Unnamed: 0
int64
0
2.93k
code
stringlengths
101
62.2k
docs
stringlengths
51
10.7k
doc_len
int64
4
1.74k
words
int64
4
4.82k
lang
stringclasses
1 value
prompt
stringlengths
320
71.2k
1,400
def test_poisson_vs_mse(): rng = np.random.RandomState(42) n_train, n_test, n_features = 500, 500, 10 X = datasets.make_low_rank_matrix( n_samples=n_train + n_test, n_features=n_features, random_state=rng ) # We create a log-linear Poisson model and downscale coef as it will get # exponentiated. coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0) y = rng.poisson(lam=np.exp(X @ coef)) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=n_test, random_state=rng ) # We prevent some overfitting by setting min_samples_split=10. forest_poi = RandomForestRegressor( criterion="poisson", min_samples_leaf=10, max_features="sqrt", random_state=rng ) forest_mse = RandomForestRegressor( criterion="squared_error", min_samples_leaf=10, max_features="sqrt", random_state=rng, ) forest_poi.fit(X_train, y_train) forest_mse.fit(X_train, y_train) dummy = DummyRegressor(strategy="mean").fit(X_train, y_train) for X, y, val in [(X_train, y_train, "train"), (X_test, y_test, "test")]: metric_poi = mean_poisson_deviance(y, forest_poi.predict(X)) # squared_error forest might produce non-positive predictions => clip # If y = 0 for those, the poisson deviance gets too good. # If we drew more samples, we would eventually get y > 0 and the # poisson deviance would explode, i.e. be undefined. Therefore, we do # not clip to a tiny value like 1e-15, but to 1e-6. This acts like a # small penalty to the non-positive predictions. metric_mse = mean_poisson_deviance( y, np.clip(forest_mse.predict(X), 1e-6, None) ) metric_dummy = mean_poisson_deviance(y, dummy.predict(X)) # As squared_error might correctly predict 0 in train set, its train # score can be better than Poisson. This is no longer the case for the # test set. But keep the above comment for clipping in mind. if val == "test": assert metric_poi < metric_mse assert metric_poi < 0.5 * metric_dummy @pytest.mark.parametrize("criterion", ("poisson", "squared_error"))
Test that random forest with poisson criterion performs better than mse for a poisson target. There is a similar test for DecisionTreeRegressor.
22
247
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_poisson_vs_mse(): rng = np.random.RandomState(42) n_train, n_test, n_features = 500, 500, 10 X = datasets.make_low_rank_matrix( n_samples=n_train + n_test, n_features=n_features, random_state=rng ) # We create a log-linear Poisson model and downscale coef as it will get # exponentiated. coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0) y = rng.poisson(lam=np.exp(X @ coef)) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=n_test, random_state=rng ) # We prevent some overfitting by setting min_samples_split=10. forest_poi = RandomForestRegressor( criterion="poisson", min_samples_leaf=10, max_features="sqrt", random_state=rng ) forest_mse = RandomForestRegressor( criterion="squared_error", min_samples_leaf=10, max_features="sqrt", random_state=rng, ) forest_poi.fit(X_train, y_train) forest_mse.fit(X_train, y_train) dummy = DummyRegressor(strategy="mean").fit(X_train, y_train) for X, y, val in [(X_train, y_train, "train"), (X_test, y_test, "test")]: metric_poi = mean_poisson_deviance(y, forest_poi.predict(X)) # squared_error forest might produce non-positive predictions => clip # If y = 0 for those, the poisson deviance gets too good. # If we drew more samples, we would eventually get y > 0 and the # poisson deviance would explode, i.e. be undefined. Therefore, we do # not clip to a tiny value like 1e-15, but to 1e-6. This acts like a # small penalty to the non-positive predictions. metric_mse = mean_poisson_deviance( y, np.clip(forest_mse.predict(X), 1e-6, None) ) metric_dummy = mean_poisson_deviance(y, dummy.predict(X)) # As squared_error might correctly predict 0 in train set, its train # score can be better than Poisson. This is no longer the case for the # test set. But keep the above comment for clipping in mind. if val == "test": assert metric_poi < metric_mse assert metric_poi < 0.5 * metric_dummy @pytest.mark.parametrize("criterion", ("poisson", "squared_error")) ``` ###Assistant : Test that random forest with poisson criterion performs better than mse for a poisson target. There is a similar test for DecisionTreeRegressor.
1,401
def _external_caller_info(): frame = inspect.currentframe() caller = frame levels = 0 while caller.f_code.co_filename == __file__: caller = caller.f_back levels += 1 return { "lineno": caller.f_lineno, "filename": os.path.basename(caller.f_code.co_filename), }
Get the info from the caller frame. Used to override the logging function and line number with the correct ones. See the comment on _patched_makeRecord for more info.
28
28
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _external_caller_info(): frame = inspect.currentframe() caller = frame levels = 0 while caller.f_code.co_filename == __file__: caller = caller.f_back levels += 1 return { "lineno": caller.f_lineno, "filename": os.path.basename(caller.f_code.co_filename), } ``` ###Assistant : Get the info from the caller frame. Used to override the logging function and line number with the correct ones. See the comment on _patched_makeRecord for more info.
1,402
def _try_restart_fedora(self) -> None: try: util.run_script(['systemctl', 'restart', 'httpd']) except errors.SubprocessError as err: raise errors.MisconfigurationError(str(err)) # Finish with actual config check to see if systemctl restart helped super().config_test()
Tries to restart httpd using systemctl to generate the self signed key pair.
13
27
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _try_restart_fedora(self) -> None: try: util.run_script(['systemctl', 'restart', 'httpd']) except errors.SubprocessError as err: raise errors.MisconfigurationError(str(err)) # Finish with actual config check to see if systemctl restart helped super().config_test() ``` ###Assistant : Tries to restart httpd using systemctl to generate the self signed key pair.
1,403
async def sock_accept(self, sock): base_events._check_ssl_socket(sock) if self._debug and sock.gettimeout() != 0: raise ValueError("the socket must be non-blocking") fut = self.create_future() self._sock_accept(fut, sock) return await fut
Accept a connection. The socket must be bound to an address and listening for connections. The return value is a pair (conn, address) where conn is a new socket object usable to send and receive data on the connection, and address is the address bound to the socket on the other end of the connection.
55
25
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def sock_accept(self, sock): base_events._check_ssl_socket(sock) if self._debug and sock.gettimeout() != 0: raise ValueError("the socket must be non-blocking") fut = self.create_future() self._sock_accept(fut, sock) return await fut ``` ###Assistant : Accept a connection. The socket must be bound to an address and listening for connections. The return value is a pair (conn, address) where conn is a new socket object usable to send and receive data on the connection, and address is the address bound to the socket on the other end of the connection.
1,404
def test_state(self, api, state): stream = AdsInsights( api=api, start_date=datetime(2010, 1, 1), end_date=datetime(2011, 1, 1), ) assert stream.state == {} stream.state = state actual_state = stream.state actual_state["slices"] = sorted(actual_state.get("slices", [])) state["slices"] = sorted(state.get("slices", [])) assert actual_state == state
State setter/getter should work with all combinations
7
37
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_state(self, api, state): stream = AdsInsights( api=api, start_date=datetime(2010, 1, 1), end_date=datetime(2011, 1, 1), ) assert stream.state == {} stream.state = state actual_state = stream.state actual_state["slices"] = sorted(actual_state.get("slices", [])) state["slices"] = sorted(state.get("slices", [])) assert actual_state == state ``` ###Assistant : State setter/getter should work with all combinations
1,405
def get_snql_query(self) -> None: raise NotImplementedError("get_snql_query cannot be implemented for MetricsQueryBuilder")
Because metrics table queries need to make multiple requests per metric type this function cannot be inmplemented see run_query
19
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_snql_query(self) -> None: raise NotImplementedError("get_snql_query cannot be implemented for MetricsQueryBuilder") ``` ###Assistant : Because metrics table queries need to make multiple requests per metric type this function cannot be inmplemented see run_query
1,406
def _validate(self, params): remote_worker_stats = [w.validate.remote(**params) for w in self.remote_workers] return remote_worker_stats
Runs validation for each worker. Returns results as promises.
9
12
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _validate(self, params): remote_worker_stats = [w.validate.remote(**params) for w in self.remote_workers] return remote_worker_stats ``` ###Assistant : Runs validation for each worker. Returns results as promises.
1,407
def set_aspect(self, aspect, adjustable=None, anchor=None, share=False): _api.check_in_list(('auto', 'equal', 'equalxy', 'equalyz', 'equalxz'), aspect=aspect) super().set_aspect( aspect='auto', adjustable=adjustable, anchor=anchor, share=share) if aspect in ('equal', 'equalxy', 'equalxz', 'equalyz'): if aspect == 'equal': axis_indices = [0, 1, 2] elif aspect == 'equalxy': axis_indices = [0, 1] elif aspect == 'equalxz': axis_indices = [0, 2] elif aspect == 'equalyz': axis_indices = [1, 2] view_intervals = np.array([self.xaxis.get_view_interval(), self.yaxis.get_view_interval(), self.zaxis.get_view_interval()]) mean = np.mean(view_intervals, axis=1) delta = np.max(np.ptp(view_intervals, axis=1)) deltas = delta * self._box_aspect / min(self._box_aspect) for i, set_lim in enumerate((self.set_xlim3d, self.set_ylim3d, self.set_zlim3d)): if i in axis_indices: set_lim(mean[i] - deltas[i]/2., mean[i] + deltas[i]/2.)
Set the aspect ratios. Parameters ---------- aspect : {'auto', 'equal', 'equalxy', 'equalxz', 'equalyz'} Possible values: ========= ================================================== value description ========= ================================================== 'auto' automatic; fill the position rectangle with data. 'equal' adapt all the axes to have equal aspect ratios. 'equalxy' adapt the x and y axes to have equal aspect ratios. 'equalxz' adapt the x and z axes to have equal aspect ratios. 'equalyz' adapt the y and z axes to have equal aspect ratios. ========= ================================================== adjustable : None Currently ignored by Axes3D If not *None*, this defines which parameter will be adjusted to meet the required aspect. See `.set_adjustable` for further details. anchor : None or str or 2-tuple of float, optional If not *None*, this defines where the Axes will be drawn if there is extra space due to aspect constraints. The most common way to to specify the anchor are abbreviations of cardinal directions: ===== ===================== value description ===== ===================== 'C' centered 'SW' lower left corner 'S' middle of bottom edge 'SE' lower right corner etc. ===== ===================== See `~.Axes.set_anchor` for further details. share : bool, default: False If ``True``, apply the settings to all shared Axes. See Also -------- mpl_toolkits.mplot3d.axes3d.Axes3D.set_box_aspect
195
94
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def set_aspect(self, aspect, adjustable=None, anchor=None, share=False): _api.check_in_list(('auto', 'equal', 'equalxy', 'equalyz', 'equalxz'), aspect=aspect) super().set_aspect( aspect='auto', adjustable=adjustable, anchor=anchor, share=share) if aspect in ('equal', 'equalxy', 'equalxz', 'equalyz'): if aspect == 'equal': axis_indices = [0, 1, 2] elif aspect == 'equalxy': axis_indices = [0, 1] elif aspect == 'equalxz': axis_indices = [0, 2] elif aspect == 'equalyz': axis_indices = [1, 2] view_intervals = np.array([self.xaxis.get_view_interval(), self.yaxis.get_view_interval(), self.zaxis.get_view_interval()]) mean = np.mean(view_intervals, axis=1) delta = np.max(np.ptp(view_intervals, axis=1)) deltas = delta * self._box_aspect / min(self._box_aspect) for i, set_lim in enumerate((self.set_xlim3d, self.set_ylim3d, self.set_zlim3d)): if i in axis_indices: set_lim(mean[i] - deltas[i]/2., mean[i] + deltas[i]/2.) ``` ###Assistant : Set the aspect ratios. Parameters ---------- aspect : {'auto', 'equal', 'equalxy', 'equalxz', 'equalyz'} Possible values: ========= ================================================== value description ========= ================================================== 'auto' automatic; fill the position rectangle with data. 'equal' adapt all the axes to have equal aspect ratios. 'equalxy' adapt the x and y axes to have equal aspect ratios. 'equalxz' adapt the x and z axes to have equal aspect ratios. 'equalyz' adapt the y and z axes to have equal aspect ratios. ========= ================================================== adjustable : None Currently ignored by Axes3D If not *None*, this defines which parameter will be adjusted to meet the required aspect. See `.set_adjustable` for further details. anchor : None or str or 2-tuple of float, optional If not *None*, this defines where the Axes will be drawn if there is extra space due to aspect constraints. The most common way to to specify the anchor are abbreviations of cardinal directions: ===== ===================== value description ===== ===================== 'C' centered 'SW' lower left corner 'S' middle of bottom edge 'SE' lower right corner etc. ===== ===================== See `~.Axes.set_anchor` for further details. share : bool, default: False If ``True``, apply the settings to all shared Axes. See Also -------- mpl_toolkits.mplot3d.axes3d.Axes3D.set_box_aspect
1,408
def __getattr__(cls, name): if _is_dunder(name): raise AttributeError(name) try: return cls._member_map_[name] except KeyError: raise AttributeError(name) from None
Return the enum member matching `name` We use __getattr__ instead of descriptors or inserting into the enum class' __dict__ in order to support `name` and `value` being both properties for enum members (which live in the class' __dict__) and enum members themselves.
42
16
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def __getattr__(cls, name): if _is_dunder(name): raise AttributeError(name) try: return cls._member_map_[name] except KeyError: raise AttributeError(name) from None ``` ###Assistant : Return the enum member matching `name` We use __getattr__ instead of descriptors or inserting into the enum class' __dict__ in order to support `name` and `value` being both properties for enum members (which live in the class' __dict__) and enum members themselves.
1,409
def test_n_clusters(n_clusters): rng = np.random.RandomState(0) X = rng.rand(10, 2) bisect_means = BisectingKMeans(n_clusters=n_clusters, random_state=0) bisect_means.fit(X) assert_array_equal(np.unique(bisect_means.labels_), np.arange(n_clusters))
Test if resulting labels are in range [0, n_clusters - 1].
11
16
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_n_clusters(n_clusters): rng = np.random.RandomState(0) X = rng.rand(10, 2) bisect_means = BisectingKMeans(n_clusters=n_clusters, random_state=0) bisect_means.fit(X) assert_array_equal(np.unique(bisect_means.labels_), np.arange(n_clusters)) ``` ###Assistant : Test if resulting labels are in range [0, n_clusters - 1].
1,410
def test_nested_ungrouped_nav(self): nav_cfg = [ {'Home': 'index.md'}, {'Contact': 'about/contact.md'}, {'License Title': 'about/sub/license.md'}, ] expected = dedent( ) cfg = load_config(nav=nav_cfg, site_url='http://example.com/') fs = [ File(list(item.values())[0], cfg['docs_dir'], cfg['site_dir'], cfg['use_directory_urls']) for item in nav_cfg ] files = Files(fs) site_navigation = get_navigation(files, cfg) self.assertEqual(str(site_navigation).strip(), expected) self.assertEqual(len(site_navigation.items), 3) self.assertEqual(len(site_navigation.pages), 3)
Page(title='Home', url='/') Page(title='Contact', url='/about/contact/') Page(title='License Title', url='/about/sub/license/')
7
46
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_nested_ungrouped_nav(self): nav_cfg = [ {'Home': 'index.md'}, {'Contact': 'about/contact.md'}, {'License Title': 'about/sub/license.md'}, ] expected = dedent( ) cfg = load_config(nav=nav_cfg, site_url='http://example.com/') fs = [ File(list(item.values())[0], cfg['docs_dir'], cfg['site_dir'], cfg['use_directory_urls']) for item in nav_cfg ] files = Files(fs) site_navigation = get_navigation(files, cfg) self.assertEqual(str(site_navigation).strip(), expected) self.assertEqual(len(site_navigation.items), 3) self.assertEqual(len(site_navigation.pages), 3) ``` ###Assistant : Page(title='Home', url='/') Page(title='Contact', url='/about/contact/') Page(title='License Title', url='/about/sub/license/')
1,411
def _get_log_file_names(self, name, unique=False): if unique: log_stdout = self._make_inc_temp( suffix=".out", prefix=name, directory_name=self._logs_dir ) log_stderr = self._make_inc_temp( suffix=".err", prefix=name, directory_name=self._logs_dir ) else: log_stdout = os.path.join(self._logs_dir, f"{name}.out") log_stderr = os.path.join(self._logs_dir, f"{name}.err") return log_stdout, log_stderr
Generate partially randomized filenames for log files. Args: name (str): descriptive string for this log file. unique (bool): if true, a counter will be attached to `name` to ensure the returned filename is not already used. Returns: A tuple of two file names for redirecting (stdout, stderr).
47
32
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_log_file_names(self, name, unique=False): if unique: log_stdout = self._make_inc_temp( suffix=".out", prefix=name, directory_name=self._logs_dir ) log_stderr = self._make_inc_temp( suffix=".err", prefix=name, directory_name=self._logs_dir ) else: log_stdout = os.path.join(self._logs_dir, f"{name}.out") log_stderr = os.path.join(self._logs_dir, f"{name}.err") return log_stdout, log_stderr ``` ###Assistant : Generate partially randomized filenames for log files. Args: name (str): descriptive string for this log file. unique (bool): if true, a counter will be attached to `name` to ensure the returned filename is not already used. Returns: A tuple of two file names for redirecting (stdout, stderr).
1,412
def yeardayscalendar(self, year, width=3): months = [ self.monthdayscalendar(year, i) for i in range(January, January+12) ] return [months[i:i+width] for i in range(0, len(months), width) ]
Return the data for the specified year ready for formatting (similar to yeardatescalendar()). Entries in the week lists are day numbers. Day numbers outside this month are zero.
28
24
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def yeardayscalendar(self, year, width=3): months = [ self.monthdayscalendar(year, i) for i in range(January, January+12) ] return [months[i:i+width] for i in range(0, len(months), width) ] ``` ###Assistant : Return the data for the specified year ready for formatting (similar to yeardatescalendar()). Entries in the week lists are day numbers. Day numbers outside this month are zero.
1,413
def test_simplelistfilter_without_parameter(self): modeladmin = DecadeFilterBookAdminWithoutParameter(Book, site) request = self.request_factory.get("/", {}) request.user = self.alfred msg = "The list filter 'DecadeListFilterWithoutParameter' does not specify a 'parameter_name'." with self.assertRaisesMessage(ImproperlyConfigured, msg): modeladmin.get_changelist_instance(request)
Any SimpleListFilter must define a parameter_name.
6
28
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_simplelistfilter_without_parameter(self): modeladmin = DecadeFilterBookAdminWithoutParameter(Book, site) request = self.request_factory.get("/", {}) request.user = self.alfred msg = "The list filter 'DecadeListFilterWithoutParameter' does not specify a 'parameter_name'." with self.assertRaisesMessage(ImproperlyConfigured, msg): modeladmin.get_changelist_instance(request) ``` ###Assistant : Any SimpleListFilter must define a parameter_name.
1,414
def from_session_or_email(cls, request, organization, email, instance=None, logger=None): invite_token, invite_member_id = get_invite_details(request) try: if invite_token and invite_member_id: om = OrganizationMember.objects.get(token=invite_token, id=invite_member_id) else: om = OrganizationMember.objects.get( email=email, organization=organization, user=None ) except OrganizationMember.DoesNotExist: # Unable to locate the pending organization member. Cannot setup # the invite helper. return None return cls( request=request, member_id=om.id, token=om.token, instance=instance, logger=logger )
Initializes the ApiInviteHelper by locating the pending organization member via the currently set pending invite details in the session, or via the passed email if no cookie is currently set.
30
54
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def from_session_or_email(cls, request, organization, email, instance=None, logger=None): invite_token, invite_member_id = get_invite_details(request) try: if invite_token and invite_member_id: om = OrganizationMember.objects.get(token=invite_token, id=invite_member_id) else: om = OrganizationMember.objects.get( email=email, organization=organization, user=None ) except OrganizationMember.DoesNotExist: # Unable to locate the pending organization member. Cannot setup # the invite helper. return None return cls( request=request, member_id=om.id, token=om.token, instance=instance, logger=logger ) ``` ###Assistant : Initializes the ApiInviteHelper by locating the pending organization member via the currently set pending invite details in the session, or via the passed email if no cookie is currently set.
1,415
async def test_multiple_bleak_scanner_instances(hass): install_multiple_bleak_catcher() instance = bleak.BleakScanner() assert isinstance(instance, HaBleakScannerWrapper) uninstall_multiple_bleak_catcher() with patch("bleak.get_platform_scanner_backend_type"): instance = bleak.BleakScanner() assert not isinstance(instance, HaBleakScannerWrapper)
Test creating multiple BleakScanners without an integration.
7
20
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def test_multiple_bleak_scanner_instances(hass): install_multiple_bleak_catcher() instance = bleak.BleakScanner() assert isinstance(instance, HaBleakScannerWrapper) uninstall_multiple_bleak_catcher() with patch("bleak.get_platform_scanner_backend_type"): instance = bleak.BleakScanner() assert not isinstance(instance, HaBleakScannerWrapper) ``` ###Assistant : Test creating multiple BleakScanners without an integration.
1,416
def highlight_string(value, highlight, trim_pre=None, trim_post=None, trim_placeholder='...'): # Split value on highlight string try: pre, match, post = re.split(fr'({highlight})', value, maxsplit=1, flags=re.IGNORECASE) except ValueError: # Match not found return escape(value) # Trim pre/post sections to length if trim_pre and len(pre) > trim_pre: pre = trim_placeholder + pre[-trim_pre:] if trim_post and len(post) > trim_post: post = post[:trim_post] + trim_placeholder return f'{escape(pre)}<mark>{escape(match)}</mark>{escape(post)}'
Highlight a string within a string and optionally trim the pre/post portions of the original string.
16
59
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def highlight_string(value, highlight, trim_pre=None, trim_post=None, trim_placeholder='...'): # Split value on highlight string try: pre, match, post = re.split(fr'({highlight})', value, maxsplit=1, flags=re.IGNORECASE) except ValueError: # Match not found return escape(value) # Trim pre/post sections to length if trim_pre and len(pre) > trim_pre: pre = trim_placeholder + pre[-trim_pre:] if trim_post and len(post) > trim_post: post = post[:trim_post] + trim_placeholder return f'{escape(pre)}<mark>{escape(match)}</mark>{escape(post)}' ``` ###Assistant : Highlight a string within a string and optionally trim the pre/post portions of the original string.
1,417
def node_table(self): self._check_connected() node_table = self.global_state_accessor.get_node_table() results = [] for node_info_item in node_table: item = gcs_utils.GcsNodeInfo.FromString(node_info_item) node_info = { "NodeID": ray._private.utils.binary_to_hex(item.node_id), "Alive": item.state == gcs_utils.GcsNodeInfo.GcsNodeState.Value("ALIVE"), "NodeManagerAddress": item.node_manager_address, "NodeManagerHostname": item.node_manager_hostname, "NodeManagerPort": item.node_manager_port, "ObjectManagerPort": item.object_manager_port, "ObjectStoreSocketName": item.object_store_socket_name, "RayletSocketName": item.raylet_socket_name, "MetricsExportPort": item.metrics_export_port, "NodeName": item.node_name, } node_info["alive"] = node_info["Alive"] node_info["Resources"] = ( {key: value for key, value in item.resources_total.items()} if node_info["Alive"] else {} ) results.append(node_info) return results
Fetch and parse the Gcs node info table. Returns: Information about the node in the cluster.
16
63
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def node_table(self): self._check_connected() node_table = self.global_state_accessor.get_node_table() results = [] for node_info_item in node_table: item = gcs_utils.GcsNodeInfo.FromString(node_info_item) node_info = { "NodeID": ray._private.utils.binary_to_hex(item.node_id), "Alive": item.state == gcs_utils.GcsNodeInfo.GcsNodeState.Value("ALIVE"), "NodeManagerAddress": item.node_manager_address, "NodeManagerHostname": item.node_manager_hostname, "NodeManagerPort": item.node_manager_port, "ObjectManagerPort": item.object_manager_port, "ObjectStoreSocketName": item.object_store_socket_name, "RayletSocketName": item.raylet_socket_name, "MetricsExportPort": item.metrics_export_port, "NodeName": item.node_name, } node_info["alive"] = node_info["Alive"] node_info["Resources"] = ( {key: value for key, value in item.resources_total.items()} if node_info["Alive"] else {} ) results.append(node_info) return results ``` ###Assistant : Fetch and parse the Gcs node info table. Returns: Information about the node in the cluster.
1,418
def vocabulary_size(self): if tf.executing_eagerly(): return ( int(self.lookup_table.size().numpy()) + self._token_start_index() ) else: return self.lookup_table.size() + self._token_start_index()
Gets the current size of the layer's vocabulary. Returns: The integer size of the vocabulary, including optional mask and oov indices.
21
15
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def vocabulary_size(self): if tf.executing_eagerly(): return ( int(self.lookup_table.size().numpy()) + self._token_start_index() ) else: return self.lookup_table.size() + self._token_start_index() ``` ###Assistant : Gets the current size of the layer's vocabulary. Returns: The integer size of the vocabulary, including optional mask and oov indices.
1,419
def test_version_with_invalid_names(): lslpp_mydog_out = ver_chk = MagicMock(return_value={"retcode": 1, "stdout": lslpp_mydog_out}) with patch.dict(aixpkg.__grains__, {"osarch": "PowerPC_POWER8"}), patch.dict( aixpkg.__salt__, {"cmd.run_all": ver_chk}, ): versions_checked = aixpkg.version( "mydog", versions_as_list=True, use_context=False ) assert ver_chk.call_count == 1 ver_chk.assert_called_with("lslpp -Lq mydog", python_shell=False) assert versions_checked == ""
test version of packages lslpp: Fileset mydog not installed. State codes: A -- Applied. B -- Broken. C -- Committed. E -- EFIX Locked. O -- Obsolete. (partially migrated to newer version) ? -- Inconsistent State...Run lppchk -v. Type codes: F -- Installp Fileset P -- Product C -- Component T -- Feature R -- RPM Package E -- Interim Fix
61
38
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_version_with_invalid_names(): lslpp_mydog_out = ver_chk = MagicMock(return_value={"retcode": 1, "stdout": lslpp_mydog_out}) with patch.dict(aixpkg.__grains__, {"osarch": "PowerPC_POWER8"}), patch.dict( aixpkg.__salt__, {"cmd.run_all": ver_chk}, ): versions_checked = aixpkg.version( "mydog", versions_as_list=True, use_context=False ) assert ver_chk.call_count == 1 ver_chk.assert_called_with("lslpp -Lq mydog", python_shell=False) assert versions_checked == "" ``` ###Assistant : test version of packages lslpp: Fileset mydog not installed. State codes: A -- Applied. B -- Broken. C -- Committed. E -- EFIX Locked. O -- Obsolete. (partially migrated to newer version) ? -- Inconsistent State...Run lppchk -v. Type codes: F -- Installp Fileset P -- Product C -- Component T -- Feature R -- RPM Package E -- Interim Fix
1,420
def test_mapped_literal_length_increase_adds_additional_ti(dag_maker, session): with dag_maker(session=session) as dag:
Test that when the length of mapped literal increases, additional ti is added
13
7
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_mapped_literal_length_increase_adds_additional_ti(dag_maker, session): with dag_maker(session=session) as dag: ``` ###Assistant : Test that when the length of mapped literal increases, additional ti is added
1,421
def test_installed_without_username(self): # Remove username to simulate privacy mode del self.user_data_from_bitbucket["principal"]["username"] response = self.client.post(self.path, data=self.user_data_from_bitbucket) assert response.status_code == 200 integration = Integration.objects.get(provider=self.provider, external_id=self.client_key) assert integration.name == self.user_display_name assert integration.metadata == self.user_metadata
Test a user (not team) installation where the user has hidden their username from public view
16
31
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_installed_without_username(self): # Remove username to simulate privacy mode del self.user_data_from_bitbucket["principal"]["username"] response = self.client.post(self.path, data=self.user_data_from_bitbucket) assert response.status_code == 200 integration = Integration.objects.get(provider=self.provider, external_id=self.client_key) assert integration.name == self.user_display_name assert integration.metadata == self.user_metadata ``` ###Assistant : Test a user (not team) installation where the user has hidden their username from public view
1,422
def _command_display(self, command): build_tabs = getattr(self, f"_{command}_tabs") build_tabs()
Build the relevant command specific tabs based on the incoming Faceswap command. Parameters ---------- command: str The Faceswap command that is being executed
23
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _command_display(self, command): build_tabs = getattr(self, f"_{command}_tabs") build_tabs() ``` ###Assistant : Build the relevant command specific tabs based on the incoming Faceswap command. Parameters ---------- command: str The Faceswap command that is being executed
1,423
def itermerged(self): for key in self: val = self._container[key.lower()] yield val[0], ", ".join(val[1:])
Iterate over all headers, merging duplicate ones together.
8
13
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def itermerged(self): for key in self: val = self._container[key.lower()] yield val[0], ", ".join(val[1:]) ``` ###Assistant : Iterate over all headers, merging duplicate ones together.
1,424
def get_file_from_path(self, path): return self.src_paths.get(os.path.normpath(path))
Return a File instance with File.src_path equal to path.
9
5
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_file_from_path(self, path): return self.src_paths.get(os.path.normpath(path)) ``` ###Assistant : Return a File instance with File.src_path equal to path.
1,425
def sleepdeprived(request): module = request.node.get_closest_marker( "sleepdeprived_patched_module").args[0] old_sleep, module.sleep = module.sleep, noop try: yield finally: module.sleep = old_sleep # Taken from # http://bitbucket.org/runeh/snippets/src/tip/missing_modules.py @pytest.fixture
Mock sleep method in patched module to do nothing. Example: >>> import time >>> @pytest.mark.sleepdeprived_patched_module(time) >>> def test_foo(self, sleepdeprived): >>> pass
21
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def sleepdeprived(request): module = request.node.get_closest_marker( "sleepdeprived_patched_module").args[0] old_sleep, module.sleep = module.sleep, noop try: yield finally: module.sleep = old_sleep # Taken from # http://bitbucket.org/runeh/snippets/src/tip/missing_modules.py @pytest.fixture ``` ###Assistant : Mock sleep method in patched module to do nothing. Example: >>> import time >>> @pytest.mark.sleepdeprived_patched_module(time) >>> def test_foo(self, sleepdeprived): >>> pass
1,426
def _set_mouse_bindings(self) -> None: logger.debug("Binding mouse events") if system() == "Linux": self._canvas.tag_bind(self._canvas.image_id, "<Button-4>", self._on_bound_zoom) self._canvas.tag_bind(self._canvas.image_id, "<Button-5>", self._on_bound_zoom) else: self._canvas.tag_bind(self._canvas.image_id, "<MouseWheel>", self._on_bound_zoom) self._canvas.tag_bind(self._canvas.image_id, "<Button-1>", self._on_mouse_click) self._canvas.tag_bind(self._canvas.image_id, "<B1-Motion>", self._on_mouse_drag) logger.debug("Bound mouse events")
Set the mouse bindings for interacting with the preview image Mousewheel: Zoom in and out Mouse click: Move image
19
30
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _set_mouse_bindings(self) -> None: logger.debug("Binding mouse events") if system() == "Linux": self._canvas.tag_bind(self._canvas.image_id, "<Button-4>", self._on_bound_zoom) self._canvas.tag_bind(self._canvas.image_id, "<Button-5>", self._on_bound_zoom) else: self._canvas.tag_bind(self._canvas.image_id, "<MouseWheel>", self._on_bound_zoom) self._canvas.tag_bind(self._canvas.image_id, "<Button-1>", self._on_mouse_click) self._canvas.tag_bind(self._canvas.image_id, "<B1-Motion>", self._on_mouse_drag) logger.debug("Bound mouse events") ``` ###Assistant : Set the mouse bindings for interacting with the preview image Mousewheel: Zoom in and out Mouse click: Move image
1,427
async def test_create_area_with_id_already_in_use(registry): area1 = registry.async_create("mock") updated_area1 = registry.async_update(area1.id, name="New Name") assert updated_area1.id == area1.id area2 = registry.async_create("mock") assert area2.id == "mock_2"
Make sure that we can't create an area with a name already in use.
14
22
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def test_create_area_with_id_already_in_use(registry): area1 = registry.async_create("mock") updated_area1 = registry.async_update(area1.id, name="New Name") assert updated_area1.id == area1.id area2 = registry.async_create("mock") assert area2.id == "mock_2" ``` ###Assistant : Make sure that we can't create an area with a name already in use.
1,428
def forward(self, *args, **kwargs): labels = kwargs.pop('labels', None) pooled, encoded = super(ErnieModelForSequenceClassification, self).forward(*args, **kwargs) hidden = self.dropout(pooled) logits = self.classifier(hidden) if labels is not None: if len(labels.shape) != 1: labels = labels.squeeze() loss = F.cross_entropy(logits, labels) else: loss = None return loss, logits
Args: labels (optional, `Variable` of shape [batch_size]): ground truth label id for each sentence Returns: loss (`Variable` of shape []): Cross entropy loss mean over batch if labels not set, returns None logits (`Variable` of shape [batch_size, hidden_size]): output logits of classifier
42
43
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def forward(self, *args, **kwargs): labels = kwargs.pop('labels', None) pooled, encoded = super(ErnieModelForSequenceClassification, self).forward(*args, **kwargs) hidden = self.dropout(pooled) logits = self.classifier(hidden) if labels is not None: if len(labels.shape) != 1: labels = labels.squeeze() loss = F.cross_entropy(logits, labels) else: loss = None return loss, logits ``` ###Assistant : Args: labels (optional, `Variable` of shape [batch_size]): ground truth label id for each sentence Returns: loss (`Variable` of shape []): Cross entropy loss mean over batch if labels not set, returns None logits (`Variable` of shape [batch_size, hidden_size]): output logits of classifier
1,429
def _get_project(self, name): raise NotImplementedError('Please implement in the subclass')
For a given project, get a dictionary mapping available versions to Distribution instances. This should be implemented in subclasses. If called from a locate() request, self.matcher will be set to a matcher for the requirement to satisfy, otherwise it will be None.
42
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_project(self, name): raise NotImplementedError('Please implement in the subclass') ``` ###Assistant : For a given project, get a dictionary mapping available versions to Distribution instances. This should be implemented in subclasses. If called from a locate() request, self.matcher will be set to a matcher for the requirement to satisfy, otherwise it will be None.
1,430
def test_pickle_empty(self): arr = np.array([]).reshape(999999, 0) pk_dmp = pickle.dumps(arr) pk_load = pickle.loads(pk_dmp) assert pk_load.size == 0
Checking if an empty array pickled and un-pickled will not cause a segmentation fault
14
16
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_pickle_empty(self): arr = np.array([]).reshape(999999, 0) pk_dmp = pickle.dumps(arr) pk_load = pickle.loads(pk_dmp) assert pk_load.size == 0 ``` ###Assistant : Checking if an empty array pickled and un-pickled will not cause a segmentation fault
1,431
def get_semantics(cls, kwargs, semantics=None): # TODO this should be get_variables since we have included x and y if semantics is None: semantics = cls.semantics variables = {} for key, val in kwargs.items(): if key in semantics and val is not None: variables[key] = val return variables
Subset a dictionary arguments with known semantic variables.
8
46
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_semantics(cls, kwargs, semantics=None): # TODO this should be get_variables since we have included x and y if semantics is None: semantics = cls.semantics variables = {} for key, val in kwargs.items(): if key in semantics and val is not None: variables[key] = val return variables ``` ###Assistant : Subset a dictionary arguments with known semantic variables.
1,432
def convert_deps_to_pip(deps, project=None, r=True, include_index=True): from pipenv.vendor.requirementslib.models.requirements import Requirement dependencies = [] for dep_name, dep in deps.items(): if project: project.clear_pipfile_cache() indexes = getattr(project, "pipfile_sources", []) if project is not None else [] new_dep = Requirement.from_pipfile(dep_name, dep) if new_dep.index: include_index = True req = new_dep.as_line(sources=indexes if include_index else None).strip() dependencies.append(req) if not r: return dependencies # Write requirements.txt to tmp directory. from pipenv.vendor.vistir.path import create_tracked_tempfile f = create_tracked_tempfile(suffix="-requirements.txt", delete=False) f.write("\n".join(dependencies).encode("utf-8")) f.close() return f.name
"Converts a Pipfile-formatted dependency to a pip-formatted one.
8
72
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def convert_deps_to_pip(deps, project=None, r=True, include_index=True): from pipenv.vendor.requirementslib.models.requirements import Requirement dependencies = [] for dep_name, dep in deps.items(): if project: project.clear_pipfile_cache() indexes = getattr(project, "pipfile_sources", []) if project is not None else [] new_dep = Requirement.from_pipfile(dep_name, dep) if new_dep.index: include_index = True req = new_dep.as_line(sources=indexes if include_index else None).strip() dependencies.append(req) if not r: return dependencies # Write requirements.txt to tmp directory. from pipenv.vendor.vistir.path import create_tracked_tempfile f = create_tracked_tempfile(suffix="-requirements.txt", delete=False) f.write("\n".join(dependencies).encode("utf-8")) f.close() return f.name ``` ###Assistant : "Converts a Pipfile-formatted dependency to a pip-formatted one.
1,433
def handle_trial_end(self, data): hyper_params = nni.load(data['hyper_params']) if self.is_created_in_previous_exp(hyper_params['parameter_id']): # The end of the recovered trial is ignored return self._handle_trial_end(hyper_params['parameter_id']) if data['trial_job_id'] in self.job_id_para_id_map: del self.job_id_para_id_map[data['trial_job_id']]
Parameters ---------- data: dict() it has three keys: trial_job_id, event, hyper_params trial_job_id: the id generated by training service event: the job's state hyper_params: the hyperparameters (a string) generated and returned by tuner
32
25
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def handle_trial_end(self, data): hyper_params = nni.load(data['hyper_params']) if self.is_created_in_previous_exp(hyper_params['parameter_id']): # The end of the recovered trial is ignored return self._handle_trial_end(hyper_params['parameter_id']) if data['trial_job_id'] in self.job_id_para_id_map: del self.job_id_para_id_map[data['trial_job_id']] ``` ###Assistant : Parameters ---------- data: dict() it has three keys: trial_job_id, event, hyper_params trial_job_id: the id generated by training service event: the job's state hyper_params: the hyperparameters (a string) generated and returned by tuner
1,434
def _copy_future_state(source, dest): assert source.done() if dest.cancelled(): return assert not dest.done() if source.cancelled(): dest.cancel() else: exception = source.exception() if exception is not None: dest.set_exception(_convert_future_exc(exception)) else: result = source.result() dest.set_result(result)
Internal helper to copy state from another Future. The other Future may be a concurrent.futures.Future.
15
29
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _copy_future_state(source, dest): assert source.done() if dest.cancelled(): return assert not dest.done() if source.cancelled(): dest.cancel() else: exception = source.exception() if exception is not None: dest.set_exception(_convert_future_exc(exception)) else: result = source.result() dest.set_result(result) ``` ###Assistant : Internal helper to copy state from another Future. The other Future may be a concurrent.futures.Future.
1,435
def test_get_feature_names_invalid_dtypes(names, dtypes): pd = pytest.importorskip("pandas") X = pd.DataFrame([[1, 2], [4, 5], [5, 6]], columns=names) msg = re.escape( "Feature names only support names that are all strings. " f"Got feature names with dtypes: {dtypes}." ) with pytest.raises(TypeError, match=msg): names = _get_feature_names(X)
Get feature names errors when the feature names have mixed dtypes
11
41
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_get_feature_names_invalid_dtypes(names, dtypes): pd = pytest.importorskip("pandas") X = pd.DataFrame([[1, 2], [4, 5], [5, 6]], columns=names) msg = re.escape( "Feature names only support names that are all strings. " f"Got feature names with dtypes: {dtypes}." ) with pytest.raises(TypeError, match=msg): names = _get_feature_names(X) ``` ###Assistant : Get feature names errors when the feature names have mixed dtypes
1,436
def lookup(address, port, s): # We may get an ipv4-mapped ipv6 address here, e.g. ::ffff:127.0.0.1. # Those still appear as "127.0.0.1" in the table, so we need to strip the prefix. address = re.sub(r"^::ffff:(?=\d+.\d+.\d+.\d+$)", "", address) s = s.decode() # ALL tcp 192.168.1.13:57474 -> 23.205.82.58:443 ESTABLISHED:ESTABLISHED specv4 = f"{address}:{port}" # ALL tcp 2a01:e35:8bae:50f0:9d9b:ef0d:2de3:b733[58505] -> 2606:4700:30::681f:4ad0[443] ESTABLISHED:ESTABLISHED specv6 = f"{address}[{port}]" for i in s.split("\n"): if "ESTABLISHED:ESTABLISHED" in i and specv4 in i: s = i.split() if len(s) > 4: if sys.platform.startswith("freebsd"): # strip parentheses for FreeBSD pfctl s = s[3][1:-1].split(":") else: s = s[4].split(":") if len(s) == 2: return s[0], int(s[1]) elif "ESTABLISHED:ESTABLISHED" in i and specv6 in i: s = i.split() if len(s) > 4: s = s[4].split("[") port = s[1].split("]") port = port[0] return s[0], int(port) raise RuntimeError("Could not resolve original destination.")
Parse the pfctl state output s, to look up the destination host matching the client (address, port). Returns an (address, port) tuple, or None.
24
133
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def lookup(address, port, s): # We may get an ipv4-mapped ipv6 address here, e.g. ::ffff:127.0.0.1. # Those still appear as "127.0.0.1" in the table, so we need to strip the prefix. address = re.sub(r"^::ffff:(?=\d+.\d+.\d+.\d+$)", "", address) s = s.decode() # ALL tcp 192.168.1.13:57474 -> 23.205.82.58:443 ESTABLISHED:ESTABLISHED specv4 = f"{address}:{port}" # ALL tcp 2a01:e35:8bae:50f0:9d9b:ef0d:2de3:b733[58505] -> 2606:4700:30::681f:4ad0[443] ESTABLISHED:ESTABLISHED specv6 = f"{address}[{port}]" for i in s.split("\n"): if "ESTABLISHED:ESTABLISHED" in i and specv4 in i: s = i.split() if len(s) > 4: if sys.platform.startswith("freebsd"): # strip parentheses for FreeBSD pfctl s = s[3][1:-1].split(":") else: s = s[4].split(":") if len(s) == 2: return s[0], int(s[1]) elif "ESTABLISHED:ESTABLISHED" in i and specv6 in i: s = i.split() if len(s) > 4: s = s[4].split("[") port = s[1].split("]") port = port[0] return s[0], int(port) raise RuntimeError("Could not resolve original destination.") ``` ###Assistant : Parse the pfctl state output s, to look up the destination host matching the client (address, port). Returns an (address, port) tuple, or None.
1,437
def _hydrate_rules(cls, project_id, rules, type=OwnerRuleType.OWNERSHIP_RULE.value): owners = [owner for rule in rules for owner in rule.owners] actors = { key: val for key, val in resolve_actors({owner for owner in owners}, project_id).items() if val } result = [ (rule, ActorTuple.resolve_many([actors[owner] for owner in rule.owners]), type) for rule in rules ] return result
Get the last matching rule to take the most precedence.
10
51
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _hydrate_rules(cls, project_id, rules, type=OwnerRuleType.OWNERSHIP_RULE.value): owners = [owner for rule in rules for owner in rule.owners] actors = { key: val for key, val in resolve_actors({owner for owner in owners}, project_id).items() if val } result = [ (rule, ActorTuple.resolve_many([actors[owner] for owner in rule.owners]), type) for rule in rules ] return result ``` ###Assistant : Get the last matching rule to take the most precedence.
1,438
def activate(self) -> str: load_kube_config_from_dict( config_dict=self.config, context=self.context, ) return self.current_context()
Convenience method for activating the k8s config stored in an instance of this block Returns current_context for sanity check
19
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def activate(self) -> str: load_kube_config_from_dict( config_dict=self.config, context=self.context, ) return self.current_context() ``` ###Assistant : Convenience method for activating the k8s config stored in an instance of this block Returns current_context for sanity check
1,439
def as_coeff_add(self, *deps) -> tuple[Expr, tuple[Expr, ...]]: if deps: if not self.has_free(*deps): return self, tuple() return S.Zero, (self,)
Return the tuple (c, args) where self is written as an Add, ``a``. c should be a Rational added to any terms of the Add that are independent of deps. args should be a tuple of all other terms of ``a``; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you do not know if self is an Add or not but you want to treat self as an Add or if you want to process the individual arguments of the tail of self as an Add. - if you know self is an Add and want only the head, use self.args[0]; - if you do not want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail. - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_add() (3, ()) >>> (3 + x).as_coeff_add() (3, (x,)) >>> (3 + x + y).as_coeff_add(x) (y + 3, (x,)) >>> (3 + y).as_coeff_add(x) (y + 3, ())
195
18
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def as_coeff_add(self, *deps) -> tuple[Expr, tuple[Expr, ...]]: if deps: if not self.has_free(*deps): return self, tuple() return S.Zero, (self,) ``` ###Assistant : Return the tuple (c, args) where self is written as an Add, ``a``. c should be a Rational added to any terms of the Add that are independent of deps. args should be a tuple of all other terms of ``a``; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you do not know if self is an Add or not but you want to treat self as an Add or if you want to process the individual arguments of the tail of self as an Add. - if you know self is an Add and want only the head, use self.args[0]; - if you do not want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail. - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_add() (3, ()) >>> (3 + x).as_coeff_add() (3, (x,)) >>> (3 + x + y).as_coeff_add(x) (y + 3, (x,)) >>> (3 + y).as_coeff_add(x) (y + 3, ())
1,440
def create_github_url(url): repo_only_url = re.compile( r"https:\/\/github\.com\/[a-z\d](?:[a-z\d]|-(?=[a-z\d])){0,38}\/[a-zA-Z0-9]+$" ) re_branch = re.compile("/(tree|blob)/(.+?)/") # Check if the given url is a url to a GitHub repo. If it is, tell the # user to use 'git clone' to download it if re.match(repo_only_url, url): print( "✘ The given url is a complete repository. Use 'git clone' to download the repository", "red", ) sys.exit() # extract the branch name from the given url (e.g master) branch = re_branch.search(url) if branch: download_dirs = url[branch.end() :] api_url = ( url[: branch.start()].replace("github.com", "api.github.com/repos", 1) + "/contents/" + download_dirs + "?ref=" + branch.group(2) ) return api_url, download_dirs raise ValueError("The given url is not a valid GitHub url") # Modification of https://github.com/sdushantha/gitdir/blob/master/gitdir/gitdir.py
From the given url, produce a URL that is compatible with Github's REST API. Can handle blob or tree paths.
20
112
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def create_github_url(url): repo_only_url = re.compile( r"https:\/\/github\.com\/[a-z\d](?:[a-z\d]|-(?=[a-z\d])){0,38}\/[a-zA-Z0-9]+$" ) re_branch = re.compile("/(tree|blob)/(.+?)/") # Check if the given url is a url to a GitHub repo. If it is, tell the # user to use 'git clone' to download it if re.match(repo_only_url, url): print( "✘ The given url is a complete repository. Use 'git clone' to download the repository", "red", ) sys.exit() # extract the branch name from the given url (e.g master) branch = re_branch.search(url) if branch: download_dirs = url[branch.end() :] api_url = ( url[: branch.start()].replace("github.com", "api.github.com/repos", 1) + "/contents/" + download_dirs + "?ref=" + branch.group(2) ) return api_url, download_dirs raise ValueError("The given url is not a valid GitHub url") # Modification of https://github.com/sdushantha/gitdir/blob/master/gitdir/gitdir.py ``` ###Assistant : From the given url, produce a URL that is compatible with Github's REST API. Can handle blob or tree paths.
1,441
def homogeneity_score(labels_true, labels_pred): return homogeneity_completeness_v_measure(labels_true, labels_pred)[0]
Homogeneity metric of a cluster labeling given a ground truth. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`completeness_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference. labels_pred : array-like of shape (n_samples,) Cluster labels to evaluate. Returns ------- homogeneity : float Score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling. See Also -------- completeness_score : Completeness metric of cluster labeling. v_measure_score : V-Measure (NMI with arithmetic mean option). References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <https://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ Examples -------- Perfect labelings are homogeneous:: >>> from sklearn.metrics.cluster import homogeneity_score >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])) 1.000000 >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])) 1.000000 Clusters that include samples from different classes do not make for an homogeneous labeling:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])) 0.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])) 0.0...
263
6
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def homogeneity_score(labels_true, labels_pred): return homogeneity_completeness_v_measure(labels_true, labels_pred)[0] ``` ###Assistant : Homogeneity metric of a cluster labeling given a ground truth. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`completeness_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference. labels_pred : array-like of shape (n_samples,) Cluster labels to evaluate. Returns ------- homogeneity : float Score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling. See Also -------- completeness_score : Completeness metric of cluster labeling. v_measure_score : V-Measure (NMI with arithmetic mean option). References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <https://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ Examples -------- Perfect labelings are homogeneous:: >>> from sklearn.metrics.cluster import homogeneity_score >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])) 1.000000 >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])) 1.000000 Clusters that include samples from different classes do not make for an homogeneous labeling:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])) 0.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])) 0.0...
1,442
def dup_chebyshevt(n, K): if n < 1: return [K.one] m2, m1 = [K.one], [K.one, K.zero] for i in range(2, n+1): m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2), K), m2, K) return m1
Low-level implementation of Chebyshev polynomials of the first kind.
9
33
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def dup_chebyshevt(n, K): if n < 1: return [K.one] m2, m1 = [K.one], [K.one, K.zero] for i in range(2, n+1): m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2), K), m2, K) return m1 ``` ###Assistant : Low-level implementation of Chebyshev polynomials of the first kind.
1,443
def get_markdown_toc(markdown_source): md = markdown.Markdown(extensions=['toc']) md.convert(markdown_source) return md.toc_tokens
Return TOC generated by Markdown parser from Markdown source text.
10
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_markdown_toc(markdown_source): md = markdown.Markdown(extensions=['toc']) md.convert(markdown_source) return md.toc_tokens ``` ###Assistant : Return TOC generated by Markdown parser from Markdown source text.
1,444
def get_value_data_from_instance(self, instance): return { "id": instance.pk, "edit_url": AdminURLFinder().get_edit_url(instance), }
Given a model instance, return a value that we can pass to both the server-side template and the client-side rendering code (via telepath) that contains all the information needed for display. Typically this is a dict of id, title etc; it must be JSON-serialisable.
44
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_value_data_from_instance(self, instance): return { "id": instance.pk, "edit_url": AdminURLFinder().get_edit_url(instance), } ``` ###Assistant : Given a model instance, return a value that we can pass to both the server-side template and the client-side rendering code (via telepath) that contains all the information needed for display. Typically this is a dict of id, title etc; it must be JSON-serialisable.
1,445
def set_options(icon=None, button_color=None, element_size=(None, None), button_element_size=(None, None), margins=(None, None), element_padding=(None, None), auto_size_text=None, auto_size_buttons=None, font=None, border_width=None, slider_border_width=None, slider_relief=None, slider_orientation=None, autoclose_time=None, message_box_line_width=None, progress_meter_border_depth=None, progress_meter_style=None, progress_meter_relief=None, progress_meter_color=None, progress_meter_size=None, text_justification=None, background_color=None, element_background_color=None, text_element_background_color=None, input_elements_background_color=None, input_text_color=None, scrollbar_color=None, text_color=None, element_text_color=None, debug_win_size=(None, None), window_location=(None, None), error_button_color=(None, None), tooltip_time=None, tooltip_font=None, use_ttk_buttons=None, ttk_theme=None, suppress_error_popups=None, suppress_raise_key_errors=None, suppress_key_guessing=None,warn_button_key_duplicates=False, enable_treeview_869_patch=None, enable_mac_notitlebar_patch=None, use_custom_titlebar=None, titlebar_background_color=None, titlebar_text_color=None, titlebar_font=None, titlebar_icon=None, user_settings_path=None, pysimplegui_settings_path=None, pysimplegui_settings_filename=None, keep_on_top=None, dpi_awareness=None, scaling=None, disable_modal_windows=None, tooltip_offset=(None, None)): global DEFAULT_ELEMENT_SIZE global DEFAULT_BUTTON_ELEMENT_SIZE global DEFAULT_MARGINS # Margins for each LEFT/RIGHT margin is first term global DEFAULT_ELEMENT_PADDING # Padding between elements (row, col) in pixels global DEFAULT_AUTOSIZE_TEXT global DEFAULT_AUTOSIZE_BUTTONS global DEFAULT_FONT global DEFAULT_BORDER_WIDTH global DEFAULT_AUTOCLOSE_TIME global DEFAULT_BUTTON_COLOR global MESSAGE_BOX_LINE_WIDTH global DEFAULT_PROGRESS_BAR_BORDER_WIDTH global DEFAULT_PROGRESS_BAR_STYLE global DEFAULT_PROGRESS_BAR_RELIEF global DEFAULT_PROGRESS_BAR_COLOR global DEFAULT_PROGRESS_BAR_SIZE global DEFAULT_TEXT_JUSTIFICATION global DEFAULT_DEBUG_WINDOW_SIZE global DEFAULT_SLIDER_BORDER_WIDTH global DEFAULT_SLIDER_RELIEF global DEFAULT_SLIDER_ORIENTATION global DEFAULT_BACKGROUND_COLOR global DEFAULT_INPUT_ELEMENTS_COLOR global DEFAULT_ELEMENT_BACKGROUND_COLOR global DEFAULT_TEXT_ELEMENT_BACKGROUND_COLOR global DEFAULT_SCROLLBAR_COLOR global DEFAULT_TEXT_COLOR global DEFAULT_WINDOW_LOCATION global DEFAULT_ELEMENT_TEXT_COLOR global DEFAULT_INPUT_TEXT_COLOR global DEFAULT_TOOLTIP_TIME global DEFAULT_ERROR_BUTTON_COLOR global DEFAULT_TTK_THEME global USE_TTK_BUTTONS global TOOLTIP_FONT global SUPPRESS_ERROR_POPUPS global SUPPRESS_RAISE_KEY_ERRORS global SUPPRESS_KEY_GUESSING global WARN_DUPLICATE_BUTTON_KEY_ERRORS global ENABLE_TREEVIEW_869_PATCH global ENABLE_MAC_NOTITLEBAR_PATCH global USE_CUSTOM_TITLEBAR global CUSTOM_TITLEBAR_BACKGROUND_COLOR global CUSTOM_TITLEBAR_TEXT_COLOR global CUSTOM_TITLEBAR_ICON global CUSTOM_TITLEBAR_FONT global DEFAULT_USER_SETTINGS_PATH global DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH global DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME global DEFAULT_KEEP_ON_TOP global DEFAULT_SCALING global DEFAULT_MODAL_WINDOWS_ENABLED global DEFAULT_TOOLTIP_OFFSET global _pysimplegui_user_settings # global _my_windows if icon: Window._user_defined_icon = icon # _my_windows._user_defined_icon = icon if button_color != None: if button_color == COLOR_SYSTEM_DEFAULT: DEFAULT_BUTTON_COLOR = (COLOR_SYSTEM_DEFAULT, COLOR_SYSTEM_DEFAULT) else: DEFAULT_BUTTON_COLOR = button_color if element_size != (None, None): DEFAULT_ELEMENT_SIZE = element_size if button_element_size != (None, None): DEFAULT_BUTTON_ELEMENT_SIZE = button_element_size if margins != (None, None): DEFAULT_MARGINS = margins if element_padding != (None, None): DEFAULT_ELEMENT_PADDING = element_padding if auto_size_text != None: DEFAULT_AUTOSIZE_TEXT = auto_size_text if auto_size_buttons != None: DEFAULT_AUTOSIZE_BUTTONS = auto_size_buttons if font != None: DEFAULT_FONT = font if border_width != None: DEFAULT_BORDER_WIDTH = border_width if autoclose_time != None: DEFAULT_AUTOCLOSE_TIME = autoclose_time if message_box_line_width != None: MESSAGE_BOX_LINE_WIDTH = message_box_line_width if progress_meter_border_depth != None: DEFAULT_PROGRESS_BAR_BORDER_WIDTH = progress_meter_border_depth if progress_meter_style != None: warnings.warn('You can no longer set a progress bar style. All ttk styles must be the same for the window', UserWarning) # DEFAULT_PROGRESS_BAR_STYLE = progress_meter_style if progress_meter_relief != None: DEFAULT_PROGRESS_BAR_RELIEF = progress_meter_relief if progress_meter_color != None: DEFAULT_PROGRESS_BAR_COLOR = progress_meter_color if progress_meter_size != None: DEFAULT_PROGRESS_BAR_SIZE = progress_meter_size if slider_border_width != None: DEFAULT_SLIDER_BORDER_WIDTH = slider_border_width if slider_orientation != None: DEFAULT_SLIDER_ORIENTATION = slider_orientation if slider_relief != None: DEFAULT_SLIDER_RELIEF = slider_relief if text_justification != None: DEFAULT_TEXT_JUSTIFICATION = text_justification if background_color != None: DEFAULT_BACKGROUND_COLOR = background_color if text_element_background_color != None: DEFAULT_TEXT_ELEMENT_BACKGROUND_COLOR = text_element_background_color if input_elements_background_color != None: DEFAULT_INPUT_ELEMENTS_COLOR = input_elements_background_color if element_background_color != None: DEFAULT_ELEMENT_BACKGROUND_COLOR = element_background_color if window_location != (None, None): DEFAULT_WINDOW_LOCATION = window_location if debug_win_size != (None, None): DEFAULT_DEBUG_WINDOW_SIZE = debug_win_size if text_color != None: DEFAULT_TEXT_COLOR = text_color if scrollbar_color != None: DEFAULT_SCROLLBAR_COLOR = scrollbar_color if element_text_color != None: DEFAULT_ELEMENT_TEXT_COLOR = element_text_color if input_text_color is not None: DEFAULT_INPUT_TEXT_COLOR = input_text_color if tooltip_time is not None: DEFAULT_TOOLTIP_TIME = tooltip_time if error_button_color != (None, None): DEFAULT_ERROR_BUTTON_COLOR = error_button_color if ttk_theme is not None: DEFAULT_TTK_THEME = ttk_theme if use_ttk_buttons is not None: USE_TTK_BUTTONS = use_ttk_buttons if tooltip_font is not None: TOOLTIP_FONT = tooltip_font if suppress_error_popups is not None: SUPPRESS_ERROR_POPUPS = suppress_error_popups if suppress_raise_key_errors is not None: SUPPRESS_RAISE_KEY_ERRORS = suppress_raise_key_errors if suppress_key_guessing is not None: SUPPRESS_KEY_GUESSING = suppress_key_guessing if warn_button_key_duplicates is not None: WARN_DUPLICATE_BUTTON_KEY_ERRORS = warn_button_key_duplicates if enable_treeview_869_patch is not None: ENABLE_TREEVIEW_869_PATCH = enable_treeview_869_patch if enable_mac_notitlebar_patch is not None: ENABLE_MAC_NOTITLEBAR_PATCH = enable_mac_notitlebar_patch if use_custom_titlebar is not None: USE_CUSTOM_TITLEBAR = use_custom_titlebar if titlebar_background_color is not None: CUSTOM_TITLEBAR_BACKGROUND_COLOR = titlebar_background_color if titlebar_text_color is not None: CUSTOM_TITLEBAR_TEXT_COLOR = titlebar_text_color if titlebar_font is not None: CUSTOM_TITLEBAR_FONT = titlebar_font if titlebar_icon is not None: CUSTOM_TITLEBAR_ICON = titlebar_icon if user_settings_path is not None: DEFAULT_USER_SETTINGS_PATH = user_settings_path if pysimplegui_settings_path is not None: DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH = pysimplegui_settings_path if pysimplegui_settings_filename is not None: DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME = pysimplegui_settings_filename if pysimplegui_settings_filename is not None or pysimplegui_settings_filename is not None: _pysimplegui_user_settings = UserSettings(filename=DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME, path=DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH) if keep_on_top is not None: DEFAULT_KEEP_ON_TOP = keep_on_top if dpi_awareness is True: if running_windows(): if platform.release() == "7": ctypes.windll.user32.SetProcessDPIAware() elif platform.release() == "8" or platform.release() == "10": ctypes.windll.shcore.SetProcessDpiAwareness(1) if scaling is not None: DEFAULT_SCALING = scaling if disable_modal_windows is not None: DEFAULT_MODAL_WINDOWS_ENABLED = not disable_modal_windows if tooltip_offset != (None, None): DEFAULT_TOOLTIP_OFFSET = tooltip_offset return True # ----------------------------------------------------------------- # # .########.##.....##.########.##.....##.########..######. # ....##....##.....##.##.......###...###.##.......##....## # ....##....##.....##.##.......####.####.##.......##...... # ....##....#########.######...##.###.##.######....######. # ....##....##.....##.##.......##.....##.##.............## # ....##....##.....##.##.......##.....##.##.......##....## # ....##....##.....##.########.##.....##.########..######. # ----------------------------------------------------------------- # # The official Theme code #################### ChangeLookAndFeel ####################### # Predefined settings that will change the colors and styles # # of the elements. # ############################################################## LOOK_AND_FEEL_TABLE = { "SystemDefault": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "SystemDefaultForReal": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "SystemDefault1": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Material1": {"BACKGROUND": "#E3F2FD", "TEXT": "#000000", "INPUT": "#86A8FF", "TEXT_INPUT": "#000000", "SCROLL": "#86A8FF", "BUTTON": ("#FFFFFF", "#5079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "Material2": {"BACKGROUND": "#FAFAFA", "TEXT": "#000000", "INPUT": "#004EA1", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5EA7FF", "BUTTON": ("#FFFFFF", "#0079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "Reddit": {"BACKGROUND": "#ffffff", "TEXT": "#1a1a1b", "INPUT": "#dae0e6", "TEXT_INPUT": "#222222", "SCROLL": "#a5a4a4", "BUTTON": ("#FFFFFF", "#0079d3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#ff5414", "ACCENT2": "#33a8ff", "ACCENT3": "#dbf0ff", }, "Topanga": {"BACKGROUND": "#282923", "TEXT": "#E7DB74", "INPUT": "#393a32", "TEXT_INPUT": "#E7C855", "SCROLL": "#E7C855", "BUTTON": ("#E7C855", "#284B5A"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#c15226", "ACCENT2": "#7a4d5f", "ACCENT3": "#889743", }, "GreenTan": {"BACKGROUND": "#9FB8AD", "TEXT": '#000000', "INPUT": "#F7F3EC", "TEXT_INPUT": "#000000", "SCROLL": "#F7F3EC", "BUTTON": ("#FFFFFF", "#475841"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Dark": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen": {"BACKGROUND": "#B7CECE", "TEXT": "#000000", "INPUT": "#FDFFF7", "TEXT_INPUT": "#000000", "SCROLL": "#FDFFF7", "BUTTON": ("#FFFFFF", "#658268"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "ACCENT1": "#76506d", "ACCENT2": "#5148f1", "ACCENT3": "#0a1c84", "PROGRESS_DEPTH": 0, }, "Dark2": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#FFFFFF", "TEXT_INPUT": "#000000", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Black": {"BACKGROUND": "#000000", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#000000", "#FFFFFF"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Tan": {"BACKGROUND": "#fdf6e3", "TEXT": "#268bd1", "INPUT": "#eee8d5", "TEXT_INPUT": "#6c71c3", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063542"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "TanBlue": {"BACKGROUND": "#e5dece", "TEXT": "#063289", "INPUT": "#f9f8f4", "TEXT_INPUT": "#242834", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkTanBlue": {"BACKGROUND": "#242834", "TEXT": "#dfe6f8", "INPUT": "#97755c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a9afbb", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkAmber": {"BACKGROUND": "#2c2825", "TEXT": "#fdcb52", "INPUT": "#705e52", "TEXT_INPUT": "#fdcb52", "SCROLL": "#705e52", "BUTTON": ("#000000", "#fdcb52"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue": {"BACKGROUND": "#1a2835", "TEXT": "#d1ecff", "INPUT": "#335267", "TEXT_INPUT": "#acc2d0", "SCROLL": "#1b6497", "BUTTON": ("#000000", "#fafaf8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Reds": {"BACKGROUND": "#280001", "TEXT": "#FFFFFF", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#763e00", "BUTTON": ("#000000", "#daad28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Green": {"BACKGROUND": "#82a459", "TEXT": "#000000", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#e3ecf3", "BUTTON": ("#FFFFFF", "#517239"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BluePurple": {"BACKGROUND": "#A5CADD", "TEXT": "#6E266E", "INPUT": "#E0F5FF", "TEXT_INPUT": "#000000", "SCROLL": "#E0F5FF", "BUTTON": ("#FFFFFF", "#303952"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Purple": {"BACKGROUND": "#B0AAC2", "TEXT": "#000000", "INPUT": "#F2EFE8", "SCROLL": "#F2EFE8", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#C2D4D8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BlueMono": {"BACKGROUND": "#AAB6D3", "TEXT": "#000000", "INPUT": "#F1F4FC", "SCROLL": "#F1F4FC", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#7186C7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "GreenMono": {"BACKGROUND": "#A8C1B4", "TEXT": "#000000", "INPUT": "#DDE0DE", "SCROLL": "#E3E3E3", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#6D9F85"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BrownBlue": {"BACKGROUND": "#64778d", "TEXT": "#FFFFFF", "INPUT": "#f0f3f7", "SCROLL": "#A6B2BE", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#283b5b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BrightColors": {"BACKGROUND": "#b4ffb4", "TEXT": "#000000", "INPUT": "#ffff64", "SCROLL": "#ffb482", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#ffa0dc"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "NeutralBlue": {"BACKGROUND": "#92aa9d", "TEXT": "#000000", "INPUT": "#fcfff6", "SCROLL": "#fcfff6", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#d0dbbd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Kayak": {"BACKGROUND": "#a7ad7f", "TEXT": "#000000", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#5d907d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "SandyBeach": {"BACKGROUND": "#efeccb", "TEXT": "#012f2f", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#012f2f", "BUTTON": ("#FFFFFF", "#046380"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "TealMono": {"BACKGROUND": "#a8cfdd", "TEXT": "#000000", "INPUT": "#dfedf2", "SCROLL": "#dfedf2", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#183440"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Default": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Default1": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "DefaultNoMoreNagging": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "GrayGrayGray": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "LightBlue": {"BACKGROUND": "#E3F2FD", "TEXT": "#000000", "INPUT": "#86A8FF", "TEXT_INPUT": "#000000", "SCROLL": "#86A8FF", "BUTTON": ("#FFFFFF", "#5079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "LightGrey": {"BACKGROUND": "#FAFAFA", "TEXT": "#000000", "INPUT": "#004EA1", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5EA7FF", "BUTTON": ("#FFFFFF", "#0079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "LightGrey1": {"BACKGROUND": "#ffffff", "TEXT": "#1a1a1b", "INPUT": "#dae0e6", "TEXT_INPUT": "#222222", "SCROLL": "#a5a4a4", "BUTTON": ("#FFFFFF", "#0079d3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#ff5414", "ACCENT2": "#33a8ff", "ACCENT3": "#dbf0ff", }, "DarkBrown": {"BACKGROUND": "#282923", "TEXT": "#E7DB74", "INPUT": "#393a32", "TEXT_INPUT": "#E7C855", "SCROLL": "#E7C855", "BUTTON": ("#E7C855", "#284B5A"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#c15226", "ACCENT2": "#7a4d5f", "ACCENT3": "#889743", }, "LightGreen1": {"BACKGROUND": "#9FB8AD", "TEXT": "#000000", "INPUT": "#F7F3EC", "TEXT_INPUT": "#000000", "SCROLL": "#F7F3EC", "BUTTON": ("#FFFFFF", "#475841"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen2": {"BACKGROUND": "#B7CECE", "TEXT": "#000000", "INPUT": "#FDFFF7", "TEXT_INPUT": "#000000", "SCROLL": "#FDFFF7", "BUTTON": ("#FFFFFF", "#658268"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "ACCENT1": "#76506d", "ACCENT2": "#5148f1", "ACCENT3": "#0a1c84", "PROGRESS_DEPTH": 0, }, "DarkGrey1": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#FFFFFF", "TEXT_INPUT": "#000000", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlack": {"BACKGROUND": "#000000", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#000000", "#FFFFFF"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown": {"BACKGROUND": "#fdf6e3", "TEXT": "#268bd1", "INPUT": "#eee8d5", "TEXT_INPUT": "#6c71c3", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063542"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown1": {"BACKGROUND": "#e5dece", "TEXT": "#063289", "INPUT": "#f9f8f4", "TEXT_INPUT": "#242834", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue1": {"BACKGROUND": "#242834", "TEXT": "#dfe6f8", "INPUT": "#97755c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a9afbb", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown1": {"BACKGROUND": "#2c2825", "TEXT": "#fdcb52", "INPUT": "#705e52", "TEXT_INPUT": "#fdcb52", "SCROLL": "#705e52", "BUTTON": ("#000000", "#fdcb52"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue2": {"BACKGROUND": "#1a2835", "TEXT": "#d1ecff", "INPUT": "#335267", "TEXT_INPUT": "#acc2d0", "SCROLL": "#1b6497", "BUTTON": ("#000000", "#fafaf8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown2": {"BACKGROUND": "#280001", "TEXT": "#FFFFFF", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#763e00", "BUTTON": ("#000000", "#daad28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGreen": {"BACKGROUND": "#82a459", "TEXT": "#000000", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#e3ecf3", "BUTTON": ("#FFFFFF", "#517239"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue1": {"BACKGROUND": "#A5CADD", "TEXT": "#6E266E", "INPUT": "#E0F5FF", "TEXT_INPUT": "#000000", "SCROLL": "#E0F5FF", "BUTTON": ("#FFFFFF", "#303952"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightPurple": {"BACKGROUND": "#B0AAC2", "TEXT": "#000000", "INPUT": "#F2EFE8", "SCROLL": "#F2EFE8", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#C2D4D8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue2": {"BACKGROUND": "#AAB6D3", "TEXT": "#000000", "INPUT": "#F1F4FC", "SCROLL": "#F1F4FC", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#7186C7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen3": {"BACKGROUND": "#A8C1B4", "TEXT": "#000000", "INPUT": "#DDE0DE", "SCROLL": "#E3E3E3", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#6D9F85"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue3": {"BACKGROUND": "#64778d", "TEXT": "#FFFFFF", "INPUT": "#f0f3f7", "SCROLL": "#A6B2BE", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#283b5b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen4": {"BACKGROUND": "#b4ffb4", "TEXT": "#000000", "INPUT": "#ffff64", "SCROLL": "#ffb482", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#ffa0dc"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen5": {"BACKGROUND": "#92aa9d", "TEXT": "#000000", "INPUT": "#fcfff6", "SCROLL": "#fcfff6", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#d0dbbd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown2": {"BACKGROUND": "#a7ad7f", "TEXT": "#000000", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#5d907d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown3": {"BACKGROUND": "#efeccb", "TEXT": "#012f2f", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#012f2f", "BUTTON": ("#FFFFFF", "#046380"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue3": {"BACKGROUND": "#a8cfdd", "TEXT": "#000000", "INPUT": "#dfedf2", "SCROLL": "#dfedf2", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#183440"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown4": {"BACKGROUND": "#d7c79e", "TEXT": "#a35638", "INPUT": "#9dab86", "TEXT_INPUT": "#000000", "SCROLL": "#a35638", "BUTTON": ("#FFFFFF", "#a35638"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#a35638", "#9dab86", "#e08f62", "#d7c79e"], }, "DarkTeal": {"BACKGROUND": "#003f5c", "TEXT": "#fb5b5a", "INPUT": "#bc4873", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#bc4873", "BUTTON": ("#FFFFFF", "#fb5b5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#003f5c", "#472b62", "#bc4873", "#fb5b5a"], }, "DarkPurple": {"BACKGROUND": "#472b62", "TEXT": "#fb5b5a", "INPUT": "#bc4873", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#bc4873", "BUTTON": ("#FFFFFF", "#472b62"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#003f5c", "#472b62", "#bc4873", "#fb5b5a"], }, "LightGreen6": {"BACKGROUND": "#eafbea", "TEXT": "#1f6650", "INPUT": "#6f9a8d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#1f6650", "BUTTON": ("#FFFFFF", "#1f6650"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#1f6650", "#6f9a8d", "#ea5e5e", "#eafbea"], }, "DarkGrey2": {"BACKGROUND": "#2b2b28", "TEXT": "#f8f8f8", "INPUT": "#f1d6ab", "TEXT_INPUT": "#000000", "SCROLL": "#f1d6ab", "BUTTON": ("#2b2b28", "#e3b04b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#2b2b28", "#e3b04b", "#f1d6ab", "#f8f8f8"], }, "LightBrown6": {"BACKGROUND": "#f9b282", "TEXT": "#8f4426", "INPUT": "#de6b35", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#8f4426", "BUTTON": ("#FFFFFF", "#8f4426"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#8f4426", "#de6b35", "#64ccda", "#f9b282"], }, "DarkTeal1": {"BACKGROUND": "#396362", "TEXT": "#ffe7d1", "INPUT": "#f6c89f", "TEXT_INPUT": "#000000", "SCROLL": "#f6c89f", "BUTTON": ("#ffe7d1", "#4b8e8d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#396362", "#4b8e8d", "#f6c89f", "#ffe7d1"], }, "LightBrown7": {"BACKGROUND": "#f6c89f", "TEXT": "#396362", "INPUT": "#4b8e8d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#396362", "BUTTON": ("#FFFFFF", "#396362"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#396362", "#4b8e8d", "#f6c89f", "#ffe7d1"], }, "DarkPurple1": {"BACKGROUND": "#0c093c", "TEXT": "#fad6d6", "INPUT": "#eea5f6", "TEXT_INPUT": "#000000", "SCROLL": "#eea5f6", "BUTTON": ("#FFFFFF", "#df42d1"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#0c093c", "#df42d1", "#eea5f6", "#fad6d6"], }, "DarkGrey3": {"BACKGROUND": "#211717", "TEXT": "#dfddc7", "INPUT": "#f58b54", "TEXT_INPUT": "#000000", "SCROLL": "#f58b54", "BUTTON": ("#dfddc7", "#a34a28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#211717", "#a34a28", "#f58b54", "#dfddc7"], }, "LightBrown8": {"BACKGROUND": "#dfddc7", "TEXT": "#211717", "INPUT": "#a34a28", "TEXT_INPUT": "#dfddc7", "SCROLL": "#211717", "BUTTON": ("#dfddc7", "#a34a28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#211717", "#a34a28", "#f58b54", "#dfddc7"], }, "DarkBlue4": {"BACKGROUND": "#494ca2", "TEXT": "#e3e7f1", "INPUT": "#c6cbef", "TEXT_INPUT": "#000000", "SCROLL": "#c6cbef", "BUTTON": ("#FFFFFF", "#8186d5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#494ca2", "#8186d5", "#c6cbef", "#e3e7f1"], }, "LightBlue4": {"BACKGROUND": "#5c94bd", "TEXT": "#470938", "INPUT": "#1a3e59", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#470938", "BUTTON": ("#FFFFFF", "#470938"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#470938", "#1a3e59", "#5c94bd", "#f2d6eb"], }, "DarkTeal2": {"BACKGROUND": "#394a6d", "TEXT": "#c0ffb3", "INPUT": "#52de97", "TEXT_INPUT": "#000000", "SCROLL": "#52de97", "BUTTON": ("#c0ffb3", "#394a6d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#394a6d", "#3c9d9b", "#52de97", "#c0ffb3"], }, "DarkTeal3": {"BACKGROUND": "#3c9d9b", "TEXT": "#c0ffb3", "INPUT": "#52de97", "TEXT_INPUT": "#000000", "SCROLL": "#52de97", "BUTTON": ("#c0ffb3", "#394a6d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#394a6d", "#3c9d9b", "#52de97", "#c0ffb3"], }, "DarkPurple5": {"BACKGROUND": "#730068", "TEXT": "#f6f078", "INPUT": "#01d28e", "TEXT_INPUT": "#000000", "SCROLL": "#01d28e", "BUTTON": ("#f6f078", "#730068"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#730068", "#434982", "#01d28e", "#f6f078"], }, "DarkPurple2": {"BACKGROUND": "#202060", "TEXT": "#b030b0", "INPUT": "#602080", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#602080", "BUTTON": ("#FFFFFF", "#202040"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#202040", "#202060", "#602080", "#b030b0"], }, "DarkBlue5": {"BACKGROUND": "#000272", "TEXT": "#ff6363", "INPUT": "#a32f80", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a32f80", "BUTTON": ("#FFFFFF", "#341677"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#000272", "#341677", "#a32f80", "#ff6363"], }, "LightGrey2": {"BACKGROUND": "#f6f6f6", "TEXT": "#420000", "INPUT": "#d4d7dd", "TEXT_INPUT": "#420000", "SCROLL": "#420000", "BUTTON": ("#420000", "#d4d7dd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#420000", "#d4d7dd", "#eae9e9", "#f6f6f6"], }, "LightGrey3": {"BACKGROUND": "#eae9e9", "TEXT": "#420000", "INPUT": "#d4d7dd", "TEXT_INPUT": "#420000", "SCROLL": "#420000", "BUTTON": ("#420000", "#d4d7dd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#420000", "#d4d7dd", "#eae9e9", "#f6f6f6"], }, "DarkBlue6": {"BACKGROUND": "#01024e", "TEXT": "#ff6464", "INPUT": "#8b4367", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#8b4367", "BUTTON": ("#FFFFFF", "#543864"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#01024e", "#543864", "#8b4367", "#ff6464"], }, "DarkBlue7": {"BACKGROUND": "#241663", "TEXT": "#eae7af", "INPUT": "#a72693", "TEXT_INPUT": "#eae7af", "SCROLL": "#a72693", "BUTTON": ("#eae7af", "#160f30"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#160f30", "#241663", "#a72693", "#eae7af"], }, "LightBrown9": {"BACKGROUND": "#f6d365", "TEXT": "#3a1f5d", "INPUT": "#c83660", "TEXT_INPUT": "#f6d365", "SCROLL": "#3a1f5d", "BUTTON": ("#f6d365", "#c83660"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3a1f5d", "#c83660", "#e15249", "#f6d365"], }, "DarkPurple3": {"BACKGROUND": "#6e2142", "TEXT": "#ffd692", "INPUT": "#e16363", "TEXT_INPUT": "#ffd692", "SCROLL": "#e16363", "BUTTON": ("#ffd692", "#943855"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#6e2142", "#943855", "#e16363", "#ffd692"], }, "LightBrown10": {"BACKGROUND": "#ffd692", "TEXT": "#6e2142", "INPUT": "#943855", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#6e2142", "BUTTON": ("#FFFFFF", "#6e2142"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#6e2142", "#943855", "#e16363", "#ffd692"], }, "DarkPurple4": {"BACKGROUND": "#200f21", "TEXT": "#f638dc", "INPUT": "#5a3d5c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5a3d5c", "BUTTON": ("#FFFFFF", "#382039"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#200f21", "#382039", "#5a3d5c", "#f638dc"], }, "LightBlue5": {"BACKGROUND": "#b2fcff", "TEXT": "#3e64ff", "INPUT": "#5edfff", "TEXT_INPUT": "#000000", "SCROLL": "#3e64ff", "BUTTON": ("#FFFFFF", "#3e64ff"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e64ff", "#5edfff", "#b2fcff", "#ecfcff"], }, "DarkTeal4": {"BACKGROUND": "#464159", "TEXT": "#c7f0db", "INPUT": "#8bbabb", "TEXT_INPUT": "#000000", "SCROLL": "#8bbabb", "BUTTON": ("#FFFFFF", "#6c7b95"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "LightTeal": {"BACKGROUND": "#c7f0db", "TEXT": "#464159", "INPUT": "#6c7b95", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#464159", "BUTTON": ("#FFFFFF", "#464159"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "DarkTeal5": {"BACKGROUND": "#8bbabb", "TEXT": "#464159", "INPUT": "#6c7b95", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#464159", "BUTTON": ("#c7f0db", "#6c7b95"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "LightGrey4": {"BACKGROUND": "#faf5ef", "TEXT": "#672f2f", "INPUT": "#99b19c", "TEXT_INPUT": "#672f2f", "SCROLL": "#672f2f", "BUTTON": ("#672f2f", "#99b19c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "LightGreen7": {"BACKGROUND": "#99b19c", "TEXT": "#faf5ef", "INPUT": "#d7d1c9", "TEXT_INPUT": "#000000", "SCROLL": "#d7d1c9", "BUTTON": ("#FFFFFF", "#99b19c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "LightGrey5": {"BACKGROUND": "#d7d1c9", "TEXT": "#672f2f", "INPUT": "#99b19c", "TEXT_INPUT": "#672f2f", "SCROLL": "#672f2f", "BUTTON": ("#FFFFFF", "#672f2f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "DarkBrown3": {"BACKGROUND": "#a0855b", "TEXT": "#f9f6f2", "INPUT": "#f1d6ab", "TEXT_INPUT": "#000000", "SCROLL": "#f1d6ab", "BUTTON": ("#FFFFFF", "#38470b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#38470b", "#a0855b", "#f1d6ab", "#f9f6f2"], }, "LightBrown11": {"BACKGROUND": "#f1d6ab", "TEXT": "#38470b", "INPUT": "#a0855b", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#38470b", "BUTTON": ("#f9f6f2", "#a0855b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#38470b", "#a0855b", "#f1d6ab", "#f9f6f2"], }, "DarkRed": {"BACKGROUND": "#83142c", "TEXT": "#f9d276", "INPUT": "#ad1d45", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#ad1d45", "BUTTON": ("#f9d276", "#ad1d45"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#44000d", "#83142c", "#ad1d45", "#f9d276"], }, "DarkTeal6": {"BACKGROUND": "#204969", "TEXT": "#fff7f7", "INPUT": "#dadada", "TEXT_INPUT": "#000000", "SCROLL": "#dadada", "BUTTON": ("#000000", "#fff7f7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#204969", "#08ffc8", "#dadada", "#fff7f7"], }, "DarkBrown4": {"BACKGROUND": "#252525", "TEXT": "#ff0000", "INPUT": "#af0404", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#af0404", "BUTTON": ("#FFFFFF", "#252525"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#252525", "#414141", "#af0404", "#ff0000"], }, "LightYellow": {"BACKGROUND": "#f4ff61", "TEXT": "#27aa80", "INPUT": "#32ff6a", "TEXT_INPUT": "#000000", "SCROLL": "#27aa80", "BUTTON": ("#f4ff61", "#27aa80"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#27aa80", "#32ff6a", "#a8ff3e", "#f4ff61"], }, "DarkGreen1": {"BACKGROUND": "#2b580c", "TEXT": "#fdef96", "INPUT": "#f7b71d", "TEXT_INPUT": "#000000", "SCROLL": "#f7b71d", "BUTTON": ("#fdef96", "#2b580c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#2b580c", "#afa939", "#f7b71d", "#fdef96"], }, "LightGreen8": {"BACKGROUND": "#c8dad3", "TEXT": "#63707e", "INPUT": "#93b5b3", "TEXT_INPUT": "#000000", "SCROLL": "#63707e", "BUTTON": ("#FFFFFF", "#63707e"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#63707e", "#93b5b3", "#c8dad3", "#f2f6f5"], }, "DarkTeal7": {"BACKGROUND": "#248ea9", "TEXT": "#fafdcb", "INPUT": "#aee7e8", "TEXT_INPUT": "#000000", "SCROLL": "#aee7e8", "BUTTON": ("#000000", "#fafdcb"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#248ea9", "#28c3d4", "#aee7e8", "#fafdcb"], }, "DarkBlue8": {"BACKGROUND": "#454d66", "TEXT": "#d9d872", "INPUT": "#58b368", "TEXT_INPUT": "#000000", "SCROLL": "#58b368", "BUTTON": ("#000000", "#009975"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#009975", "#454d66", "#58b368", "#d9d872"], }, "DarkBlue9": {"BACKGROUND": "#263859", "TEXT": "#ff6768", "INPUT": "#6b778d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#6b778d", "BUTTON": ("#ff6768", "#263859"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#17223b", "#263859", "#6b778d", "#ff6768"], }, "DarkBlue10": {"BACKGROUND": "#0028ff", "TEXT": "#f1f4df", "INPUT": "#10eaf0", "TEXT_INPUT": "#000000", "SCROLL": "#10eaf0", "BUTTON": ("#f1f4df", "#24009c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#24009c", "#0028ff", "#10eaf0", "#f1f4df"], }, "DarkBlue11": {"BACKGROUND": "#6384b3", "TEXT": "#e6f0b6", "INPUT": "#b8e9c0", "TEXT_INPUT": "#000000", "SCROLL": "#b8e9c0", "BUTTON": ("#e6f0b6", "#684949"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#684949", "#6384b3", "#b8e9c0", "#e6f0b6"], }, "DarkTeal8": {"BACKGROUND": "#71a0a5", "TEXT": "#212121", "INPUT": "#665c84", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#212121", "BUTTON": ("#fab95b", "#665c84"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#212121", "#665c84", "#71a0a5", "#fab95b"], }, "DarkRed1": {"BACKGROUND": "#c10000", "TEXT": "#eeeeee", "INPUT": "#dedede", "TEXT_INPUT": "#000000", "SCROLL": "#dedede", "BUTTON": ("#c10000", "#eeeeee"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#c10000", "#ff4949", "#dedede", "#eeeeee"], }, "LightBrown5": {"BACKGROUND": "#fff591", "TEXT": "#e41749", "INPUT": "#f5587b", "TEXT_INPUT": "#000000", "SCROLL": "#e41749", "BUTTON": ("#fff591", "#e41749"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#e41749", "#f5587b", "#ff8a5c", "#fff591"], }, "LightGreen9": {"BACKGROUND": "#f1edb3", "TEXT": "#3b503d", "INPUT": "#4a746e", "TEXT_INPUT": "#f1edb3", "SCROLL": "#3b503d", "BUTTON": ("#f1edb3", "#3b503d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3b503d", "#4a746e", "#c8cf94", "#f1edb3"], "DESCRIPTION": ["Green", "Turquoise", "Yellow"], }, "DarkGreen2": {"BACKGROUND": "#3b503d", "TEXT": "#f1edb3", "INPUT": "#c8cf94", "TEXT_INPUT": "#000000", "SCROLL": "#c8cf94", "BUTTON": ("#f1edb3", "#3b503d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3b503d", "#4a746e", "#c8cf94", "#f1edb3"], "DESCRIPTION": ["Green", "Turquoise", "Yellow"], }, "LightGray1": {"BACKGROUND": "#f2f2f2", "TEXT": "#222831", "INPUT": "#393e46", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#222831", "BUTTON": ("#f2f2f2", "#222831"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#222831", "#393e46", "#f96d00", "#f2f2f2"], "DESCRIPTION": ["#000000", "Grey", "Orange", "Grey", "Autumn"], }, "DarkGrey4": {"BACKGROUND": "#52524e", "TEXT": "#e9e9e5", "INPUT": "#d4d6c8", "TEXT_INPUT": "#000000", "SCROLL": "#d4d6c8", "BUTTON": ("#FFFFFF", "#9a9b94"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#52524e", "#9a9b94", "#d4d6c8", "#e9e9e5"], "DESCRIPTION": ["Grey", "Pastel", "Winter"], }, "DarkBlue12": {"BACKGROUND": "#324e7b", "TEXT": "#f8f8f8", "INPUT": "#86a6df", "TEXT_INPUT": "#000000", "SCROLL": "#86a6df", "BUTTON": ("#FFFFFF", "#5068a9"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#324e7b", "#5068a9", "#86a6df", "#f8f8f8"], "DESCRIPTION": ["Blue", "Grey", "Cold", "Winter"], }, "DarkPurple6": {"BACKGROUND": "#070739", "TEXT": "#e1e099", "INPUT": "#c327ab", "TEXT_INPUT": "#e1e099", "SCROLL": "#c327ab", "BUTTON": ("#e1e099", "#521477"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#070739", "#521477", "#c327ab", "#e1e099"], "DESCRIPTION": ["#000000", "Purple", "Yellow", "Dark"], }, "DarkPurple7": {"BACKGROUND": "#191930", "TEXT": "#B1B7C5", "INPUT": "#232B5C", "TEXT_INPUT": "#D0E3E7", "SCROLL": "#B1B7C5", "BUTTON": ("#272D38", "#B1B7C5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue13": {"BACKGROUND": "#203562", "TEXT": "#e3e8f8", "INPUT": "#c0c5cd", "TEXT_INPUT": "#000000", "SCROLL": "#c0c5cd", "BUTTON": ("#FFFFFF", "#3e588f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#203562", "#3e588f", "#c0c5cd", "#e3e8f8"], "DESCRIPTION": ["Blue", "Grey", "Wedding", "Cold"], }, "DarkBrown5": {"BACKGROUND": "#3c1b1f", "TEXT": "#f6e1b5", "INPUT": "#e2bf81", "TEXT_INPUT": "#000000", "SCROLL": "#e2bf81", "BUTTON": ("#3c1b1f", "#f6e1b5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3c1b1f", "#b21e4b", "#e2bf81", "#f6e1b5"], "DESCRIPTION": ["Brown", "Red", "Yellow", "Warm"], }, "DarkGreen3": {"BACKGROUND": "#062121", "TEXT": "#eeeeee", "INPUT": "#e4dcad", "TEXT_INPUT": "#000000", "SCROLL": "#e4dcad", "BUTTON": ("#eeeeee", "#181810"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#062121", "#181810", "#e4dcad", "#eeeeee"], "DESCRIPTION": ["#000000", "#000000", "Brown", "Grey"], }, "DarkBlack1": {"BACKGROUND": "#181810", "TEXT": "#eeeeee", "INPUT": "#e4dcad", "TEXT_INPUT": "#000000", "SCROLL": "#e4dcad", "BUTTON": ("#FFFFFF", "#062121"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#062121", "#181810", "#e4dcad", "#eeeeee"], "DESCRIPTION": ["#000000", "#000000", "Brown", "Grey"], }, "DarkGrey5": {"BACKGROUND": "#343434", "TEXT": "#f3f3f3", "INPUT": "#e9dcbe", "TEXT_INPUT": "#000000", "SCROLL": "#e9dcbe", "BUTTON": ("#FFFFFF", "#8e8b82"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#343434", "#8e8b82", "#e9dcbe", "#f3f3f3"], "DESCRIPTION": ["Grey", "Brown"], }, "LightBrown12": {"BACKGROUND": "#8e8b82", "TEXT": "#f3f3f3", "INPUT": "#e9dcbe", "TEXT_INPUT": "#000000", "SCROLL": "#e9dcbe", "BUTTON": ("#f3f3f3", "#8e8b82"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#343434", "#8e8b82", "#e9dcbe", "#f3f3f3"], "DESCRIPTION": ["Grey", "Brown"], }, "DarkTeal9": {"BACKGROUND": "#13445a", "TEXT": "#fef4e8", "INPUT": "#446878", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#446878", "BUTTON": ("#fef4e8", "#446878"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#13445a", "#970747", "#446878", "#fef4e8"], "DESCRIPTION": ["Red", "Grey", "Blue", "Wedding", "Retro"], }, "DarkBlue14": {"BACKGROUND": "#21273d", "TEXT": "#f1f6f8", "INPUT": "#b9d4f1", "TEXT_INPUT": "#000000", "SCROLL": "#b9d4f1", "BUTTON": ("#FFFFFF", "#6a759b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#21273d", "#6a759b", "#b9d4f1", "#f1f6f8"], "DESCRIPTION": ["Blue", "#000000", "Grey", "Cold", "Winter"], }, "LightBlue6": {"BACKGROUND": "#f1f6f8", "TEXT": "#21273d", "INPUT": "#6a759b", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#21273d", "BUTTON": ("#f1f6f8", "#6a759b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#21273d", "#6a759b", "#b9d4f1", "#f1f6f8"], "DESCRIPTION": ["Blue", "#000000", "Grey", "Cold", "Winter"], }, "DarkGreen4": {"BACKGROUND": "#044343", "TEXT": "#e4e4e4", "INPUT": "#045757", "TEXT_INPUT": "#e4e4e4", "SCROLL": "#045757", "BUTTON": ("#e4e4e4", "#045757"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#222222", "#044343", "#045757", "#e4e4e4"], "DESCRIPTION": ["#000000", "Turquoise", "Grey", "Dark"], }, "DarkGreen5": {"BACKGROUND": "#1b4b36", "TEXT": "#e0e7f1", "INPUT": "#aebd77", "TEXT_INPUT": "#000000", "SCROLL": "#aebd77", "BUTTON": ("#FFFFFF", "#538f6a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#1b4b36", "#538f6a", "#aebd77", "#e0e7f1"], "DESCRIPTION": ["Green", "Grey"], }, "DarkTeal10": {"BACKGROUND": "#0d3446", "TEXT": "#d8dfe2", "INPUT": "#71adb5", "TEXT_INPUT": "#000000", "SCROLL": "#71adb5", "BUTTON": ("#FFFFFF", "#176d81"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#0d3446", "#176d81", "#71adb5", "#d8dfe2"], "DESCRIPTION": ["Grey", "Turquoise", "Winter", "Cold"], }, "DarkGrey6": {"BACKGROUND": "#3e3e3e", "TEXT": "#ededed", "INPUT": "#68868c", "TEXT_INPUT": "#ededed", "SCROLL": "#68868c", "BUTTON": ("#FFFFFF", "#405559"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e3e3e", "#405559", "#68868c", "#ededed"], "DESCRIPTION": ["Grey", "Turquoise", "Winter"], }, "DarkTeal11": {"BACKGROUND": "#405559", "TEXT": "#ededed", "INPUT": "#68868c", "TEXT_INPUT": "#ededed", "SCROLL": "#68868c", "BUTTON": ("#ededed", "#68868c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e3e3e", "#405559", "#68868c", "#ededed"], "DESCRIPTION": ["Grey", "Turquoise", "Winter"], }, "LightBlue7": {"BACKGROUND": "#9ed0e0", "TEXT": "#19483f", "INPUT": "#5c868e", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#19483f", "BUTTON": ("#FFFFFF", "#19483f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#19483f", "#5c868e", "#ff6a38", "#9ed0e0"], "DESCRIPTION": ["Orange", "Blue", "Turquoise"], }, "LightGreen10": {"BACKGROUND": "#d8ebb5", "TEXT": "#205d67", "INPUT": "#639a67", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#205d67", "BUTTON": ("#d8ebb5", "#205d67"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#205d67", "#639a67", "#d9bf77", "#d8ebb5"], "DESCRIPTION": ["Blue", "Green", "Brown", "Vintage"], }, "DarkBlue15": {"BACKGROUND": "#151680", "TEXT": "#f1fea4", "INPUT": "#375fc0", "TEXT_INPUT": "#f1fea4", "SCROLL": "#375fc0", "BUTTON": ("#f1fea4", "#1c44ac"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#151680", "#1c44ac", "#375fc0", "#f1fea4"], "DESCRIPTION": ["Blue", "Yellow", "Cold"], }, "DarkBlue16": {"BACKGROUND": "#1c44ac", "TEXT": "#f1fea4", "INPUT": "#375fc0", "TEXT_INPUT": "#f1fea4", "SCROLL": "#375fc0", "BUTTON": ("#f1fea4", "#151680"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#151680", "#1c44ac", "#375fc0", "#f1fea4"], "DESCRIPTION": ["Blue", "Yellow", "Cold"], }, "DarkTeal12": {"BACKGROUND": "#004a7c", "TEXT": "#fafafa", "INPUT": "#e8f1f5", "TEXT_INPUT": "#000000", "SCROLL": "#e8f1f5", "BUTTON": ("#fafafa", "#005691"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#004a7c", "#005691", "#e8f1f5", "#fafafa"], "DESCRIPTION": ["Grey", "Blue", "Cold", "Winter"], }, "LightBrown13": {"BACKGROUND": "#ebf5ee", "TEXT": "#921224", "INPUT": "#bdc6b8", "TEXT_INPUT": "#921224", "SCROLL": "#921224", "BUTTON": ("#FFFFFF", "#921224"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#921224", "#bdc6b8", "#bce0da", "#ebf5ee"], "DESCRIPTION": ["Red", "Blue", "Grey", "Vintage", "Wedding"], }, "DarkBlue17": {"BACKGROUND": "#21294c", "TEXT": "#f9f2d7", "INPUT": "#f2dea8", "TEXT_INPUT": "#000000", "SCROLL": "#f2dea8", "BUTTON": ("#f9f2d7", "#141829"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#141829", "#21294c", "#f2dea8", "#f9f2d7"], "DESCRIPTION": ["#000000", "Blue", "Yellow"], }, "DarkBrown6": {"BACKGROUND": "#785e4d", "TEXT": "#f2eee3", "INPUT": "#baaf92", "TEXT_INPUT": "#000000", "SCROLL": "#baaf92", "BUTTON": ("#FFFFFF", "#785e4d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#785e4d", "#ff8426", "#baaf92", "#f2eee3"], "DESCRIPTION": ["Grey", "Brown", "Orange", "Autumn"], }, "DarkGreen6": {"BACKGROUND": "#5c715e", "TEXT": "#f2f9f1", "INPUT": "#ddeedf", "TEXT_INPUT": "#000000", "SCROLL": "#ddeedf", "BUTTON": ("#f2f9f1", "#5c715e"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#5c715e", "#b6cdbd", "#ddeedf", "#f2f9f1"], "DESCRIPTION": ["Grey", "Green", "Vintage"], }, "DarkGreen7": {"BACKGROUND": "#0C231E", "TEXT": "#efbe1c", "INPUT": "#153C33", "TEXT_INPUT": "#efbe1c", "SCROLL": "#153C33", "BUTTON": ("#efbe1c", "#153C33"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey7": {"BACKGROUND": "#4b586e", "TEXT": "#dddddd", "INPUT": "#574e6d", "TEXT_INPUT": "#dddddd", "SCROLL": "#574e6d", "BUTTON": ("#dddddd", "#43405d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#43405d", "#4b586e", "#574e6d", "#dddddd"], "DESCRIPTION": ["Grey", "Winter", "Cold"], }, "DarkRed2": {"BACKGROUND": "#ab1212", "TEXT": "#f6e4b5", "INPUT": "#cd3131", "TEXT_INPUT": "#f6e4b5", "SCROLL": "#cd3131", "BUTTON": ("#f6e4b5", "#ab1212"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#ab1212", "#1fad9f", "#cd3131", "#f6e4b5"], "DESCRIPTION": ["Turquoise", "Red", "Yellow"], }, "LightGrey6": {"BACKGROUND": "#e3e3e3", "TEXT": "#233142", "INPUT": "#455d7a", "TEXT_INPUT": "#e3e3e3", "SCROLL": "#233142", "BUTTON": ("#e3e3e3", "#455d7a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#233142", "#455d7a", "#f95959", "#e3e3e3"], "DESCRIPTION": ["#000000", "Blue", "Red", "Grey"], }, "HotDogStand": {"BACKGROUND": "red", "TEXT": "yellow", "INPUT": "yellow", "TEXT_INPUT": "#000000", "SCROLL": "yellow", "BUTTON": ("red", "yellow"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey8": {"BACKGROUND": "#19232D", "TEXT": "#ffffff", "INPUT": "#32414B", "TEXT_INPUT": "#ffffff", "SCROLL": "#505F69", "BUTTON": ("#ffffff", "#32414B"), "PROGRESS": ("#505F69", "#32414B"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey9": {"BACKGROUND": "#36393F", "TEXT": "#DCDDDE", "INPUT": "#40444B", "TEXT_INPUT": "#ffffff", "SCROLL": "#202225", "BUTTON": ("#202225", "#B9BBBE"), "PROGRESS": ("#202225", "#40444B"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey10": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#272a31", "TEXT_INPUT": "#8b9fde", "SCROLL": "#313641", "BUTTON": ("#f5f5f6", "#2e3d5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey11": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#313641", "TEXT_INPUT": "#cccdcf", "SCROLL": "#313641", "BUTTON": ("#f5f5f6", "#313641"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey12": {"BACKGROUND": "#1c1e23", "TEXT": "#8b9fde", "INPUT": "#313641", "TEXT_INPUT": "#8b9fde", "SCROLL": "#313641", "BUTTON": ("#cccdcf", "#2e3d5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey13": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#272a31", "TEXT_INPUT": "#cccdcf", "SCROLL": "#313641", "BUTTON": ("#8b9fde", "#313641"), "PROGRESS": ("#cccdcf", "#272a31"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey14": {"BACKGROUND": "#24292e", "TEXT": "#fafbfc", "INPUT": "#1d2125", "TEXT_INPUT": "#fafbfc", "SCROLL": "#1d2125", "BUTTON": ("#fafbfc", "#155398"), "PROGRESS": ("#155398", "#1d2125"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown7": {"BACKGROUND": "#2c2417", "TEXT": "#baa379", "INPUT": "#baa379", "TEXT_INPUT": "#000000", "SCROLL": "#392e1c", "BUTTON": ("#000000", "#baa379"), "PROGRESS": ("#baa379", "#453923"), "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Python": {"BACKGROUND": "#3d7aab", "TEXT": "#ffde56", "INPUT": "#295273", "TEXT_INPUT": "#ffde56", "SCROLL": "#295273", "BUTTON": ("#ffde56", "#295273"), "PROGRESS": ("#ffde56", "#295273"), "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, }
:param icon: Can be either a filename or Base64 value. For Windows if filename, it MUST be ICO format. For Linux, must NOT be ICO. Most portable is to use a Base64 of a PNG file. This works universally across all OS's :type icon: bytes | str :param button_color: Color of the button (text, background) :type button_color: (str, str) or str :param element_size: element size (width, height) in characters :type element_size: (int, int) :param button_element_size: Size of button :type button_element_size: (int, int) :param margins: (left/right, top/bottom) tkinter margins around outsize. Amount of pixels to leave inside the window's frame around the edges before your elements are shown. :type margins: (int, int) :param element_padding: Default amount of padding to put around elements in window (left/right, top/bottom) or ((left, right), (top, bottom)) :type element_padding: (int, int) or ((int, int),(int,int)) :param auto_size_text: True if the Widget should be shrunk to exactly fit the number of chars to show :type auto_size_text: bool :param auto_size_buttons: True if Buttons in this Window should be sized to exactly fit the text on this. :type auto_size_buttons: (bool) :param font: specifies the font family, size, etc. Tuple or Single string format 'name size styles'. Styles: italic * roman bold normal underline overstrike :type font: (str or (str, int[, str]) or None) :param border_width: width of border around element :type border_width: (int) :param slider_border_width: Width of the border around sliders :type slider_border_width: (int) :param slider_relief: Type of relief to use for sliders :type slider_relief: (str) :param slider_orientation: ??? :type slider_orientation: ??? :param autoclose_time: ??? :type autoclose_time: ??? :param message_box_line_width: ??? :type message_box_line_width: ??? :param progress_meter_border_depth: ??? :type progress_meter_border_depth: ??? :param progress_meter_style: You can no longer set a progress bar style. All ttk styles must be the same for the window :type progress_meter_style: ??? :param progress_meter_relief: :type progress_meter_relief: ??? :param progress_meter_color: ??? :type progress_meter_color: ??? :param progress_meter_size: ??? :type progress_meter_size: ??? :param text_justification: Default text justification for all Text Elements in window :type text_justification: 'left' | 'right' | 'center' :param background_color: color of background :type background_color: (str) :param element_background_color: element background color :type element_background_color: (str) :param text_element_background_color: text element background color :type text_element_background_color: (str) :param input_elements_background_color: Default color to use for the background of input elements :type input_elements_background_color: (str) :param input_text_color: Default color to use for the text for Input elements :type input_text_color: (str) :param scrollbar_color: Default color to use for the slider trough :type scrollbar_color: (str) :param text_color: color of the text :type text_color: (str) :param element_text_color: Default color to use for Text elements :type element_text_color: (str) :param debug_win_size: window size :type debug_win_size: (int, int) :param window_location: Default location to place windows. Not setting will center windows on the display :type window_location: (int, int) | None :param error_button_color: (Default = (None)) :type error_button_color: ??? :param tooltip_time: time in milliseconds to wait before showing a tooltip. Default is 400ms :type tooltip_time: (int) :param tooltip_font: font to use for all tooltips :type tooltip_font: str or Tuple[str, int] or Tuple[str, int, str] :param use_ttk_buttons: if True will cause all buttons to be ttk buttons :type use_ttk_buttons: (bool) :param ttk_theme: Theme to use with ttk widgets. Choices (on Windows) include - 'default', 'winnative', 'clam', 'alt', 'classic', 'vista', 'xpnative' :type ttk_theme: (str) :param suppress_error_popups: If True then error popups will not be shown if generated internally to PySimpleGUI :type suppress_error_popups: (bool) :param suppress_raise_key_errors: If True then key errors won't be raised (you'll still get popup error) :type suppress_raise_key_errors: (bool) :param suppress_key_guessing: If True then key errors won't try and find closest matches for you :type suppress_key_guessing: (bool) :param warn_button_key_duplicates: If True then duplicate Button Keys generate warnings (not recommended as they're expected) :type warn_button_key_duplicates: (bool) :param enable_treeview_869_patch: If True, then will use the treeview color patch for tk 8.6.9 :type enable_treeview_869_patch: (bool) :param enable_mac_notitlebar_patch: If True then Windows with no titlebar use an alternative technique when tkinter version < 8.6.10 :type enable_mac_notitlebar_patch: (bool) :param use_custom_titlebar: If True then a custom titlebar is used instead of the normal system titlebar :type use_custom_titlebar: (bool) :param titlebar_background_color: If custom titlebar indicated by use_custom_titlebar, then use this as background color :type titlebar_background_color: str | None :param titlebar_text_color: If custom titlebar indicated by use_custom_titlebar, then use this as text color :type titlebar_text_color: str | None :param titlebar_font: If custom titlebar indicated by use_custom_titlebar, then use this as title font :type titlebar_font: (str or (str, int[, str]) or None) | None :param titlebar_icon: If custom titlebar indicated by use_custom_titlebar, then use this as the icon (file or base64 bytes) :type titlebar_icon: bytes | str :param user_settings_path: default path for user_settings API calls. Expanded with os.path.expanduser so can contain ~ to represent user :type user_settings_path: (str) :param pysimplegui_settings_path: default path for the global PySimpleGUI user_settings :type pysimplegui_settings_path: (str) :param pysimplegui_settings_filename: default filename for the global PySimpleGUI user_settings :type pysimplegui_settings_filename: (str) :param keep_on_top: If True then all windows will automatically be set to keep_on_top=True :type keep_on_top: (bool) :param dpi_awareness: If True then will turn on DPI awareness (Windows only at the moment) :type dpi_awareness: (bool) :param scaling: Sets the default scaling for all windows including popups, etc. :type scaling: (float) :param disable_modal_windows: If True then all windows, including popups, will not be modal windows :type disable_modal_windows: (bool) :param tooltip_offset: Offset to use for tooltips as a tuple. These values will be added to the mouse location when the widget was entered. :type tooltip_offset: ((None, None) | (int, int)) :return: None :rtype: None
889
4,824
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def set_options(icon=None, button_color=None, element_size=(None, None), button_element_size=(None, None), margins=(None, None), element_padding=(None, None), auto_size_text=None, auto_size_buttons=None, font=None, border_width=None, slider_border_width=None, slider_relief=None, slider_orientation=None, autoclose_time=None, message_box_line_width=None, progress_meter_border_depth=None, progress_meter_style=None, progress_meter_relief=None, progress_meter_color=None, progress_meter_size=None, text_justification=None, background_color=None, element_background_color=None, text_element_background_color=None, input_elements_background_color=None, input_text_color=None, scrollbar_color=None, text_color=None, element_text_color=None, debug_win_size=(None, None), window_location=(None, None), error_button_color=(None, None), tooltip_time=None, tooltip_font=None, use_ttk_buttons=None, ttk_theme=None, suppress_error_popups=None, suppress_raise_key_errors=None, suppress_key_guessing=None,warn_button_key_duplicates=False, enable_treeview_869_patch=None, enable_mac_notitlebar_patch=None, use_custom_titlebar=None, titlebar_background_color=None, titlebar_text_color=None, titlebar_font=None, titlebar_icon=None, user_settings_path=None, pysimplegui_settings_path=None, pysimplegui_settings_filename=None, keep_on_top=None, dpi_awareness=None, scaling=None, disable_modal_windows=None, tooltip_offset=(None, None)): global DEFAULT_ELEMENT_SIZE global DEFAULT_BUTTON_ELEMENT_SIZE global DEFAULT_MARGINS # Margins for each LEFT/RIGHT margin is first term global DEFAULT_ELEMENT_PADDING # Padding between elements (row, col) in pixels global DEFAULT_AUTOSIZE_TEXT global DEFAULT_AUTOSIZE_BUTTONS global DEFAULT_FONT global DEFAULT_BORDER_WIDTH global DEFAULT_AUTOCLOSE_TIME global DEFAULT_BUTTON_COLOR global MESSAGE_BOX_LINE_WIDTH global DEFAULT_PROGRESS_BAR_BORDER_WIDTH global DEFAULT_PROGRESS_BAR_STYLE global DEFAULT_PROGRESS_BAR_RELIEF global DEFAULT_PROGRESS_BAR_COLOR global DEFAULT_PROGRESS_BAR_SIZE global DEFAULT_TEXT_JUSTIFICATION global DEFAULT_DEBUG_WINDOW_SIZE global DEFAULT_SLIDER_BORDER_WIDTH global DEFAULT_SLIDER_RELIEF global DEFAULT_SLIDER_ORIENTATION global DEFAULT_BACKGROUND_COLOR global DEFAULT_INPUT_ELEMENTS_COLOR global DEFAULT_ELEMENT_BACKGROUND_COLOR global DEFAULT_TEXT_ELEMENT_BACKGROUND_COLOR global DEFAULT_SCROLLBAR_COLOR global DEFAULT_TEXT_COLOR global DEFAULT_WINDOW_LOCATION global DEFAULT_ELEMENT_TEXT_COLOR global DEFAULT_INPUT_TEXT_COLOR global DEFAULT_TOOLTIP_TIME global DEFAULT_ERROR_BUTTON_COLOR global DEFAULT_TTK_THEME global USE_TTK_BUTTONS global TOOLTIP_FONT global SUPPRESS_ERROR_POPUPS global SUPPRESS_RAISE_KEY_ERRORS global SUPPRESS_KEY_GUESSING global WARN_DUPLICATE_BUTTON_KEY_ERRORS global ENABLE_TREEVIEW_869_PATCH global ENABLE_MAC_NOTITLEBAR_PATCH global USE_CUSTOM_TITLEBAR global CUSTOM_TITLEBAR_BACKGROUND_COLOR global CUSTOM_TITLEBAR_TEXT_COLOR global CUSTOM_TITLEBAR_ICON global CUSTOM_TITLEBAR_FONT global DEFAULT_USER_SETTINGS_PATH global DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH global DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME global DEFAULT_KEEP_ON_TOP global DEFAULT_SCALING global DEFAULT_MODAL_WINDOWS_ENABLED global DEFAULT_TOOLTIP_OFFSET global _pysimplegui_user_settings # global _my_windows if icon: Window._user_defined_icon = icon # _my_windows._user_defined_icon = icon if button_color != None: if button_color == COLOR_SYSTEM_DEFAULT: DEFAULT_BUTTON_COLOR = (COLOR_SYSTEM_DEFAULT, COLOR_SYSTEM_DEFAULT) else: DEFAULT_BUTTON_COLOR = button_color if element_size != (None, None): DEFAULT_ELEMENT_SIZE = element_size if button_element_size != (None, None): DEFAULT_BUTTON_ELEMENT_SIZE = button_element_size if margins != (None, None): DEFAULT_MARGINS = margins if element_padding != (None, None): DEFAULT_ELEMENT_PADDING = element_padding if auto_size_text != None: DEFAULT_AUTOSIZE_TEXT = auto_size_text if auto_size_buttons != None: DEFAULT_AUTOSIZE_BUTTONS = auto_size_buttons if font != None: DEFAULT_FONT = font if border_width != None: DEFAULT_BORDER_WIDTH = border_width if autoclose_time != None: DEFAULT_AUTOCLOSE_TIME = autoclose_time if message_box_line_width != None: MESSAGE_BOX_LINE_WIDTH = message_box_line_width if progress_meter_border_depth != None: DEFAULT_PROGRESS_BAR_BORDER_WIDTH = progress_meter_border_depth if progress_meter_style != None: warnings.warn('You can no longer set a progress bar style. All ttk styles must be the same for the window', UserWarning) # DEFAULT_PROGRESS_BAR_STYLE = progress_meter_style if progress_meter_relief != None: DEFAULT_PROGRESS_BAR_RELIEF = progress_meter_relief if progress_meter_color != None: DEFAULT_PROGRESS_BAR_COLOR = progress_meter_color if progress_meter_size != None: DEFAULT_PROGRESS_BAR_SIZE = progress_meter_size if slider_border_width != None: DEFAULT_SLIDER_BORDER_WIDTH = slider_border_width if slider_orientation != None: DEFAULT_SLIDER_ORIENTATION = slider_orientation if slider_relief != None: DEFAULT_SLIDER_RELIEF = slider_relief if text_justification != None: DEFAULT_TEXT_JUSTIFICATION = text_justification if background_color != None: DEFAULT_BACKGROUND_COLOR = background_color if text_element_background_color != None: DEFAULT_TEXT_ELEMENT_BACKGROUND_COLOR = text_element_background_color if input_elements_background_color != None: DEFAULT_INPUT_ELEMENTS_COLOR = input_elements_background_color if element_background_color != None: DEFAULT_ELEMENT_BACKGROUND_COLOR = element_background_color if window_location != (None, None): DEFAULT_WINDOW_LOCATION = window_location if debug_win_size != (None, None): DEFAULT_DEBUG_WINDOW_SIZE = debug_win_size if text_color != None: DEFAULT_TEXT_COLOR = text_color if scrollbar_color != None: DEFAULT_SCROLLBAR_COLOR = scrollbar_color if element_text_color != None: DEFAULT_ELEMENT_TEXT_COLOR = element_text_color if input_text_color is not None: DEFAULT_INPUT_TEXT_COLOR = input_text_color if tooltip_time is not None: DEFAULT_TOOLTIP_TIME = tooltip_time if error_button_color != (None, None): DEFAULT_ERROR_BUTTON_COLOR = error_button_color if ttk_theme is not None: DEFAULT_TTK_THEME = ttk_theme if use_ttk_buttons is not None: USE_TTK_BUTTONS = use_ttk_buttons if tooltip_font is not None: TOOLTIP_FONT = tooltip_font if suppress_error_popups is not None: SUPPRESS_ERROR_POPUPS = suppress_error_popups if suppress_raise_key_errors is not None: SUPPRESS_RAISE_KEY_ERRORS = suppress_raise_key_errors if suppress_key_guessing is not None: SUPPRESS_KEY_GUESSING = suppress_key_guessing if warn_button_key_duplicates is not None: WARN_DUPLICATE_BUTTON_KEY_ERRORS = warn_button_key_duplicates if enable_treeview_869_patch is not None: ENABLE_TREEVIEW_869_PATCH = enable_treeview_869_patch if enable_mac_notitlebar_patch is not None: ENABLE_MAC_NOTITLEBAR_PATCH = enable_mac_notitlebar_patch if use_custom_titlebar is not None: USE_CUSTOM_TITLEBAR = use_custom_titlebar if titlebar_background_color is not None: CUSTOM_TITLEBAR_BACKGROUND_COLOR = titlebar_background_color if titlebar_text_color is not None: CUSTOM_TITLEBAR_TEXT_COLOR = titlebar_text_color if titlebar_font is not None: CUSTOM_TITLEBAR_FONT = titlebar_font if titlebar_icon is not None: CUSTOM_TITLEBAR_ICON = titlebar_icon if user_settings_path is not None: DEFAULT_USER_SETTINGS_PATH = user_settings_path if pysimplegui_settings_path is not None: DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH = pysimplegui_settings_path if pysimplegui_settings_filename is not None: DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME = pysimplegui_settings_filename if pysimplegui_settings_filename is not None or pysimplegui_settings_filename is not None: _pysimplegui_user_settings = UserSettings(filename=DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME, path=DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH) if keep_on_top is not None: DEFAULT_KEEP_ON_TOP = keep_on_top if dpi_awareness is True: if running_windows(): if platform.release() == "7": ctypes.windll.user32.SetProcessDPIAware() elif platform.release() == "8" or platform.release() == "10": ctypes.windll.shcore.SetProcessDpiAwareness(1) if scaling is not None: DEFAULT_SCALING = scaling if disable_modal_windows is not None: DEFAULT_MODAL_WINDOWS_ENABLED = not disable_modal_windows if tooltip_offset != (None, None): DEFAULT_TOOLTIP_OFFSET = tooltip_offset return True # ----------------------------------------------------------------- # # .########.##.....##.########.##.....##.########..######. # ....##....##.....##.##.......###...###.##.......##....## # ....##....##.....##.##.......####.####.##.......##...... # ....##....#########.######...##.###.##.######....######. # ....##....##.....##.##.......##.....##.##.............## # ....##....##.....##.##.......##.....##.##.......##....## # ....##....##.....##.########.##.....##.########..######. # ----------------------------------------------------------------- # # The official Theme code #################### ChangeLookAndFeel ####################### # Predefined settings that will change the colors and styles # # of the elements. # ############################################################## LOOK_AND_FEEL_TABLE = { "SystemDefault": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "SystemDefaultForReal": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "SystemDefault1": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Material1": {"BACKGROUND": "#E3F2FD", "TEXT": "#000000", "INPUT": "#86A8FF", "TEXT_INPUT": "#000000", "SCROLL": "#86A8FF", "BUTTON": ("#FFFFFF", "#5079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "Material2": {"BACKGROUND": "#FAFAFA", "TEXT": "#000000", "INPUT": "#004EA1", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5EA7FF", "BUTTON": ("#FFFFFF", "#0079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "Reddit": {"BACKGROUND": "#ffffff", "TEXT": "#1a1a1b", "INPUT": "#dae0e6", "TEXT_INPUT": "#222222", "SCROLL": "#a5a4a4", "BUTTON": ("#FFFFFF", "#0079d3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#ff5414", "ACCENT2": "#33a8ff", "ACCENT3": "#dbf0ff", }, "Topanga": {"BACKGROUND": "#282923", "TEXT": "#E7DB74", "INPUT": "#393a32", "TEXT_INPUT": "#E7C855", "SCROLL": "#E7C855", "BUTTON": ("#E7C855", "#284B5A"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#c15226", "ACCENT2": "#7a4d5f", "ACCENT3": "#889743", }, "GreenTan": {"BACKGROUND": "#9FB8AD", "TEXT": '#000000', "INPUT": "#F7F3EC", "TEXT_INPUT": "#000000", "SCROLL": "#F7F3EC", "BUTTON": ("#FFFFFF", "#475841"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Dark": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen": {"BACKGROUND": "#B7CECE", "TEXT": "#000000", "INPUT": "#FDFFF7", "TEXT_INPUT": "#000000", "SCROLL": "#FDFFF7", "BUTTON": ("#FFFFFF", "#658268"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "ACCENT1": "#76506d", "ACCENT2": "#5148f1", "ACCENT3": "#0a1c84", "PROGRESS_DEPTH": 0, }, "Dark2": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#FFFFFF", "TEXT_INPUT": "#000000", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Black": {"BACKGROUND": "#000000", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#000000", "#FFFFFF"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Tan": {"BACKGROUND": "#fdf6e3", "TEXT": "#268bd1", "INPUT": "#eee8d5", "TEXT_INPUT": "#6c71c3", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063542"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "TanBlue": {"BACKGROUND": "#e5dece", "TEXT": "#063289", "INPUT": "#f9f8f4", "TEXT_INPUT": "#242834", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkTanBlue": {"BACKGROUND": "#242834", "TEXT": "#dfe6f8", "INPUT": "#97755c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a9afbb", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkAmber": {"BACKGROUND": "#2c2825", "TEXT": "#fdcb52", "INPUT": "#705e52", "TEXT_INPUT": "#fdcb52", "SCROLL": "#705e52", "BUTTON": ("#000000", "#fdcb52"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue": {"BACKGROUND": "#1a2835", "TEXT": "#d1ecff", "INPUT": "#335267", "TEXT_INPUT": "#acc2d0", "SCROLL": "#1b6497", "BUTTON": ("#000000", "#fafaf8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Reds": {"BACKGROUND": "#280001", "TEXT": "#FFFFFF", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#763e00", "BUTTON": ("#000000", "#daad28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Green": {"BACKGROUND": "#82a459", "TEXT": "#000000", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#e3ecf3", "BUTTON": ("#FFFFFF", "#517239"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BluePurple": {"BACKGROUND": "#A5CADD", "TEXT": "#6E266E", "INPUT": "#E0F5FF", "TEXT_INPUT": "#000000", "SCROLL": "#E0F5FF", "BUTTON": ("#FFFFFF", "#303952"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Purple": {"BACKGROUND": "#B0AAC2", "TEXT": "#000000", "INPUT": "#F2EFE8", "SCROLL": "#F2EFE8", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#C2D4D8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BlueMono": {"BACKGROUND": "#AAB6D3", "TEXT": "#000000", "INPUT": "#F1F4FC", "SCROLL": "#F1F4FC", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#7186C7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "GreenMono": {"BACKGROUND": "#A8C1B4", "TEXT": "#000000", "INPUT": "#DDE0DE", "SCROLL": "#E3E3E3", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#6D9F85"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BrownBlue": {"BACKGROUND": "#64778d", "TEXT": "#FFFFFF", "INPUT": "#f0f3f7", "SCROLL": "#A6B2BE", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#283b5b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BrightColors": {"BACKGROUND": "#b4ffb4", "TEXT": "#000000", "INPUT": "#ffff64", "SCROLL": "#ffb482", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#ffa0dc"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "NeutralBlue": {"BACKGROUND": "#92aa9d", "TEXT": "#000000", "INPUT": "#fcfff6", "SCROLL": "#fcfff6", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#d0dbbd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Kayak": {"BACKGROUND": "#a7ad7f", "TEXT": "#000000", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#5d907d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "SandyBeach": {"BACKGROUND": "#efeccb", "TEXT": "#012f2f", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#012f2f", "BUTTON": ("#FFFFFF", "#046380"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "TealMono": {"BACKGROUND": "#a8cfdd", "TEXT": "#000000", "INPUT": "#dfedf2", "SCROLL": "#dfedf2", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#183440"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Default": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Default1": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "DefaultNoMoreNagging": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "GrayGrayGray": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "LightBlue": {"BACKGROUND": "#E3F2FD", "TEXT": "#000000", "INPUT": "#86A8FF", "TEXT_INPUT": "#000000", "SCROLL": "#86A8FF", "BUTTON": ("#FFFFFF", "#5079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "LightGrey": {"BACKGROUND": "#FAFAFA", "TEXT": "#000000", "INPUT": "#004EA1", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5EA7FF", "BUTTON": ("#FFFFFF", "#0079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "LightGrey1": {"BACKGROUND": "#ffffff", "TEXT": "#1a1a1b", "INPUT": "#dae0e6", "TEXT_INPUT": "#222222", "SCROLL": "#a5a4a4", "BUTTON": ("#FFFFFF", "#0079d3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#ff5414", "ACCENT2": "#33a8ff", "ACCENT3": "#dbf0ff", }, "DarkBrown": {"BACKGROUND": "#282923", "TEXT": "#E7DB74", "INPUT": "#393a32", "TEXT_INPUT": "#E7C855", "SCROLL": "#E7C855", "BUTTON": ("#E7C855", "#284B5A"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#c15226", "ACCENT2": "#7a4d5f", "ACCENT3": "#889743", }, "LightGreen1": {"BACKGROUND": "#9FB8AD", "TEXT": "#000000", "INPUT": "#F7F3EC", "TEXT_INPUT": "#000000", "SCROLL": "#F7F3EC", "BUTTON": ("#FFFFFF", "#475841"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen2": {"BACKGROUND": "#B7CECE", "TEXT": "#000000", "INPUT": "#FDFFF7", "TEXT_INPUT": "#000000", "SCROLL": "#FDFFF7", "BUTTON": ("#FFFFFF", "#658268"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "ACCENT1": "#76506d", "ACCENT2": "#5148f1", "ACCENT3": "#0a1c84", "PROGRESS_DEPTH": 0, }, "DarkGrey1": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#FFFFFF", "TEXT_INPUT": "#000000", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlack": {"BACKGROUND": "#000000", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#000000", "#FFFFFF"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown": {"BACKGROUND": "#fdf6e3", "TEXT": "#268bd1", "INPUT": "#eee8d5", "TEXT_INPUT": "#6c71c3", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063542"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown1": {"BACKGROUND": "#e5dece", "TEXT": "#063289", "INPUT": "#f9f8f4", "TEXT_INPUT": "#242834", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue1": {"BACKGROUND": "#242834", "TEXT": "#dfe6f8", "INPUT": "#97755c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a9afbb", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown1": {"BACKGROUND": "#2c2825", "TEXT": "#fdcb52", "INPUT": "#705e52", "TEXT_INPUT": "#fdcb52", "SCROLL": "#705e52", "BUTTON": ("#000000", "#fdcb52"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue2": {"BACKGROUND": "#1a2835", "TEXT": "#d1ecff", "INPUT": "#335267", "TEXT_INPUT": "#acc2d0", "SCROLL": "#1b6497", "BUTTON": ("#000000", "#fafaf8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown2": {"BACKGROUND": "#280001", "TEXT": "#FFFFFF", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#763e00", "BUTTON": ("#000000", "#daad28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGreen": {"BACKGROUND": "#82a459", "TEXT": "#000000", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#e3ecf3", "BUTTON": ("#FFFFFF", "#517239"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue1": {"BACKGROUND": "#A5CADD", "TEXT": "#6E266E", "INPUT": "#E0F5FF", "TEXT_INPUT": "#000000", "SCROLL": "#E0F5FF", "BUTTON": ("#FFFFFF", "#303952"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightPurple": {"BACKGROUND": "#B0AAC2", "TEXT": "#000000", "INPUT": "#F2EFE8", "SCROLL": "#F2EFE8", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#C2D4D8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue2": {"BACKGROUND": "#AAB6D3", "TEXT": "#000000", "INPUT": "#F1F4FC", "SCROLL": "#F1F4FC", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#7186C7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen3": {"BACKGROUND": "#A8C1B4", "TEXT": "#000000", "INPUT": "#DDE0DE", "SCROLL": "#E3E3E3", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#6D9F85"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue3": {"BACKGROUND": "#64778d", "TEXT": "#FFFFFF", "INPUT": "#f0f3f7", "SCROLL": "#A6B2BE", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#283b5b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen4": {"BACKGROUND": "#b4ffb4", "TEXT": "#000000", "INPUT": "#ffff64", "SCROLL": "#ffb482", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#ffa0dc"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen5": {"BACKGROUND": "#92aa9d", "TEXT": "#000000", "INPUT": "#fcfff6", "SCROLL": "#fcfff6", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#d0dbbd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown2": {"BACKGROUND": "#a7ad7f", "TEXT": "#000000", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#5d907d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown3": {"BACKGROUND": "#efeccb", "TEXT": "#012f2f", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#012f2f", "BUTTON": ("#FFFFFF", "#046380"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue3": {"BACKGROUND": "#a8cfdd", "TEXT": "#000000", "INPUT": "#dfedf2", "SCROLL": "#dfedf2", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#183440"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown4": {"BACKGROUND": "#d7c79e", "TEXT": "#a35638", "INPUT": "#9dab86", "TEXT_INPUT": "#000000", "SCROLL": "#a35638", "BUTTON": ("#FFFFFF", "#a35638"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#a35638", "#9dab86", "#e08f62", "#d7c79e"], }, "DarkTeal": {"BACKGROUND": "#003f5c", "TEXT": "#fb5b5a", "INPUT": "#bc4873", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#bc4873", "BUTTON": ("#FFFFFF", "#fb5b5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#003f5c", "#472b62", "#bc4873", "#fb5b5a"], }, "DarkPurple": {"BACKGROUND": "#472b62", "TEXT": "#fb5b5a", "INPUT": "#bc4873", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#bc4873", "BUTTON": ("#FFFFFF", "#472b62"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#003f5c", "#472b62", "#bc4873", "#fb5b5a"], }, "LightGreen6": {"BACKGROUND": "#eafbea", "TEXT": "#1f6650", "INPUT": "#6f9a8d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#1f6650", "BUTTON": ("#FFFFFF", "#1f6650"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#1f6650", "#6f9a8d", "#ea5e5e", "#eafbea"], }, "DarkGrey2": {"BACKGROUND": "#2b2b28", "TEXT": "#f8f8f8", "INPUT": "#f1d6ab", "TEXT_INPUT": "#000000", "SCROLL": "#f1d6ab", "BUTTON": ("#2b2b28", "#e3b04b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#2b2b28", "#e3b04b", "#f1d6ab", "#f8f8f8"], }, "LightBrown6": {"BACKGROUND": "#f9b282", "TEXT": "#8f4426", "INPUT": "#de6b35", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#8f4426", "BUTTON": ("#FFFFFF", "#8f4426"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#8f4426", "#de6b35", "#64ccda", "#f9b282"], }, "DarkTeal1": {"BACKGROUND": "#396362", "TEXT": "#ffe7d1", "INPUT": "#f6c89f", "TEXT_INPUT": "#000000", "SCROLL": "#f6c89f", "BUTTON": ("#ffe7d1", "#4b8e8d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#396362", "#4b8e8d", "#f6c89f", "#ffe7d1"], }, "LightBrown7": {"BACKGROUND": "#f6c89f", "TEXT": "#396362", "INPUT": "#4b8e8d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#396362", "BUTTON": ("#FFFFFF", "#396362"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#396362", "#4b8e8d", "#f6c89f", "#ffe7d1"], }, "DarkPurple1": {"BACKGROUND": "#0c093c", "TEXT": "#fad6d6", "INPUT": "#eea5f6", "TEXT_INPUT": "#000000", "SCROLL": "#eea5f6", "BUTTON": ("#FFFFFF", "#df42d1"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#0c093c", "#df42d1", "#eea5f6", "#fad6d6"], }, "DarkGrey3": {"BACKGROUND": "#211717", "TEXT": "#dfddc7", "INPUT": "#f58b54", "TEXT_INPUT": "#000000", "SCROLL": "#f58b54", "BUTTON": ("#dfddc7", "#a34a28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#211717", "#a34a28", "#f58b54", "#dfddc7"], }, "LightBrown8": {"BACKGROUND": "#dfddc7", "TEXT": "#211717", "INPUT": "#a34a28", "TEXT_INPUT": "#dfddc7", "SCROLL": "#211717", "BUTTON": ("#dfddc7", "#a34a28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#211717", "#a34a28", "#f58b54", "#dfddc7"], }, "DarkBlue4": {"BACKGROUND": "#494ca2", "TEXT": "#e3e7f1", "INPUT": "#c6cbef", "TEXT_INPUT": "#000000", "SCROLL": "#c6cbef", "BUTTON": ("#FFFFFF", "#8186d5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#494ca2", "#8186d5", "#c6cbef", "#e3e7f1"], }, "LightBlue4": {"BACKGROUND": "#5c94bd", "TEXT": "#470938", "INPUT": "#1a3e59", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#470938", "BUTTON": ("#FFFFFF", "#470938"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#470938", "#1a3e59", "#5c94bd", "#f2d6eb"], }, "DarkTeal2": {"BACKGROUND": "#394a6d", "TEXT": "#c0ffb3", "INPUT": "#52de97", "TEXT_INPUT": "#000000", "SCROLL": "#52de97", "BUTTON": ("#c0ffb3", "#394a6d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#394a6d", "#3c9d9b", "#52de97", "#c0ffb3"], }, "DarkTeal3": {"BACKGROUND": "#3c9d9b", "TEXT": "#c0ffb3", "INPUT": "#52de97", "TEXT_INPUT": "#000000", "SCROLL": "#52de97", "BUTTON": ("#c0ffb3", "#394a6d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#394a6d", "#3c9d9b", "#52de97", "#c0ffb3"], }, "DarkPurple5": {"BACKGROUND": "#730068", "TEXT": "#f6f078", "INPUT": "#01d28e", "TEXT_INPUT": "#000000", "SCROLL": "#01d28e", "BUTTON": ("#f6f078", "#730068"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#730068", "#434982", "#01d28e", "#f6f078"], }, "DarkPurple2": {"BACKGROUND": "#202060", "TEXT": "#b030b0", "INPUT": "#602080", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#602080", "BUTTON": ("#FFFFFF", "#202040"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#202040", "#202060", "#602080", "#b030b0"], }, "DarkBlue5": {"BACKGROUND": "#000272", "TEXT": "#ff6363", "INPUT": "#a32f80", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a32f80", "BUTTON": ("#FFFFFF", "#341677"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#000272", "#341677", "#a32f80", "#ff6363"], }, "LightGrey2": {"BACKGROUND": "#f6f6f6", "TEXT": "#420000", "INPUT": "#d4d7dd", "TEXT_INPUT": "#420000", "SCROLL": "#420000", "BUTTON": ("#420000", "#d4d7dd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#420000", "#d4d7dd", "#eae9e9", "#f6f6f6"], }, "LightGrey3": {"BACKGROUND": "#eae9e9", "TEXT": "#420000", "INPUT": "#d4d7dd", "TEXT_INPUT": "#420000", "SCROLL": "#420000", "BUTTON": ("#420000", "#d4d7dd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#420000", "#d4d7dd", "#eae9e9", "#f6f6f6"], }, "DarkBlue6": {"BACKGROUND": "#01024e", "TEXT": "#ff6464", "INPUT": "#8b4367", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#8b4367", "BUTTON": ("#FFFFFF", "#543864"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#01024e", "#543864", "#8b4367", "#ff6464"], }, "DarkBlue7": {"BACKGROUND": "#241663", "TEXT": "#eae7af", "INPUT": "#a72693", "TEXT_INPUT": "#eae7af", "SCROLL": "#a72693", "BUTTON": ("#eae7af", "#160f30"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#160f30", "#241663", "#a72693", "#eae7af"], }, "LightBrown9": {"BACKGROUND": "#f6d365", "TEXT": "#3a1f5d", "INPUT": "#c83660", "TEXT_INPUT": "#f6d365", "SCROLL": "#3a1f5d", "BUTTON": ("#f6d365", "#c83660"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3a1f5d", "#c83660", "#e15249", "#f6d365"], }, "DarkPurple3": {"BACKGROUND": "#6e2142", "TEXT": "#ffd692", "INPUT": "#e16363", "TEXT_INPUT": "#ffd692", "SCROLL": "#e16363", "BUTTON": ("#ffd692", "#943855"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#6e2142", "#943855", "#e16363", "#ffd692"], }, "LightBrown10": {"BACKGROUND": "#ffd692", "TEXT": "#6e2142", "INPUT": "#943855", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#6e2142", "BUTTON": ("#FFFFFF", "#6e2142"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#6e2142", "#943855", "#e16363", "#ffd692"], }, "DarkPurple4": {"BACKGROUND": "#200f21", "TEXT": "#f638dc", "INPUT": "#5a3d5c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5a3d5c", "BUTTON": ("#FFFFFF", "#382039"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#200f21", "#382039", "#5a3d5c", "#f638dc"], }, "LightBlue5": {"BACKGROUND": "#b2fcff", "TEXT": "#3e64ff", "INPUT": "#5edfff", "TEXT_INPUT": "#000000", "SCROLL": "#3e64ff", "BUTTON": ("#FFFFFF", "#3e64ff"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e64ff", "#5edfff", "#b2fcff", "#ecfcff"], }, "DarkTeal4": {"BACKGROUND": "#464159", "TEXT": "#c7f0db", "INPUT": "#8bbabb", "TEXT_INPUT": "#000000", "SCROLL": "#8bbabb", "BUTTON": ("#FFFFFF", "#6c7b95"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "LightTeal": {"BACKGROUND": "#c7f0db", "TEXT": "#464159", "INPUT": "#6c7b95", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#464159", "BUTTON": ("#FFFFFF", "#464159"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "DarkTeal5": {"BACKGROUND": "#8bbabb", "TEXT": "#464159", "INPUT": "#6c7b95", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#464159", "BUTTON": ("#c7f0db", "#6c7b95"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "LightGrey4": {"BACKGROUND": "#faf5ef", "TEXT": "#672f2f", "INPUT": "#99b19c", "TEXT_INPUT": "#672f2f", "SCROLL": "#672f2f", "BUTTON": ("#672f2f", "#99b19c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "LightGreen7": {"BACKGROUND": "#99b19c", "TEXT": "#faf5ef", "INPUT": "#d7d1c9", "TEXT_INPUT": "#000000", "SCROLL": "#d7d1c9", "BUTTON": ("#FFFFFF", "#99b19c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "LightGrey5": {"BACKGROUND": "#d7d1c9", "TEXT": "#672f2f", "INPUT": "#99b19c", "TEXT_INPUT": "#672f2f", "SCROLL": "#672f2f", "BUTTON": ("#FFFFFF", "#672f2f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "DarkBrown3": {"BACKGROUND": "#a0855b", "TEXT": "#f9f6f2", "INPUT": "#f1d6ab", "TEXT_INPUT": "#000000", "SCROLL": "#f1d6ab", "BUTTON": ("#FFFFFF", "#38470b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#38470b", "#a0855b", "#f1d6ab", "#f9f6f2"], }, "LightBrown11": {"BACKGROUND": "#f1d6ab", "TEXT": "#38470b", "INPUT": "#a0855b", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#38470b", "BUTTON": ("#f9f6f2", "#a0855b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#38470b", "#a0855b", "#f1d6ab", "#f9f6f2"], }, "DarkRed": {"BACKGROUND": "#83142c", "TEXT": "#f9d276", "INPUT": "#ad1d45", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#ad1d45", "BUTTON": ("#f9d276", "#ad1d45"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#44000d", "#83142c", "#ad1d45", "#f9d276"], }, "DarkTeal6": {"BACKGROUND": "#204969", "TEXT": "#fff7f7", "INPUT": "#dadada", "TEXT_INPUT": "#000000", "SCROLL": "#dadada", "BUTTON": ("#000000", "#fff7f7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#204969", "#08ffc8", "#dadada", "#fff7f7"], }, "DarkBrown4": {"BACKGROUND": "#252525", "TEXT": "#ff0000", "INPUT": "#af0404", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#af0404", "BUTTON": ("#FFFFFF", "#252525"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#252525", "#414141", "#af0404", "#ff0000"], }, "LightYellow": {"BACKGROUND": "#f4ff61", "TEXT": "#27aa80", "INPUT": "#32ff6a", "TEXT_INPUT": "#000000", "SCROLL": "#27aa80", "BUTTON": ("#f4ff61", "#27aa80"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#27aa80", "#32ff6a", "#a8ff3e", "#f4ff61"], }, "DarkGreen1": {"BACKGROUND": "#2b580c", "TEXT": "#fdef96", "INPUT": "#f7b71d", "TEXT_INPUT": "#000000", "SCROLL": "#f7b71d", "BUTTON": ("#fdef96", "#2b580c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#2b580c", "#afa939", "#f7b71d", "#fdef96"], }, "LightGreen8": {"BACKGROUND": "#c8dad3", "TEXT": "#63707e", "INPUT": "#93b5b3", "TEXT_INPUT": "#000000", "SCROLL": "#63707e", "BUTTON": ("#FFFFFF", "#63707e"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#63707e", "#93b5b3", "#c8dad3", "#f2f6f5"], }, "DarkTeal7": {"BACKGROUND": "#248ea9", "TEXT": "#fafdcb", "INPUT": "#aee7e8", "TEXT_INPUT": "#000000", "SCROLL": "#aee7e8", "BUTTON": ("#000000", "#fafdcb"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#248ea9", "#28c3d4", "#aee7e8", "#fafdcb"], }, "DarkBlue8": {"BACKGROUND": "#454d66", "TEXT": "#d9d872", "INPUT": "#58b368", "TEXT_INPUT": "#000000", "SCROLL": "#58b368", "BUTTON": ("#000000", "#009975"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#009975", "#454d66", "#58b368", "#d9d872"], }, "DarkBlue9": {"BACKGROUND": "#263859", "TEXT": "#ff6768", "INPUT": "#6b778d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#6b778d", "BUTTON": ("#ff6768", "#263859"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#17223b", "#263859", "#6b778d", "#ff6768"], }, "DarkBlue10": {"BACKGROUND": "#0028ff", "TEXT": "#f1f4df", "INPUT": "#10eaf0", "TEXT_INPUT": "#000000", "SCROLL": "#10eaf0", "BUTTON": ("#f1f4df", "#24009c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#24009c", "#0028ff", "#10eaf0", "#f1f4df"], }, "DarkBlue11": {"BACKGROUND": "#6384b3", "TEXT": "#e6f0b6", "INPUT": "#b8e9c0", "TEXT_INPUT": "#000000", "SCROLL": "#b8e9c0", "BUTTON": ("#e6f0b6", "#684949"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#684949", "#6384b3", "#b8e9c0", "#e6f0b6"], }, "DarkTeal8": {"BACKGROUND": "#71a0a5", "TEXT": "#212121", "INPUT": "#665c84", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#212121", "BUTTON": ("#fab95b", "#665c84"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#212121", "#665c84", "#71a0a5", "#fab95b"], }, "DarkRed1": {"BACKGROUND": "#c10000", "TEXT": "#eeeeee", "INPUT": "#dedede", "TEXT_INPUT": "#000000", "SCROLL": "#dedede", "BUTTON": ("#c10000", "#eeeeee"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#c10000", "#ff4949", "#dedede", "#eeeeee"], }, "LightBrown5": {"BACKGROUND": "#fff591", "TEXT": "#e41749", "INPUT": "#f5587b", "TEXT_INPUT": "#000000", "SCROLL": "#e41749", "BUTTON": ("#fff591", "#e41749"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#e41749", "#f5587b", "#ff8a5c", "#fff591"], }, "LightGreen9": {"BACKGROUND": "#f1edb3", "TEXT": "#3b503d", "INPUT": "#4a746e", "TEXT_INPUT": "#f1edb3", "SCROLL": "#3b503d", "BUTTON": ("#f1edb3", "#3b503d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3b503d", "#4a746e", "#c8cf94", "#f1edb3"], "DESCRIPTION": ["Green", "Turquoise", "Yellow"], }, "DarkGreen2": {"BACKGROUND": "#3b503d", "TEXT": "#f1edb3", "INPUT": "#c8cf94", "TEXT_INPUT": "#000000", "SCROLL": "#c8cf94", "BUTTON": ("#f1edb3", "#3b503d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3b503d", "#4a746e", "#c8cf94", "#f1edb3"], "DESCRIPTION": ["Green", "Turquoise", "Yellow"], }, "LightGray1": {"BACKGROUND": "#f2f2f2", "TEXT": "#222831", "INPUT": "#393e46", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#222831", "BUTTON": ("#f2f2f2", "#222831"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#222831", "#393e46", "#f96d00", "#f2f2f2"], "DESCRIPTION": ["#000000", "Grey", "Orange", "Grey", "Autumn"], }, "DarkGrey4": {"BACKGROUND": "#52524e", "TEXT": "#e9e9e5", "INPUT": "#d4d6c8", "TEXT_INPUT": "#000000", "SCROLL": "#d4d6c8", "BUTTON": ("#FFFFFF", "#9a9b94"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#52524e", "#9a9b94", "#d4d6c8", "#e9e9e5"], "DESCRIPTION": ["Grey", "Pastel", "Winter"], }, "DarkBlue12": {"BACKGROUND": "#324e7b", "TEXT": "#f8f8f8", "INPUT": "#86a6df", "TEXT_INPUT": "#000000", "SCROLL": "#86a6df", "BUTTON": ("#FFFFFF", "#5068a9"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#324e7b", "#5068a9", "#86a6df", "#f8f8f8"], "DESCRIPTION": ["Blue", "Grey", "Cold", "Winter"], }, "DarkPurple6": {"BACKGROUND": "#070739", "TEXT": "#e1e099", "INPUT": "#c327ab", "TEXT_INPUT": "#e1e099", "SCROLL": "#c327ab", "BUTTON": ("#e1e099", "#521477"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#070739", "#521477", "#c327ab", "#e1e099"], "DESCRIPTION": ["#000000", "Purple", "Yellow", "Dark"], }, "DarkPurple7": {"BACKGROUND": "#191930", "TEXT": "#B1B7C5", "INPUT": "#232B5C", "TEXT_INPUT": "#D0E3E7", "SCROLL": "#B1B7C5", "BUTTON": ("#272D38", "#B1B7C5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue13": {"BACKGROUND": "#203562", "TEXT": "#e3e8f8", "INPUT": "#c0c5cd", "TEXT_INPUT": "#000000", "SCROLL": "#c0c5cd", "BUTTON": ("#FFFFFF", "#3e588f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#203562", "#3e588f", "#c0c5cd", "#e3e8f8"], "DESCRIPTION": ["Blue", "Grey", "Wedding", "Cold"], }, "DarkBrown5": {"BACKGROUND": "#3c1b1f", "TEXT": "#f6e1b5", "INPUT": "#e2bf81", "TEXT_INPUT": "#000000", "SCROLL": "#e2bf81", "BUTTON": ("#3c1b1f", "#f6e1b5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3c1b1f", "#b21e4b", "#e2bf81", "#f6e1b5"], "DESCRIPTION": ["Brown", "Red", "Yellow", "Warm"], }, "DarkGreen3": {"BACKGROUND": "#062121", "TEXT": "#eeeeee", "INPUT": "#e4dcad", "TEXT_INPUT": "#000000", "SCROLL": "#e4dcad", "BUTTON": ("#eeeeee", "#181810"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#062121", "#181810", "#e4dcad", "#eeeeee"], "DESCRIPTION": ["#000000", "#000000", "Brown", "Grey"], }, "DarkBlack1": {"BACKGROUND": "#181810", "TEXT": "#eeeeee", "INPUT": "#e4dcad", "TEXT_INPUT": "#000000", "SCROLL": "#e4dcad", "BUTTON": ("#FFFFFF", "#062121"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#062121", "#181810", "#e4dcad", "#eeeeee"], "DESCRIPTION": ["#000000", "#000000", "Brown", "Grey"], }, "DarkGrey5": {"BACKGROUND": "#343434", "TEXT": "#f3f3f3", "INPUT": "#e9dcbe", "TEXT_INPUT": "#000000", "SCROLL": "#e9dcbe", "BUTTON": ("#FFFFFF", "#8e8b82"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#343434", "#8e8b82", "#e9dcbe", "#f3f3f3"], "DESCRIPTION": ["Grey", "Brown"], }, "LightBrown12": {"BACKGROUND": "#8e8b82", "TEXT": "#f3f3f3", "INPUT": "#e9dcbe", "TEXT_INPUT": "#000000", "SCROLL": "#e9dcbe", "BUTTON": ("#f3f3f3", "#8e8b82"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#343434", "#8e8b82", "#e9dcbe", "#f3f3f3"], "DESCRIPTION": ["Grey", "Brown"], }, "DarkTeal9": {"BACKGROUND": "#13445a", "TEXT": "#fef4e8", "INPUT": "#446878", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#446878", "BUTTON": ("#fef4e8", "#446878"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#13445a", "#970747", "#446878", "#fef4e8"], "DESCRIPTION": ["Red", "Grey", "Blue", "Wedding", "Retro"], }, "DarkBlue14": {"BACKGROUND": "#21273d", "TEXT": "#f1f6f8", "INPUT": "#b9d4f1", "TEXT_INPUT": "#000000", "SCROLL": "#b9d4f1", "BUTTON": ("#FFFFFF", "#6a759b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#21273d", "#6a759b", "#b9d4f1", "#f1f6f8"], "DESCRIPTION": ["Blue", "#000000", "Grey", "Cold", "Winter"], }, "LightBlue6": {"BACKGROUND": "#f1f6f8", "TEXT": "#21273d", "INPUT": "#6a759b", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#21273d", "BUTTON": ("#f1f6f8", "#6a759b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#21273d", "#6a759b", "#b9d4f1", "#f1f6f8"], "DESCRIPTION": ["Blue", "#000000", "Grey", "Cold", "Winter"], }, "DarkGreen4": {"BACKGROUND": "#044343", "TEXT": "#e4e4e4", "INPUT": "#045757", "TEXT_INPUT": "#e4e4e4", "SCROLL": "#045757", "BUTTON": ("#e4e4e4", "#045757"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#222222", "#044343", "#045757", "#e4e4e4"], "DESCRIPTION": ["#000000", "Turquoise", "Grey", "Dark"], }, "DarkGreen5": {"BACKGROUND": "#1b4b36", "TEXT": "#e0e7f1", "INPUT": "#aebd77", "TEXT_INPUT": "#000000", "SCROLL": "#aebd77", "BUTTON": ("#FFFFFF", "#538f6a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#1b4b36", "#538f6a", "#aebd77", "#e0e7f1"], "DESCRIPTION": ["Green", "Grey"], }, "DarkTeal10": {"BACKGROUND": "#0d3446", "TEXT": "#d8dfe2", "INPUT": "#71adb5", "TEXT_INPUT": "#000000", "SCROLL": "#71adb5", "BUTTON": ("#FFFFFF", "#176d81"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#0d3446", "#176d81", "#71adb5", "#d8dfe2"], "DESCRIPTION": ["Grey", "Turquoise", "Winter", "Cold"], }, "DarkGrey6": {"BACKGROUND": "#3e3e3e", "TEXT": "#ededed", "INPUT": "#68868c", "TEXT_INPUT": "#ededed", "SCROLL": "#68868c", "BUTTON": ("#FFFFFF", "#405559"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e3e3e", "#405559", "#68868c", "#ededed"], "DESCRIPTION": ["Grey", "Turquoise", "Winter"], }, "DarkTeal11": {"BACKGROUND": "#405559", "TEXT": "#ededed", "INPUT": "#68868c", "TEXT_INPUT": "#ededed", "SCROLL": "#68868c", "BUTTON": ("#ededed", "#68868c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e3e3e", "#405559", "#68868c", "#ededed"], "DESCRIPTION": ["Grey", "Turquoise", "Winter"], }, "LightBlue7": {"BACKGROUND": "#9ed0e0", "TEXT": "#19483f", "INPUT": "#5c868e", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#19483f", "BUTTON": ("#FFFFFF", "#19483f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#19483f", "#5c868e", "#ff6a38", "#9ed0e0"], "DESCRIPTION": ["Orange", "Blue", "Turquoise"], }, "LightGreen10": {"BACKGROUND": "#d8ebb5", "TEXT": "#205d67", "INPUT": "#639a67", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#205d67", "BUTTON": ("#d8ebb5", "#205d67"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#205d67", "#639a67", "#d9bf77", "#d8ebb5"], "DESCRIPTION": ["Blue", "Green", "Brown", "Vintage"], }, "DarkBlue15": {"BACKGROUND": "#151680", "TEXT": "#f1fea4", "INPUT": "#375fc0", "TEXT_INPUT": "#f1fea4", "SCROLL": "#375fc0", "BUTTON": ("#f1fea4", "#1c44ac"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#151680", "#1c44ac", "#375fc0", "#f1fea4"], "DESCRIPTION": ["Blue", "Yellow", "Cold"], }, "DarkBlue16": {"BACKGROUND": "#1c44ac", "TEXT": "#f1fea4", "INPUT": "#375fc0", "TEXT_INPUT": "#f1fea4", "SCROLL": "#375fc0", "BUTTON": ("#f1fea4", "#151680"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#151680", "#1c44ac", "#375fc0", "#f1fea4"], "DESCRIPTION": ["Blue", "Yellow", "Cold"], }, "DarkTeal12": {"BACKGROUND": "#004a7c", "TEXT": "#fafafa", "INPUT": "#e8f1f5", "TEXT_INPUT": "#000000", "SCROLL": "#e8f1f5", "BUTTON": ("#fafafa", "#005691"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#004a7c", "#005691", "#e8f1f5", "#fafafa"], "DESCRIPTION": ["Grey", "Blue", "Cold", "Winter"], }, "LightBrown13": {"BACKGROUND": "#ebf5ee", "TEXT": "#921224", "INPUT": "#bdc6b8", "TEXT_INPUT": "#921224", "SCROLL": "#921224", "BUTTON": ("#FFFFFF", "#921224"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#921224", "#bdc6b8", "#bce0da", "#ebf5ee"], "DESCRIPTION": ["Red", "Blue", "Grey", "Vintage", "Wedding"], }, "DarkBlue17": {"BACKGROUND": "#21294c", "TEXT": "#f9f2d7", "INPUT": "#f2dea8", "TEXT_INPUT": "#000000", "SCROLL": "#f2dea8", "BUTTON": ("#f9f2d7", "#141829"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#141829", "#21294c", "#f2dea8", "#f9f2d7"], "DESCRIPTION": ["#000000", "Blue", "Yellow"], }, "DarkBrown6": {"BACKGROUND": "#785e4d", "TEXT": "#f2eee3", "INPUT": "#baaf92", "TEXT_INPUT": "#000000", "SCROLL": "#baaf92", "BUTTON": ("#FFFFFF", "#785e4d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#785e4d", "#ff8426", "#baaf92", "#f2eee3"], "DESCRIPTION": ["Grey", "Brown", "Orange", "Autumn"], }, "DarkGreen6": {"BACKGROUND": "#5c715e", "TEXT": "#f2f9f1", "INPUT": "#ddeedf", "TEXT_INPUT": "#000000", "SCROLL": "#ddeedf", "BUTTON": ("#f2f9f1", "#5c715e"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#5c715e", "#b6cdbd", "#ddeedf", "#f2f9f1"], "DESCRIPTION": ["Grey", "Green", "Vintage"], }, "DarkGreen7": {"BACKGROUND": "#0C231E", "TEXT": "#efbe1c", "INPUT": "#153C33", "TEXT_INPUT": "#efbe1c", "SCROLL": "#153C33", "BUTTON": ("#efbe1c", "#153C33"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey7": {"BACKGROUND": "#4b586e", "TEXT": "#dddddd", "INPUT": "#574e6d", "TEXT_INPUT": "#dddddd", "SCROLL": "#574e6d", "BUTTON": ("#dddddd", "#43405d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#43405d", "#4b586e", "#574e6d", "#dddddd"], "DESCRIPTION": ["Grey", "Winter", "Cold"], }, "DarkRed2": {"BACKGROUND": "#ab1212", "TEXT": "#f6e4b5", "INPUT": "#cd3131", "TEXT_INPUT": "#f6e4b5", "SCROLL": "#cd3131", "BUTTON": ("#f6e4b5", "#ab1212"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#ab1212", "#1fad9f", "#cd3131", "#f6e4b5"], "DESCRIPTION": ["Turquoise", "Red", "Yellow"], }, "LightGrey6": {"BACKGROUND": "#e3e3e3", "TEXT": "#233142", "INPUT": "#455d7a", "TEXT_INPUT": "#e3e3e3", "SCROLL": "#233142", "BUTTON": ("#e3e3e3", "#455d7a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#233142", "#455d7a", "#f95959", "#e3e3e3"], "DESCRIPTION": ["#000000", "Blue", "Red", "Grey"], }, "HotDogStand": {"BACKGROUND": "red", "TEXT": "yellow", "INPUT": "yellow", "TEXT_INPUT": "#000000", "SCROLL": "yellow", "BUTTON": ("red", "yellow"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey8": {"BACKGROUND": "#19232D", "TEXT": "#ffffff", "INPUT": "#32414B", "TEXT_INPUT": "#ffffff", "SCROLL": "#505F69", "BUTTON": ("#ffffff", "#32414B"), "PROGRESS": ("#505F69", "#32414B"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey9": {"BACKGROUND": "#36393F", "TEXT": "#DCDDDE", "INPUT": "#40444B", "TEXT_INPUT": "#ffffff", "SCROLL": "#202225", "BUTTON": ("#202225", "#B9BBBE"), "PROGRESS": ("#202225", "#40444B"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey10": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#272a31", "TEXT_INPUT": "#8b9fde", "SCROLL": "#313641", "BUTTON": ("#f5f5f6", "#2e3d5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey11": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#313641", "TEXT_INPUT": "#cccdcf", "SCROLL": "#313641", "BUTTON": ("#f5f5f6", "#313641"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey12": {"BACKGROUND": "#1c1e23", "TEXT": "#8b9fde", "INPUT": "#313641", "TEXT_INPUT": "#8b9fde", "SCROLL": "#313641", "BUTTON": ("#cccdcf", "#2e3d5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey13": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#272a31", "TEXT_INPUT": "#cccdcf", "SCROLL": "#313641", "BUTTON": ("#8b9fde", "#313641"), "PROGRESS": ("#cccdcf", "#272a31"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey14": {"BACKGROUND": "#24292e", "TEXT": "#fafbfc", "INPUT": "#1d2125", "TEXT_INPUT": "#fafbfc", "SCROLL": "#1d2125", "BUTTON": ("#fafbfc", "#155398"), "PROGRESS": ("#155398", "#1d2125"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown7": {"BACKGROUND": "#2c2417", "TEXT": "#baa379", "INPUT": "#baa379", "TEXT_INPUT": "#000000", "SCROLL": "#392e1c", "BUTTON": ("#000000", "#baa379"), "PROGRESS": ("#baa379", "#453923"), "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Python": {"BACKGROUND": "#3d7aab", "TEXT": "#ffde56", "INPUT": "#295273", "TEXT_INPUT": "#ffde56", "SCROLL": "#295273", "BUTTON": ("#ffde56", "#295273"), "PROGRESS": ("#ffde56", "#295273"), "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, } ``` ###Assistant : :param icon: Can be either a filename or Base64 value. For Windows if filename, it MUST be ICO format. For Linux, must NOT be ICO. Most portable is to use a Base64 of a PNG file. This works universally across all OS's :type icon: bytes | str :param button_color: Color of the button (text, background) :type button_color: (str, str) or str :param element_size: element size (width, height) in characters :type element_size: (int, int) :param button_element_size: Size of button :type button_element_size: (int, int) :param margins: (left/right, top/bottom) tkinter margins around outsize. Amount of pixels to leave inside the window's frame around the edges before your elements are shown. :type margins: (int, int) :param element_padding: Default amount of padding to put around elements in window (left/right, top/bottom) or ((left, right), (top, bottom)) :type element_padding: (int, int) or ((int, int),(int,int)) :param auto_size_text: True if the Widget should be shrunk to exactly fit the number of chars to show :type auto_size_text: bool :param auto_size_buttons: True if Buttons in this Window should be sized to exactly fit the text on this. :type auto_size_buttons: (bool) :param font: specifies the font family, size, etc. Tuple or Single string format 'name size styles'. Styles: italic * roman bold normal underline overstrike :type font: (str or (str, int[, str]) or None) :param border_width: width of border around element :type border_width: (int) :param slider_border_width: Width of the border around sliders :type slider_border_width: (int) :param slider_relief: Type of relief to use for sliders :type slider_relief: (str) :param slider_orientation: ??? :type slider_orientation: ??? :param autoclose_time: ??? :type autoclose_time: ??? :param message_box_line_width: ??? :type message_box_line_width: ??? :param progress_meter_border_depth: ??? :type progress_meter_border_depth: ??? :param progress_meter_style: You can no longer set a progress bar style. All ttk styles must be the same for the window :type progress_meter_style: ??? :param progress_meter_relief: :type progress_meter_relief: ??? :param progress_meter_color: ??? :type progress_meter_color: ??? :param progress_meter_size: ??? :type progress_meter_size: ??? :param text_justification: Default text justification for all Text Elements in window :type text_justification: 'left' | 'right' | 'center' :param background_color: color of background :type background_color: (str) :param element_background_color: element background color :type element_background_color: (str) :param text_element_background_color: text element background color :type text_element_background_color: (str) :param input_elements_background_color: Default color to use for the background of input elements :type input_elements_background_color: (str) :param input_text_color: Default color to use for the text for Input elements :type input_text_color: (str) :param scrollbar_color: Default color to use for the slider trough :type scrollbar_color: (str) :param text_color: color of the text :type text_color: (str) :param element_text_color: Default color to use for Text elements :type element_text_color: (str) :param debug_win_size: window size :type debug_win_size: (int, int) :param window_location: Default location to place windows. Not setting will center windows on the display :type window_location: (int, int) | None :param error_button_color: (Default = (None)) :type error_button_color: ??? :param tooltip_time: time in milliseconds to wait before showing a tooltip. Default is 400ms :type tooltip_time: (int) :param tooltip_font: font to use for all tooltips :type tooltip_font: str or Tuple[str, int] or Tuple[str, int, str] :param use_ttk_buttons: if True will cause all buttons to be ttk buttons :type use_ttk_buttons: (bool) :param ttk_theme: Theme to use with ttk widgets. Choices (on Windows) include - 'default', 'winnative', 'clam', 'alt', 'classic', 'vista', 'xpnative' :type ttk_theme: (str) :param suppress_error_popups: If True then error popups will not be shown if generated internally to PySimpleGUI :type suppress_error_popups: (bool) :param suppress_raise_key_errors: If True then key errors won't be raised (you'll still get popup error) :type suppress_raise_key_errors: (bool) :param suppress_key_guessing: If True then key errors won't try and find closest matches for you :type suppress_key_guessing: (bool) :param warn_button_key_duplicates: If True then duplicate Button Keys generate warnings (not recommended as they're expected) :type warn_button_key_duplicates: (bool) :param enable_treeview_869_patch: If True, then will use the treeview color patch for tk 8.6.9 :type enable_treeview_869_patch: (bool) :param enable_mac_notitlebar_patch: If True then Windows with no titlebar use an alternative technique when tkinter version < 8.6.10 :type enable_mac_notitlebar_patch: (bool) :param use_custom_titlebar: If True then a custom titlebar is used instead of the normal system titlebar :type use_custom_titlebar: (bool) :param titlebar_background_color: If custom titlebar indicated by use_custom_titlebar, then use this as background color :type titlebar_background_color: str | None :param titlebar_text_color: If custom titlebar indicated by use_custom_titlebar, then use this as text color :type titlebar_text_color: str | None :param titlebar_font: If custom titlebar indicated by use_custom_titlebar, then use this as title font :type titlebar_font: (str or (str, int[, str]) or None) | None :param titlebar_icon: If custom titlebar indicated by use_custom_titlebar, then use this as the icon (file or base64 bytes) :type titlebar_icon: bytes | str :param user_settings_path: default path for user_settings API calls. Expanded with os.path.expanduser so can contain ~ to represent user :type user_settings_path: (str) :param pysimplegui_settings_path: default path for the global PySimpleGUI user_settings :type pysimplegui_settings_path: (str) :param pysimplegui_settings_filename: default filename for the global PySimpleGUI user_settings :type pysimplegui_settings_filename: (str) :param keep_on_top: If True then all windows will automatically be set to keep_on_top=True :type keep_on_top: (bool) :param dpi_awareness: If True then will turn on DPI awareness (Windows only at the moment) :type dpi_awareness: (bool) :param scaling: Sets the default scaling for all windows including popups, etc. :type scaling: (float) :param disable_modal_windows: If True then all windows, including popups, will not be modal windows :type disable_modal_windows: (bool) :param tooltip_offset: Offset to use for tooltips as a tuple. These values will be added to the mouse location when the widget was entered. :type tooltip_offset: ((None, None) | (int, int)) :return: None :rtype: None
1,446
def find_module(module, path=None, imp=None): if imp is None: imp = import_module with cwd_in_path(): try: return imp(module) except ImportError: # Raise a more specific error if the problem is that one of the # dot-separated segments of the module name is not a package. if '.' in module: parts = module.split('.') for i, part in enumerate(parts[:-1]): package = '.'.join(parts[:i + 1]) try: mpart = imp(package) except ImportError: # Break out and re-raise the original ImportError # instead. break try: mpart.__path__ except AttributeError: raise NotAPackage(package) raise
Version of :func:`imp.find_module` supporting dots.
5
84
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def find_module(module, path=None, imp=None): if imp is None: imp = import_module with cwd_in_path(): try: return imp(module) except ImportError: # Raise a more specific error if the problem is that one of the # dot-separated segments of the module name is not a package. if '.' in module: parts = module.split('.') for i, part in enumerate(parts[:-1]): package = '.'.join(parts[:i + 1]) try: mpart = imp(package) except ImportError: # Break out and re-raise the original ImportError # instead. break try: mpart.__path__ except AttributeError: raise NotAPackage(package) raise ``` ###Assistant : Version of :func:`imp.find_module` supporting dots.
1,447
def get_ffmpeg_path() -> Optional[Path]: # Check if ffmpeg is installed global_ffmpeg = shutil.which("ffmpeg") if global_ffmpeg: return Path(global_ffmpeg) # Get local ffmpeg path return get_local_ffmpeg()
Get path to global ffmpeg binary or a local ffmpeg binary. Or None if not found.
16
24
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_ffmpeg_path() -> Optional[Path]: # Check if ffmpeg is installed global_ffmpeg = shutil.which("ffmpeg") if global_ffmpeg: return Path(global_ffmpeg) # Get local ffmpeg path return get_local_ffmpeg() ``` ###Assistant : Get path to global ffmpeg binary or a local ffmpeg binary. Or None if not found.
1,448
def __call__(self, inputs, state, scope=None): return self._call_wrapped_cell( inputs, state, cell_call_fn=self.cell.__call__, scope=scope )
Runs the RNN cell step computation. We assume that the wrapped RNNCell is being built within its `__call__` method. We directly use the wrapped cell's `__call__` in the overridden wrapper `__call__` method. This allows to use the wrapped cell and the non-wrapped cell equivalently when using `__call__`. Args: inputs: A tensor with wrapped cell's input. state: A tensor or tuple of tensors with wrapped cell's state. scope: VariableScope for the subgraph created in the wrapped cells' `__call__`. Returns: A pair containing: - Output: A tensor with cell's output. - New state: A tensor or tuple of tensors with new wrapped cell's state.
102
12
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def __call__(self, inputs, state, scope=None): return self._call_wrapped_cell( inputs, state, cell_call_fn=self.cell.__call__, scope=scope ) ``` ###Assistant : Runs the RNN cell step computation. We assume that the wrapped RNNCell is being built within its `__call__` method. We directly use the wrapped cell's `__call__` in the overridden wrapper `__call__` method. This allows to use the wrapped cell and the non-wrapped cell equivalently when using `__call__`. Args: inputs: A tensor with wrapped cell's input. state: A tensor or tuple of tensors with wrapped cell's state. scope: VariableScope for the subgraph created in the wrapped cells' `__call__`. Returns: A pair containing: - Output: A tensor with cell's output. - New state: A tensor or tuple of tensors with new wrapped cell's state.
1,449
def get_kurtosis(self) -> pd.DataFrame: vals = list() for period in portfolio_helper.PERIODS: vals.append( [ round( scipy.stats.kurtosis( portfolio_helper.filter_df_by_period(self.returns, period) ), 3, ), round( scipy.stats.skew( portfolio_helper.filter_df_by_period( self.benchmark_returns, period ) ), 3, ), ] ) return pd.DataFrame( vals, index=portfolio_helper.PERIODS, columns=["Portfolio", "Benchmark"] )
Class method that retrieves kurtosis for portfolio and benchmark selected Returns ------- pd.DataFrame DataFrame with kurtosis for portfolio and benchmark for different periods
23
38
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_kurtosis(self) -> pd.DataFrame: vals = list() for period in portfolio_helper.PERIODS: vals.append( [ round( scipy.stats.kurtosis( portfolio_helper.filter_df_by_period(self.returns, period) ), 3, ), round( scipy.stats.skew( portfolio_helper.filter_df_by_period( self.benchmark_returns, period ) ), 3, ), ] ) return pd.DataFrame( vals, index=portfolio_helper.PERIODS, columns=["Portfolio", "Benchmark"] ) ``` ###Assistant : Class method that retrieves kurtosis for portfolio and benchmark selected Returns ------- pd.DataFrame DataFrame with kurtosis for portfolio and benchmark for different periods
1,450
def _save_model(self, epoch, batch, logs): logs = logs or {} if ( isinstance(self.save_freq, int) or self.epochs_since_last_save >= self.period ): # Block only when saving interval is reached. logs = tf_utils.sync_to_numpy_or_python_type(logs) self.epochs_since_last_save = 0 filepath = self._get_file_path(epoch, batch, logs) try: if self.save_best_only: current = logs.get(self.monitor) if current is None: logging.warning( "Can save best model only with %s available, " "skipping.", self.monitor, ) else: if self.monitor_op(current, self.best): if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: {self.monitor} improved " f"from {self.best:.5f} to {current:.5f}, " f"saving model to {filepath}" ) self.best = current if self.save_weights_only: self.model.save_weights( filepath, overwrite=True, options=self._options, ) else: self.model.save( filepath, overwrite=True, options=self._options, ) else: if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: " f"{self.monitor} did not improve from {self.best:.5f}" ) else: if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: saving model to {filepath}" ) if self.save_weights_only: self.model.save_weights( filepath, overwrite=True, options=self._options ) else: self.model.save( filepath, overwrite=True, options=self._options ) self._maybe_remove_file() except IsADirectoryError as e: # h5py 3.x raise IOError( "Please specify a non-directory filepath for " "ModelCheckpoint. Filepath used is an existing " f"directory: {filepath}" ) except IOError as e: # h5py 2.x # `e.errno` appears to be `None` so checking the content of `e.args[0]`. if "is a directory" in str(e.args[0]).lower(): raise IOError( "Please specify a non-directory filepath for " "ModelCheckpoint. Filepath used is an existing " f"directory: f{filepath}" ) # Re-throw the error for any other causes. raise e
Saves the model. Args: epoch: the epoch this iteration is in. batch: the batch this iteration is in. `None` if the `save_freq` is set to `epoch`. logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`.
36
230
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _save_model(self, epoch, batch, logs): logs = logs or {} if ( isinstance(self.save_freq, int) or self.epochs_since_last_save >= self.period ): # Block only when saving interval is reached. logs = tf_utils.sync_to_numpy_or_python_type(logs) self.epochs_since_last_save = 0 filepath = self._get_file_path(epoch, batch, logs) try: if self.save_best_only: current = logs.get(self.monitor) if current is None: logging.warning( "Can save best model only with %s available, " "skipping.", self.monitor, ) else: if self.monitor_op(current, self.best): if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: {self.monitor} improved " f"from {self.best:.5f} to {current:.5f}, " f"saving model to {filepath}" ) self.best = current if self.save_weights_only: self.model.save_weights( filepath, overwrite=True, options=self._options, ) else: self.model.save( filepath, overwrite=True, options=self._options, ) else: if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: " f"{self.monitor} did not improve from {self.best:.5f}" ) else: if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: saving model to {filepath}" ) if self.save_weights_only: self.model.save_weights( filepath, overwrite=True, options=self._options ) else: self.model.save( filepath, overwrite=True, options=self._options ) self._maybe_remove_file() except IsADirectoryError as e: # h5py 3.x raise IOError( "Please specify a non-directory filepath for " "ModelCheckpoint. Filepath used is an existing " f"directory: {filepath}" ) except IOError as e: # h5py 2.x # `e.errno` appears to be `None` so checking the content of `e.args[0]`. if "is a directory" in str(e.args[0]).lower(): raise IOError( "Please specify a non-directory filepath for " "ModelCheckpoint. Filepath used is an existing " f"directory: f{filepath}" ) # Re-throw the error for any other causes. raise e ``` ###Assistant : Saves the model. Args: epoch: the epoch this iteration is in. batch: the batch this iteration is in. `None` if the `save_freq` is set to `epoch`. logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`.
1,451
def steiner_tree(G, terminal_nodes, weight="weight", method=None): r if method is None: import warnings msg = ( "steiner_tree will change default method from 'kou' to 'mehlhorn'" "in version 3.2.\nSet the `method` kwarg to remove this warning." ) warnings.warn(msg, FutureWarning, stacklevel=4) method = "kou" try: algo = ALGORITHMS[method] except KeyError as e: msg = f"{method} is not a valid choice for an algorithm." raise ValueError(msg) from e edges = algo(G, terminal_nodes, weight) # For multigraph we should add the minimal weight edge keys if G.is_multigraph(): edges = ( (u, v, min(G[u][v], key=lambda k: G[u][v][k][weight])) for u, v in edges ) T = G.edge_subgraph(edges) return T
Return an approximation to the minimum Steiner tree of a graph. The minimum Steiner tree of `G` w.r.t a set of `terminal_nodes` (also *S*) is a tree within `G` that spans those nodes and has minimum size (sum of edge weights) among all such trees. The approximation algorithm is specified with the `method` keyword argument. All three available algorithms produce a tree whose weight is within a (2 - (2 / l)) factor of the weight of the optimal Steiner tree, where *l* is the minimum number of leaf nodes across all possible Steiner trees. * `kou` [2]_ (runtime $O(|S| |V|^2)$) computes the minimum spanning tree of the subgraph of the metric closure of *G* induced by the terminal nodes, where the metric closure of *G* is the complete graph in which each edge is weighted by the shortest path distance between the nodes in *G*. * `mehlhorn` [3]_ (runtime $O(|E|+|V|\log|V|)$) modifies Kou et al.'s algorithm, beginning by finding the closest terminal node for each non-terminal. This data is used to create a complete graph containing only the terminal nodes, in which edge is weighted with the shortest path distance between them. The algorithm then proceeds in the same way as Kou et al.. Parameters ---------- G : NetworkX graph terminal_nodes : list A list of terminal nodes for which minimum steiner tree is to be found. weight : string (default = 'weight') Use the edge attribute specified by this string as the edge weight. Any edge attribute not present defaults to 1. method : string, optional (default = 'kou') The algorithm to use to approximate the Steiner tree. Supported options: 'kou', 'mehlhorn'. Other inputs produce a ValueError. Returns ------- NetworkX graph Approximation to the minimum steiner tree of `G` induced by `terminal_nodes` . Notes ----- For multigraphs, the edge between two nodes with minimum weight is the edge put into the Steiner tree. References ---------- .. [1] Steiner_tree_problem on Wikipedia. https://en.wikipedia.org/wiki/Steiner_tree_problem .. [2] Kou, L., G. Markowsky, and L. Berman. 1981. ‘A Fast Algorithm for Steiner Trees’. Acta Informatica 15 (2): 141–45. https://doi.org/10.1007/BF00288961. .. [3] Mehlhorn, Kurt. 1988. ‘A Faster Approximation Algorithm for the Steiner Problem in Graphs’. Information Processing Letters 27 (3): 125–28. https://doi.org/10.1016/0020-0190(88)90066-X.
366
102
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def steiner_tree(G, terminal_nodes, weight="weight", method=None): r if method is None: import warnings msg = ( "steiner_tree will change default method from 'kou' to 'mehlhorn'" "in version 3.2.\nSet the `method` kwarg to remove this warning." ) warnings.warn(msg, FutureWarning, stacklevel=4) method = "kou" try: algo = ALGORITHMS[method] except KeyError as e: msg = f"{method} is not a valid choice for an algorithm." raise ValueError(msg) from e edges = algo(G, terminal_nodes, weight) # For multigraph we should add the minimal weight edge keys if G.is_multigraph(): edges = ( (u, v, min(G[u][v], key=lambda k: G[u][v][k][weight])) for u, v in edges ) T = G.edge_subgraph(edges) return T ``` ###Assistant : Return an approximation to the minimum Steiner tree of a graph. The minimum Steiner tree of `G` w.r.t a set of `terminal_nodes` (also *S*) is a tree within `G` that spans those nodes and has minimum size (sum of edge weights) among all such trees. The approximation algorithm is specified with the `method` keyword argument. All three available algorithms produce a tree whose weight is within a (2 - (2 / l)) factor of the weight of the optimal Steiner tree, where *l* is the minimum number of leaf nodes across all possible Steiner trees. * `kou` [2]_ (runtime $O(|S| |V|^2)$) computes the minimum spanning tree of the subgraph of the metric closure of *G* induced by the terminal nodes, where the metric closure of *G* is the complete graph in which each edge is weighted by the shortest path distance between the nodes in *G*. * `mehlhorn` [3]_ (runtime $O(|E|+|V|\log|V|)$) modifies Kou et al.'s algorithm, beginning by finding the closest terminal node for each non-terminal. This data is used to create a complete graph containing only the terminal nodes, in which edge is weighted with the shortest path distance between them. The algorithm then proceeds in the same way as Kou et al.. Parameters ---------- G : NetworkX graph terminal_nodes : list A list of terminal nodes for which minimum steiner tree is to be found. weight : string (default = 'weight') Use the edge attribute specified by this string as the edge weight. Any edge attribute not present defaults to 1. method : string, optional (default = 'kou') The algorithm to use to approximate the Steiner tree. Supported options: 'kou', 'mehlhorn'. Other inputs produce a ValueError. Returns ------- NetworkX graph Approximation to the minimum steiner tree of `G` induced by `terminal_nodes` . Notes ----- For multigraphs, the edge between two nodes with minimum weight is the edge put into the Steiner tree. References ---------- .. [1] Steiner_tree_problem on Wikipedia. https://en.wikipedia.org/wiki/Steiner_tree_problem .. [2] Kou, L., G. Markowsky, and L. Berman. 1981. ‘A Fast Algorithm for Steiner Trees’. Acta Informatica 15 (2): 141–45. https://doi.org/10.1007/BF00288961. .. [3] Mehlhorn, Kurt. 1988. ‘A Faster Approximation Algorithm for the Steiner Problem in Graphs’. Information Processing Letters 27 (3): 125–28. https://doi.org/10.1016/0020-0190(88)90066-X.
1,452
def find_object(self, queryset, request): if "id" in request.GET: return queryset.get(id=request.GET["id"])
Override this to implement more find methods.
7
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def find_object(self, queryset, request): if "id" in request.GET: return queryset.get(id=request.GET["id"]) ``` ###Assistant : Override this to implement more find methods.
1,453
def _maybe_infer_dtype_type(element): tipo = None if hasattr(element, "dtype"): tipo = element.dtype elif is_list_like(element): element = np.asarray(element) tipo = element.dtype return tipo
Try to infer an object's dtype, for use in arithmetic ops. Uses `element.dtype` if that's available. Objects implementing the iterator protocol are cast to a NumPy array, and from there the array's type is used. Parameters ---------- element : object Possibly has a `.dtype` attribute, and possibly the iterator protocol. Returns ------- tipo : type Examples -------- >>> from collections import namedtuple >>> Foo = namedtuple("Foo", "dtype") >>> _maybe_infer_dtype_type(Foo(np.dtype("i8"))) dtype('int64')
70
21
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _maybe_infer_dtype_type(element): tipo = None if hasattr(element, "dtype"): tipo = element.dtype elif is_list_like(element): element = np.asarray(element) tipo = element.dtype return tipo ``` ###Assistant : Try to infer an object's dtype, for use in arithmetic ops. Uses `element.dtype` if that's available. Objects implementing the iterator protocol are cast to a NumPy array, and from there the array's type is used. Parameters ---------- element : object Possibly has a `.dtype` attribute, and possibly the iterator protocol. Returns ------- tipo : type Examples -------- >>> from collections import namedtuple >>> Foo = namedtuple("Foo", "dtype") >>> _maybe_infer_dtype_type(Foo(np.dtype("i8"))) dtype('int64')
1,454
def test_create_api_message_special(): request = get_new_request("Alexa.PowerController", "TurnOn") directive_header = request["directive"]["header"] directive_header.pop("correlationToken") directive = messages.AlexaDirective(request) msg = directive.response("testName", "testNameSpace")._response assert "event" in msg msg = msg["event"] assert msg["header"]["messageId"] is not None assert msg["header"]["messageId"] != directive_header["messageId"] assert "correlationToken" not in msg["header"] assert msg["header"]["name"] == "testName" assert msg["header"]["namespace"] == "testNameSpace" assert msg["header"]["payloadVersion"] == "3" assert msg["payload"] == {} assert "endpoint" not in msg
Create an API message response of a request with non defaults.
11
59
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_create_api_message_special(): request = get_new_request("Alexa.PowerController", "TurnOn") directive_header = request["directive"]["header"] directive_header.pop("correlationToken") directive = messages.AlexaDirective(request) msg = directive.response("testName", "testNameSpace")._response assert "event" in msg msg = msg["event"] assert msg["header"]["messageId"] is not None assert msg["header"]["messageId"] != directive_header["messageId"] assert "correlationToken" not in msg["header"] assert msg["header"]["name"] == "testName" assert msg["header"]["namespace"] == "testNameSpace" assert msg["header"]["payloadVersion"] == "3" assert msg["payload"] == {} assert "endpoint" not in msg ``` ###Assistant : Create an API message response of a request with non defaults.
1,455
def tearDown(self): r del self.model_fp16 del self.model_8bit gc.collect() torch.cuda.empty_cache()
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
27
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def tearDown(self): r del self.model_fp16 del self.model_8bit gc.collect() torch.cuda.empty_cache() ``` ###Assistant : TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
1,456
def test_pagination_from_sync_and_messages(self): channel = self._send_relation(RelationTypes.ANNOTATION, "m.reaction", "A") self.assertEquals(200, channel.code, channel.json_body) annotation_id = channel.json_body["event_id"] # Send an event after the relation events. self.helper.send(self.room, body="Latest event", tok=self.user_token) # Request /sync, limiting it such that only the latest event is returned # (and not the relation). filter = urllib.parse.quote_plus( '{"room": {"timeline": {"limit": 1}}}'.encode() ) channel = self.make_request( "GET", f"/sync?filter={filter}", access_token=self.user_token ) self.assertEquals(200, channel.code, channel.json_body) room_timeline = channel.json_body["rooms"]["join"][self.room]["timeline"] sync_prev_batch = room_timeline["prev_batch"] self.assertIsNotNone(sync_prev_batch) # Ensure the relation event is not in the batch returned from /sync. self.assertNotIn( annotation_id, [ev["event_id"] for ev in room_timeline["events"]] ) # Request /messages, limiting it such that only the latest event is # returned (and not the relation). channel = self.make_request( "GET", f"/rooms/{self.room}/messages?dir=b&limit=1", access_token=self.user_token, ) self.assertEquals(200, channel.code, channel.json_body) messages_end = channel.json_body["end"] self.assertIsNotNone(messages_end) # Ensure the relation event is not in the chunk returned from /messages. self.assertNotIn( annotation_id, [ev["event_id"] for ev in channel.json_body["chunk"]] ) # Request /relations with the pagination tokens received from both the # /sync and /messages responses above, in turn. # # This is a tiny bit silly since the client wouldn't know the parent ID # from the requests above; consider the parent ID to be known from a # previous /sync. for from_token in (sync_prev_batch, messages_end): channel = self.make_request( "GET", f"/_matrix/client/unstable/rooms/{self.room}/relations/{self.parent_id}?from={from_token}", access_token=self.user_token, ) self.assertEquals(200, channel.code, channel.json_body) # The relation should be in the returned chunk. self.assertIn( annotation_id, [ev["event_id"] for ev in channel.json_body["chunk"]] )
Pagination tokens from /sync and /messages can be used to paginate /relations.
12
226
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_pagination_from_sync_and_messages(self): channel = self._send_relation(RelationTypes.ANNOTATION, "m.reaction", "A") self.assertEquals(200, channel.code, channel.json_body) annotation_id = channel.json_body["event_id"] # Send an event after the relation events. self.helper.send(self.room, body="Latest event", tok=self.user_token) # Request /sync, limiting it such that only the latest event is returned # (and not the relation). filter = urllib.parse.quote_plus( '{"room": {"timeline": {"limit": 1}}}'.encode() ) channel = self.make_request( "GET", f"/sync?filter={filter}", access_token=self.user_token ) self.assertEquals(200, channel.code, channel.json_body) room_timeline = channel.json_body["rooms"]["join"][self.room]["timeline"] sync_prev_batch = room_timeline["prev_batch"] self.assertIsNotNone(sync_prev_batch) # Ensure the relation event is not in the batch returned from /sync. self.assertNotIn( annotation_id, [ev["event_id"] for ev in room_timeline["events"]] ) # Request /messages, limiting it such that only the latest event is # returned (and not the relation). channel = self.make_request( "GET", f"/rooms/{self.room}/messages?dir=b&limit=1", access_token=self.user_token, ) self.assertEquals(200, channel.code, channel.json_body) messages_end = channel.json_body["end"] self.assertIsNotNone(messages_end) # Ensure the relation event is not in the chunk returned from /messages. self.assertNotIn( annotation_id, [ev["event_id"] for ev in channel.json_body["chunk"]] ) # Request /relations with the pagination tokens received from both the # /sync and /messages responses above, in turn. # # This is a tiny bit silly since the client wouldn't know the parent ID # from the requests above; consider the parent ID to be known from a # previous /sync. for from_token in (sync_prev_batch, messages_end): channel = self.make_request( "GET", f"/_matrix/client/unstable/rooms/{self.room}/relations/{self.parent_id}?from={from_token}", access_token=self.user_token, ) self.assertEquals(200, channel.code, channel.json_body) # The relation should be in the returned chunk. self.assertIn( annotation_id, [ev["event_id"] for ev in channel.json_body["chunk"]] ) ``` ###Assistant : Pagination tokens from /sync and /messages can be used to paginate /relations.
1,457
def download(self, url_or_urls): url_or_urls = map_nested(self._download, url_or_urls, map_tuple=True) return url_or_urls
Download given url(s). Args: url_or_urls: url or `list`/`dict` of urls to download and extract. Each url is a `str`. Returns: downloaded_path(s): `str`, The downloaded paths matching the given input url_or_urls. Example: ```py >>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') ```
37
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def download(self, url_or_urls): url_or_urls = map_nested(self._download, url_or_urls, map_tuple=True) return url_or_urls ``` ###Assistant : Download given url(s). Args: url_or_urls: url or `list`/`dict` of urls to download and extract. Each url is a `str`. Returns: downloaded_path(s): `str`, The downloaded paths matching the given input url_or_urls. Example: ```py >>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') ```
1,458
def draw_gaussian(image, point, sigma): # Check if the gaussian is inside point[0] = round(point[0], 2) point[1] = round(point[1], 2) ul = [math.floor(point[0] - 7.5 * sigma), math.floor(point[1] - 7.5 * sigma)] br = [math.floor(point[0] + 7.5 * sigma), math.floor(point[1] + 7.5 * sigma)] if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1): return image size = 15 * sigma + 1 g = _gaussian(size, sigma=0.1) g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))] g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))] img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] assert (g_x[0] > 0 and g_y[1] > 0) image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] = \ image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]] image[image > 1] = 1 return image # Adapted from: https://github.com/1adrianb/face-alignment/blob/master/face_alignment/api.py
Draw gaussian circle at a point in an image. Args: image (np.array): An image of shape (H, W) point (np.array): The center point of the guassian circle sigma (float): Standard deviation of the gaussian kernel Returns: np.array: The image with the drawn gaussian.
43
148
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def draw_gaussian(image, point, sigma): # Check if the gaussian is inside point[0] = round(point[0], 2) point[1] = round(point[1], 2) ul = [math.floor(point[0] - 7.5 * sigma), math.floor(point[1] - 7.5 * sigma)] br = [math.floor(point[0] + 7.5 * sigma), math.floor(point[1] + 7.5 * sigma)] if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1): return image size = 15 * sigma + 1 g = _gaussian(size, sigma=0.1) g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))] g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))] img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] assert (g_x[0] > 0 and g_y[1] > 0) image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] = \ image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]] image[image > 1] = 1 return image # Adapted from: https://github.com/1adrianb/face-alignment/blob/master/face_alignment/api.py ``` ###Assistant : Draw gaussian circle at a point in an image. Args: image (np.array): An image of shape (H, W) point (np.array): The center point of the guassian circle sigma (float): Standard deviation of the gaussian kernel Returns: np.array: The image with the drawn gaussian.
1,459
def setdefault(self, key, default=None): if key in self: return self[key] self[key] = default return default
Insert key with a value of default if key is not in the dictionary. Return the value for key if key is in the dictionary, else default.
27
15
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def setdefault(self, key, default=None): if key in self: return self[key] self[key] = default return default ``` ###Assistant : Insert key with a value of default if key is not in the dictionary. Return the value for key if key is in the dictionary, else default.
1,460
def current_year(context): context["current_year"] = datetime.datetime.now().year return context
Add the current year to the context, so it can be used for the copyright note, or other places where it is needed.
23
7
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def current_year(context): context["current_year"] = datetime.datetime.now().year return context ``` ###Assistant : Add the current year to the context, so it can be used for the copyright note, or other places where it is needed.
1,461
def fileformatparser_map(self) -> Mapping[str, type]: return { "csv": CsvParser, "parquet": ParquetParser, } # TODO: make these user configurable in spec.json ab_additional_col = "_ab_additional_properties" ab_last_mod_col = "_ab_source_file_last_modified" ab_file_name_col = "_ab_source_file_url" airbyte_columns = [ab_additional_col, ab_last_mod_col, ab_file_name_col] datetime_format_string = "%Y-%m-%dT%H:%M:%S%z"
Mapping where every key is equal 'filetype' and values are corresponding parser classes.
13
37
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def fileformatparser_map(self) -> Mapping[str, type]: return { "csv": CsvParser, "parquet": ParquetParser, } # TODO: make these user configurable in spec.json ab_additional_col = "_ab_additional_properties" ab_last_mod_col = "_ab_source_file_last_modified" ab_file_name_col = "_ab_source_file_url" airbyte_columns = [ab_additional_col, ab_last_mod_col, ab_file_name_col] datetime_format_string = "%Y-%m-%dT%H:%M:%S%z" ``` ###Assistant : Mapping where every key is equal 'filetype' and values are corresponding parser classes.
1,462
def pivot_table(self, index=None, columns=None, values=None, aggfunc="mean"): from dask.dataframe.reshape import pivot_table return pivot_table( self, index=index, columns=columns, values=values, aggfunc=aggfunc )
Create a spreadsheet-style pivot table as a DataFrame. Target ``columns`` must have category dtype to infer result's ``columns``. ``index``, ``columns``, ``values`` and ``aggfunc`` must be all scalar. Parameters ---------- values : scalar column to aggregate index : scalar column to be index columns : scalar column to be columns aggfunc : {'mean', 'sum', 'count'}, default 'mean' Returns ------- table : DataFrame
61
18
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def pivot_table(self, index=None, columns=None, values=None, aggfunc="mean"): from dask.dataframe.reshape import pivot_table return pivot_table( self, index=index, columns=columns, values=values, aggfunc=aggfunc ) ``` ###Assistant : Create a spreadsheet-style pivot table as a DataFrame. Target ``columns`` must have category dtype to infer result's ``columns``. ``index``, ``columns``, ``values`` and ``aggfunc`` must be all scalar. Parameters ---------- values : scalar column to aggregate index : scalar column to be index columns : scalar column to be columns aggfunc : {'mean', 'sum', 'count'}, default 'mean' Returns ------- table : DataFrame
1,463
def test_multi_trial_reuse_with_failing(ray_start_4_cpus_extra): os.environ["TUNE_MAX_PENDING_TRIALS_PG"] = "2" register_trainable("foo2", MyResettableClass) [trial1, trial2, trial3, trial4] = tune.run( "foo2", config={ "fail": tune.grid_search([False, True, False, False]), "id": -1, "sleep": 2, }, reuse_actors=True, resources_per_trial={"cpu": 2}, raise_on_failed_trial=False, ).trials assert trial1.last_result["num_resets"] == 0 assert trial3.last_result["num_resets"] == 0 assert trial4.last_result["num_resets"] == 1
Test that failing trial's actors are not reused. - 2 trials can run at the same time - Trial 1 succeeds, trial 2 fails - Trial 3 will be scheduled after trial 2 failed, so won't reuse actor - Trial 4 will be scheduled after trial 1 succeeded, so will reuse actor
52
42
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_multi_trial_reuse_with_failing(ray_start_4_cpus_extra): os.environ["TUNE_MAX_PENDING_TRIALS_PG"] = "2" register_trainable("foo2", MyResettableClass) [trial1, trial2, trial3, trial4] = tune.run( "foo2", config={ "fail": tune.grid_search([False, True, False, False]), "id": -1, "sleep": 2, }, reuse_actors=True, resources_per_trial={"cpu": 2}, raise_on_failed_trial=False, ).trials assert trial1.last_result["num_resets"] == 0 assert trial3.last_result["num_resets"] == 0 assert trial4.last_result["num_resets"] == 1 ``` ###Assistant : Test that failing trial's actors are not reused. - 2 trials can run at the same time - Trial 1 succeeds, trial 2 fails - Trial 3 will be scheduled after trial 2 failed, so won't reuse actor - Trial 4 will be scheduled after trial 1 succeeded, so will reuse actor
1,464
def dispatch(self, request, *args, **kwargs): page_id = kwargs.get("page_id") if not get_forms_for_user(self.request.user).filter(id=page_id).exists(): raise PermissionDenied self.page = get_object_or_404(Page, id=page_id).specific self.submissions = self.get_queryset() if self.request.method == "POST": self.handle_delete(self.submissions) return redirect(self.get_success_url(), page_id) return super().dispatch(request, *args, **kwargs)
Check permissions, set the page and submissions, handle delete
9
32
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def dispatch(self, request, *args, **kwargs): page_id = kwargs.get("page_id") if not get_forms_for_user(self.request.user).filter(id=page_id).exists(): raise PermissionDenied self.page = get_object_or_404(Page, id=page_id).specific self.submissions = self.get_queryset() if self.request.method == "POST": self.handle_delete(self.submissions) return redirect(self.get_success_url(), page_id) return super().dispatch(request, *args, **kwargs) ``` ###Assistant : Check permissions, set the page and submissions, handle delete
1,465
def _prior_bpd(self, x_start): batch_size = x_start.shape[0] t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) return mean_flat(kl_prior) / np.log(2.0)
Get the prior KL term for the variational lower-bound, measured in bits-per-dim. This term can't be optimized, as it only depends on the encoder. :param x_start: the [N x C x ...] tensor of inputs. :return: a batch of [N] KL values (in bits), one per batch element.
48
30
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _prior_bpd(self, x_start): batch_size = x_start.shape[0] t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) return mean_flat(kl_prior) / np.log(2.0) ``` ###Assistant : Get the prior KL term for the variational lower-bound, measured in bits-per-dim. This term can't be optimized, as it only depends on the encoder. :param x_start: the [N x C x ...] tensor of inputs. :return: a batch of [N] KL values (in bits), one per batch element.
1,466
def test_rolling_non_monotonic(method, expected): # Based on an example found in computation.rst use_expanding = [True, False, True, False, True, True, True, True] df = DataFrame({"values": np.arange(len(use_expanding)) ** 2})
Make sure the (rare) branch of non-monotonic indices is covered by a test. output from 1.1.3 is assumed to be the expected output. Output of sum/mean has manually been verified. GH 36933.
32
27
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_rolling_non_monotonic(method, expected): # Based on an example found in computation.rst use_expanding = [True, False, True, False, True, True, True, True] df = DataFrame({"values": np.arange(len(use_expanding)) ** 2}) ``` ###Assistant : Make sure the (rare) branch of non-monotonic indices is covered by a test. output from 1.1.3 is assumed to be the expected output. Output of sum/mean has manually been verified. GH 36933.
1,467
def clip(self, min=None, max=None): from dask.array.ufunc import clip return clip(self, min, max)
Return an array whose values are limited to ``[min, max]``. One of max or min must be given. Refer to :func:`dask.array.clip` for full documentation. See Also -------- dask.array.clip : equivalent function
31
12
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def clip(self, min=None, max=None): from dask.array.ufunc import clip return clip(self, min, max) ``` ###Assistant : Return an array whose values are limited to ``[min, max]``. One of max or min must be given. Refer to :func:`dask.array.clip` for full documentation. See Also -------- dask.array.clip : equivalent function
1,468
def _floor_std(self, std): r original_tensor = std.clone().detach() std = torch.clamp(std, min=self.std_floor) if torch.any(original_tensor != std): print( "[*] Standard deviation was floored! The model is preventing overfitting, nothing serious to worry about" ) return std
It clamps the standard deviation to not to go below some level This removes the problem when the model tries to cheat for higher likelihoods by converting one of the gaussians to a point mass. Args: std (float Tensor): tensor containing the standard deviation to be
46
34
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _floor_std(self, std): r original_tensor = std.clone().detach() std = torch.clamp(std, min=self.std_floor) if torch.any(original_tensor != std): print( "[*] Standard deviation was floored! The model is preventing overfitting, nothing serious to worry about" ) return std ``` ###Assistant : It clamps the standard deviation to not to go below some level This removes the problem when the model tries to cheat for higher likelihoods by converting one of the gaussians to a point mass. Args: std (float Tensor): tensor containing the standard deviation to be
1,469
def asXML(self, doctag=None, namedItemsOnly=False, indent="", formatted=True): nl = "\n" out = [] namedItems = dict((v[1], k) for (k, vlist) in self.__tokdict.items() for v in vlist) nextLevelIndent = indent + " " # collapse out indents if formatting is not desired if not formatted: indent = "" nextLevelIndent = "" nl = "" selfTag = None if doctag is not None: selfTag = doctag else: if self.__name: selfTag = self.__name if not selfTag: if namedItemsOnly: return "" else: selfTag = "ITEM" out += [nl, indent, "<", selfTag, ">"] for i, res in enumerate(self.__toklist): if isinstance(res, ParseResults): if i in namedItems: out += [res.asXML(namedItems[i], namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: out += [res.asXML(None, namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: # individual token, see if there is a name for it resTag = None if i in namedItems: resTag = namedItems[i] if not resTag: if namedItemsOnly: continue else: resTag = "ITEM" xmlBodyText = _xml_escape(_ustr(res)) out += [nl, nextLevelIndent, "<", resTag, ">", xmlBodyText, "</", resTag, ">"] out += [nl, indent, "</", selfTag, ">"] return "".join(out)
(Deprecated) Returns the parse results as XML. Tags are created for tokens and lists that have defined results names.
19
175
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def asXML(self, doctag=None, namedItemsOnly=False, indent="", formatted=True): nl = "\n" out = [] namedItems = dict((v[1], k) for (k, vlist) in self.__tokdict.items() for v in vlist) nextLevelIndent = indent + " " # collapse out indents if formatting is not desired if not formatted: indent = "" nextLevelIndent = "" nl = "" selfTag = None if doctag is not None: selfTag = doctag else: if self.__name: selfTag = self.__name if not selfTag: if namedItemsOnly: return "" else: selfTag = "ITEM" out += [nl, indent, "<", selfTag, ">"] for i, res in enumerate(self.__toklist): if isinstance(res, ParseResults): if i in namedItems: out += [res.asXML(namedItems[i], namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: out += [res.asXML(None, namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: # individual token, see if there is a name for it resTag = None if i in namedItems: resTag = namedItems[i] if not resTag: if namedItemsOnly: continue else: resTag = "ITEM" xmlBodyText = _xml_escape(_ustr(res)) out += [nl, nextLevelIndent, "<", resTag, ">", xmlBodyText, "</", resTag, ">"] out += [nl, indent, "</", selfTag, ">"] return "".join(out) ``` ###Assistant : (Deprecated) Returns the parse results as XML. Tags are created for tokens and lists that have defined results names.
1,470
def times_seen_with_pending(self) -> int: return self.times_seen + self.times_seen_pending
Returns `times_seen` with any additional pending updates from `buffers` added on. This value must be set first.
17
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def times_seen_with_pending(self) -> int: return self.times_seen + self.times_seen_pending ``` ###Assistant : Returns `times_seen` with any additional pending updates from `buffers` added on. This value must be set first.
1,471
def test_api_create_storage_path(self): response = self.client.post( self.ENDPOINT, json.dumps( { "name": "A storage path", "path": "Somewhere/{asn}", }, ), content_type="application/json", ) self.assertEqual(response.status_code, 201) self.assertEqual(StoragePath.objects.count(), 2)
GIVEN: - API request to create a storage paths WHEN: - API is called THEN: - Correct HTTP response - New storage path is created
25
22
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_api_create_storage_path(self): response = self.client.post( self.ENDPOINT, json.dumps( { "name": "A storage path", "path": "Somewhere/{asn}", }, ), content_type="application/json", ) self.assertEqual(response.status_code, 201) self.assertEqual(StoragePath.objects.count(), 2) ``` ###Assistant : GIVEN: - API request to create a storage paths WHEN: - API is called THEN: - Correct HTTP response - New storage path is created
1,472
def test_set_all_ask_for_prompts_true_from_post(self, post, organization, inventory, org_admin): r = post( url=reverse('api:workflow_job_template_list'), data=dict( name='workflow that tests ask_for prompts', organization=organization.id, inventory=inventory.id, job_tags='', skip_tags='', ask_inventory_on_launch=True, ask_labels_on_launch=True, ask_limit_on_launch=True, ask_scm_branch_on_launch=True, ask_skip_tags_on_launch=True, ask_tags_on_launch=True, ask_variables_on_launch=True, ), user=org_admin, expect=201, ) wfjt = WorkflowJobTemplate.objects.get(id=r.data['id']) assert wfjt.ask_inventory_on_launch is True assert wfjt.ask_labels_on_launch is True assert wfjt.ask_limit_on_launch is True assert wfjt.ask_scm_branch_on_launch is True assert wfjt.ask_skip_tags_on_launch is True assert wfjt.ask_tags_on_launch is True assert wfjt.ask_variables_on_launch is True @pytest.mark.django_db
Tests behaviour and values of ask_for_* fields on WFJT via POST
11
63
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_set_all_ask_for_prompts_true_from_post(self, post, organization, inventory, org_admin): r = post( url=reverse('api:workflow_job_template_list'), data=dict( name='workflow that tests ask_for prompts', organization=organization.id, inventory=inventory.id, job_tags='', skip_tags='', ask_inventory_on_launch=True, ask_labels_on_launch=True, ask_limit_on_launch=True, ask_scm_branch_on_launch=True, ask_skip_tags_on_launch=True, ask_tags_on_launch=True, ask_variables_on_launch=True, ), user=org_admin, expect=201, ) wfjt = WorkflowJobTemplate.objects.get(id=r.data['id']) assert wfjt.ask_inventory_on_launch is True assert wfjt.ask_labels_on_launch is True assert wfjt.ask_limit_on_launch is True assert wfjt.ask_scm_branch_on_launch is True assert wfjt.ask_skip_tags_on_launch is True assert wfjt.ask_tags_on_launch is True assert wfjt.ask_variables_on_launch is True @pytest.mark.django_db ``` ###Assistant : Tests behaviour and values of ask_for_* fields on WFJT via POST
1,473
def get_used_memory(): # Try to accurately figure out the memory usage if we are in a docker # container. docker_usage = None # For cgroups v1: memory_usage_filename = "/sys/fs/cgroup/memory/memory.stat" # For cgroups v2: memory_usage_filename_v2 = "/sys/fs/cgroup/memory.current" if os.path.exists(memory_usage_filename): docker_usage = get_cgroupv1_used_memory(memory_usage_filename) elif os.path.exists(memory_usage_filename_v2): with open(memory_usage_filename_v2, "r") as f: docker_usage = int(f.read()) if docker_usage is not None: return docker_usage return psutil.virtual_memory().used
Return the currently used system memory in bytes Returns: The total amount of used memory
15
60
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_used_memory(): # Try to accurately figure out the memory usage if we are in a docker # container. docker_usage = None # For cgroups v1: memory_usage_filename = "/sys/fs/cgroup/memory/memory.stat" # For cgroups v2: memory_usage_filename_v2 = "/sys/fs/cgroup/memory.current" if os.path.exists(memory_usage_filename): docker_usage = get_cgroupv1_used_memory(memory_usage_filename) elif os.path.exists(memory_usage_filename_v2): with open(memory_usage_filename_v2, "r") as f: docker_usage = int(f.read()) if docker_usage is not None: return docker_usage return psutil.virtual_memory().used ``` ###Assistant : Return the currently used system memory in bytes Returns: The total amount of used memory
1,474
def pack_x_y_sample_weight(x, y=None, sample_weight=None): if y is None: # For single x-input, we do no tuple wrapping since in this case # there is no ambiguity. This also makes NumPy and Dataset # consistent in that the user does not have to wrap their Dataset # data in an unnecessary tuple if not tf.nest.is_nested(x): return x else: return (x,) elif sample_weight is None: return (x, y) else: return (x, y, sample_weight)
Packs user-provided data into a tuple. This is a convenience utility for packing data into the tuple formats that `Model.fit` uses. Standalone usage: >>> x = tf.ones((10, 1)) >>> data = tf.keras.utils.pack_x_y_sample_weight(x) >>> isinstance(data, tf.Tensor) True >>> y = tf.ones((10, 1)) >>> data = tf.keras.utils.pack_x_y_sample_weight(x, y) >>> isinstance(data, tuple) True >>> x, y = data Args: x: Features to pass to `Model`. y: Ground-truth targets to pass to `Model`. sample_weight: Sample weight for each element. Returns: Tuple in the format used in `Model.fit`.
83
71
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def pack_x_y_sample_weight(x, y=None, sample_weight=None): if y is None: # For single x-input, we do no tuple wrapping since in this case # there is no ambiguity. This also makes NumPy and Dataset # consistent in that the user does not have to wrap their Dataset # data in an unnecessary tuple if not tf.nest.is_nested(x): return x else: return (x,) elif sample_weight is None: return (x, y) else: return (x, y, sample_weight) ``` ###Assistant : Packs user-provided data into a tuple. This is a convenience utility for packing data into the tuple formats that `Model.fit` uses. Standalone usage: >>> x = tf.ones((10, 1)) >>> data = tf.keras.utils.pack_x_y_sample_weight(x) >>> isinstance(data, tf.Tensor) True >>> y = tf.ones((10, 1)) >>> data = tf.keras.utils.pack_x_y_sample_weight(x, y) >>> isinstance(data, tuple) True >>> x, y = data Args: x: Features to pass to `Model`. y: Ground-truth targets to pass to `Model`. sample_weight: Sample weight for each element. Returns: Tuple in the format used in `Model.fit`.
1,475
def test_glm_regression_vstacked_X(solver, fit_intercept, glm_dataset): model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset n_samples, n_features = X.shape params = dict( alpha=alpha, fit_intercept=fit_intercept, # solver=solver, # only lbfgs available tol=1e-12, max_iter=1000, ) model = clone(model).set_params(**params) X = X[:, :-1] # remove intercept X = np.concatenate((X, X), axis=0) assert np.linalg.matrix_rank(X) <= min(n_samples, n_features) y = np.r_[y, y] if fit_intercept: coef = coef_with_intercept intercept = coef[-1] coef = coef[:-1] else: coef = coef_without_intercept intercept = 0 model.fit(X, y) rtol = 3e-5 assert model.intercept_ == pytest.approx(intercept, rel=rtol) assert_allclose(model.coef_, coef, rtol=rtol) @pytest.mark.parametrize("solver", SOLVERS) @pytest.mark.parametrize("fit_intercept", [True, False])
Test that GLM converges for all solvers to correct solution on vstacked data. We work with a simple constructed data set with known solution. Fit on [X] with alpha is the same as fit on [X], [y] [X], [y] with 1 * alpha. It is the same alpha as the average loss stays the same. For wide X, [X', X'] is a singular matrix.
64
91
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_glm_regression_vstacked_X(solver, fit_intercept, glm_dataset): model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset n_samples, n_features = X.shape params = dict( alpha=alpha, fit_intercept=fit_intercept, # solver=solver, # only lbfgs available tol=1e-12, max_iter=1000, ) model = clone(model).set_params(**params) X = X[:, :-1] # remove intercept X = np.concatenate((X, X), axis=0) assert np.linalg.matrix_rank(X) <= min(n_samples, n_features) y = np.r_[y, y] if fit_intercept: coef = coef_with_intercept intercept = coef[-1] coef = coef[:-1] else: coef = coef_without_intercept intercept = 0 model.fit(X, y) rtol = 3e-5 assert model.intercept_ == pytest.approx(intercept, rel=rtol) assert_allclose(model.coef_, coef, rtol=rtol) @pytest.mark.parametrize("solver", SOLVERS) @pytest.mark.parametrize("fit_intercept", [True, False]) ``` ###Assistant : Test that GLM converges for all solvers to correct solution on vstacked data. We work with a simple constructed data set with known solution. Fit on [X] with alpha is the same as fit on [X], [y] [X], [y] with 1 * alpha. It is the same alpha as the average loss stays the same. For wide X, [X', X'] is a singular matrix.
1,476
def deprecate_data(): sympy_deprecation_warning( , deprecated_since_version="1.4", active_deprecations_target="deprecated-tensorindextype-attrs", stacklevel=4, )
The data attribute of TensorIndexType is deprecated. Use The replace_with_arrays() method instead.
12
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def deprecate_data(): sympy_deprecation_warning( , deprecated_since_version="1.4", active_deprecations_target="deprecated-tensorindextype-attrs", stacklevel=4, ) ``` ###Assistant : The data attribute of TensorIndexType is deprecated. Use The replace_with_arrays() method instead.
1,477
def fit(self, X, y=None): self._validate_params() X = self._check_input(X, reset=True) if self.check_inverse and not (self.func is None or self.inverse_func is None): self._check_inverse_transform(X) return self
Fit transformer by checking X. If ``validate`` is ``True``, ``X`` will be checked. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object FunctionTransformer class instance.
43
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def fit(self, X, y=None): self._validate_params() X = self._check_input(X, reset=True) if self.check_inverse and not (self.func is None or self.inverse_func is None): self._check_inverse_transform(X) return self ``` ###Assistant : Fit transformer by checking X. If ``validate`` is ``True``, ``X`` will be checked. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object FunctionTransformer class instance.
1,478
def styleof(expr, styles=default_styles): style = {} for typ, sty in styles: if isinstance(expr, typ): style.update(sty) return style
Merge style dictionaries in order Examples ======== >>> from sympy import Symbol, Basic, Expr, S >>> from sympy.printing.dot import styleof >>> styles = [(Basic, {'color': 'blue', 'shape': 'ellipse'}), ... (Expr, {'color': 'black'})] >>> styleof(Basic(S(1)), styles) {'color': 'blue', 'shape': 'ellipse'} >>> x = Symbol('x') >>> styleof(x + 1, styles) # this is an Expr {'color': 'black', 'shape': 'ellipse'}
57
17
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def styleof(expr, styles=default_styles): style = {} for typ, sty in styles: if isinstance(expr, typ): style.update(sty) return style ``` ###Assistant : Merge style dictionaries in order Examples ======== >>> from sympy import Symbol, Basic, Expr, S >>> from sympy.printing.dot import styleof >>> styles = [(Basic, {'color': 'blue', 'shape': 'ellipse'}), ... (Expr, {'color': 'black'})] >>> styleof(Basic(S(1)), styles) {'color': 'blue', 'shape': 'ellipse'} >>> x = Symbol('x') >>> styleof(x + 1, styles) # this is an Expr {'color': 'black', 'shape': 'ellipse'}
1,479
def execute(filters=None): columns = [ {"fieldname": "creation_date", "label": _("Date"), "fieldtype": "Date", "width": 300}, { "fieldname": "first_response_time", "fieldtype": "Duration", "label": _("First Response Time"), "width": 300, }, ] data = frappe.db.sql( , (filters.from_date, filters.to_date), ) return columns, data
SELECT date(creation) as creation_date, avg(first_response_time) as avg_response_time FROM tabIssue WHERE date(creation) between %s and %s and first_response_time > 0 GROUP BY creation_date ORDER BY creation_date desc
26
36
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def execute(filters=None): columns = [ {"fieldname": "creation_date", "label": _("Date"), "fieldtype": "Date", "width": 300}, { "fieldname": "first_response_time", "fieldtype": "Duration", "label": _("First Response Time"), "width": 300, }, ] data = frappe.db.sql( , (filters.from_date, filters.to_date), ) return columns, data ``` ###Assistant : SELECT date(creation) as creation_date, avg(first_response_time) as avg_response_time FROM tabIssue WHERE date(creation) between %s and %s and first_response_time > 0 GROUP BY creation_date ORDER BY creation_date desc
1,480
def choose_parent(self, new_node, near_inds): if not near_inds: return None # search nearest cost in near_inds costs = [] for i in near_inds: near_node = self.node_list[i] t_node = self.steer(near_node, new_node) if t_node and self.check_collision( t_node, self.obstacle_list, self.robot_radius): costs.append(self.calc_new_cost(near_node, new_node)) else: costs.append(float("inf")) # the cost of collision node min_cost = min(costs) if min_cost == float("inf"): print("There is no good path.(min_cost is inf)") return None min_ind = near_inds[costs.index(min_cost)] new_node = self.steer(self.node_list[min_ind], new_node) new_node.cost = min_cost return new_node
Computes the cheapest point to new_node contained in the list near_inds and set such a node as the parent of new_node. Arguments: -------- new_node, Node randomly generated node with a path from its neared point There are not coalitions between this node and th tree. near_inds: list Indices of indices of the nodes what are near to new_node Returns. ------ Node, a copy of new_node
65
74
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def choose_parent(self, new_node, near_inds): if not near_inds: return None # search nearest cost in near_inds costs = [] for i in near_inds: near_node = self.node_list[i] t_node = self.steer(near_node, new_node) if t_node and self.check_collision( t_node, self.obstacle_list, self.robot_radius): costs.append(self.calc_new_cost(near_node, new_node)) else: costs.append(float("inf")) # the cost of collision node min_cost = min(costs) if min_cost == float("inf"): print("There is no good path.(min_cost is inf)") return None min_ind = near_inds[costs.index(min_cost)] new_node = self.steer(self.node_list[min_ind], new_node) new_node.cost = min_cost return new_node ``` ###Assistant : Computes the cheapest point to new_node contained in the list near_inds and set such a node as the parent of new_node. Arguments: -------- new_node, Node randomly generated node with a path from its neared point There are not coalitions between this node and th tree. near_inds: list Indices of indices of the nodes what are near to new_node Returns. ------ Node, a copy of new_node
1,481
def test_a3c_compilation(self): config = a3c.DEFAULT_CONFIG.copy() config["num_workers"] = 2 config["num_envs_per_worker"] = 2 num_iterations = 1 # Test against all frameworks. for _ in framework_iterator(config, with_eager_tracing=True): for env in ["CartPole-v1", "Pendulum-v1", "PongDeterministic-v0"]: print("env={}".format(env)) config["model"]["use_lstm"] = env == "CartPole-v1" trainer = a3c.A3CTrainer(config=config, env=env) for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) check_compute_single_action( trainer, include_state=config["model"]["use_lstm"] ) trainer.stop()
Test whether an A3CTrainer can be built with both frameworks.
10
54
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_a3c_compilation(self): config = a3c.DEFAULT_CONFIG.copy() config["num_workers"] = 2 config["num_envs_per_worker"] = 2 num_iterations = 1 # Test against all frameworks. for _ in framework_iterator(config, with_eager_tracing=True): for env in ["CartPole-v1", "Pendulum-v1", "PongDeterministic-v0"]: print("env={}".format(env)) config["model"]["use_lstm"] = env == "CartPole-v1" trainer = a3c.A3CTrainer(config=config, env=env) for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) check_compute_single_action( trainer, include_state=config["model"]["use_lstm"] ) trainer.stop() ``` ###Assistant : Test whether an A3CTrainer can be built with both frameworks.
1,482
def extract(self, member, path="", set_attrs=True): self._check("r") if isinstance(member, str): tarinfo = self.getmember(member) else: tarinfo = member # Prepare the link target for makelink(). if tarinfo.islnk(): tarinfo._link_target = os.path.join(path, tarinfo.linkname) try: self._extract_member(tarinfo, os.path.join(path, tarinfo.name), set_attrs=set_attrs) except EnvironmentError as e: if self.errorlevel > 0: raise else: if e.filename is None: self._dbg(1, "tarfile: %s" % e.strerror) else: self._dbg(1, "tarfile: %s %r" % (e.strerror, e.filename)) except ExtractError as e: if self.errorlevel > 1: raise else: self._dbg(1, "tarfile: %s" % e)
Extract a member from the archive to the current working directory, using its full name. Its file information is extracted as accurately as possible. `member' may be a filename or a TarInfo object. You can specify a different directory using `path'. File attributes (owner, mtime, mode) are set unless `set_attrs' is False.
52
76
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def extract(self, member, path="", set_attrs=True): self._check("r") if isinstance(member, str): tarinfo = self.getmember(member) else: tarinfo = member # Prepare the link target for makelink(). if tarinfo.islnk(): tarinfo._link_target = os.path.join(path, tarinfo.linkname) try: self._extract_member(tarinfo, os.path.join(path, tarinfo.name), set_attrs=set_attrs) except EnvironmentError as e: if self.errorlevel > 0: raise else: if e.filename is None: self._dbg(1, "tarfile: %s" % e.strerror) else: self._dbg(1, "tarfile: %s %r" % (e.strerror, e.filename)) except ExtractError as e: if self.errorlevel > 1: raise else: self._dbg(1, "tarfile: %s" % e) ``` ###Assistant : Extract a member from the archive to the current working directory, using its full name. Its file information is extracted as accurately as possible. `member' may be a filename or a TarInfo object. You can specify a different directory using `path'. File attributes (owner, mtime, mode) are set unless `set_attrs' is False.
1,483
def test_artist_from_string(): artist = Artist.from_search_term("artist:gorillaz") assert artist.name == "Gorillaz" assert artist.url == "http://open.spotify.com/artist/3AA28KZvwAUcZuOKwyblJQ" assert len(artist.urls) > 1
Test if Artist class can be initialized from string.
9
17
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_artist_from_string(): artist = Artist.from_search_term("artist:gorillaz") assert artist.name == "Gorillaz" assert artist.url == "http://open.spotify.com/artist/3AA28KZvwAUcZuOKwyblJQ" assert len(artist.urls) > 1 ``` ###Assistant : Test if Artist class can be initialized from string.
1,484
def reset(self): # custom_info is used for episodic reports and tensorboard logging self.custom_info["Invalid"] = 0 self.custom_info["Hold"] = 0 self.custom_info["Unknown"] = 0 self.custom_info["pnl_factor"] = 0 self.custom_info["duration_factor"] = 0 self.custom_info["reward_exit"] = 0 self.custom_info["reward_hold"] = 0 for action in self.actions: self.custom_info[f"{action.name}"] = 0 self._done = False if self.starting_point is True: if self.rl_config.get('randomize_starting_position', False): length_of_data = int(self._end_tick / 4) start_tick = random.randint(self.window_size + 1, length_of_data) self._start_tick = start_tick self._position_history = (self._start_tick * [None]) + [self._position] else: self._position_history = (self.window_size * [None]) + [self._position] self._current_tick = self._start_tick self._last_trade_tick = None self._position = Positions.Neutral self.total_reward = 0. self._total_profit = 1. # unit self.history = {} self.trade_history = [] self.portfolio_log_returns = np.zeros(len(self.prices)) self._profits = [(self._start_tick, 1)] self.close_trade_profit = [] self._total_unrealized_profit = 1 return self._get_observation()
Reset is called at the beginning of every episode
9
117
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def reset(self): # custom_info is used for episodic reports and tensorboard logging self.custom_info["Invalid"] = 0 self.custom_info["Hold"] = 0 self.custom_info["Unknown"] = 0 self.custom_info["pnl_factor"] = 0 self.custom_info["duration_factor"] = 0 self.custom_info["reward_exit"] = 0 self.custom_info["reward_hold"] = 0 for action in self.actions: self.custom_info[f"{action.name}"] = 0 self._done = False if self.starting_point is True: if self.rl_config.get('randomize_starting_position', False): length_of_data = int(self._end_tick / 4) start_tick = random.randint(self.window_size + 1, length_of_data) self._start_tick = start_tick self._position_history = (self._start_tick * [None]) + [self._position] else: self._position_history = (self.window_size * [None]) + [self._position] self._current_tick = self._start_tick self._last_trade_tick = None self._position = Positions.Neutral self.total_reward = 0. self._total_profit = 1. # unit self.history = {} self.trade_history = [] self.portfolio_log_returns = np.zeros(len(self.prices)) self._profits = [(self._start_tick, 1)] self.close_trade_profit = [] self._total_unrealized_profit = 1 return self._get_observation() ``` ###Assistant : Reset is called at the beginning of every episode
1,485
def get_ordered_to_be_billed_data(args): doctype, party = args.get("doctype"), args.get("party") child_tab = doctype + " Item" precision = ( get_field_precision( frappe.get_meta(child_tab).get_field("billed_amt"), currency=get_default_currency() ) or 2 ) project_field = get_project_field(doctype, party) return frappe.db.sql( .format( parent_tab="tab" + doctype, child_tab="tab" + child_tab, precision=precision, party=party, date_field=args.get("date"), project_field=project_field, order=args.get("order"), order_by=args.get("order_by"), ) )
Select `{parent_tab}`.name, `{parent_tab}`.{date_field}, `{parent_tab}`.{party}, `{parent_tab}`.{party}_name, `{child_tab}`.item_code, `{child_tab}`.base_amount, (`{child_tab}`.billed_amt * ifnull(`{parent_tab}`.conversion_rate, 1)), (`{child_tab}`.base_rate * ifnull(`{child_tab}`.returned_qty, 0)), (`{child_tab}`.base_amount - (`{child_tab}`.billed_amt * ifnull(`{parent_tab}`.conversion_rate, 1)) - (`{child_tab}`.base_rate * ifnull(`{child_tab}`.returned_qty, 0))), `{child_tab}`.item_name, `{child_tab}`.description, {project_field}, `{parent_tab}`.company from `{parent_tab}`, `{child_tab}` where `{parent_tab}`.name = `{child_tab}`.parent and `{parent_tab}`.docstatus = 1 and `{parent_tab}`.status not in ('Closed', 'Completed') and `{child_tab}`.amount > 0 and (`{child_tab}`.base_amount - round(`{child_tab}`.billed_amt * ifnull(`{parent_tab}`.conversion_rate, 1), {precision}) - (`{child_tab}`.base_rate * ifnull(`{child_tab}`.returned_qty, 0))) > 0 order by `{parent_tab}`.{order} {order_by}
70
44
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_ordered_to_be_billed_data(args): doctype, party = args.get("doctype"), args.get("party") child_tab = doctype + " Item" precision = ( get_field_precision( frappe.get_meta(child_tab).get_field("billed_amt"), currency=get_default_currency() ) or 2 ) project_field = get_project_field(doctype, party) return frappe.db.sql( .format( parent_tab="tab" + doctype, child_tab="tab" + child_tab, precision=precision, party=party, date_field=args.get("date"), project_field=project_field, order=args.get("order"), order_by=args.get("order_by"), ) ) ``` ###Assistant : Select `{parent_tab}`.name, `{parent_tab}`.{date_field}, `{parent_tab}`.{party}, `{parent_tab}`.{party}_name, `{child_tab}`.item_code, `{child_tab}`.base_amount, (`{child_tab}`.billed_amt * ifnull(`{parent_tab}`.conversion_rate, 1)), (`{child_tab}`.base_rate * ifnull(`{child_tab}`.returned_qty, 0)), (`{child_tab}`.base_amount - (`{child_tab}`.billed_amt * ifnull(`{parent_tab}`.conversion_rate, 1)) - (`{child_tab}`.base_rate * ifnull(`{child_tab}`.returned_qty, 0))), `{child_tab}`.item_name, `{child_tab}`.description, {project_field}, `{parent_tab}`.company from `{parent_tab}`, `{child_tab}` where `{parent_tab}`.name = `{child_tab}`.parent and `{parent_tab}`.docstatus = 1 and `{parent_tab}`.status not in ('Closed', 'Completed') and `{child_tab}`.amount > 0 and (`{child_tab}`.base_amount - round(`{child_tab}`.billed_amt * ifnull(`{parent_tab}`.conversion_rate, 1), {precision}) - (`{child_tab}`.base_rate * ifnull(`{child_tab}`.returned_qty, 0))) > 0 order by `{parent_tab}`.{order} {order_by}
1,486
def get_staged_trial(self): # TODO(xwjiang): This method should consider `self._cached_actor_pg`. for trial in self._staged_trials: if self._pg_manager.has_ready(trial): return trial return None
Get a trial whose placement group was successfully staged. Can also return None if no trial is available. Returns: Trial object or None.
23
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_staged_trial(self): # TODO(xwjiang): This method should consider `self._cached_actor_pg`. for trial in self._staged_trials: if self._pg_manager.has_ready(trial): return trial return None ``` ###Assistant : Get a trial whose placement group was successfully staged. Can also return None if no trial is available. Returns: Trial object or None.
1,487
def register(cls, func, squeeze_self=False, **kwargs): return super().register( Resampler.build_resample(func, squeeze_self), fn_name=func.__name__, **kwargs )
Build function that do fallback to pandas and aggregate resampled data. Parameters ---------- func : callable Aggregation function to execute under resampled frame. squeeze_self : bool, default: False Whether or not to squeeze frame before resampling. **kwargs : kwargs Additional arguments that will be passed to function builder. Returns ------- callable Function that takes query compiler and does fallback to pandas to resample time-series data and apply aggregation on it.
70
12
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def register(cls, func, squeeze_self=False, **kwargs): return super().register( Resampler.build_resample(func, squeeze_self), fn_name=func.__name__, **kwargs ) ``` ###Assistant : Build function that do fallback to pandas and aggregate resampled data. Parameters ---------- func : callable Aggregation function to execute under resampled frame. squeeze_self : bool, default: False Whether or not to squeeze frame before resampling. **kwargs : kwargs Additional arguments that will be passed to function builder. Returns ------- callable Function that takes query compiler and does fallback to pandas to resample time-series data and apply aggregation on it.
1,488
def aggregate(self, *args, **kwargs): if self.query.distinct_fields: raise NotImplementedError("aggregate() + distinct(fields) not implemented.") self._validate_values_are_expressions( (*args, *kwargs.values()), method_name="aggregate" ) for arg in args: # The default_alias property raises TypeError if default_alias # can't be set automatically or AttributeError if it isn't an # attribute. try: arg.default_alias except (AttributeError, TypeError): raise TypeError("Complex aggregates require an alias") kwargs[arg.default_alias] = arg query = self.query.chain() for (alias, aggregate_expr) in kwargs.items(): query.add_annotation(aggregate_expr, alias, is_summary=True) annotation = query.annotations[alias] if not annotation.contains_aggregate: raise TypeError("%s is not an aggregate expression" % alias) for expr in annotation.get_source_expressions(): if ( expr.contains_aggregate and isinstance(expr, Ref) and expr.refs in kwargs ): name = expr.refs raise exceptions.FieldError( "Cannot compute %s('%s'): '%s' is an aggregate" % (annotation.name, name, name) ) return query.get_aggregation(self.db, kwargs)
Return a dictionary containing the calculations (aggregation) over the current queryset. If args is present the expression is passed as a kwarg using the Aggregate object's default alias.
28
117
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def aggregate(self, *args, **kwargs): if self.query.distinct_fields: raise NotImplementedError("aggregate() + distinct(fields) not implemented.") self._validate_values_are_expressions( (*args, *kwargs.values()), method_name="aggregate" ) for arg in args: # The default_alias property raises TypeError if default_alias # can't be set automatically or AttributeError if it isn't an # attribute. try: arg.default_alias except (AttributeError, TypeError): raise TypeError("Complex aggregates require an alias") kwargs[arg.default_alias] = arg query = self.query.chain() for (alias, aggregate_expr) in kwargs.items(): query.add_annotation(aggregate_expr, alias, is_summary=True) annotation = query.annotations[alias] if not annotation.contains_aggregate: raise TypeError("%s is not an aggregate expression" % alias) for expr in annotation.get_source_expressions(): if ( expr.contains_aggregate and isinstance(expr, Ref) and expr.refs in kwargs ): name = expr.refs raise exceptions.FieldError( "Cannot compute %s('%s'): '%s' is an aggregate" % (annotation.name, name, name) ) return query.get_aggregation(self.db, kwargs) ``` ###Assistant : Return a dictionary containing the calculations (aggregation) over the current queryset. If args is present the expression is passed as a kwarg using the Aggregate object's default alias.
1,489
def _detect_bytelen_from_str(s): # type: (str) -> int assert len(s) >= 2 tmp_len = len(s) i = 1 while orb(s[i]) & 0x80 > 0: i += 1 assert i < tmp_len, 'EINVAL: s: out-of-bound read: unfinished AbstractUVarIntField detected' # noqa: E501 ret = i + 1 assert ret >= 0 return ret
_detect_bytelen_from_str returns the length of the machine representation of an AbstractUVarIntField starting at the beginning of s and which is assumed to expand over multiple bytes (value > _max_prefix_value). :param str s: the string to parse. It is assumed that it is a multibyte int. # noqa: E501 :return: The bytelength of the AbstractUVarIntField. :raises: AssertionError
56
51
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _detect_bytelen_from_str(s): # type: (str) -> int assert len(s) >= 2 tmp_len = len(s) i = 1 while orb(s[i]) & 0x80 > 0: i += 1 assert i < tmp_len, 'EINVAL: s: out-of-bound read: unfinished AbstractUVarIntField detected' # noqa: E501 ret = i + 1 assert ret >= 0 return ret ``` ###Assistant : _detect_bytelen_from_str returns the length of the machine representation of an AbstractUVarIntField starting at the beginning of s and which is assumed to expand over multiple bytes (value > _max_prefix_value). :param str s: the string to parse. It is assumed that it is a multibyte int. # noqa: E501 :return: The bytelength of the AbstractUVarIntField. :raises: AssertionError
1,490
def get_gl_entries(voucher_type, voucher_no): return frappe.db.sql( , (voucher_type, voucher_no), as_dict=1, )
select account, debit, credit, cost_center, is_cancelled from `tabGL Entry` where voucher_type=%s and voucher_no=%s order by account desc
17
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_gl_entries(voucher_type, voucher_no): return frappe.db.sql( , (voucher_type, voucher_no), as_dict=1, ) ``` ###Assistant : select account, debit, credit, cost_center, is_cancelled from `tabGL Entry` where voucher_type=%s and voucher_no=%s order by account desc
1,491
def random_normal(mean=0.0, std=1.0, shape=None, dev=None, f=None): return _cur_framework(f=f).random_normal(mean, std, shape, dev)
Draws samples from a normal distribution. :param mean: The mean of the normal distribution to sample from. Default is 0. :type mean: float :param std: The standard deviation of the normal distribution to sample from. Default is 1. :type std: float :param shape: Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. If size is None (default), a single value is returned. :param dev: device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. :type dev: str :param f: Machine learning framework. Inferred from inputs if None. :type f: ml_framework, optional :return: Drawn samples from the parameterized uniform distribution.
111
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def random_normal(mean=0.0, std=1.0, shape=None, dev=None, f=None): return _cur_framework(f=f).random_normal(mean, std, shape, dev) ``` ###Assistant : Draws samples from a normal distribution. :param mean: The mean of the normal distribution to sample from. Default is 0. :type mean: float :param std: The standard deviation of the normal distribution to sample from. Default is 1. :type std: float :param shape: Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. If size is None (default), a single value is returned. :param dev: device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. :type dev: str :param f: Machine learning framework. Inferred from inputs if None. :type f: ml_framework, optional :return: Drawn samples from the parameterized uniform distribution.
1,492
def get_font_preamble(cls): font_preamble, command = cls._get_font_preamble_and_command() return font_preamble
Return a string containing font configuration for the tex preamble.
10
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_font_preamble(cls): font_preamble, command = cls._get_font_preamble_and_command() return font_preamble ``` ###Assistant : Return a string containing font configuration for the tex preamble.
1,493
def do_test_explorations(config, dummy_obs, prev_a=None, expected_mean_action=None): # Test all frameworks. for _ in framework_iterator(config): print(f"Algorithm={config.algo_class}") # Test for both the default Agent's exploration AND the `Random` # exploration class. for exploration in [None, "Random"]: local_config = config.copy() if exploration == "Random": local_config.exploration(exploration_config={"type": "Random"}) print("exploration={}".format(exploration or "default")) algo = local_config.build() # Make sure all actions drawn are the same, given same # observations. actions = [] for _ in range(25): actions.append( algo.compute_single_action( observation=dummy_obs, explore=False, prev_action=prev_a, prev_reward=1.0 if prev_a is not None else None, ) ) check(actions[-1], actions[0]) # Make sure actions drawn are different # (around some mean value), given constant observations. actions = [] for _ in range(500): actions.append( algo.compute_single_action( observation=dummy_obs, explore=True, prev_action=prev_a, prev_reward=1.0 if prev_a is not None else None, ) ) check( np.mean(actions), expected_mean_action if expected_mean_action is not None else 0.5, atol=0.4, ) # Check that the stddev is not 0.0 (values differ). check(np.std(actions), 0.0, false=True)
Calls an Agent's `compute_actions` with different `explore` options.
8
147
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def do_test_explorations(config, dummy_obs, prev_a=None, expected_mean_action=None): # Test all frameworks. for _ in framework_iterator(config): print(f"Algorithm={config.algo_class}") # Test for both the default Agent's exploration AND the `Random` # exploration class. for exploration in [None, "Random"]: local_config = config.copy() if exploration == "Random": local_config.exploration(exploration_config={"type": "Random"}) print("exploration={}".format(exploration or "default")) algo = local_config.build() # Make sure all actions drawn are the same, given same # observations. actions = [] for _ in range(25): actions.append( algo.compute_single_action( observation=dummy_obs, explore=False, prev_action=prev_a, prev_reward=1.0 if prev_a is not None else None, ) ) check(actions[-1], actions[0]) # Make sure actions drawn are different # (around some mean value), given constant observations. actions = [] for _ in range(500): actions.append( algo.compute_single_action( observation=dummy_obs, explore=True, prev_action=prev_a, prev_reward=1.0 if prev_a is not None else None, ) ) check( np.mean(actions), expected_mean_action if expected_mean_action is not None else 0.5, atol=0.4, ) # Check that the stddev is not 0.0 (values differ). check(np.std(actions), 0.0, false=True) ``` ###Assistant : Calls an Agent's `compute_actions` with different `explore` options.
1,494
def exit_with_success(message, **kwargs): kwargs.setdefault("style", "green") app.console.print(message, **kwargs) raise typer.Exit(0)
Utility to print a stylized success message and exit with a zero code
13
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def exit_with_success(message, **kwargs): kwargs.setdefault("style", "green") app.console.print(message, **kwargs) raise typer.Exit(0) ``` ###Assistant : Utility to print a stylized success message and exit with a zero code
1,495
def get_keywords() -> Dict[str, str]: # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords
Get the keywords needed to look up the version information.
10
61
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_keywords() -> Dict[str, str]: # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords ``` ###Assistant : Get the keywords needed to look up the version information.
1,496
def take(outname, inname, chunks, index, itemsize, axis=0): from .core import PerformanceWarning plan = slicing_plan(chunks[axis], index) if len(plan) >= len(chunks[axis]) * 10: factor = math.ceil(len(plan) / len(chunks[axis])) warnings.warn( "Slicing with an out-of-order index is generating %d " "times more chunks" % factor, PerformanceWarning, stacklevel=6, ) if not is_arraylike(index): index = np.asarray(index) # Check for chunks from the plan that would violate the user's # configured chunk size. nbytes = utils.parse_bytes(config.get("array.chunk-size")) other_chunks = [chunks[i] for i in range(len(chunks)) if i != axis] other_numel = np.prod([sum(x) for x in other_chunks]) if math.isnan(other_numel): warnsize = maxsize = math.inf else: maxsize = math.ceil(nbytes / (other_numel * itemsize)) warnsize = maxsize * 5 split = config.get("array.slicing.split-large-chunks", None) # Warn only when the default is not specified. warned = split is not None for _, index_list in plan: if not warned and len(index_list) > warnsize: msg = ( "Slicing is producing a large chunk. To accept the large\n" "chunk and silence this warning, set the option\n" " >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n" " ... array[indexer]\n\n" "To avoid creating the large chunks, set the option\n" " >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n" " ... array[indexer]" ) warnings.warn(msg, PerformanceWarning, stacklevel=6) warned = True where_index = [] index_lists = [] for where_idx, index_list in plan: index_length = len(index_list) if split and index_length > maxsize: index_sublist = np.array_split( index_list, math.ceil(index_length / maxsize) ) index_lists.extend(index_sublist) where_index.extend([where_idx] * len(index_sublist)) else: if not is_arraylike(index_list): index_list = np.array(index_list) index_lists.append(index_list) where_index.append(where_idx) dims = [range(len(bd)) for bd in chunks] indims = list(dims) indims[axis] = list(range(len(where_index))) keys = list(product([outname], *indims)) outdims = list(dims) outdims[axis] = where_index slices = [[colon] * len(bd) for bd in chunks] slices[axis] = index_lists slices = list(product(*slices)) inkeys = list(product([inname], *outdims)) values = [(getitem, inkey, slc) for inkey, slc in zip(inkeys, slices)] chunks2 = list(chunks) chunks2[axis] = tuple(map(len, index_lists)) dsk = dict(zip(keys, values)) return tuple(chunks2), dsk
Index array with an iterable of index Handles a single index by a single list Mimics ``np.take`` >>> from pprint import pprint >>> chunks, dsk = take('y', 'x', [(20, 20, 20, 20)], [5, 1, 47, 3], 8, axis=0) >>> chunks ((2, 1, 1),) >>> pprint(dsk) # doctest: +ELLIPSIS {('y', 0): (<function getitem at ...>, ('x', 0), (array([5, 1]),)), ('y', 1): (<function getitem at ...>, ('x', 2), (array([7]),)), ('y', 2): (<function getitem at ...>, ('x', 0), (array([3]),))} When list is sorted we retain original block structure >>> chunks, dsk = take('y', 'x', [(20, 20, 20, 20)], [1, 3, 5, 47], 8, axis=0) >>> chunks ((3, 1),) >>> pprint(dsk) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE {('y', 0): (<function getitem at ...>, ('x', 0), (array([1, 3, 5]),)), ('y', 1): (<function getitem at ...>, ('x', 2), (array([7]),))} When any indexed blocks would otherwise grow larger than dask.config.array.chunk-size, we might split them, depending on the value of ``dask.config.slicing.split-large-chunks``. >>> import dask >>> with dask.config.set({"array.slicing.split-large-chunks": True}): ... chunks, dsk = take('y', 'x', [(1, 1, 1), (1000, 1000), (1000, 1000)], ... [0] + [1] * 6 + [2], axis=0, itemsize=8) >>> chunks ((1, 3, 3, 1), (1000, 1000), (1000, 1000))
191
299
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def take(outname, inname, chunks, index, itemsize, axis=0): from .core import PerformanceWarning plan = slicing_plan(chunks[axis], index) if len(plan) >= len(chunks[axis]) * 10: factor = math.ceil(len(plan) / len(chunks[axis])) warnings.warn( "Slicing with an out-of-order index is generating %d " "times more chunks" % factor, PerformanceWarning, stacklevel=6, ) if not is_arraylike(index): index = np.asarray(index) # Check for chunks from the plan that would violate the user's # configured chunk size. nbytes = utils.parse_bytes(config.get("array.chunk-size")) other_chunks = [chunks[i] for i in range(len(chunks)) if i != axis] other_numel = np.prod([sum(x) for x in other_chunks]) if math.isnan(other_numel): warnsize = maxsize = math.inf else: maxsize = math.ceil(nbytes / (other_numel * itemsize)) warnsize = maxsize * 5 split = config.get("array.slicing.split-large-chunks", None) # Warn only when the default is not specified. warned = split is not None for _, index_list in plan: if not warned and len(index_list) > warnsize: msg = ( "Slicing is producing a large chunk. To accept the large\n" "chunk and silence this warning, set the option\n" " >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n" " ... array[indexer]\n\n" "To avoid creating the large chunks, set the option\n" " >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n" " ... array[indexer]" ) warnings.warn(msg, PerformanceWarning, stacklevel=6) warned = True where_index = [] index_lists = [] for where_idx, index_list in plan: index_length = len(index_list) if split and index_length > maxsize: index_sublist = np.array_split( index_list, math.ceil(index_length / maxsize) ) index_lists.extend(index_sublist) where_index.extend([where_idx] * len(index_sublist)) else: if not is_arraylike(index_list): index_list = np.array(index_list) index_lists.append(index_list) where_index.append(where_idx) dims = [range(len(bd)) for bd in chunks] indims = list(dims) indims[axis] = list(range(len(where_index))) keys = list(product([outname], *indims)) outdims = list(dims) outdims[axis] = where_index slices = [[colon] * len(bd) for bd in chunks] slices[axis] = index_lists slices = list(product(*slices)) inkeys = list(product([inname], *outdims)) values = [(getitem, inkey, slc) for inkey, slc in zip(inkeys, slices)] chunks2 = list(chunks) chunks2[axis] = tuple(map(len, index_lists)) dsk = dict(zip(keys, values)) return tuple(chunks2), dsk ``` ###Assistant : Index array with an iterable of index Handles a single index by a single list Mimics ``np.take`` >>> from pprint import pprint >>> chunks, dsk = take('y', 'x', [(20, 20, 20, 20)], [5, 1, 47, 3], 8, axis=0) >>> chunks ((2, 1, 1),) >>> pprint(dsk) # doctest: +ELLIPSIS {('y', 0): (<function getitem at ...>, ('x', 0), (array([5, 1]),)), ('y', 1): (<function getitem at ...>, ('x', 2), (array([7]),)), ('y', 2): (<function getitem at ...>, ('x', 0), (array([3]),))} When list is sorted we retain original block structure >>> chunks, dsk = take('y', 'x', [(20, 20, 20, 20)], [1, 3, 5, 47], 8, axis=0) >>> chunks ((3, 1),) >>> pprint(dsk) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE {('y', 0): (<function getitem at ...>, ('x', 0), (array([1, 3, 5]),)), ('y', 1): (<function getitem at ...>, ('x', 2), (array([7]),))} When any indexed blocks would otherwise grow larger than dask.config.array.chunk-size, we might split them, depending on the value of ``dask.config.slicing.split-large-chunks``. >>> import dask >>> with dask.config.set({"array.slicing.split-large-chunks": True}): ... chunks, dsk = take('y', 'x', [(1, 1, 1), (1000, 1000), (1000, 1000)], ... [0] + [1] * 6 + [2], axis=0, itemsize=8) >>> chunks ((1, 3, 3, 1), (1000, 1000), (1000, 1000))
1,497
def test_multidb(self): ContentType.objects.clear_cache() with self.assertNumQueries(0, using="default"), self.assertNumQueries( 1, using="other" ): ContentType.objects.get_for_model(Author)
When using multiple databases, ContentType.objects.get_for_model() uses db_for_read().
7
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_multidb(self): ContentType.objects.clear_cache() with self.assertNumQueries(0, using="default"), self.assertNumQueries( 1, using="other" ): ContentType.objects.get_for_model(Author) ``` ###Assistant : When using multiple databases, ContentType.objects.get_for_model() uses db_for_read().
1,498
def get_engle_granger_two_step_cointegration_test(y, x): warnings.simplefilter(action="ignore", category=FutureWarning) long_run_ols = sm.OLS(y, sm.add_constant(x)) warnings.simplefilter(action="default", category=FutureWarning) long_run_ols_fit = long_run_ols.fit() c, gamma = long_run_ols_fit.params z = long_run_ols_fit.resid short_run_ols = sm.OLS(y.diff().iloc[1:], (z.shift().iloc[1:])) short_run_ols_fit = short_run_ols.fit() alpha = short_run_ols_fit.params[0] # NOTE: The p-value returned by the adfuller function assumes we do not estimate z # first, but test stationarity of an unestimated series directly. This assumption # should have limited effect for high N, however. Critical values taking this into # account more accurately are provided in e.g. McKinnon (1990) and Engle & Yoo (1987). adfstat, pvalue, _, _, _ = adfuller(z, maxlag=1, autolag=None) return c, gamma, alpha, z, adfstat, pvalue
Estimates long-run and short-run cointegration relationship for series y and x and apply the two-step Engle & Granger test for cointegration. Uses a 2-step process to first estimate coefficients for the long-run relationship y_t = c + gamma * x_t + z_t and then the short-term relationship, y_t - y_(t-1) = alpha * z_(t-1) + epsilon_t, with z the found residuals of the first equation. Then tests cointegration by Dickey-Fuller phi=1 vs phi < 1 in z_t = phi * z_(t-1) + eta_t If this implies phi < 1, the z series is stationary is concluded to be stationary, and thus the series y and x are concluded to be cointegrated. Parameters ---------- y : pd.Series The first time series of the pair to analyse. x : pd.Series The second time series of the pair to analyse. Returns ------- c : float The constant term in the long-run relationship y_t = c + gamma * x_t + z_t. This describes the static shift of y with respect to gamma * x. gamma : float The gamma term in the long-run relationship y_t = c + gamma * x_t + z_t. This describes the ratio between the const-shifted y and x. alpha : float The alpha term in the short-run relationship y_t - y_(t-1) = alpha * z_(t-1) + epsilon. This gives an indication of the strength of the error correction toward the long-run mean. z : pd.Series Series of residuals z_t from the long-run relationship y_t = c + gamma * x_t + z_t, representing the value of the error correction term. dfstat : float The Dickey Fuller test-statistic for phi = 1 vs phi < 1 in the second equation. A more negative value implies the existence of stronger cointegration. pvalue : float The p-value corresponding to the Dickey Fuller test-statistic. A lower value implies stronger rejection of no-cointegration, thus stronger evidence of cointegration.
315
103
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_engle_granger_two_step_cointegration_test(y, x): warnings.simplefilter(action="ignore", category=FutureWarning) long_run_ols = sm.OLS(y, sm.add_constant(x)) warnings.simplefilter(action="default", category=FutureWarning) long_run_ols_fit = long_run_ols.fit() c, gamma = long_run_ols_fit.params z = long_run_ols_fit.resid short_run_ols = sm.OLS(y.diff().iloc[1:], (z.shift().iloc[1:])) short_run_ols_fit = short_run_ols.fit() alpha = short_run_ols_fit.params[0] # NOTE: The p-value returned by the adfuller function assumes we do not estimate z # first, but test stationarity of an unestimated series directly. This assumption # should have limited effect for high N, however. Critical values taking this into # account more accurately are provided in e.g. McKinnon (1990) and Engle & Yoo (1987). adfstat, pvalue, _, _, _ = adfuller(z, maxlag=1, autolag=None) return c, gamma, alpha, z, adfstat, pvalue ``` ###Assistant : Estimates long-run and short-run cointegration relationship for series y and x and apply the two-step Engle & Granger test for cointegration. Uses a 2-step process to first estimate coefficients for the long-run relationship y_t = c + gamma * x_t + z_t and then the short-term relationship, y_t - y_(t-1) = alpha * z_(t-1) + epsilon_t, with z the found residuals of the first equation. Then tests cointegration by Dickey-Fuller phi=1 vs phi < 1 in z_t = phi * z_(t-1) + eta_t If this implies phi < 1, the z series is stationary is concluded to be stationary, and thus the series y and x are concluded to be cointegrated. Parameters ---------- y : pd.Series The first time series of the pair to analyse. x : pd.Series The second time series of the pair to analyse. Returns ------- c : float The constant term in the long-run relationship y_t = c + gamma * x_t + z_t. This describes the static shift of y with respect to gamma * x. gamma : float The gamma term in the long-run relationship y_t = c + gamma * x_t + z_t. This describes the ratio between the const-shifted y and x. alpha : float The alpha term in the short-run relationship y_t - y_(t-1) = alpha * z_(t-1) + epsilon. This gives an indication of the strength of the error correction toward the long-run mean. z : pd.Series Series of residuals z_t from the long-run relationship y_t = c + gamma * x_t + z_t, representing the value of the error correction term. dfstat : float The Dickey Fuller test-statistic for phi = 1 vs phi < 1 in the second equation. A more negative value implies the existence of stronger cointegration. pvalue : float The p-value corresponding to the Dickey Fuller test-statistic. A lower value implies stronger rejection of no-cointegration, thus stronger evidence of cointegration.
1,499
def test_deterministic_order_for_unordered_model(self): superuser = self._create_superuser("superuser") for counter in range(1, 51): UnorderedObject.objects.create(id=counter, bool=True)
The primary key is used in the ordering of the changelist's results to guarantee a deterministic order, even when the model doesn't have any default ordering defined (#17198).
28
12
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_deterministic_order_for_unordered_model(self): superuser = self._create_superuser("superuser") for counter in range(1, 51): UnorderedObject.objects.create(id=counter, bool=True) ``` ###Assistant : The primary key is used in the ordering of the changelist's results to guarantee a deterministic order, even when the model doesn't have any default ordering defined (#17198).