not be represented as such, return an OrderedDict, e.g., :: >>> from_key_val_list([('key', 'val')]) OrderedDict([('key', 'val')]) >>> from_key_val_list('string') Traceback (most recent call last): ... ValueError: cannot encode objects that are not 2-tuples >>> from_key_val_list({'key': 'val'}) OrderedDict([('key', 'val')]) :rtype: OrderedDict
1,698
def load_lexer_from_file(filename, lexername="CustomLexer", **options): try: # This empty dict will contain the namespace for the exec'd file custom_namespace = {} with open(filename, 'rb') as f: exec(f.read(), custom_namespace) # Retrieve the class `lexername` from that namespace if lexername not in custom_namespace: raise ClassNotFound('no valid %s class found in %s' % (lexername, filename)) lexer_class = custom_namespace[lexername] # And finally instantiate it with the options return lexer_class(**options) except OSError as err: raise ClassNotFound('cannot read %s: %s' % (filename, err)) except ClassNotFound: raise except Exception as err: raise ClassNotFound('error when loading custom lexer: %s' % err)
Load a lexer from a file. This method expects a file located relative to the current working directory, which contains a Lexer class. By default, it expects the Lexer to be name CustomLexer; you can specify your own class name as the second argument to this function. Users should be very careful with the input, because this method is equivalent to running eval on the input file. Raises ClassNotFound if there are any problems importing the Lexer. .. versionadded:: 2.2
80
92
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def load_lexer_from_file(filename, lexername="CustomLexer", **options): try: # This empty dict will contain the namespace for the exec'd file custom_namespace = {} with open(filename, 'rb') as f: exec(f.read(), custom_namespace) # Retrieve the class `lexername` from that namespace if lexername not in custom_namespace: raise ClassNotFound('no valid %s class found in %s' % (lexername, filename)) lexer_class = custom_namespace[lexername] # And finally instantiate it with the options return lexer_class(**options) except OSError as err: raise ClassNotFound('cannot read %s: %s' % (filename, err)) except ClassNotFound: raise except Exception as err: raise ClassNotFound('error when loading custom lexer: %s' % err) ``` ###Assistant : Load a lexer from a file. This method expects a file located relative to the current working directory, which contains a Lexer class. By default, it expects the Lexer to be name CustomLexer; you can specify your own class name as the second argument to this function. Users should be very careful with the input, because this method is equivalent to running eval on the input file. Raises ClassNotFound if there are any problems importing the Lexer. .. versionadded:: 2.2
1,699
def get_price(item_code, price_list, customer_group, company, qty=1): from erpnext.e_commerce.shopping_cart.cart import get_party template_item_code = frappe.db.get_value("Item", item_code, "variant_of") if price_list: price = frappe.get_all("Item Price", fields=["price_list_rate", "currency"], filters={"price_list": price_list, "item_code": item_code}) if template_item_code and not price: price = frappe.get_all("Item Price", fields=["price_list_rate", "currency"], filters={"price_list": price_list, "item_code": template_item_code}) if price: party = get_party() pricing_rule_dict = frappe._dict({ "item_code": item_code, "qty": qty, "stock_qty": qty, "transaction_type": "selling", "price_list": price_list, "customer_group": customer_group, "company": company, "conversion_rate": 1, "for_shopping_cart": True, "currency": frappe.db.get_value("Price List", price_list, "currency") }) if party and party.doctype == "Customer": pricing_rule_dict.update({"customer": party.name}) pricing_rule = get_pricing_rule_for_item(pricing_rule_dict) price_obj = price[0] if pricing_rule: # price without any rules applied mrp = price_obj.price_list_rate or 0 if pricing_rule.pricing_rule_for == "Discount Percentage": price_obj.discount_percent = pricing_rule.discount_percentage price_obj.formatted_discount_percent = str(flt(pricing_rule.discount_percentage, 0)) + "%" price_obj.price_list_rate = flt(price_obj.price_list_rate * (1.0 - (flt(pricing_rule.discount_percentage) / 100.0))) if pricing_rule.pricing_rule_for == "Rate": rate_discount = flt(mrp) - flt(pricing_rule.price_list_rate) if rate_discount > 0: price_obj.formatted_discount_rate = fmt_money(rate_discount, currency=price_obj["currency"]) price_obj.price_list_rate = pricing_rule.price_list_rate or 0 if price_obj: price_obj["formatted_price"] = fmt_money(price_obj["price_list_rate"], currency=price_obj["currency"]) if mrp != price_obj["price_list_rate"]: price_obj["formatted_mrp"] = fmt_money(mrp, currency=price_obj["currency"]) price_obj["currency_symbol"] = not cint(frappe.db.get_default("hide_currency_symbol")) \ and (frappe.db.get_value("Currency", price_obj.currency, "symbol", cache=True) or price_obj.currency) \ or "" uom_conversion_factor = frappe.db.sql(, item_code) uom_conversion_factor = uom_conversion_factor[0][0] if uom_conversion_factor else 1 price_obj["formatted_price_sales_uom"] = fmt_money(price_obj["price_list_rate"] * uom_conversion_factor, currency=price_obj["currency"]) if not price_obj["price_list_rate"]: price_obj["price_list_rate"] = 0 if not price_obj["currency"]: price_obj["currency"] = "" if not price_obj["formatted_price"]: price_obj["formatted_price"], price_obj["formatted_mrp"] = "", "" return price_obj
select C.conversion_factor from `tabUOM Conversion Detail` C inner join `tabItem` I on C.parent = I.name and C.uom = I.sales_uom where I.name = %s
23
214
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_price(item_code, price_list, customer_group, company, qty=1): from erpnext.e_commerce.shopping_cart.cart import get_party template_item_code = frappe.db.get_value("Item", item_code, "variant_of") if price_list: price = frappe.get_all("Item Price", fields=["price_list_rate", "currency"], filters={"price_list": price_list, "item_code": item_code}) if template_item_code and not price: price = frappe.get_all("Item Price", fields=["price_list_rate", "currency"], filters={"price_list": price_list, "item_code": template_item_code}) if price: party = get_party() pricing_rule_dict = frappe._dict({ "item_code": item_code, "qty": qty, "stock_qty": qty, "transaction_type": "selling", "price_list": price_list, "customer_group": customer_group, "company": company, "conversion_rate": 1, "for_shopping_cart": True, "currency": frappe.db.get_value("Price List", price_list, "currency") }) if party and party.doctype == "Customer": pricing_rule_dict.update({"customer": party.name}) pricing_rule = get_pricing_rule_for_item(pricing_rule_dict) price_obj = price[0] if pricing_rule: # price without any rules applied mrp = price_obj.price_list_rate or 0 if pricing_rule.pricing_rule_for == "Discount Percentage": price_obj.discount_percent = pricing_rule.discount_percentage price_obj.formatted_discount_percent = str(flt(pricing_rule.discount_percentage, 0)) + "%" price_obj.price_list_rate = flt(price_obj.price_list_rate * (1.0 - (flt(pricing_rule.discount_percentage) / 100.0))) if pricing_rule.pricing_rule_for == "Rate": rate_discount = flt(mrp) - flt(pricing_rule.price_list_rate) if rate_discount > 0: price_obj.formatted_discount_rate = fmt_money(rate_discount, currency=price_obj["currency"]) price_obj.price_list_rate = pricing_rule.price_list_rate or 0 if price_obj: price_obj["formatted_price"] = fmt_money(price_obj["price_list_rate"], currency=price_obj["currency"]) if mrp != price_obj["price_list_rate"]: price_obj["formatted_mrp"] = fmt_money(mrp, currency=price_obj["currency"]) price_obj["currency_symbol"] = not cint(frappe.db.get_default("hide_currency_symbol")) \ and (frappe.db.get_value("Currency", price_obj.currency, "symbol", cache=True) or price_obj.currency) \ or "" uom_conversion_factor = frappe.db.sql(, item_code) uom_conversion_factor = uom_conversion_factor[0][0] if uom_conversion_factor else 1 price_obj["formatted_price_sales_uom"] = fmt_money(price_obj["price_list_rate"] * uom_conversion_factor, currency=price_obj["currency"]) if not price_obj["price_list_rate"]: price_obj["price_list_rate"] = 0 if not price_obj["currency"]: price_obj["currency"] = "" if not price_obj["formatted_price"]: price_obj["formatted_price"], price_obj["formatted_mrp"] = "", "" return price_obj ``` ###Assistant : select C.conversion_factor from `tabUOM Conversion Detail` C inner join `tabItem` I on C.parent = I.name and C.uom = I.sales_uom where I.name = %s