input
stringlengths
2.6k
28.8k
output
stringlengths
4
150
Context: the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales three major planets, venus, earth, and mercury formed out of the solar nebula. a fourth planetesimal, theia, also formed near earth where it collided in a giant impact, rebounding as the planet mars. during this impact earth lost $ { \ approx } 4 $ \ % of its crust and mantle that is now is found on mars and the moon. at the antipode of the giant impact, $ \ approx $ 60 \ % of earth ' s crust, atmosphere, and a large amount of mantle were ejected into space forming the moon. the lost crust never reformed and became the earth ' s ocean basins. the theia impact site corresponds to indian ocean gravitational anomaly on earth and the hellas basin on mars. the dynamics of the giant impact are consistent with the rotational rates and axial tilts of both earth and mars. the giant impact removed sufficient co $ _ 2 $ from earth ' s atmosphere to avoid a runaway greenhouse effect, initiated plate tectonics, and gave life time to form near geothermal vents at the continental margins. mercury formed near venus where on a close approach it was slingshot into the sun ' s convective zone losing 94 \ % of its mass, much of which remains there today. black carbon, from co $ _ 2 $ decomposed by the intense heat, is still found on the surface of mercury. arriving at 616 km / s, mercury dramatically altered the sun ' s rotational energy, explaining both its anomalously slow rotation rate and axial tilt. these results are quantitatively supported by mass balances, the current locations of the terrestrial planets, and the orientations of their major orbital axes. ". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or mostly waste. concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products. mining may not be necessary, if the ore body and physical environment are conducive to leaching. leaching dissolves minerals in an ore body and results in an enriched solution. the solution is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications the magnetic fields of the ice giant planets uranus and neptune ( u / n ) are unique in the solar system. based on a substantial database measured on earth for representative planetary fluids at representative dynamic pressures up to 200 gpa ( 2 mbar ) and a few 1000 k, the complex magnetic fields of u / n are ( i ) probably made primarily by degenerate metallic fluid h ( mfh ) at or near the crossover from the h - he envelopes to ice cores at ~ 100 gpa ( mbar ) pressures and normalized radii of ~ 90 % of the radii of u / n ; ( ii ) because those magnetic fields are made relatively close to the surfaces of u / n, non - dipolar fields can be expected ; ( iii ) the ice cores are most probably a heterogeneous fluid mixture of h, n, o, c, fe / ni and silicate - oxides and their mutual reaction products at high pressures and temperatures, as discussed elsewhere. ironically, there is probably little nebular ice in the ice giant planets. also launched missions to mercury in 2004, with the messenger probe demonstrating as the first use of a solar sail. nasa also launched probes to the outer solar system starting in the 1960s. pioneer 10 was the first probe to the outer planets, flying by jupiter, while pioneer 11 provided the first close up view of the planet. both probes became the first objects to leave the solar system. the voyager program launched in 1977, conducting flybys of jupiter and saturn, neptune, and uranus on a trajectory to leave the solar system. the galileo spacecraft, deployed from the space shuttle flight sts - 34, was the first spacecraft to orbit jupiter, discovering evidence of subsurface oceans on the europa and observed that the moon may hold ice or liquid water. a joint nasa - european space agency - italian space agency mission, cassini – huygens, was sent to saturn ' s moon titan, which, along with mars and europa, are the only celestial bodies in the solar system suspected of being capable of harboring life. cassini discovered three new moons of saturn and the huygens probe entered titan ' s atmosphere. the mission discovered evidence of liquid hydrocarbon lakes on titan and subsurface water oceans on the moon of enceladus, which could harbor life. finally launched in 2006, the new horizons mission was the first spacecraft to visit pluto and the kuiper belt. beyond interplanetary probes, nasa has launched many space telescopes. launched in the 1960s, the orbiting astronomical observatory were nasa ' s first orbital telescopes, providing ultraviolet, gamma - ray, x - ray, and infrared observations. nasa launched the orbiting geophysical observatory in the 1960s and 1970s to look down at earth and observe its interactions with the sun. the uhuru satellite was the first dedicated x - ray telescope, mapping 85 % of the sky and discovering a large number of black holes. launched in the 1990s and early 2000s, the great observatories program are among nasa ' s most powerful telescopes. the hubble space telescope was launched in 1990 on sts - 31 from the discovery and could view galaxies 15 billion light years away. a major defect in the telescope ' s mirror could have crippled the program, had nasa not used computer enhancement to compensate for the imperfection and launched five space shuttle servicing flights to replace the damaged components. the compton gamma ray observatory was launched from the atlantis on sts - 37 in 1991, discovering a possible source of antimatter at the center of the milky way and observing that the majority of gamma - ray bursts in supersymmetric theories, the presence of axions usually implies the existence of a non - compact, ( pseudo ) moduli space. in gauge mediated models, the axion would seem a particularly promising dark matter candidate. the cosmology of the moduli then constrains the gravitino mass and the axion decay constant ; the former can ' t be much below 10 mev ; the latter can ' t be much larger than 10 ^ { 13 } gev. axinos, when identifiable, are typically heavy and do not play an important role in cosmology. excess lightweight products of slow neutron capture in the photosphere, over the mass range of 25 to 207 amu, confirm the solar mass separation recorded by excess lightweight isotopes in the solar wind, over the mass range of 3 to 136 amu [ solar abundance of the elements, meteoritics, volume 18, 1983, pages 209 to 222 ]. both measurements show that major elements inside the sun are fe, o, ni, si and s, like those in rocky planets. three planets with minimum masses less than 10 earth masses orbit the star hd 40307, suggesting these planets may be rocky. however, with only radial velocity data, it is impossible to determine if these planets are rocky or gaseous. here we exploit various dynamical features of the system in order to assess the physical properties of the planets. observations allow for circular orbits, but a numerical integration shows that the eccentricities must be at least 0. 0001. also, planets b and c are so close to the star that tidal effects are significant. if planet b has tidal parameters similar to the terrestrial planets in the solar system and a remnant eccentricity larger than 0. 001, then, going back in time, the system would have been unstable within the lifetime of the star ( which we estimate to be 6. 1 + / - 1. 6 gyr ). moreover, if the eccentricities are that large and the inner planet is rocky, then its tidal heating may be an order of magnitude greater than extremely volcanic io, on a per unit surface area basis. if planet b is not terrestrial, e. g. neptune - like, these physical constraints would not apply. this analysis suggests the planets are not terrestrial - like, and are more like our giant planets. in either case, we find that the planets probably formed at larger radii and migrated early - on ( via disk interactions ) into their current orbits. this study demonstrates how the orbital and dynamical properties of exoplanet systems may be used to constrain the planets ' physical properties. rocky planets in our solar system, namely mercury, venus, earth, mars, and the moon, which is generally added to this group due to its geological complexity, possess a solid surface and share a common structure divided into major layers, namely a silicate crust, a silicate mantle, and an iron - rich core. however, while all terrestrial planets share a common structure, the thickness of their interior layers, their bulk chemical composition, and surface expressions of geological processes are often unique to each of them. in this chapter we provide an overview of the surfaces and interiors of rocky planets in the solar system. we list some of the major discoveries in planetary exploration and discuss how they have helped to answer fundamental questions about planetary evolution while at the same time opening new avenues. for each of the major planetary layers, i. e., the surface, the crust and lithosphere, the mantle, and the core, we review key geological and geophysical processes that have shaped the planets that we observe today. understanding the similarities and differences between the terrestrial planets in the solar system will teach us about the diversity of evolutionary paths a planet could follow, helping us to better understand our own home, the earth. Question: Mercury is small, rocky and covered with what objects? A) rivers B) volcanoes C) diamonds D) craters
D) craters
Context: molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 – 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for electronics, in capacitors, inductors, sensors, etc. ) a slurry can be used in place of a powder, and then cast into a desired shape, dried and then sintered. indeed, traditional pottery is done with this type of method, using a plastic mixture worked with the hands. grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 – 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for electronics, in capacitors, inductors, sensors, etc. ) a slurry can be used in place of a powder, and then cast into a desired shape, dried and then sintered. indeed, traditional pottery is done with this type of method, using a plastic mixture worked with the hands. if a mixture of different materials is used together in a ceramic, the sintering temperature is sometimes above the melting point of one minor component – a liquid phase sintering. this results in shorter sintering times compared to solid state sintering. such liquid phase sintering involves in faster diffusion processes and may result in abnormal grain growth. = = strength of ceramics = = a material ' s strength is dependent on its microstructure. the engineering processes to which a material is subjected can alter its microstructure. the variety of strengthening mechanisms that alter the strength of a material include the mechanism of grain boundary strengthening. thus, although yield strength is maximized with decreasing grain size, ultimately, very small grain sizes make the material brittle. considered in tandem with the fact that the yield strength is the parameter that predicts plastic deformation in the material, one can make informed decisions on how to increase the strength of a material depending on its microstructural higher concentrations of atmospheric nitrous oxide ( n2o ) are expected to slightly warm earth ' s surface because of increases in radiative forcing. radiative forcing is the difference in the net upward thermal radiation flux from the earth through a transparent atmosphere and radiation through an otherwise identical atmosphere with greenhouse gases. radiative forcing, normally measured in w / m ^ 2, depends on latitude, longitude and altitude, but it is often quoted for the tropopause, about 11 km of altitude for temperate latitudes, or for the top of the atmosphere at around 90 km. for current concentrations of greenhouse gases, the radiative forcing per added n2o molecule is about 230 times larger than the forcing per added carbon dioxide ( co2 ) molecule. this is due to the heavy saturation of the absorption band of the relatively abundant greenhouse gas, co2, compared to the much smaller saturation of the absorption bands of the trace greenhouse gas n2o. but the rate of increase of co2 molecules, about 2. 5 ppm / year ( ppm = part per million by mole ), is about 3000 times larger than the rate of increase of n2o molecules, which has held steady at around 0. 00085 ppm / year since 1985. so, the contribution of nitrous oxide to the annual increase in forcing is 230 / 3000 or about 1 / 13 that of co2. if the main greenhouse gases, co2, ch4 and n2o have contributed about 0. 1 c / decade of the warming observed over the past few decades, this would correspond to about 0. 00064 k per year or 0. 064 k per century of warming from n2o. proposals to place harsh restrictions on nitrous oxide emissions because of warming fears are not justified by these facts. restrictions would cause serious harm ; for example, by jeopardizing world food supplies. 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic ##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales of us $ 980. 5 billion with a profit margin of 10. 3 %. = = = professional societies = = = = = see also = = = = references = = = = bibliography = = = = further reading = = popular reading atkins, p. w. galileo ' s finger ( oxford university press ) ##tering - based methods are simple ( " sinter " has roots in the english " cinder " ). the firing is done at a temperature below the melting point of the ceramic. once a roughly - held - together object called a " green body " is made, it is fired in a kiln, where atomic and molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 – 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales Question: Heat expansion is a result of the increase of what type of energy, exhibited by molecules bumping together? A) kinetic energy B) harmonic energy C) radioactivity D) light energy
A) kinetic energy
Context: single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photos liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and ##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, ##vary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in the transpiration stream. diffusion, osmosis, and active transport and mass flow are all different ways transport can occur. examples of elements that plants need to transport are nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. in vascular plants, these elements are extracted from the soil as soluble ions by the roots and transported throughout the plant in the xylem. most of the elements required for plant nutrition come from the chemical breakdown of soil minerals. sucrose produced by photosynthesis is transported from the leaves to other parts of the plant in the phloem and plant hormones are transported by a variety of processes. = = = plant hormones = = = plants are not passive, but respond to external signals such as light, touch, and injury by moving or growing towards or away from the stimulus, as appropriate. tangible evidence of touch sensitivity is the almost instantaneous collapse of leaflets of mimosa pudica, the insect traps of venus flytrap and bladderworts, and the pollinia of orchids. the hypothesis that plant growth and development is coordinated by plant hormones or plant growth regulators first emerged in the late 19th century. darwin experimented on the movements of plant shoots and roots towards light and gravity, and concluded " it is hardly an ex Question: What is the molecular formula of carbon dioxide? A) cl2 B) c2o C) co 2 D) h2o
C) co 2
Context: aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna that can move between cells β€” while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e. ##ta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. hetero , which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna that can move between cells β€” while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gym pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant – people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to star generation times. corn has been used to study mechanisms of photosynthesis and phloem loading of sugar in c4 plants. the single celled green alga chlamydomonas reinhardtii, while not an embryophyte itself, contains a green - pigmented chloroplast related to that of land plants, making it useful for study. a red alga cyanidioschyzon merolae has also been used to study some basic chloroplast functions. spinach, peas, soybeans and a moss physcomitrella patens are commonly used to study plant cell biology. agrobacterium tumefaciens, a soil rhizosphere bacterium, can attach to plant cells and infect them with a callus - inducing ti plasmid by horizontal gene transfer, causing a callus infection called crown gall disease. schell and van montagu ( 1977 ) hypothesised that the ti plasmid could be a natural vector for introducing the nif gene responsible for nitrogen fixation in the root nodules of legumes and other plant species. today, genetic modification of the ti plasmid is one of the main techniques for introduction of transgenes to plants and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : Question: What organism constitutes frothy green "pond scum"? A) bacteria B) sponges C) protozoa D) algae
D) algae
Context: in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic . a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleosynthesis, the light elements ( lithium to calcium ) as well as some of the heavy elements ( beyond iron and nickel, via the s - process ). the remaining abundance of heavy elements, from nickel to uranium and beyond, is due to supernova nucleosynthesis, the r - process. of course, these natural processes of astrophysics are not examples of nuclear " technology ". because of the very strong repulsion of nuclei, fusion is difficult to achieve in a controlled fashion. hydrogen bombs, formally known as thermonuclear weapons, obtain their enormous destructive power from fusion, but their energy cannot be controlled. controlled fusion is achieved in particle accelerators ; this is how many synthetic elements are produced. a fusor can also produce controlled fusion and is a useful neutron source. however, both of these devices operate at a net energy loss. controlled, viable fusion power has proven elusive, despite the occasional hoax. technical and theoretical difficulties have hindered the development of working civilian fusion technology, though research continues to this day around the world. nuclear fusion was initially pursued only in theoretical stages during world war ii, when scientists on the manhattan project ( led by edward teller ) investigated it as a method to build a bomb. the project abandoned fusion after concluding that it would require a fission reaction to detonate. it took until 1952 for the first full hydrogen bomb to be detonated, so - called because it used reactions between deuterium and tritium. fusion reactions are much more energetic per unit mass of fuel than fission reactions, but starting the fusion chain reaction is much more difficult. = = nuclear weapons = = a nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion. both reactions release vast quantities of energy from relatively small amounts of matter. even small nuclear devices can devastate a city by blast, fire and radiation. nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β€” a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei Question: Spontaneous reactions release what type of energy, meaning it is available to do work? A) potential energy B) free energy C) kinetic energy D) radioactive energy
B) free energy
Context: emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has no adverse effect on pilot vision. = = = = ships = = = = ships have also adopted similar methods. though the earlier american arleigh burke - class destroyers incorporated some signature - reduction features. the norwegian skjold - class corvettes was the first coastal defence and the french la fayette - class frigates the first ocean - going stealth ships to enter service. other examples are the dutch de zeven provincien - class frigates, the taiwanese tuo chiang - class corvettes, german sachsen - class frigates, the swedish visby - class corvette, the american san antonio - class amphibious transport docks, and most modern warship designs. = = = materials = = = = = = = non - metallic airframe = = = = dielectric composite materials are more transparent to radar, whereas electrically conductive materials such as metals and carbon fibers reflect electromagnetic energy incident on the material ' s surface. composites may also contain ferrites to optimize the dielectric and magnetic properties of a material for its application. = = = = radar - absorbent material = = = = radiation - absorbent material ( ram ), often as paints, are used especially on the edges of metal surfaces. while the material and thickness of ram coatings can snake called jormungandr. the norse creation account preserved in gylfaginning ( viii ) states that during the creation of the earth, an impassable sea was placed around it : and jafnharr said : " of the blood, which ran and welled forth freely out of his wounds, they made the sea, when they had formed and made firm the earth together, and laid the sea in a ring round. about her ; and it may well seem a hard thing to most men to cross over it. " the late norse konungs skuggsja, on the other hand, explains earth ' s shape as a sphere : if you take a lighted candle and set it in a room, you may expect it to light up the entire interior, unless something should hinder, though the room be quite large. but if you take an apple and hang it close to the flame, so near that it is heated, the apple will darken nearly half the room or even more. however, if you hang the apple near the wall, it will not get hot ; the candle will light up the whole house ; and the shadow on the wall where the apple hangs will be scarcely half as large as the apple itself. from this you may infer that the earth - circle is round like a ball and not equally near the sun at every point. but where the curved surface lies nearest the sun ' s path, there will the greatest heat be ; and some of the lands that lie continuously under the unbroken rays cannot be inhabited. = = = = east asia = = = = in ancient china, the prevailing belief was that the earth was flat and square, while the heavens were round, an assumption virtually unquestioned until the introduction of european astronomy in the 17th century. the english sinologist cullen emphasizes the point that there was no concept of a round earth in ancient chinese astronomy : chinese thought on the form of the earth remained almost unchanged from early times until the first contacts with modern science through the medium of jesuit missionaries in the seventeenth century. while the heavens were variously described as being like an umbrella covering the earth ( the kai tian theory ), or like a sphere surrounding it ( the hun tian theory ), or as being without substance while the heavenly bodies float freely ( the hsuan yeh theory ), the earth was at all times flat, although perhaps bulging up slightly. the model of an egg was often used by chinese astronomers such as zhang heng ( 78 – 139 ad ) to the group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the mediterranean sea at a depth of about 2. 2 km with the antares optical beacon systems. a parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the antares site is in good agreement with these measurements. an alternative explanation of 1 / f - noise in manganites is suggested and discussed two local macros are included ( gothic. sty and fleqn. sty ) unitary recordings in freely - moving pulse weakly electric fish suggest spike timing encoding of electrosensory signals one phenomenological explanation of superluminal propagation of neutrinos, which may have been observed by opera and minos, is that neutrinos travel faster inside of matter than in vacuum. if so neutrinos exhibit refraction inside matter and should exhibit other manifestations of refraction, such as deflection and reflection. such refraction would be easily detectable through the momentum imparted to appropriately shaped refractive material inserted into the neutrino beam. for numi this could be as large as ~ 10g cm / s. if these effect were found, they would provide new ways of manipulating and detecting neutrinos. reasons why this scenario seems implausible are given, however it is still worthwhile to conduct simple searches for differential refraction of neutrinos. bear ' ) was conspicuous on radar. it is now known that propellers and jet turbine blades produce a bright radar image ; the bear has four pairs of large 18 - foot ( 5. 6 m ) diameter contra - rotating propellers. another important factor is internal construction. some stealth aircraft have skin that is radar transparent or absorbing, behind which are structures termed reentrant triangles. radar waves penetrating the skin get trapped in these structures, reflecting off the internal faces and losing energy. this method was first used on the blackbird series : a - 12, yf - 12a, lockheed sr - 71 blackbird. the most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar onset of electro - chemical corrosion. similar problems are encountered in coastal and offshore structures. = = = anti - fouling = = = anti - fouling is the process of eliminating obstructive organisms from essential components of seawater systems. depending on the nature and location of marine growth, this process is performed in a number of different ways : marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. electro - chlorination involves running high electrical current through sea water, altering the water ' s chemical composition to create sodium hypochlorite, purging any bio - matter. an electrolytic method of anti - fouling involves running electrical current through two anodes ( scardino, 2009 ). these anodes typically consist of copper and aluminum ( or alternatively, iron ). the first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio - matter. the second metal, aluminum, coats the inside of the pipes to prevent corrosion. other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship ' s hull. this growth interferes with the smoothness and uniformity of the ship ' s hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel - efficient. marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms. = = = pollution control = = = = = = = sulfur emission = = = = the burning of marine fuels releases harmful pollutants into the atmosphere. ships burn marine diesel in addition to heavy fuel oil. heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. however, heavy fuel oil may only be burned in international waters due to the pollution created. it is commercially advantageous due to the cost effectiveness compared to other marine fuels. it is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 ( smith, 2018 ). = = = = oil and water discharge = = = = water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm ( parts per million ) of oil to be discharged. water is tested the luminescence properties of the colloidal hybrid si - ni nanoparticles system fabricated in the pure water by pulsed laser ablation is considered. the red - shifted photoluminescence of this system because of the stark effect in the coulomb field of the charged ni nanoparticles has been registered in the blue range of the spectrum. Question: Why do butterfly fish have fake eyespots? A) confuse predators B) random evolution C) mating purposes D) aerodynamic purposes
A) confuse predators
Context: current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers – civil works program river morphology and stream restoration references ##ructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models kidneys and the majority of those currently in use are extracorporeal, such as with hemodialysis, which filters blood directly, or peritoneal dialysis, which filters via a fluid in the abdomen. in order to contribute to the biological functions of a kidney such as producing metabolic factors or hormones, some artificial kidneys incorporate renal cells. there has been progress in the way of making these devices smaller and more transportable, or even implantable. one challenge still to be faced in these smaller devices is countering the limited volume and therefore limited filtering capabilities. bioscaffolds have also been introduced to provide a framework upon which normal kidney tissue can be regenerated. these scaffolds encompass natural scaffolds ( e. g., decellularized kidneys, collagen hydrogel, or silk fibroin ), synthetic scaffolds ( e. g., poly [ lactic - co - glycolic acid ] or other polymers ), or a combination of two or more natural and synthetic scaffolds. these scaffolds can be implanted into the body either without cell treatment or after a period of stem cell seeding and incubation. in vitro and in vivo studies are being conducted to compare and optimize the type of scaffold and to assess whether cell seeding prior to implantation adds to the viability, regeneration and effective function of the kidneys. a recent systematic review and meta - analysis compared the results of published animal studies and identified that improved outcomes are reported with the use of hybrid ( mixed ) scaffolds and cell seeding ; however, the meta - analysis of these results were not in agreement with the evaluation of descriptive results from the review. therefore, further studies involving larger animals and novel scaffolds, and more transparent reproduction of previous studies are advisable. = = = biomimetics = = = biomimetics is a field that aims to produce materials and systems that replicate those present in nature. in the context of tissue engineering, this is a common approach used by engineers to create materials for these applications that are comparable to native tissues in terms of their structure, properties, and biocompatibility. material properties are largely dependent on physical, structural, and chemical characteristics of that material. subsequently, a biomimetic approach to system design will become significant in material integration, and a sufficient understanding of biological processes and interactions will be necessary. replication of biological systems and ##ysis again and removing the excess pyruvate. fermentation oxidizes nadh to nad + so it can be re - used in glycolysis. in the absence of oxygen, fermentation prevents the buildup of nadh in the cytoplasm and provides nad + for glycolysis. this waste product varies depending on the organism. in skeletal muscles, the waste product is lactic acid. this type of fermentation is called lactic acid fermentation. in strenuous exercise, when energy demands exceed energy supply, the respiratory chain cannot process all of the hydrogen atoms joined by nadh. during anaerobic glycolysis, nad + regenerates when pairs of hydrogen combine with pyruvate to form lactate. lactate formation is catalyzed by lactate dehydrogenase in a reversible reaction. lactate can also be used as an indirect precursor for liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, ##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river , 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the widespread application of the factory system. this was followed a century later by the second industrial revolution which led to rapid scientific discovery, standardization, and mass production. new technologies were developed, including sewage systems, electricity, light bulbs, electric motors, railroads, automobiles, and airplanes. these technological advances led to significant developments in medicine more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, ammonium hydrosulphide has long since been postulated to exist at least in certain layers of the giant planets. its radiation products may be the reason for the red colour seen on jupiter. several ammonium salts, the products of nh3 and an acid, have previously been detected at comet 67p / churyumov - gerasimenko. the acid h2s is the fifth most abundant molecule in the coma of 67p followed by nh3. in order to look for the salt nh4 + sh -, we analysed in situ measurements from the rosetta / rosina double focusing mass spectrometer during the rosetta mission. nh3 and h2s appear to be independent of each other when sublimating directly from the nucleus. however, we observe a strong correlation between the two species during dust impacts, clearly pointing to the salt. we find that nh4 + sh - is by far the most abundant salt, more abundant in the dust impacts than even water. we also find all previously detected ammonium salts and for the first time ammonium fluoride. the amount of ammonia and acids balance each other, confirming that ammonia is mostly in the form of salt embedded into dust grains. allotropes s2 and s3 are strongly enhanced in the impacts, while h2s2 and its fragment hs2 are not detected, which is most probably the result of radiolysis of nh4 + sh -. this makes a prestellar origin of the salt likely. our findings may explain the apparent depletion of nitrogen in comets and maybe help to solve the riddle of the missing sulphur in star forming regions. Question: Is urea or salt reabsorbed faster? A) same speed B) urea C) salt D) neither is reabsorbed
C) salt
Context: single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley – to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β€” one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley – to form i have been asked to write brief, gentle introduction to the basic idea behind the field of " quantum gravity " in 1500 words or less. doing so appears to be almost as great a challenge as coming up with a consistent theory of quantum gravity. however, i will try. disclaimer : \ emph { the views expressed in this article are my own and do not represent the consensus of the quantum gravity community }. smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short generation times. corn has been used to study mechanisms of photosynthesis and phloem loading of sugar in c4 plants. the single celled green alga chlamydomonas reinhardtii, while not an embryophyte itself, contains a green - pigmented chloroplast related to that of land plants, making it useful for study. a red alga cyanidioschyzon merolae has also been used to study some basic chloroplast functions. spinach, peas, soybeans and a moss physcomitrella patens are commonly used to study plant cell biology. agrobacterium tumefaciens, a soil rhizosphere bacterium, can attach to plant cells and infect them with a callus - inducing ti plasmid by horizontal gene transfer, causing a callus infection called crown gall disease. schell and van montagu ( 1977 ) hypothesised that the ti plasmid could be a natural vector for introducing the nif gene responsible for nitrogen fixation in the root nodules of legumes and other plant species. today, genetic modification of the ti plasmid is one of the main techniques for introduction of transgenes to plants and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added Question: Glucose is an example of what simple carboyhydrates with relatively few carbon atoms? A) acids B) solvents C) sugars D) mixtures
C) sugars
Context: analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic Question: Chemical energy results from the particular arrangement of atoms in a chemical compound; the heat and light produced in this reaction are due to energy released during the breaking and reforming of what? A) acid bonds B) carbon bonds C) chemical bonds D) atom bonds
C) chemical bonds
Context: dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a connected open subset of r2 is a topological surface. if the function is differentiable, the graph is a differentiable surface. a plane is both an algebraic surface and a differentiable surface. it is also a ruled surface and a surface of revolution. a circular cylinder ( that is, the locus of a line crossing a circle and parallel to a given direction ) is an algebraic surface and a differentiable surface. a circular cone ( locus of a line crossing a circle, and passing through a fixed point, the apex, which is outside the plane of the circle ) is an algebraic surface which is not a differentiable surface. if one removes the apex, the remainder of the cone is the union of two differentiable surfaces. the surface of a polyhedron is a topological surface, which is neither a differentiable surface nor an algebraic surface. a hyperbolic paraboloid ( the graph of the function z = xy ) is a differentiable surface and an algebraic surface. it is also a ruled surface, and, for this reason, is often used in architecture. a two - sheet hyperboloid is an algebraic surface and the union of two non - intersecting differentiable surfaces. = = parametric surface = = a parametric surface is the image of an open subset of the euclidean plane ( typically r 2 { \ displaystyle \ mathbb { r } ^ { 2 } } ) by a continuous function, in a topological space, generally a euclidean space of dimension at least three. usually the function is supposed to be continuously differentiable, and this will be always the case in this article. specifically, a parametric surface in r 3 { \ displaystyle \ mathbb { r } ^ { 3 } } is given by three functions of two variables u and v, called parameters x = f 1 ( u, v ), y = f 2 ( u, v ), z = f 3 ( u, v ). { \ displaystyle { \ begin { aligned } x & = f _ { 1 } ( u, v ), \ \ [ 4pt ] y & = f _ { 2 } ( u, v ), \ \ [ 4pt ] z & = f _ { 3 } there cannot exist a single parametrization that covers the whole surface. therefore, one often considers surfaces which are parametrized by several parametric equations, whose images cover the surface. this is formalized by the concept of manifold : in the context of manifolds, typically in topology and differential geometry, a surface is a manifold of dimension two ; this means that a surface is a topological space such that every point has a neighborhood which is homeomorphic to an open subset of the euclidean plane ( see surface ( topology ) and surface ( differential geometry ) ). this allows defining surfaces in spaces of dimension higher than three, and even abstract surfaces, which are not contained in any other space. on the other hand, this excludes surfaces that have singularities, such as the vertex of a conical surface or points where a surface crosses itself. in classical geometry, a surface is generally defined as a locus of a point or a line. for example, a sphere is the locus of a point which is at a given distance of a fixed point, called the center ; a conical surface is the locus of a line passing through a fixed point and crossing a curve ; a surface of revolution is the locus of a curve rotating around a line. a ruled surface is the locus of a moving line satisfying some constraints ; in modern terminology, a ruled surface is a surface, which is a union of lines. = = terminology = = there are several kinds of surfaces that are considered in mathematics. an unambiguous terminology is thus necessary to distinguish them when needed. a topological surface is a surface that is a manifold of dimension two ( see Β§ topological surface ). a differentiable surface is a surfaces that is a differentiable manifold ( see Β§ differentiable surface ). every differentiable surface is a topological surface, but the converse is false. a " surface " is often implicitly supposed to be contained in a euclidean space of dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a connected open subset of r2 is a topological surface. if the function is differentiable, the graph is a differentiable surface. a plane is both an algebraic surface and a differentiable surface. it is also a ruled surface and a surface of revolution. a circular cylinder ( that is, the locus of a line crossing manifold of dimension two ( see Β§ topological surface ). a differentiable surface is a surfaces that is a differentiable manifold ( see Β§ differentiable surface ). every differentiable surface is a topological surface, but the converse is false. a " surface " is often implicitly supposed to be contained in a euclidean space of dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a connected open subset of r2 is a topological surface. if the function is differentiable, the graph is a differentiable surface. a plane is both an algebraic surface and a differentiable surface. it is also a ruled surface and a surface of revolution. a circular cylinder ( that is, the locus of a line crossing a circle and parallel to a given direction ) is an algebraic surface and a differentiable surface. a circular cone ( locus of a line crossing a circle, and passing through a fixed point, the apex, which is outside the plane of the circle ) is an algebraic surface which is not a differentiable surface. if one removes the apex, the remainder of the cone is the union of two differentiable surfaces. the surface of a polyhedron is a topological surface, which is neither a differentiable surface nor an algebraic surface. a hyperbolic paraboloid ( the graph of the function z = xy ) is a differentiable surface and an algebraic surface. it is also a ruled surface, and, for this reason, is often used in architecture. a two - sheet hyperboloid is an algebraic surface and the union of two non - intersecting differentiable surfaces. = = parametric surface = = a parametric surface is the image of an open subset of the euclidean plane ( typically r 2 { \ displaystyle \ mathbb { r } ^ { 2 } } ) by a continuous function, in a topological space, generally a euclidean space of dimension at least three. usually the function is supposed to be continuously differentiable, and this will be always the case in this article. specifically, a parametric surface in r 3 { \ displaystyle \ mathbb { r } ^ { 3 } } is given by three functions of two variables u and v, called parameters x = f 1 ( u, v ), y = f 2 ( u, v ), z = f 3 pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin , which are not contained in any other space. on the other hand, this excludes surfaces that have singularities, such as the vertex of a conical surface or points where a surface crosses itself. in classical geometry, a surface is generally defined as a locus of a point or a line. for example, a sphere is the locus of a point which is at a given distance of a fixed point, called the center ; a conical surface is the locus of a line passing through a fixed point and crossing a curve ; a surface of revolution is the locus of a curve rotating around a line. a ruled surface is the locus of a moving line satisfying some constraints ; in modern terminology, a ruled surface is a surface, which is a union of lines. = = terminology = = there are several kinds of surfaces that are considered in mathematics. an unambiguous terminology is thus necessary to distinguish them when needed. a topological surface is a surface that is a manifold of dimension two ( see Β§ topological surface ). a differentiable surface is a surfaces that is a differentiable manifold ( see Β§ differentiable surface ). every differentiable surface is a topological surface, but the converse is false. a " surface " is often implicitly supposed to be contained in a euclidean space of dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a connected open subset of r2 is a topological surface. if the function is differentiable, the graph is a differentiable surface. a plane is both an algebraic surface and a differentiable surface. it is also a ruled surface and a surface of revolution. a circular cylinder ( that is, the locus of a line crossing a circle and parallel to a given direction ) is an algebraic surface and a differentiable surface. a circular cone ( locus of a line crossing a circle, and passing through a fixed point, the apex, which is outside the plane of the circle ) is an algebraic surface which is not a differentiable surface. if one removes the apex, the remainder of the cone is the union of two differentiable surfaces. the surface of a polyhedron is a topological surface, which is neither a differentiable surface nor an algebraic surface. a hyperbolic paraboloid ( the graph of the function z = xy ) is a differentiable surface and in the year 1598 philipp uffenbach published a printed diptych sundial, which is a forerunner of franz ritters horizantal sundial. uffenbach ' s sundial contains apart from the usual information on a sundial ascending signs of the zodiac, several brigthest stars, an almucantar and most important the oldest gnomonic world map known so far. the sundial is constructed for the polar height of 50 1 / 6 degrees, the height of frankfurt / main the town of his citizenship. ##itive material by selective exposure to a radiation source such as light. a photosensitive material is a material that experiences a change in its physical properties when exposed to a radiation source. if a photosensitive material is selectively exposed to radiation ( e. g. by masking some of the radiation ) the pattern of the radiation on the material is transferred to the material exposed, as the properties of the exposed and unexposed regions differs. this exposed region can then be removed or treated providing a mask for the underlying substrate. photolithography is typically used with metal or other thin film deposition, wet and dry etching. sometimes, photolithography is used to create structure without any kind of post etching. one example is su8 based lens where su8 based square blocks are generated. then the photoresist is melted to form a semi - sphere which acts as a lens. electron beam lithography ( often abbreviated as e - beam lithography ) is the practice of scanning a beam of electrons in a patterned fashion across a surface covered with a film ( called the resist ), ( " exposing " the resist ) and of selectively removing either exposed or non - exposed regions of the resist ( " developing " ). the purpose, as with photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching. it was developed for manufacturing integrated circuits, and is also used for creating nanotechnology architectures. the primary advantage of electron beam lithography is that it is one of the ways to beat the diffraction limit of light and make features in the nanometer range. this form of maskless lithography has found wide usage in photomask - making used in photolithography, low - volume production of semiconductor components, and research & development. the key limitation of electron beam lithography is throughput, i. e., the very long time it takes to expose an entire silicon wafer or glass substrate. a long exposure time leaves the user vulnerable to beam drift or instability which may occur during the exposure. also, the turn - around time for reworking or re - design is lengthened unnecessarily if the pattern is not being changed the second time. it is known that focused - ion beam lithography has the capability of writing extremely fine lines ( less than 50 nm line and space has been achieved ) without proximity effect. however, because the writing field in ion - beam lit observed solar neutrino fluxes are employed to constrain the interior composition of the sun. including the effects of neutrino flavor mixing, the results from homestake, sudbury, and gallium experiments constrain the mg, si, and fe abundances in the solar interior to be within a factor 0. 89 to 1. 34 of the surface values with 68 % confidence. if the o and / or ne abundances are increased in the interior to resolve helioseismic discrepancies with recent standard solar models, then the nominal interior mg, si, and fe abundances are constrained to a range of 0. 83 to 1. 24 relative to the surface. additional research is needed to determine whether the sun ' s interior is metal poor relative to its surface. much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost the magnetic field of the sun is the underlying cause of the many diverse phenomena combined under the heading of solar activity. here we describe the magnetic field as it threads its way from the bottom of the convection zone, where it is built up by the solar dynamo, to the solar surface, where it manifests itself in the form of sunspots and faculae, and beyond into the outer solar atmosphere and, finally, into the heliosphere. on the way it, transports energy from the surface and the subsurface layers into the solar corona, where it heats the gas and accelerates the solar wind. Question: The visible surface of the sun is called what? A) photosphere B) Corona C) Radiative Zone D) Chromosphere
A) photosphere
Context: a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 – 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 – 2 ), or a downshift maneuver in passing ( 4 – 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new part in the design must support the development and manufacturing schedule of the model. design for manufacturability ( dfm ) : dfm refers to designing vehicular components in such a way that they are not only feasible to manufacture, but also such that they are cost - efficient to produce while resulting in acceptable behavioral responses to different stimuli, one can understand something about how those stimuli are processed. lewandowski & strohmetz ( 2009 ) reviewed a collection of innovative uses of behavioral measurement in psychology including behavioral traces, behavioral observations, and behavioral choice. behavioral traces are pieces of evidence that indicate behavior occurred, but the actor is not present ( e. g., litter in a parking lot or readings on an electric meter ). behavioral observations involve the direct witnessing of the actor engaging in the behavior ( e. g., watching how close a person sits next to another person ). behavioral choices are when a person selects between two or more options ( e. g., voting behavior, choice of a punishment for another participant ). reaction time. the time between the presentation of a stimulus and an appropriate response can indicate differences between two cognitive processes, and can indicate some things about their nature. for example, if in a search task the reaction times vary proportionally with the number of elements, then it is evident that this cognitive process of searching involves serial instead of parallel processing. psychophysical responses. psychophysical experiments are an old psychological technique, which has been adopted by cognitive psychology. they typically involve making judgments of some physical property, e. g. the loudness of a sound. correlation of subjective scales between individuals can show cognitive or sensory biases as compared to actual physical measurements. some examples include : sameness judgments for colors, tones, textures, etc. threshold differences for colors, tones, textures, etc. eye tracking. this methodology is used to study a variety of cognitive processes, most notably visual perception and language processing. the fixation point of the eyes is linked to an individual ' s focus of attention. thus, by monitoring eye movements, we can study what information is being processed at a given time. eye tracking allows us to study cognitive processes on extremely short time scales. eye movements reflect online decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream options ( e. g., voting behavior, choice of a punishment for another participant ). reaction time. the time between the presentation of a stimulus and an appropriate response can indicate differences between two cognitive processes, and can indicate some things about their nature. for example, if in a search task the reaction times vary proportionally with the number of elements, then it is evident that this cognitive process of searching involves serial instead of parallel processing. psychophysical responses. psychophysical experiments are an old psychological technique, which has been adopted by cognitive psychology. they typically involve making judgments of some physical property, e. g. the loudness of a sound. correlation of subjective scales between individuals can show cognitive or sensory biases as compared to actual physical measurements. some examples include : sameness judgments for colors, tones, textures, etc. threshold differences for colors, tones, textures, etc. eye tracking. this methodology is used to study a variety of cognitive processes, most notably visual perception and language processing. the fixation point of the eyes is linked to an individual ' s focus of attention. thus, by monitoring eye movements, we can study what information is being processed at a given time. eye tracking allows us to study cognitive processes on extremely short time scales. eye movements reflect online decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygen systems are responsible for operational controls such as the throttle, brake and steering controls ; as well as many comfort - and - convenience systems such as the hvac, infotainment, and lighting systems. it would not be possible for automobiles to meet modern safety and fuel - economy requirements without electronic controls. performance : performance is a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 – 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 – 2 ), or a downshift maneuver in passing ( 4 – 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( the world is changing at an ever - increasing pace. and it has changed in a much more fundamental way than one would think, primarily because it has become more connected and interdependent than in our entire history. every new product, every new invention can be combined with those that existed before, thereby creating an explosion of complexity : structural complexity, dynamic complexity, functional complexity, and algorithmic complexity. how to respond to this challenge? and what are the costs? a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. is not present ( e. g., litter in a parking lot or readings on an electric meter ). behavioral observations involve the direct witnessing of the actor engaging in the behavior ( e. g., watching how close a person sits next to another person ). behavioral choices are when a person selects between two or more options ( e. g., voting behavior, choice of a punishment for another participant ). reaction time. the time between the presentation of a stimulus and an appropriate response can indicate differences between two cognitive processes, and can indicate some things about their nature. for example, if in a search task the reaction times vary proportionally with the number of elements, then it is evident that this cognitive process of searching involves serial instead of parallel processing. psychophysical responses. psychophysical experiments are an old psychological technique, which has been adopted by cognitive psychology. they typically involve making judgments of some physical property, e. g. the loudness of a sound. correlation of subjective scales between individuals can show cognitive or sensory biases as compared to actual physical measurements. some examples include : sameness judgments for colors, tones, textures, etc. threshold differences for colors, tones, textures, etc. eye tracking. this methodology is used to study a variety of cognitive processes, most notably visual perception and language processing. the fixation point of the eyes is linked to an individual ' s focus of attention. thus, by monitoring eye movements, we can study what information is being processed at a given time. eye tracking allows us to study cognitive processes on extremely short time scales. eye movements reflect online decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields and bad nvh qualities. the nvh engineer works to either eliminate bad nvh or change the " bad nvh " to good ( i. e., exhaust tones ). vehicle electronics : automotive electronics is an increasingly important aspect of automotive engineering. modern vehicles employ dozens of electronic systems. these systems are responsible for operational controls such as the throttle, brake and steering controls ; as well as many comfort - and - convenience systems such as the hvac, infotainment, and lighting systems. it would not be possible for automobiles to meet modern safety and fuel - economy requirements without electronic controls. performance : performance is a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 – 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 – 2 ), or a downshift maneuver in passing ( 4 – 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect more recently by the civilian world for news reporting and aerial photography. the pilot uses aircraft controls like a joystick or steering wheel, which create control signals which are transmitted to the drone by radio to control the flight surfaces and engine. a telemetry system transmits back a video image from a camera in the drone to allow the pilot to see where the aircraft is going, and data from a gps receiver giving the real - time position of the aircraft. uavs have sophisticated onboard automatic pilot systems that maintain stable flight and only require manual control to change directions. keyless entry system – a short - range handheld battery powered key fob transmitter, included with most modern cars, which can lock and unlock the doors of a vehicle from outside, eliminating the need to use a key. when a button is pressed, the transmitter sends a coded radio signal to a receiver in the vehicle, operating the locks. the fob must be close to the vehicle, typically within 5 to 20 meters. north america and japan use a frequency of 315 mhz, while europe uses 433. 92 and 868 mhz. some models can also remotely start the engine, to warm up the car. a security concern with all keyless entry systems is a replay attack, in which a thief uses a special receiver ( " code grabber " ) to record the radio signal during opening, which can later be replayed to open the door. to prevent this, keyless systems use a rolling code system in which a pseudorandom number generator in the remote control generates a different random key each time it is used. to prevent thieves from simulating the pseudorandom generator to calculate the next key, the radio signal is also encrypted. garage door opener – a short - range handheld transmitter which can open or close a building ' s electrically operated garage door from outside, so the owner can open the door upon arrival, and close it after departure. when a button is pressed the control transmits a coded fsk radio signal to a receiver in the opener, raising or lowering the door. modern openers use 310, 315 or 390 mhz. to prevent a thief using a replay attack, modern openers use a rolling code system. radio - controlled models – a popular hobby is playing with radio - controlled model boats, cars, airplanes, and helicopters ( quadcopters ) which are controlled by radio signals from a handheld console with a joystick. most recent transmitters use the 2. 4 ghz ism band with multiple control channels modulated with pwm, pc Question: Which system is capable of responding quickly to changing situations? A) endocrine system B) circulatory system C) nervous system D) reproductive system
C) nervous system
Context: the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ##l ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats – the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photos 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway ##drate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats – the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of ##ch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabino chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and , the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms Question: What two substances do plants give off when they make food? A) carbon dioxide and oxygen B) chlorophyll and nitrogen C) oxygen and water D) water and oil
C) oxygen and water
Context: it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes an electron inside liquid helium forms a bubble of 17 \ aa in radius. in an external magnetic field, the two - level system of a spin 1 / 2 electron is ideal for the implementation of a qubit for quantum computing. the electron spin is well isolated from other thermal reservoirs so that the qubit should have very long coherence time. by confining a chain of single electron bubbles in a linear rf quadrupole trap, a multi - bit quantum register can be implemented. all spins in the register can be initialized to the ground state either by establishing thermal equilibrium at a temperature around 0. 1 k and at a magnetic field of 1 t or by sorting the bubbles to be loaded into the trap with magnetic separation. schemes are designed to address individual spins and to do two - qubit cnot operations between the neighboring spins. the final readout can be carried out through a measurement similar to the stern - gerlach experiment. the motion and photon emission of electrons in a superlattice may be described as in an undulator. therefore, there is a close analogy between ballistic electrons in a superlattice and electrons in a free electron laser ( fel ). touching upon this analogy the intensity of photon emission in the ir region and the gain are calculated. it is shown that the amplification can be significant, reaching tens of percent. possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change ##physical processes which take place in human beings as they make sense of information received through the visual system. the subject of the image. when developing an imaging system, designers must consider the observables associated with the subjects which will be imaged. these observables generally take the form of emitted or reflected energy, such as electromagnetic energy or mechanical energy. the capture device. once the observables associated with the subject are characterized, designers can then identify and integrate the technologies needed to capture those observables. for example, in the case of consumer digital cameras, those technologies include optics for collecting energy in the visible portion of the electromagnetic spectrum, and electronic detectors for converting the electromagnetic energy into an electronic signal. the processor. for all digital imaging systems, the electronic signals produced by the capture device must be manipulated by an algorithm which formats the signals so they can be displayed as an image. in practice, there are often multiple processors involved in the creation of a digital image. the display. the display takes the electronic signals which have been manipulated by the processor and renders them on some visual medium. examples include paper ( for printed, or " hard copy " images ), television, computer monitor, or projector. note that some imaging scientists will include additional " links " in their description of the imaging chain. for example, some will include the " source " of the energy which " illuminates " or interacts with the subject of the image. others will include storage and / or transmission systems. = = subfields = = subfields within imaging science include : image processing, computer vision, 3d computer graphics, animations, atmospheric optics, astronomical imaging, biological imaging, digital image restoration, digital imaging, color science, digital photography, holography, magnetic resonance imaging, medical imaging, microdensitometry, optics, photography, remote sensing, radar imaging, radiometry, silver halide, ultrasound imaging, photoacoustic imaging, thermal imaging, visual perception, and various printing technologies. = = methodologies = = acoustic imaging coherent imaging uses an active coherent illumination source, such as in radar, synthetic aperture radar ( sar ), medical ultrasound and optical coherence tomography ; non - coherent imaging systems include fluorescent microscopes, optical microscopes, and telescopes. chemical imaging, the simultaneous measurement of spectra and pictures digital imaging, creating digital images, generally by scanning or through digital photography disk image, a file which contains the exact content of a data storage medium document imaging, replicating documents commonly 1. quantized conductance 2. when 1 mode = 1 atom 3. photons and cooper pairs 4. thermal analogues 5. shot noise 6. solid - state electron optics 7. ultimate confinement 8. landauer formulas regge - pole calculated low - energy electron elastic total cross sections ( tcss ) for complex heavy atoms and fullerene molecules are characterized generally by ground, metastable, and excited negative - ion formation, shape resonances and ramsauer - townsend minima. here the extracted anionic binding energies ( bes ) from the tcss of various atoms and fullerenes are used to highlight the ambiguous meaning of some current electron affinities ( eas ) of heavy complex atomic systems. the crucial question is : does the ea correspond to the be of the attached electron in the ground or excited state of the formed anion during the collision? , valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive , etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison, the other is open to ambient air ; it has a gridded electrode. when smoke enters the open chamber, the current is disrupted as the smoke particles attach to the charged ions and restore them to a neutral electrical state. this reduces the current in the open chamber. when the current drops below a certain threshold, the alarm is triggered. = = = food processing and agriculture = = = in biology and agriculture, radiation is used to induce mutations to produce new or improved species, such as in atomic gardening. another use in insect control is the sterile insect technique, where male insects are sterilized by radiation and released, so they have Question: What kind of energy positions do electrons occupy during ground state? A) highest energy positions B) closest energy positions C) relative energy positions D) lowest energy positions
D) lowest energy positions
Context: is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' in products for both consumers and manufacturers. metallurgy is distinct from the craft of metalworking. metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. a specialist practitioner of metallurgy is known as a metallurgist. the science of metallurgy is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change ##als force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants ##chemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' s definition was extended to the more general scientific study of metals, alloys, and related processes. in english, the pronunciation is the more common one in the united kingdom. the pronunciation is the more common one in the us and is the first - listed variant in various american dictionaries, including merriam - webster collegiate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter - metallic compounds, and their mixtures, which are known as alloys. metallurgy encompasses both the science and the technology of metals, including the production of metals and the engineering of metal components used in products for both consumers and manufacturers. metallurgy is distinct from the craft of metalworking. metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. a specialist practitioner of metallurgy is known as a metallurgist. the science of metallurgy is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering , valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive Question: What are metals and good electrical conductors that tend to lose their valence electrons in chemical reactions called? A) precious metals B) conservants C) stable metals D) reductants
D) reductants
Context: also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern above any tidal limit and their average freshwater discharge are proportionate to the extent of their basins and the amount of rain which, after falling over these basins, reaches the river channels in the bottom of the valleys, by which it is conveyed to the sea. the drainage basin of a river is the expanse of country bounded by a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea superheated droplets are proven to be excelent detectors for neutrons and could be used as a neutron dosimeter. to detect accurately the volume of the vapour formed upon nucleation and hence to observe the nucleation quantitatively an air displacement system has been developed. ##lling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called Question: What is the term for liquid water falling from the sky? A) fire B) wind C) mud D) rain
D) rain
Context: schr \ " odinger ' s cat puzzle is resolved. the reason why we do not see a macroscopic superposition of states is cleared in the light of everett ' s formulation of quantum mechanics. the cross section of elastic electron - proton scattering taking place in an electron gas is calculated within the closed time path method. it is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. the other term is due to the scattering particles - electron gas entanglement. this term dominates the usual one when the exchange energy is in the vicinity of the fermi energy. furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime. what if someone built a " box " that applies quantum superposition not just to quantum bits in the microscopic but also to macroscopic everyday " objects ", such as schr \ " odinger ' s cat or a human being? if that were possible, and if the different " copies " of a man could exploit quantum interference to synchronize and collapse into their preferred state, then one ( or they? ) could in a sense choose their future, win the lottery, break codes and other security devices, and become king of the world, or actually of the many - worlds. we set up the plot - line of a new episode of black mirror to reflect on what might await us if one were able to build such a technology. the connection between the quantum frequency of radiation by the transition of the electron from orbit n to orbit k and frequencies of circling of electron in these orbits for the atom of hydrogen is determined. in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionuclides in question need not have been in the rocks initially. thomas a. baillieul, a geologist and retired senior environmental scientist with the united states department of energy, disputed gentry ' s claims in an article entitled, " ' polonium haloes ' refuted : a review of ' radioactive halos in a radio - chronological and cosmological perspective ' by robert v. gentry. " baillieul noted that gentry was a physicist with no background in geology and given the absence of this background, gentry had misrepresented the geological context from which the specimens were collected. additionally, he noted that gentry relied on research from the the extremely small probability of tunneling through an almost classical potential barrier may become not small under the action of the specially adapted non - stationary signal which selects the certain particle energy e _ r. for particle energies close to this value, the tunneling rate is not small during a finite interval of time and has a very sharp peak at the energy e _ r. after entering inside the barrier, the particle emits electromagnetic quanta and exits the barrier with a lower energy. the signal amplitude can be much less compared to the field of the static barrier. this phenomenon can be called the euclidean resonance since the under - barrier motion occurs in imaginary time. the resonance may stimulate chemical and biochemical reactions in a selective way by adapting the signal to a certain particular chemical bond. the resonance may be used in search of the soft alpha - decay for which a conventional observation is impossible due to an extremely small decay rate. the radiation on the material is transferred to the material exposed, as the properties of the exposed and unexposed regions differs. this exposed region can then be removed or treated providing a mask for the underlying substrate. photolithography is typically used with metal or other thin film deposition, wet and dry etching. sometimes, photolithography is used to create structure without any kind of post etching. one example is su8 based lens where su8 based square blocks are generated. then the photoresist is melted to form a semi - sphere which acts as a lens. electron beam lithography ( often abbreviated as e - beam lithography ) is the practice of scanning a beam of electrons in a patterned fashion across a surface covered with a film ( called the resist ), ( " exposing " the resist ) and of selectively removing either exposed or non - exposed regions of the resist ( " developing " ). the purpose, as with photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching. it was developed for manufacturing integrated circuits, and is also used for creating nanotechnology architectures. the primary advantage of electron beam lithography is that it is one of the ways to beat the diffraction limit of light and make features in the nanometer range. this form of maskless lithography has found wide usage in photomask - making used in photolithography, low - volume production of semiconductor components, and research & development. the key limitation of electron beam lithography is throughput, i. e., the very long time it takes to expose an entire silicon wafer or glass substrate. a long exposure time leaves the user vulnerable to beam drift or instability which may occur during the exposure. also, the turn - around time for reworking or re - design is lengthened unnecessarily if the pattern is not being changed the second time. it is known that focused - ion beam lithography has the capability of writing extremely fine lines ( less than 50 nm line and space has been achieved ) without proximity effect. however, because the writing field in ion - beam lithography is quite small, large area patterns must be created by stitching together the small fields. ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. it is capable of generating holes in thin films without any development process. structural depth can be defined team of physicists who were concerned that nazi germany might also be seeking to build a bomb based on nuclear fission. ( the earliest known nuclear reaction on earth occurred naturally, 1. 7 billion years ago, in oklo, gabon, africa. ) the second artificial nuclear reactor, the x - 10 graphite reactor, was also a part of the manhattan project, as were the plutonium - producing reactors of the hanford engineer works. the first nuclear reactor to generate electricity was experimental breeder reactor i ( ebr - i ), which did so near arco, idaho, in 1951. ebr - i was a standalone facility, not connected to a grid, but a later idaho research reactor in the borax series did briefly supply power to the town of arco in 1955. the first commercial nuclear power plant, built to be connected to an electrical grid, is the obninsk nuclear power plant, which began operation in 1954. the second is the shippingport atomic power station, which produced electricity in 1957. for a chronology, from the discovery of uranium to the current era, see outline history of nuclear energy or history of nuclear power. also see history of nuclear engineering part 1 : radioactivity, part 2 : building the bomb, and part 3 : atoms for peace. see list of commercial nuclear reactors for a comprehensive listing of nuclear power reactors and iaea power reactor information system ( pris ) for worldwide and country - level statistics on nuclear power generation. = = sub - disciplines = = nuclear engineers work in such areas as the following : nuclear reactor design, which has evolved from the generation i, proof - of concept, reactors of the 1950s and 1960s, to generation ii, generation iii, and generation iv concepts thermal hydraulics and heat transfer. in a typical nuclear power plant, heat generates steam that drives a steam turbine and a generator that produces electricity materials science as it relates to nuclear power applications managing the nuclear fuel cycle, in which fissile material is obtained, formed into fuel, removed when depleted, and safely stored or reprocessed nuclear propulsion, mainly for military naval vessels, but there have been concepts for aircraft and missiles. nuclear power has been used in space since the 1960s plasma physics, which is integral to the development of fusion power weapons development and management generation of radionuclides, which have applications in industry, medicine, and many other areas nuclear waste management health physics nuclear medicine and medical physics health and safety instrumentation and control engineering process engineering project management quality engineering reactor operations nuclear security ( detection of quantum mechanics is nonlocal. classical mechanics is local. consequently classical mechanics can not explain all quantum phenomena. conversely, it is cumbersome to use quantum mechanics to describe classical phenomena. not only are the computations more complex, but - and this is the main point - it is conceptually more difficult : one has to argue that nonlocality, entanglement and the principle of superposition can be set aside when crossing the " quantum $ \ rightarrow $ classical " border. clearly, nonlocality, entanglement and the principle of superposition should become irrelevant in the classical limit. but why should one argue? shouldn ' t it just come out of the equations? does it come out of the equations? this contribution is about the last question. and the answer is : " it depends on which equation ". by assuming that the kinetic energy, potential energy, momentum, and some other physical quantities of a particle exist in the field out of the particle, the schrodinger equation is an equation describing field of a particle, but not the particle itself. Question: What term did schrΓΆdinger use for regions around the nucleus where electrons are most likely to be? A) orbitals B) isotopes C) arrays D) ellipses
A) orbitals
Context: to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing, translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon, found mainly in prokaryotes and some lower eukaryotes ( e. g., caenorhabditis elegans ). in positive regulation of gene expression, the activator is the transcription factor that stimulates transcription when it binds to the sequence near or at the promoter. negative regulation occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing, translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon, found mainly in prokaryotes and some lower eukaryotes ( e. g., caenorhabditis elegans ). in positive regulation of gene expression, the activator is the transcription factor that stimulates transcription when it binds to the sequence near or at the promoter. negative regulation occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. more sophisticated techniques are now in development that can track protein products without mitigating their function, such as the addition of small sequences that will serve as binding motifs to monoclonal antibodies. expression studies aim to discover where and when specific proteins are produced. in these experiments, the dna sequence before the dna that codes for of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. more sophisticated techniques are now in development that can track protein products without mitigating their function, such as the addition of small sequences that will serve as binding motifs to monoclonal antibodies. expression studies aim to discover where and when specific proteins are produced. in these experiments, the dna sequence before the dna that codes for a protein, known as a gene ' s promoter, is reintroduced into an organism with the protein coding region replaced by a reporter gene such as gfp or an enzyme that catalyses the production of a dye. thus the time and place where a particular protein is produced can be observed. expression studies can be taken a and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, ##ply quickly, relatively easy to transform and can be stored at - 80 Β°c almost indefinitely. once a gene is isolated it can be stored inside the bacteria providing an unlimited supply for research. organisms are genetically engineered to discover the functions of certain genes. this could be the effect on the phenotype of the organism, where the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. schr \ " odinger ' s cat puzzle is resolved. the reason why we do not see a macroscopic superposition of states is cleared in the light of everett ' s formulation of quantum mechanics. of a point on the object, including whole - body translations and rotations ( rigid transformations ). deformation are changes in the relative position between internals points on the object, excluding rigid transformations, causing the body to change shape or size. strain is the relative internal deformation, the dimensionless change in shape of an infinitesimal cube of material relative to a reference configuration. mechanical strains are caused by mechanical stress, see stress - strain curve. the relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic. elasticity in materials occurs when applied stress does not surpass the energy required to break molecular bonds, allowing the material to deform reversibly and return to its original shape once the stress is removed. the linear relationship for a material is known as young ' s modulus. above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation. the determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis. in the above figure, it can be seen that the compressive loading ( indicated by the arrow ) has caused deformation in the cylinder so that the original shape ( dashed lines ) has changed ( deformed ) into one with bulging sides. the sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change. as a result, the material is forced out laterally. internal forces ( in this case at right angles to the deformation ) resist the applied load. = = types of deformation = = depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. the image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel. different deformation modes may occur under different conditions, as can be depicted using a deformation mechanism map. permanent deformation is irreversible ; the deformation stays even after removal of the applied forces, while the temporary deformation is recoverable as it disappears after the removal of applied forces. temporary deformation is also called elastic deformation, while the permanent deformation is called plastic deformation. = = = elastic deformation = = = the study of temporary or elastic deformation in the case of engineering strain is applied to materials used in mechanical and structural engineering, such as concrete and steel, which are subjected to very small deformations. engineering strain is modeled by infinitesimal strain theory, also called mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. more sophisticated techniques are now in development that can track protein products without mitigating their function, such as the addition of small sequences that will serve as binding motifs to monoclonal antibodies. expression studies aim to discover where and when specific proteins are produced. in these experiments, the dna sequence before the dna that codes for a protein, known as a gene ' s promoter, is reintroduced into an organism with the protein coding region replaced by a reporter gene such as gfp or an enzyme that catalyses the production of a dye. thus the time and place where a particular protein is produced can be observed. expression studies can be taken a step further by altering the promoter to find which pieces are crucial for the proper expression of the gene and are actually bound by transcription factor proteins ; this process is known as promoter bashing. = = = industrial = = = organisms can have their cells transformed with a gene coding for a useful protein, such as an enzyme, animal cells using microinjection, where it can be injected through the cell ' s nuclear envelope directly into the nucleus, or through the use of viral vectors. plant genomes can be engineered by physical methods or by use of agrobacterium for the delivery of sequences hosted in t - dna binary vectors. in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes Question: What exactly happens during rna translation? A) membrane is synthesized B) protein is synthesized C) chromosome is synthesized D) carbohydrate is synthesized
B) protein is synthesized
Context: some references for the breaking strength of fused silica fibers compiled in 1999. the action potential is widely considered a purely electrical phenomenon. however, one also finds mechanical and thermal changes that can be observed experimentally. in particular, nerve membranes become thicker and axons contract. the spatial length of the action potential can be quite large, ranging from millimeters to many centimeters. this suggests to employ macroscopic thermodynamics methods to understand its properties. the pulse length is several orders of magnitude larger than the synaptic gap, larger than the distance of the nodes of ranvier, and even larger than the size of many neurons such as pyramidal cells or brain stem motor neurons. here, we review the mechanical changes in nerves, theoretical possibilities to explain them, and implications of a mechanical nerve pulse for the neuron and for the brain. in particular, the contraction of nerves gives rise to the possibility of fast mechanical synapses. organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation ). ideally, even racemics can be enriched with a suitable membrane. when choosing membranes selectivity has priority over a high permeability, as low flows can easily be offset by increasing the filter surface with a modular structure. in gas phase filtration different deposition mechanisms are operative, so that particles having sizes below the pore size of the membrane can be retained as well. = = membrane classification = = bio - membrane is classified in two categories, synthetic membrane and natural membrane. synthetic membranes further classified in organic and inorganic membranes. organic membrane sub classified polymeric membranes and inorganic membrane sub classified ceramic polymers. = = synthesis of biomass membrane ; and the wafer surfaces are sufficiently clean. the most stringent criteria for wafer bonding is usually the direct fusion wafer bonding since even one or more small particulates can render the bonding unsuccessful. in comparison, wafer bonding methods that use intermediary layers are often far more forgiving. both bulk and surface silicon micromachining are used in the industrial production of sensors, ink - jet nozzles, and other devices. but in many cases the distinction between these two has diminished. a new etching technology, deep reactive - ion etching, has made it possible to combine good performance typical of bulk micromachining with comb structures and in - plane operation typical of surface micromachining. while it is common in surface micromachining to have structural layer thickness in the range of 2 ΞΌm, in har silicon micromachining the thickness can be from 10 to 100 ΞΌm. the materials commonly used in har silicon micromachining are thick polycrystalline silicon, known as epi - poly, and bonded silicon - on - insulator ( soi ) wafers although processes for bulk silicon wafer also have been created ( scream ). bonding a second wafer by glass frit bonding, anodic bonding or alloy bonding is used to protect the mems structures. integrated circuits are typically not combined with har silicon micromachining. = = applications = = some common commercial applications of mems include : inkjet printers, which use piezoelectrics or thermal bubble ejection to deposit ink on paper. accelerometers in modern cars for a large number of purposes including airbag deployment and electronic stability control. inertial measurement units ( imus ) : mems accelerometers. mems gyroscopes in remote controlled, or autonomous, helicopters, planes and multirotors ( also known as drones ), used for automatically sensing and balancing flying characteristics of roll, pitch and yaw. mems magnetic field sensor ( magnetometer ) may also be incorporated in such devices to provide directional heading. mems inertial navigation systems ( inss ) of modern cars, airplanes, submarines and other vehicles to detect yaw, pitch, and roll ; for example, the autopilot of an airplane. accelerometers in consumer electronics devices such as game controllers ( nintendo wii ), personal media players / cell phones ( virtually all smartphones, various htc pda models ), augmented dissipation. as well as making for highly repeatable motion, this also makes silicon very reliable as it suffers very little fatigue and can have service lifetimes in the range of billions to trillions of cycles without breaking. semiconductor nanostructures based on silicon are gaining increasing importance in the field of microelectronics and mems in particular. silicon nanowires, fabricated through the thermal oxidation of silicon, are of further interest in electrochemical conversion and storage, including nanowire batteries and photovoltaic systems. polymers even though the electronics industry provides an economy of scale for the silicon industry, crystalline silicon is still a complex and relatively expensive material to produce. polymers on the other hand can be produced in huge volumes, with a great variety of material characteristics. mems devices can be made from polymers by processes such as injection molding, embossing or stereolithography and are especially well suited to microfluidic applications such as disposable blood testing cartridges. metals metals can also be used to create mems elements. while metals do not have some of the advantages displayed by silicon in terms of mechanical properties, when used within their limitations, metals can exhibit very high degrees of reliability. metals can be deposited by electroplating, evaporation, and sputtering processes. commonly used metals include gold, nickel, aluminium, copper, chromium, titanium, tungsten, platinum, and silver. ceramics the nitrides of silicon, aluminium and titanium as well as silicon carbide and other ceramics are increasingly applied in mems fabrication due to advantageous combinations of material properties. aln crystallizes in the wurtzite structure and thus shows pyroelectric and piezoelectric properties enabling sensors, for instance, with sensitivity to normal and shear forces. tin, on the other hand, exhibits a high electrical conductivity and large elastic modulus, making it possible to implement electrostatic mems actuation schemes with ultrathin beams. moreover, the high resistance of tin against biocorrosion qualifies the material for applications in biogenic environments. the figure shows an electron - microscopic picture of a mems biosensor with a 50 nm thin bendable tin beam above a tin ground plate. both can be driven as opposite electrodes of a capacitor, since the beam is fixed in electrically isolating side walls. when a fluid is suspended in the cavity its viscosity may be derived from bending the beam by electrical attraction to the ground great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu shastra ', suggests a thorough understanding of materials engineering, hydrology, and sanitation. = = = = china = = = = the chinese made many first - known discoveries and developments. major technological contributions from china include the earliest known form of the binary code and epigenetic sequencing, early seismological detectors, as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy earliest record of a ship under sail is that of a nile boat dating to around 7, 000 bce. from prehistoric times, egyptians likely used the power of the annual flooding of the nile to irrigate their lands, gradually learning to regulate much of it through purposely built irrigation channels and " catch " basins. the ancient sumerians in mesopotamia used a complex system of canals and levees to divert water from the tigris and euphrates rivers for irrigation. archaeologists estimate that the wheel was invented independently and concurrently in mesopotamia ( in present - day iraq ), the northern caucasus ( maykop culture ), and central europe. time estimates range from 5, 500 to 3, 000 bce with most experts putting it closer to 4, 000 bce. the oldest artifacts with drawings depicting wheeled carts date from about 3, 500 bce. more recently, the oldest - known wooden wheel in the world as of 2024 was found in the ljubljana marsh of slovenia ; austrian experts have established that the wheel is between 5, 100 and 5, 350 years old. the invention of the wheel revolutionized trade and war. it did not take long to discover that wheeled wagons could be used to carry heavy loads. the ancient sumerians used a potter ' s wheel and may have invented it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 – 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm. nanotubes have two dimensions on the nanoscale, i. e., the diameter of the tube is between 0. 1 and 100 nm ; its length could be much greater. finally, spherical nanoparticles have three dimensions on the nanoscale, i. e., the particle is between 0. 1 and 100 nm in each spatial dimension. the terms nanoparticles and ultrafine particles ( ufp ) often are used synonymously although ufp can reach into the micrometre range. the term ' nanostructure ' is often used, when referring to magnetic technology. nanoscale structure in biology is often called ultrastructure. = = = = microstructure = = = = microstructure is defined as the structure of a prepared surface or thin foil of material as revealed by a microscope above 25Γ— magnification. it deals with objects from 100 nm to a few cm. the microstructure of a material ( which can be broadly classified into metallic, polymeric, ceramic and composite ) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high / low temperature behavior, wear resistance, and so on. most of the traditional materials ( such as metals and ceramics ) are microstructured. the manufacture of a perfect crystal of a material is physically impossible. for example, any crystalline material will contain defects such as precipitates, grain boundaries ( hall – petch relationship ), vacancies, interstitial atoms or substitutional atoms. the microstructure of materials reveals these larger defects and advances in simulation have allowed an increased understanding of how defects can be used to enhance material properties. = = = = macrostructure = = = = macrostructure is the appearance of a material in the scale millimeters to meters, it is the structure of Question: How long are microfilaments? A) 9 nm B) 4 nm C) 7 nm D) 7 m
C) 7 nm
Context: has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named the cross section of elastic electron - proton scattering taking place in an electron gas is calculated within the closed time path method. it is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. the other term is due to the scattering particles - electron gas entanglement. this term dominates the usual one when the exchange energy is in the vicinity of the fermi energy. furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends the connection between the quantum frequency of radiation by the transition of the electron from orbit n to orbit k and frequencies of circling of electron in these orbits for the atom of hydrogen is determined. in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionuclides in question need not have been in the rocks initially. thomas a. baillieul, a geologist and retired senior environmental scientist with the united states department of energy, disputed gentry ' s claims in an article entitled, " ' polonium haloes ' refuted : a review of ' radioactive halos in a radio - chronological and cosmological perspective ' by robert v. gentry. " baillieul noted that gentry was a physicist with no background in geology and given the absence of this background, gentry had misrepresented the geological context from which the specimens were collected. additionally, he noted that gentry relied on research from the team of physicists who were concerned that nazi germany might also be seeking to build a bomb based on nuclear fission. ( the earliest known nuclear reaction on earth occurred naturally, 1. 7 billion years ago, in oklo, gabon, africa. ) the second artificial nuclear reactor, the x - 10 graphite reactor, was also a part of the manhattan project, as were the plutonium - producing reactors of the hanford engineer works. the first nuclear reactor to generate electricity was experimental breeder reactor i ( ebr - i ), which did so near arco, idaho, in 1951. ebr - i was a standalone facility, not connected to a grid, but a later idaho research reactor in the borax series did briefly supply power to the town of arco in 1955. the first commercial nuclear power plant, built to be connected to an electrical grid, is the obninsk nuclear power plant, which began operation in 1954. the second is the shippingport atomic power station, which produced electricity in 1957. for a chronology, from the discovery of uranium to the current era, see outline history of nuclear energy or history of nuclear power. also see history of nuclear engineering part 1 : radioactivity, part 2 : building the bomb, and part 3 : atoms for peace. see list of commercial nuclear reactors for a comprehensive listing of nuclear power reactors and iaea power reactor information system ( pris ) for worldwide and country - level statistics on nuclear power generation. = = sub - disciplines = = nuclear engineers work in such areas as the following : nuclear reactor design, which has evolved from the generation i, proof - of concept, reactors of the 1950s and 1960s, to generation ii, generation iii, and generation iv concepts thermal hydraulics and heat transfer. in a typical nuclear power plant, heat generates steam that drives a steam turbine and a generator that produces electricity materials science as it relates to nuclear power applications managing the nuclear fuel cycle, in which fissile material is obtained, formed into fuel, removed when depleted, and safely stored or reprocessed nuclear propulsion, mainly for military naval vessels, but there have been concepts for aircraft and missiles. nuclear power has been used in space since the 1960s plasma physics, which is integral to the development of fusion power weapons development and management generation of radionuclides, which have applications in industry, medicine, and many other areas nuclear waste management health physics nuclear medicine and medical physics health and safety instrumentation and control engineering process engineering project management quality engineering reactor operations nuclear security ( detection of , etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison, the other is open to ambient air ; it has a gridded electrode. when smoke enters the open chamber, the current is disrupted as the smoke particles attach to the charged ions and restore them to a neutral electrical state. this reduces the current in the open chamber. when the current drops below a certain threshold, the alarm is triggered. = = = food processing and agriculture = = = in biology and agriculture, radiation is used to induce mutations to produce new or improved species, such as in atomic gardening. another use in insect control is the sterile insect technique, where male insects are sterilized by radiation and released, so they have on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union it is believed that there may have been a large number of black holes formed in the very early universe. these would have quantised masses. a charged ` ` elementary black hole ' ' ( with the minimum possible mass ) can capture electrons, protons and other charged particles to form a ` ` black hole atom ' '. we find the spectrum of such an object with a view to laboratory and astronomical observation of them, and estimate the lifetime of the bound states. there is no limit to the charge of the black hole, which gives us the possibility of observing z > 137 bound states and transitions at the lower continuum. negatively charged black holes can capture protons. for z > 1, the orbiting protons will coalesce to form a nucleus ( after beta - decay of some protons to neutrons ), with a stability curve different to that of free nuclei. in this system there is also the distinct possibility of single quark capture. this leads to the formation of a coloured black hole that plays the role of an extremely heavy quark interacting strongly with the other two quarks. finally we consider atoms formed with much larger black holes. did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union in 1990, the united kingdom in 1991, and both france and china continued testing until 1996. after signing the comprehensive test ban treaty in 1996 ( which had as of 2011 not entered into force ), all of these states have pledged to discontinue all nuclear testing. non - signatories india and pakistan last tested nuclear weapons in 1998. nuclear weapons are the most destructive weapons known - the archetypal weapons of mass destruction. throughout the cold war, the opposing powers had huge nuclear arsenals, sufficient to kill hundreds of millions of people. generations of people grew up under the shadow of nuclear devastation, portrayed in films such as dr. strangelove and the atomic cafe. however, the tremendous energy release in the detonation of a nuclear weapon also suggested the possibility of a new energy source. = = civilian uses = = = = = nuclear power = = = nuclear power is a type of nuclear technology involving the controlled use of nuclear fission Question: What is the area around the nucleus of an atom where electrons are likely to be, called? A) electron wave B) electron membrane C) electron cloud D) electron pocket
C) electron cloud
Context: sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, are commonly referred to as " cross - hatching ". phantom – ( not shown ) are alternately long - and double short - dashed thin lines used to represent a feature or component that is not part of the specified part or assembly. e. g. billet ends that may be used for testing, or the machined product that is the focus of a tooling drawing. lines can also be classified by a letter classification in which each line is given a letter. type a lines show the outline of the feature of an object. they are the thickest lines on a drawing and done with a pencil softer than hb. type b lines are dimension lines and are used for dimensioning, projecting, extending, or leaders. a harder pencil should be used, such as a 2h pencil. type c lines are used for breaks when the whole object is not shown. these are freehand drawn and only for short breaks. 2h pencil type d lines are similar to type c, except these are zigzagged and only for longer breaks. 2h pencil type e lines indicate hidden outlines of internal features of an object. these are dotted lines. 2h pencil type f lines are type e lines, except these are used for drawings in electrotechnology. 2h pencil type g lines are used for centre lines. these are dotted lines, but a long line of 10 – 20 mm, then a 1 mm gap, then a small line of 2 mm. 2h pencil type h lines are the same as type g, except that every second long line is thicker. these indicate the cutting plane of an object. 2h pencil type k lines indicate the alternate positions of an object and the line taken by that object. these are drawn with a long line of 10 – 20 mm, then a small gap, then a small line of 2 mm, then a gap, then another small line. 2h pencil. = = = multiple views and projections = = = in most cases, a single view is not sufficient to show all necessary features, and several views are used. types of views include the following : = = = = multiview projection = = = = a multiview projection is a type of orthographic projection that shows the object as it looks from the front, right, left, top, bottom, or back ( e. g. the primary views ), and is typically positioned relative to each other according to the rules of either first - angle or third - angle projection. the origin and vector direction of the projectors ( static black holes in two - dimensional string theory can carry tachyon hair. configurations which are non - singular at the event horizon have non - vanishing asymptotic energy density. such solutions can be smoothly extended through the event horizon and have non - vanishing energy flux emerging from the past singularity. dynamical processes will not change the amount of tachyon hair on a black hole. in particular, there will be no tachyon hair on a black hole formed in gravitational collapse if the initial geometry is the linear dilaton vacuum. there also exist static solutions with finite total energy, which have singular event horizons. simple dynamical arguments suggest that black holes formed in gravitational collapse will not have tachyon hair of this type. listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to are continuous lines used to depict edges directly visible from a particular angle. hidden – are short - dashed lines that may be used to represent edges that are not directly visible. center – are alternately long - and short - dashed lines that may be used to represent the axes of circular features. cutting plane – are thin, medium - dashed lines, or thick alternately long - and double short - dashed that may be used to define sections for section views. section – are thin lines in a pattern ( pattern determined by the material being " cut " or " sectioned " ) used to indicate surfaces in section views resulting from " cutting ". section lines are commonly referred to as " cross - hatching ". phantom – ( not shown ) are alternately long - and double short - dashed thin lines used to represent a feature or component that is not part of the specified part or assembly. e. g. billet ends that may be used for testing, or the machined product that is the focus of a tooling drawing. lines can also be classified by a letter classification in which each line is given a letter. type a lines show the outline of the feature of an object. they are the thickest lines on a drawing and done with a pencil softer than hb. type b lines are dimension lines and are used for dimensioning, projecting, extending, or leaders. a harder pencil should be used, such as a 2h pencil. type c lines are used for breaks when the whole object is not shown. these are freehand drawn and only for short breaks. 2h pencil type d lines are similar to type c, except these are zigzagged and only for longer breaks. 2h pencil type e lines indicate hidden outlines of internal features of an object. these are dotted lines. 2h pencil type f lines are type e lines, except these are used for drawings in electrotechnology. 2h pencil type g lines are used for centre lines. these are dotted lines, but a long line of 10 – 20 mm, then a 1 mm gap, then a small line of 2 mm. 2h pencil type h lines are the same as type g, except that every second long line is thicker. these indicate the cutting plane of an object. 2h pencil type k lines indicate the alternate positions of an object and the line taken by that object. these are drawn with a long line of 10 – 20 mm, then a small gap, then a small line of 2 mm, then a gap, then another small line. 2h - dashed lines, or thick alternately long - and double short - dashed that may be used to define sections for section views. section – are thin lines in a pattern ( pattern determined by the material being " cut " or " sectioned " ) used to indicate surfaces in section views resulting from " cutting ". section lines are commonly referred to as " cross - hatching ". phantom – ( not shown ) are alternately long - and double short - dashed thin lines used to represent a feature or component that is not part of the specified part or assembly. e. g. billet ends that may be used for testing, or the machined product that is the focus of a tooling drawing. lines can also be classified by a letter classification in which each line is given a letter. type a lines show the outline of the feature of an object. they are the thickest lines on a drawing and done with a pencil softer than hb. type b lines are dimension lines and are used for dimensioning, projecting, extending, or leaders. a harder pencil should be used, such as a 2h pencil. type c lines are used for breaks when the whole object is not shown. these are freehand drawn and only for short breaks. 2h pencil type d lines are similar to type c, except these are zigzagged and only for longer breaks. 2h pencil type e lines indicate hidden outlines of internal features of an object. these are dotted lines. 2h pencil type f lines are type e lines, except these are used for drawings in electrotechnology. 2h pencil type g lines are used for centre lines. these are dotted lines, but a long line of 10 – 20 mm, then a 1 mm gap, then a small line of 2 mm. 2h pencil type h lines are the same as type g, except that every second long line is thicker. these indicate the cutting plane of an object. 2h pencil type k lines indicate the alternate positions of an object and the line taken by that object. these are drawn with a long line of 10 – 20 mm, then a small gap, then a small line of 2 mm, then a gap, then another small line. 2h pencil. = = = multiple views and projections = = = in most cases, a single view is not sufficient to show all necessary features, and several views are used. types of views include the following : = = = = multiview projection = = = = a multiview projection is a type of orthographic projection , social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary the thickness of freshly made soap films is usually in the micron range, and interference colors make thickness fluctuations easily visible. circular patterns of constant thickness are commonly observed, either a thin film disc in a thicker film or the reverse. in this letter, we evidence the line tension at the origin of these circular patterns. using a well controlled soap film preparation, we produce a piece of thin film surrounded by a thicker film. the thickness profile, measured with a spectral camera, leads to a line tension of the order of 0. 1 nn which drives the relaxation of the thin film shape, initially very elongated, toward a circular shape. a balance between line tension and air friction leads to a quantitative prediction of the relaxation process. such a line tension is expected to play a role in the production of marginal regeneration patches, involved in soap film drainage and stability. interaction between tannin and bovine serum albumin ( bsa ) was examined by the fluorescent quenching. the process of elimination between bsa and tannin was the one of a stationary state, and the coupling coefficient was one. the working strength between the tannin and the beef serum was hydrophobic one. sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetic Question: What type of matter in the spinal cord has the appearance of an ink-blot test and is subdivided into regions that are referred to as horns? A) bright matter B) wet matter C) gray matter D) dark matter
C) gray matter
Context: ##morphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and the study of mummies. scientists and historians have been able to form significant inferences about the lifestyle and culture of various prehistoric peoples, and especially their technology. = = = ancient = = = = = = = copper and bronze ages = = = = metallic copper occurs on the surface of weathered copper ore deposits and copper was used before copper smelting was known. copper smelting is believed to have originated when the technology of pottery kilns allowed sufficiently high temperatures. the concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently work hardened to be suitable for making tools. bronze is an alloy of copper with tin ; the latter being found in relatively few deposits globally caused a long time to elapse before true tin bronze became widespread. ( see : tin sources and trade in ancient times ) bronze was a major advancement over stone as a material for making tools, both because of its mechanical properties like strength and ductility and because it could be cast in molds to make intricately shaped objects. bronze significantly advanced shipbuilding technology with better tools and bronze nails. bronze nails replaced the old method of attaching boards of the hull with cord woven through drilled holes. better ships enabled long - distance trade and the advance of civilization. this technological trend apparently began in the fertile crescent and spread outward over time. these developments were not, and still are not, universal. the three - age system does not accurately describe the technology history of groups outside of eurasia, and does not apply at all in the case of some isolated populations, such as the spinifex people, the sentinelese, and various amazonian tribes, which still make use of stone age technology, and have not developed agricultural or metal technology. these villages preserve traditional customs in the face of global modernity, exhibiting a remarkable resistance to the rapid advancement of technology. = = = = iron age = = = = before iron smelting was developed the only iron was obtained from meteorites and is usually identified by having nickel content. meteoric iron was rare and valuable, but was sometimes used to make tools and other implements, such as fish hooks. the iron age involved the adoption of iron smelting technology. it generally replaced bronze and made it possible to produce tools which were stronger, lighter and cheaper to make than bronze equivalents. the raw materials to make iron, such as ore and limestone, are far more abundant than copper and especially tin ores. consequently, iron was produced in many areas. it was not possible to mass manufacture steel or pure iron because of the high temperatures required. furnaces could reach melting temperature but the crucibles and molds needed for melting and casting had not been developed. steel could be produced by forging bloomery iron to reduce the carbon content in a made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up ##ning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and the study of mummies. scientists and historians have been able to form significant inferences about the lifestyle and culture of various prehistoric peoples, and especially their technology. = = = ancient = = = = = = = copper and bronze ages = = = = metallic copper occurs on the surface of weathered copper ore deposits and copper was used before copper smelting was known. copper smelting is believed to have originated when the technology of pottery kilns allowed sufficiently high temperatures. the concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. this includes the ancient and medieval kingdoms and empires of the middle east and near east, ancient iran, ancient egypt, ancient nubia, and anatolia in present - day turkey, ancient nok, carthage, the celts, greeks and romans of ancient europe, medieval europe, ancient and medieval china, ancient and medieval india, ancient and medieval japan, amongst others. a 16th century book by georg agricola, de re metallica, describes the highly developed and complex processes of mining metal ores, metal extraction, and metallurgy of the time. agricola has been described as the " father of metallurgy ". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or of tool usage was found in ethiopia within the great rift valley, dating back to 2. 5 million years ago. the earliest methods of stone tool making, known as the oldowan " industry ", date back to at least 2. 3 million years ago. this era of stone tool use is called the paleolithic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop ##thic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures ##olithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and the study of mummies. scientists and historians have been able to form significant inferences about the lifestyle and culture of various prehistoric peoples, and especially their technology. = = = ancient = = = = = = = copper and bronze ages = = = = metallic copper occurs on the surface of weathered copper ore deposits and copper was used before copper smelting was known. copper smelting is believed to have originated when the technology of pottery kilns allowed sufficiently high temperatures. the concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently work hardened to be suitable for making tools. bronze is an alloy of copper with tin ; the latter being found in relatively few deposits globally caused a long time to elapse before true tin bronze became widespread. ( see : tin sources and trade in ancient times ) bronze was a major advancement over stone as a material for Question: What type of sedimentary rocks are made of minerals that precipitate from saline water? A) limestone B) chemical sedimentary rocks C) shale D) sandstone
B) chemical sedimentary rocks
Context: tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, , subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that ##es. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like . species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ— piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles Question: Sexual reproduction involves the production of haploid gametes by what? A) lesions B) mitosis C) mutations D) meiosis
D) meiosis
Context: hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. the first three greek letters. some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. all of the early researchers received various radiation burns, much like sunburn, and thought little of it. the new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self which came to be called radioactivity. he, pierre curie and marie curie began investigating the phenomenon. in the process, they isolated the element radium, which is highly radioactive. they discovered that radioactive materials produce intense, penetrating rays of three distinct sorts, which they labeled alpha, beta, and gamma after the first three greek letters. some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. all of the early researchers received various radiation burns, much like sunburn, and thought little of it. the new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionuclides in question need not have been in the rocks initially. thomas a. baillieul, a geologist and retired senior environmental scientist with the united states department of energy, disputed gentry ' s claims in an article entitled, " ' polonium haloes ' refuted : a review of ' radioactive halos in a radio - chronological and cosmological perspective ' by robert v. gentry. " baillieul noted that gentry was a physicist with no background in geology and given the absence of this background, gentry had misrepresented the geological context from which the specimens were collected. additionally, he noted that gentry relied on research from the this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleosynthesis, the light elements ( lithium to calcium ) as well as some of the heavy elements ( beyond iron and nickel, via the s - process ). the remaining abundance of heavy elements, from nickel to uranium and beyond, is due to supernova nucleosynthesis, the r - process. of course, these natural processes of astrophysics are not examples of nuclear " technology ". because of the very strong repulsion of nuclei, fusion is difficult to achieve in a controlled fashion. hydrogen bombs, formally known as thermonuclear weapons, obtain their enormous destructive power from fusion, but their energy cannot be controlled. controlled fusion is achieved in particle accelerators ; this is how many synthetic elements are produced. a fusor can also produce controlled fusion and is a useful neutron source. however, both of these devices operate at a net energy loss. controlled, viable fusion power has proven elusive, despite the occasional hoax. technical and theoretical difficulties have hindered the development of working civilian fusion technology, though research continues to this day around the world. nuclear fusion was initially pursued only in theoretical stages during world war ii, when scientists on the manhattan project ( led by edward teller ) investigated it as a method to build a bomb. the project abandoned fusion after concluding that it would require a fission reaction to detonate. it took until 1952 for the first full hydrogen bomb to be detonated, so - called because it used reactions between deuterium and tritium. fusion reactions are much more energetic per unit mass of fuel than fission reactions, but starting the fusion chain reaction is much more difficult. = = nuclear weapons = = a nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion. both reactions release vast quantities of energy from relatively small amounts of matter. even small nuclear devices can devastate a city by blast, fire and radiation. nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is not the only deadly component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. civilian nuclear and radiological accidents primarily involve nuclear power plants. most common are nuclear leaks that expose workers to hazardous material. a nuclear meltdown refers to the more serious hazard of releasing nuclear material into the surrounding environment. the most significant meltdowns occurred at three mile island in pennsylvania and chernobyl in the soviet ukraine. the earthquake and tsunami on march 11, 2011 caused serious damage to three nuclear reactors and a spent fuel storage pond at the fukushima daiichi nuclear power plant in japan. military reactors that experienced similar accidents were windscale in the united kingdom and sl - 1 in the united states. military accidents usually involve the loss or unexpected detonation of nuclear weapons. the castle bravo test in 1954 produced a larger yield than expected, which contaminated nearby islands, a japanese fishing boat ( with one fatality ), and raised concerns about contaminated fish in japan. in the 1950s through 1970s, several nuclear bombs were lost from submarines and aircraft, some of which have never been recovered. the last twenty years have seen a marked decline in such accidents. = = examples of environmental benefits = = proponents of nuclear energy note that annually, nuclear - generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels. additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed / recycled for other energy uses. proponents of nuclear energy also bring to attention the opportunity cost of utilizing other forms of electricity. for example, the environmental protection agency estimates that coal kills 30, 000 people a year, as a result of its environmental impact, while 60 people died in the chernobyl disaster. a real world example of impact provided by proponents of nuclear energy is the 650, 000 ton increase in carbon emissions in the two months following the closure of the vermont yankee nuclear plant. = = see also = = atomic age lists of nuclear disasters and radioactive incidents nuclear power debate outline of nuclear technology radiology = = references = = = = external links = = nuclear energy institute – beneficial uses two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β€” a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " , natural phenomena on earth only involve gravity and electromagnetism, and not nuclear reactions. this is because atomic nuclei are generally kept apart because they contain positive electrical charges and therefore repel each other. in 1896, henri becquerel was investigating phosphorescence in uranium salts when he discovered a new phenomenon which came to be called radioactivity. he, pierre curie and marie curie began investigating the phenomenon. in the process, they isolated the element radium, which is highly radioactive. they discovered that radioactive materials produce intense, penetrating rays of three distinct sorts, which they labeled alpha, beta, and gamma after the first three greek letters. some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. all of the early researchers received various radiation burns, much like sunburn, and thought little of it. the new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β€” a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei Question: What is emitted by nuclei in alpha, beta, and gamma decay? A) solar energy B) convection C) radiation D) magnetic field
C) radiation
Context: = = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling and the risks of creating more pollution. = = = e - waste recycling = = = the recycling of electronic waste ( e - waste ) has seen significant technological advancements due to increasing environmental concerns and the growing volume of electronic product disposals. traditional e - waste recycling methods, which often involve manual disassemb chemistry is the scientific study of the properties and behavior of matter. it is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions : their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. chemistry also addresses the nature of chemical bonds in chemical compounds. in the scope of its subject, chemistry occupies an intermediate position between physics and biology. it is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. for example, chemistry explains aspects of plant growth ( botany ), the formation of igneous rocks ( geology ), how atmospheric ozone is formed and how environmental pollutants are degraded ( ecology ), the properties of the soil on the moon ( cosmochemistry ), how medications work ( pharmacology ), and how to collect dna evidence at a crime scene ( forensics ). chemistry has existed under various names since ancient times. it has evolved, and now chemistry encompasses various areas of specialisation, or subdisciplines, that continue to increase in number and interrelate to create further interdisciplinary fields of study. the applications of various fields of chemistry are used frequently for economic purposes in the chemical industry. = = etymology = = the word chemistry comes from a modification during the renaissance of the word alchemy, which referred to an earlier set of practices that encompassed elements of chemistry, metallurgy, philosophy, astrology, astronomy, mysticism, and medicine. alchemy is often associated with the quest to turn lead or other base metals into gold, though alchemists were also interested in many of the questions of modern chemistry. the modern word alchemy in turn is derived from the arabic word al - kimia ( Ψ§Ω„ΩƒΫŒΩ…ΫŒΨ§Ψ‘ ). this may have egyptian origins since al - kimia is derived from the ancient greek χημια, which is in turn derived from the word kemet, which is the ancient name of egypt in the egyptian language. alternately, al - kimia may derive from χημΡια ' cast together '. = = modern principles = = the current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that ) of the mass of all organisms, with calcium, phosphorus, sulfur, sodium, chlorine, and magnesium constituting essentially all the remainder. different elements can combine to form compounds such as water, which is fundamental to life. biochemistry is the study of chemical processes within and relating to living organisms. molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = ##nts from the air to reduce the potential adverse effects on humans and the environment. the process of air purification may be performed using methods such as mechanical filtration, ionization, activated carbon adsorption, photocatalytic oxidation, and ultraviolet light germicidal irradiation. = = = sewage treatment = = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photos and genetics. inorganic chemistry is the study of the properties and reactions of inorganic compounds, such as metals and minerals. the distinction between organic and inorganic disciplines is not absolute and there is much overlap, most importantly in the sub - discipline of organometallic chemistry. materials chemistry is the preparation, characterization, and understanding of solid state components or devices with a useful current or future function. the field is a new breadth of study in graduate programs, and it integrates elements from all classical areas of chemistry like organic chemistry, inorganic chemistry, and crystallography with a focus on fundamental issues that are unique to materials. primary systems of study include the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which be the more significant to modern soil theory than fallou ' s. previously, soil had been considered a product of chemical transformations of rocks, a dead substrate from which plants derive nutritious elements. soil and bedrock were in fact equated. dokuchaev considers the soil as a natural body having its own genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the . an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants. brown biotechnology is related to the management of arid lands and deserts. one application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources. violet biotechnology is related to law, ethical and philosophical issues around biotechnology. microbial biotechnology has been proposed for the rapidly emerging area of biotechnology applications in space and microgravity ( space bioeconomy ) dark biotechnology is the color associated with bioterrorism or biological weapons and biowarfare which uses microorganisms, and toxins to cause diseases and death in humans, livestock and Question: What do we call the recycling of inorganic matter between living organisms and their environment? A) water cycle B) phosphorus cycle C) biogeochemical cycle D) nutrient cycle
C) biogeochemical cycle
Context: also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a rapid rate, many regulatory authorities require continuing medical education. medical practitioners upgrade their knowledge in various ways, including medical journals, seminars, conferences, and online programs. a database of objectives covering medical knowledge, as suggested by national societies across the united states, can be searched at http : / / data. medobjectives is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a in supersymmetric theories, the presence of axions usually implies the existence of a non - compact, ( pseudo ) moduli space. in gauge mediated models, the axion would seem a particularly promising dark matter candidate. the cosmology of the moduli then constrains the gravitino mass and the axion decay constant ; the former can ' t be much below 10 mev ; the latter can ' t be much larger than 10 ^ { 13 } gev. axinos, when identifiable, are typically heavy and do not play an important role in cosmology. diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation and management. diving medicine ( or hyperbaric medicine ) is the prevention and treatment of diving - related problems. evolutionary medicine is a perspective on medicine derived through applying evolutionary theory. forensic medicine deals with medical questions in legal context, such as determination of the time and cause of death, type of weapon used to inflict judgments to the practice of medicine. medical humanities includes the humanities ( literature, philosophy, ethics, history and religion ), social science ( anthropology, cultural studies, psychology, sociology ), and the arts ( literature, theater, film, and visual arts ) and their application to medical education and practice. nosokinetics is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of a suitable choice of the four components of the metric tensor which are at our discretion allows to represent geodesically also the non - gravitational motions. great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu shastra ', suggests a thorough understanding of materials engineering, hydrology, and sanitation. = = = = china = = = = the chinese made many first - known discoveries and developments. major technological contributions from china include the earliest known form of the binary code and epigenetic sequencing, early seismological detectors, cortisol, corticosterone and aldosterone activate full - length glucocorticoid receptor ( gr ) from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates. activation by aldosterone a mineralocorticoid, indicates partial divergence of elephant shark gr from the mr. progesterone activates elephant shark mr, but not elephant shark gr. progesterone inhibits steroid binding to elephant shark gr, but not to human gr. deletion of the n - terminal domain ( ntd ) from elephant shark gr ( truncated gr ) reduced the response to corticosteroids, while truncated and full - length elephant shark mr had similar responses to corticosteroids. chimeras of elephant shark gr ntd fused to mr dbd + lbd had increased activation by corticosteroids and progesterone compared to full - length elephant shark mr. elephant shark mr ntd fused to gr dbd + lbd had similar activation as full - length elephant shark mr, indicating that activation of human gr by the ntd evolved early in gr divergence from the mr. practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation unversed in geometry enter here, " and also turned out many notable philosophers. plato ' s student aristotle introduced empiricism and the notion that universal truths can be arrived at via observation and induction, thereby laying the foundations of the scientific method. aristotle also produced many biological writings that were empirical in nature, focusing on biological causation and the diversity of life. he made countless observations of nature, especially the habits and attributes of plants and animals on lesbos, classified more than 540 animal species, and dissected at least 50. aristotle ' s writings profoundly influenced subsequent islamic and european scholarship, though they were eventually superseded in the scientific revolution. aristotle also contributed to theories of the elements and the cosmos. he believed that the celestial bodies ( such as the planets and the sun ) had something called an unmoved mover that put the celestial bodies in motion. aristotle tried to explain everything through mathematics and physics, but sometimes explained things such as the motion of celestial bodies through a higher power such as god. aristotle did not have the technological advancements that would have explained the motion of celestial bodies. in addition, aristotle had many views on the elements. he believed that everything was derived of the elements earth, water, air, fire, and lastly the aether. the aether was a celestial element, and therefore made up the matter of the celestial bodies. the elements of earth, water, air and fire were derived of a combination of two of the characteristics of hot, wet, cold, and dry, and all had their inevitable place and motion. the motion of these elements begins with earth being the closest to " the earth, " then water, air, fire, and finally aether. in addition to the makeup of all things, aristotle came up with theories as to why things did not return to their natural motion. he understood that water sits above earth, air above water, and fire above air in their natural state. he explained that although all elements must return to their natural state, the human body and other living things have a constraint on the elements – thus not allowing the elements making one who they are to return to their natural state. the important legacy of this period included substantial advances in factual knowledge, especially in anatomy, zoology, botany, mineralogy, geography, mathematics and astronomy ; an awareness of the importance of certain scientific problems, especially those related to the problem of change and its causes ; and a recognition of the methodological importance of applying mathematics to natural phenomena and of undertaking empirical research. in the hellenistic age scholars Question: The tensor fascia latae acts as what, in relation to the gluteus medius and iliopsoas, for the purpose of flexing and abducting the thigh? A) symbiotic B) synergist C) spicule D) antagonist
B) synergist
Context: slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes a process of fermentation. the pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. this serves the purpose of oxidizing the electron carriers so that they can perform glycolysis again and removing the excess pyruvate. fermentation oxidizes nadh to nad + so it can be re - used in glycolysis. in the absence of oxygen, fermentation prevents the buildup of nadh in the cytoplasm and provides nad + for gly ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes a process of fermentation. the pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. this serves the purpose of oxidizing the electron carriers so that they can perform glycolysis again and removing the excess pyruvate. fermentation oxidizes nadh to nad + so it can be re - used in glycolysis. in the absence of oxygen, fermentation prevents the buildup of nadh in the cytoplasm and provides nad + for glycolysis. this waste product varies depending on the organism. in skeletal muscles, the waste product is lactic acid. this type of fermentation is called lactic acid fermentation. in strenuous exercise, when energy demands exceed energy supply, the respiratory chain cannot process all of the hydrogen atoms joined by could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes . respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes a process of fermentation. the pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. this serves the purpose of oxidizing the electron carriers so that they can perform glycol cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a Question: What cellular process is controlled by allosteric enzymes at key points in glycolysis and the citric acid cycle? A) mitosis B) cellular respiration C) Metabolism D) photosynthesis
B) cellular respiration
Context: blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of , characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc – 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthala you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), the most puzzling issue in the foundations of quantum mechanics is perhaps that of the status of the wave function of a system in a quantum universe. is the wave function objective or subjective? does it represent the physical state of the system or merely our information about the system? and if the former, does it provide a complete description of the system or only a partial description? we shall address these questions here mainly from a bohmian perspective, and shall argue that part of the difficulty in ascertaining the status of the wave function in quantum mechanics arises from the fact that there are two different sorts of wave functions involved. the most fundamental wave function is that of the universe. from it, together with the configuration of the universe, one can define the wave function of a subsystem. we argue that the fundamental wave function, the wave function of the universe, has a law - like character. defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb – usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently specialized for specific settings such as in a classroom or nursing home. positioning is often important in seating arrangements to ensure that user ' s body pressure is distributed equally without inhibiting movement in a desired way. positioning devices have been developed to aid in allowing people to stand and bear weight on their legs without risk of a fall. medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to in the old age, few people need special care if they are suffering from specific diseases as they can get stroke while they are in normal life routine. also patients of any age, who are not able to walk, need to be taken care of personally but for this, either they have to be in hospital or someone like nurse should be with them for better care. this is costly in terms of money and man power. a person is needed for 24x7 care of these people. to help in this aspect we purposes a vision based system which will take input from the patient and will provide information to the specified person, who is currently may not in the patient room. this will reduce the need of man power, also a continuous monitoring would not be needed. the system is using ms kinect for gesture detection for better accuracy and this system can be installed at home or hospital easily. the system provides gui for simple usage and gives visual and audio feedback to user. this system work on natural hand interaction and need no training before using and also no need to wear any glove or color strip. Question: What is the main function of the cardiovascular system? A) transporting substances around the body B) excretion of food waste C) coordinate bones and muscles D) respiration of air
A) transporting substances around the body
Context: do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number no offspring, to reduce the population. in industrial and food applications, radiation is used for sterilization of tools and equipment. an advantage is that the object may be sealed in plastic before sterilization. an emerging use in food production is the sterilization of food using food irradiation. food irradiation is the process of exposing food to ionizing radiation in order to destroy microorganisms, bacteria, viruses, or insects that might be present in the food. the radiation sources used include radioisotope gamma ray sources, x - ray generators and electron accelerators. further applications include sprout inhibition, delay of ripening, increase of juice yield, and improvement of re - hydration. irradiation is a more general term of deliberate exposure of materials to radiation to achieve a technical goal ( in this context ' ionizing radiation ' is implied ). as such it is also used on non - food items, such as medical hardware, plastics, tubes for gas - pipelines, hoses for floor - heating, shrink - foils for food packaging, automobile parts, wires and cables ( isolation ), tires, and even gemstones. compared to the amount of food irradiated, the volume of those every - day applications is huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β†’ batching β†’ mixing β†’ forming β†’ drying β†’ firing β†’ assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, masculinity and warmth. the five phases – fire, earth, metal, wood, and water – described a cycle of transformations in nature. the water turned into wood, which turned into the fire when it burned. the ashes left by fire were earth. using these principles, chinese philosophers and doctors explored human anatomy, characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc – 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and ##g mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal, water, plaster and epoxy β€” most of which will be eliminated upon firing. a ceramic - filled epoxy, such as martyte, is sometimes used to protect structural steel under conditions of rocket exhaust impingement. these forming techniques are well known for providing tools and other components with dimensional stability, surface quality, high ( near theoretical ) density and microstructural uniformity. the increasing use and diversity of specialty forms of ceramics adds to the diversity of process technologies to be used. thus, reinforcing fibers and filaments are mainly made by polymer, sol - gel, or cvd processes, but melt weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial as medical hardware, plastics, tubes for gas - pipelines, hoses for floor - heating, shrink - foils for food packaging, automobile parts, wires and cables ( isolation ), tires, and even gemstones. compared to the amount of food irradiated, the volume of those every - day applications is huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation or, and not. vectors can be added and subtracted. rotations can be combined using the function composition operation, performing the first rotation and then the second. operations on sets include the binary operations union and intersection and the unary operation of complementation. operations on functions include composition and convolution. operations may not be defined for every possible value of its domain. for example, in the real numbers one cannot divide by zero or take square roots of negative numbers. the values for which an operation is defined form a set called its domain of definition or active domain. the set which contains the values produced is called the codomain, but the set of actual values attained by the operation is its codomain of definition, active codomain, image or range. for example, in the real numbers, the squaring operation only produces non - negative numbers ; the codomain is the set of real numbers, but the range is the non - negative numbers. operations can involve dissimilar objects : a vector can be multiplied by a scalar to form another vector ( an operation known as scalar multiplication ), and the inner product operation on two vectors produces a quantity that is scalar. an operation may or may not have certain properties, for example it may be associative, commutative, anticommutative, idempotent, and so on. the values combined are called operands, arguments, or inputs, and the value produced is called the value, result, or output. operations can have fewer or more than two inputs ( including the case of zero input and infinitely many inputs ). an operator is similar to an operation in that it refers to the symbol or the process used to denote the operation. hence, their point of view is different. for instance, one often speaks of " the operation of addition " or " the addition operation, " when focusing on the operands and result, but one switch to " addition operator " ( rarely " operator of addition " ), when focusing on the process, or from the more symbolic viewpoint, the function + : x Γ— x β†’ x ( where x is a set such as the set of real numbers ). = = definition = = an n - ary operation Ο‰ on a set x is a function Ο‰ : xn β†’ x. the set xn is called the domain of the operation, the output set is called the codomain of the operation, and the fixed non - negative integer n ( the number of opera Question: What happens to water when it is heated in the broiler? A) it expands B) it contracts C) it introduces D) it evolves
A) it expands
Context: the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( ) of the mass of all organisms, with calcium, phosphorus, sulfur, sodium, chlorine, and magnesium constituting essentially all the remainder. different elements can combine to form compounds such as water, which is fundamental to life. biochemistry is the study of chemical processes within and relating to living organisms. molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = ##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as , but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. Question: What atoms make up a water molecule? A) alumhg and oxygen B) Sodium and Oxygen C) One Hydrogen D) hydrogen and oxygen
D) hydrogen and oxygen
Context: the value of excess charge in the kernel of massive body ( and the opposite in sign excess charge at the surface ) caused by the influence of gravitational forces is determined. charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change ##als force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants octet hyperon charge radii are calculated in a chiral constituent quark model including electromagnetic exchange currents between quarks. in impulse approximation one observes a decrease of the hyperon charge radii with increasing strangeness. this effect is reduced by exchange currents. due to exchange currents, the charge radius of the negatively charged hyperons are close to the proton charge radius. it is believed that there may have been a large number of black holes formed in the very early universe. these would have quantised masses. a charged ` ` elementary black hole ' ' ( with the minimum possible mass ) can capture electrons, protons and other charged particles to form a ` ` black hole atom ' '. we find the spectrum of such an object with a view to laboratory and astronomical observation of them, and estimate the lifetime of the bound states. there is no limit to the charge of the black hole, which gives us the possibility of observing z > 137 bound states and transitions at the lower continuum. negatively charged black holes can capture protons. for z > 1, the orbiting protons will coalesce to form a nucleus ( after beta - decay of some protons to neutrons ), with a stability curve different to that of free nuclei. in this system there is also the distinct possibility of single quark capture. this leads to the formation of a coloured black hole that plays the role of an extremely heavy quark interacting strongly with the other two quarks. finally we consider atoms formed with much larger black holes. various charge pairings in strongly correlated electron systems are interpreted as quantum entanglement of a composite system. particles in the intermediate phase have a tendency to form the coherent superposition state of the localized state and the itinerant state, which induces the entanglement of both particles in the bipartite subsystems for increasing the entropy of the system. the correction to the entropic coulomb force becomes an immediate cause of charge pairing. the united rest mass and charge of a particle correspond to the two forms of the same regularity of the unified nature of its ultimate structure. each of them contains the electric, weak, strong and the gravitational contributions. as a consequence, the force of an attraction among the two neutrinos and force of their repulsion must be defined from the point of view of any of the existing types of the actions. therefore, to understand the nature of the micro world interaction at the fundamental level, one must use the fact that each of the four types of well known forces includes both a kind of the newton and a kind of the coulomb components. the opinion has been spoken that the existence of the gravitational parts of the united rest mass and charge would imply the availability of such a fifth force which come forwards in the system as a unified whole. to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of , etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison, the other is open to ambient air ; it has a gridded electrode. when smoke enters the open chamber, the current is disrupted as the smoke particles attach to the charged ions and restore them to a neutral electrical state. this reduces the current in the open chamber. when the current drops below a certain threshold, the alarm is triggered. = = = food processing and agriculture = = = in biology and agriculture, radiation is used to induce mutations to produce new or improved species, such as in atomic gardening. another use in insect control is the sterile insect technique, where male insects are sterilized by radiation and released, so they have strangelets ( stable lumps of quark matter ) can have masses and charges much higher than those of nuclei, but have very low charge - to - mass ratios. this is confirmed in a relativistic thomas - fermi model. the high charge allows astrophysical strangelet acceleration to energies orders of magnitude higher than for protons. in addition, strangelets are much less susceptible to the interactions with the cosmic microwave background that suppress the flux of cosmic ray protons and nuclei above energies of $ 10 ^ { 19 } $ - - $ 10 ^ { 20 } $ ev ( the gzk - cutoff ). this makes strangelets an interesting possibility for explaining ultra - high energy cosmic rays. Question: What leads to the buildup of electric charges on objects? A) rotation B) gravity C) movement D) polarization
D) polarization
Context: of a point on the object, including whole - body translations and rotations ( rigid transformations ). deformation are changes in the relative position between internals points on the object, excluding rigid transformations, causing the body to change shape or size. strain is the relative internal deformation, the dimensionless change in shape of an infinitesimal cube of material relative to a reference configuration. mechanical strains are caused by mechanical stress, see stress - strain curve. the relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic. elasticity in materials occurs when applied stress does not surpass the energy required to break molecular bonds, allowing the material to deform reversibly and return to its original shape once the stress is removed. the linear relationship for a material is known as young ' s modulus. above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation. the determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis. in the above figure, it can be seen that the compressive loading ( indicated by the arrow ) has caused deformation in the cylinder so that the original shape ( dashed lines ) has changed ( deformed ) into one with bulging sides. the sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change. as a result, the material is forced out laterally. internal forces ( in this case at right angles to the deformation ) resist the applied load. = = types of deformation = = depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. the image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel. different deformation modes may occur under different conditions, as can be depicted using a deformation mechanism map. permanent deformation is irreversible ; the deformation stays even after removal of the applied forces, while the temporary deformation is recoverable as it disappears after the removal of applied forces. temporary deformation is also called elastic deformation, while the permanent deformation is called plastic deformation. = = = elastic deformation = = = the study of temporary or elastic deformation in the case of engineering strain is applied to materials used in mechanical and structural engineering, such as concrete and steel, which are subjected to very small deformations. engineering strain is modeled by infinitesimal strain theory, also called ? if the latter, an important question is how the internal experiences of others can be measured. self - reports of feelings and beliefs may not be reliable because, even in cases in which there is no apparent incentive for subjects to intentionally deceive in their answers, self - deception or selective memory may affect their responses. then even in the case of accurate self - reports, how can responses be compared across individuals? even if two individuals respond with the same answer on a likert scale, they may be experiencing very different things. other issues in philosophy of psychology are philosophical questions about the nature of mind, brain, and cognition, and are perhaps more commonly thought of as part of cognitive science, or philosophy of mind. for example, are humans rational creatures? is there any sense in which they have free will, and how does that relate to the experience of making choices? philosophy of psychology also closely monitors contemporary work conducted in cognitive neuroscience, psycholinguistics, and artificial intelligence, questioning what they can and cannot explain in psychology. philosophy of psychology is a relatively young field, because psychology only became a discipline of its own in the late 1800s. in particular, neurophilosophy has just recently become its own field with the works of paul churchland and patricia churchland. philosophy of mind, by contrast, has been a well - established discipline since before psychology was a field of study at all. it is concerned with questions about the very nature of mind, the qualities of experience, and particular issues like the debate between dualism and monism. = = = philosophy of social science = = = the philosophy of social science is the study of the logic and method of the social sciences, such as sociology and cultural anthropology. philosophers of social science are concerned with the differences and similarities between the social and the natural sciences, causal relationships between social phenomena, the possible existence of social laws, and the ontological significance of structure and agency. the french philosopher, auguste comte ( 1798 – 1857 ), established the epistemological perspective of positivism in the course in positivist philosophy, a series of texts published between 1830 and 1842. the first three volumes of the course dealt chiefly with the natural sciences already in existence ( geoscience, astronomy, physics, chemistry, biology ), whereas the latter two emphasised the inevitable coming of social science : " sociologie ". for comte, the natural sciences had to necessarily arrive first, before humanity could adequately channel its efforts into the most challenging and complex " queen science " of human society the creation of your own reality and your own world. the metaphor i used was humans being like magic markers. for so long, they painted black and white pictures in their life because that ' s all they thought they could do. but they can paint with a different color and make a very vibrant and beautiful picture if they take control. on the single " new skin ", he further elaborated : in " new skin ", i attribute a scab to the present state of society. the way the scab looks in its worst state is gross and chaotic and horrible, that ' s now, but when it breaks away, there ' s a brand new piece of skin that ' s stronger than before. it ' s like creation out of chaos. the song " favorite things ", according to boyd, related to the topic of religion : " my favorite things " is my personal beliefs about religion and how it oppresses the things i enjoy the most. unfortunately, the simplest things, such as thinking for myself, creating my own reality and being whatever the hell i want to be each day of my life, are a sin. to be a good christian basically means to give up the reigns of your life and let some unseen force do it for you. " favorite things " also includes a sample of the 1959 track " flamenco fantasy ", by easy listening group the 101 strings orchestra. the song has a similar title to " my favorite things ", from the mary poppins musical and film, with both songs repeatedly mentioning their titles in the lyrics. however, it does not musically reference " my favorite things ". the single " a certain shade of green " has been described as being a song about procrastination. the line " are you gonna stand around till 2012 a. d.? " is a reference to an interpretation of the mayan calendar which dictated that the world would end on december 21, 2012. boyd did not believe this to be true, but it was on his mind as his mother was researching it for a book called maya memory : the glory that was palenque. while recording " nebula ", boyd said in 1997, " we found out what it ' s like to actually plug a phaser pedal into the wall while it ' s on. it sounds like a laser gun, and that ' s the first sound you hear in ' nebula '. " he added that for the song, " we used these walkie - talkies for children that have this slinky - like coil between them. when it is perceived as a threat or manageable obstacle ) ; finally, the ' x ' indicates the crisis ( the overall experience and response to the stressor that either strengthens or weakens families / couples ). see figure 1. in 1977, 1979, and 1986, urie bronfenbrenner published a model that integrated the multiple different levels or domains of an individual ' s environment. it was first developed to apply to child development, but has been widely applied in relationship science. the first level is the microsystem, which contains the single, immediate context people or dyads ( e. g., couple, parent - child, friends ) directly find themselves in β€” such as a home, school, or work. the second level is the mesosystem, which considers the combined effects of two or more contexts / settings. the third level is the exosystem, which also considers the effects of two or more contexts, but specifically contains at least one context that the individual or dyad is not directly in ( e. g., government, social services ) but affects an environment they are directly in ( e. g., home, work ). the fourth level is the macrosystem, which is the broader cultural and social attitudes that affect an individual. finally, the chronosystem is the broadest level that is specifically the dimension of time as it relates to an individual ' s context changes and life events. see figure 2. researchers in relationship science have used social ecological models to study changes and stressors in relationships over time, and how couples, families, or even friends manage them given the contexts they evolve in. application of social ecological models in relationship research have been seen in influential works such as benjamin karney and thomas bradbury ' s vulnerability - stress - adaptation ( vsa ) model. the vsa model is a theoretical approach that enables researchers to study the impact of stressful events on relationship quality and stability over time ( e. g., determine risk of divorce / relationship dissolution ), given a couple ' s capacity to manage and adapt to such events. see figure 3. = = = = relational mobility = = = = in the early 2000s, a japan - based research team defined relational mobility as a measure of how much choice individuals have in terms of whom to form relationships with, including friendships, romantic partnerships, and work relations. relational mobility is low in cultures with a subsistence economy that requires tight cooperation and coordination, such as farming, while it is the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways general modes : static failure, and fatigue failure. static structural failure occurs when, upon being loaded ( having a force applied ) the object being analyzed either breaks or is deformed plastically, depending on the criterion for failure. fatigue failure occurs when an object fails after a number of repeated loading and unloading cycles. fatigue failure occurs because of imperfections in the object : a microscopic crack on the surface of the object, for instance, will grow slightly with each cycle ( propagation ) until the crack is large enough to cause ultimate failure. failure is not simply defined as when a part breaks, however ; it is defined as when a part does not operate as intended. some systems, such as the perforated top sections of some plastic bags, are designed to break. if these systems do not break, failure analysis might be employed to determine the cause. structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure. engineers often use online documents and books such as those published by asm to aid them in determining the type of failure and possible causes. once theory is applied to a mechanical design, physical testing is often performed to verify calculated results. structural analysis may be used in an office when designing parts, in the field to analyze failed parts, or in laboratories where parts might undergo controlled failure tests. = = = thermodynamics and thermo - science = = = thermodynamics is an applied science used in several branches of engineering, including mechanical and chemical engineering. at its simplest, thermodynamics is the study of energy, its use and transformation through a system. typically, engineering thermodynamics is concerned with changing energy from one form to another. as an example, automotive engines convert chemical energy ( enthalpy ) from the fuel into heat, and then into mechanical work that eventually turns the wheels. thermodynamics principles are used by mechanical engineers in the fields of heat transfer, thermofluids, and energy conversion. mechanical engineers use thermo - science to design engines and power plants, heating, ventilation, and air - conditioning ( hvac ) systems, heat exchangers, heat sinks, radiators, refrigeration, insulation, and others. = = = design and drafting = = = drafting or technical drawing is the means by which mechanical engineers design products and create instructions for manufacturing parts. a technical drawing can be a computer model or hand - drawn schematic showing all the dimensions necessary to manufacture a you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), and heredity as the basis of inheritance, evolution as the driver of biological diversity, energy transformation for sustaining life processes, and the maintenance of internal stability ( homeostasis ). biology examines life across multiple levels of organization, from molecules and cells to organisms, populations, and ecosystems. subdisciplines include molecular biology, physiology, ecology, evolutionary biology, developmental biology, and systematics, among others. each of these fields applies a range of methods to investigate biological phenomena, including observation, experimentation, and mathematical modeling. modern biology is grounded in the theory of evolution by natural selection, first articulated by charles darwin, and in the molecular understanding of genes encoded in dna. the discovery of the structure of dna and advances in molecular genetics have transformed many areas of biology, leading to applications in medicine, agriculture, biotechnology, and environmental science. life on earth is believed to have originated over 3. 7 billion years ago. today, it includes a vast diversity of organisms β€” from single - celled archaea and bacteria to complex multicellular plants, fungi, and animals. biologists classify organisms based on shared characteristics and evolutionary relationships, using taxonomic and phylogenetic frameworks. these organisms interact with each other and with their environments in ecosystems, where they play roles in energy flow and nutrient cycling. as a constantly evolving field, biology incorporates new discoveries and technologies that enhance the understanding of life and its processes, while contributing to solutions for challenges such as disease, climate change, and biodiversity loss. = = history = = the earliest of roots of science, which included medicine, can be traced to ancient egypt and mesopotamia in around 3000 to 1200 bce. their contributions shaped ancient greek natural philosophy. ancient greek philosophers such as aristotle ( 384 – 322 bce ) contributed extensively to the development of biological knowledge. he explored biological causation and the diversity of life. his successor, theophrastus, began the scientific study of plants. scholars of the medieval islamic world who wrote on biology included al - jahiz ( 781 – 869 ), al - dinawari ( 828 – 896 ), who wrote on botany, and rhazes ( 865 – 925 ) who wrote on anatomy and physiology. medicine was especially well studied by islamic scholars working in greek philosopher traditions, while natural history drew heavily on aristotelian thought. biology began to quickly develop with anton van leeuwenhoek ' s dramatic improvement of the microscope. it was then that scholars discovered spermatozoa, bacteria, infusoria and the diversity of microscopic attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way that gives us long - term ( decade - to - decade ) feedback on our performance as stewards of the planet. the effort includes understanding the functions of soil microbiotic crusts and exploring the potential to sequester atmospheric carbon in soil organic matter. relating the concept of agriculture to soil quality, however, has not Question: What is it called when body’s internal environment is stable? A) hypothesis B) homeostasis C) synchronicity D) ketosis
B) homeostasis
Context: becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial the gas giant planets in the solar system have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. if a jupiter - like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. the hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. at some planet - star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. this runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. however, for icy moons of ganymede ' s size around a sun - like star we found that surface water ( either ice or liquid ) can persist indefinitely outside the runaway greenhouse orbital distance. in contrast, the surface water on smaller moons of europa ' s size will only persist on timescales greater than 1 gyr at distances ranging 1. 49 to 0. 74 au around a sun - like star for bond albedos of 0. 2 and 0. 8, where the lower albedo becomes relevant if ice melts. consequently, small moons can lose their icy shells, which would create a torus of h atoms around their host planet that might be detectable in future observations. in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid interaction between tannin and bovine serum albumin ( bsa ) was examined by the fluorescent quenching. the process of elimination between bsa and tannin was the one of a stationary state, and the coupling coefficient was one. the working strength between the tannin and the beef serum was hydrophobic one. ##ian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial ( e. g., trunks of trees, boulders and accumulations of gravel ) from a river bed furnishes a simple and efficient means of increasing the discharging capacity of its channel. such removals will consequently lower the height of floods upstream. every impediment to the flow, in proportion to its extent, raises the level of the river above it so as to produce the additional artificial fall necessary to convey the flow through the restricted channel, thereby reducing the total available fall. reducing the length of the channel by substituting straight cuts for a winding course is the only way in which the effective fall can be increased. discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial ( e. g., trunks of trees, boulders and accumulations of gravel ) from a river bed furnishes a simple and efficient means of increasing the discharging capacity of its channel. such removals will consequently lower the height of floods upstream. every impediment to the flow, in proportion to its extent, raises the level of the river above it so as to produce the additional artificial fall necessary to convey the flow through the restricted channel, thereby reducing the total available fall. reducing the length of the channel by substituting straight cuts for a winding course is the only way in which the effective fall can be increased. this involves some loss of capacity in the channel as a whole, and in the case of a large river with a considerable flow it is difficult to maintain a straight cut owing to the tendency of the current to erode the banks and form again a sinuous channel. even if the cut is preserved by protecting the banks, Question: Precipitation, evaporation, transpiration, and condensation are part of what cycle? A) air cycle B) cold cycle C) water cycle D) life cycle
C) water cycle
Context: the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, venus flytrap and bladderworts, and the pollinia of orchids. the hypothesis that plant growth and development is coordinated by plant hormones or plant growth regulators first emerged in the late 19th century. darwin experimented on the movements of plant shoots and roots towards light and gravity, and concluded " it is hardly an exaggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, ##ian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : ##m and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how ##aggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated Question: Life span is distinct from what, which means the sequence of stages a plant goes through from seed germination to seed production of the mature plant? A) spin cycle B) life cycle C) society cycle D) feeding cycle
B) life cycle
Context: weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial be the more significant to modern soil theory than fallou ' s. previously, soil had been considered a product of chemical transformations of rocks, a dead substrate from which plants derive nutritious elements. soil and bedrock were in fact equated. dokuchaev considers the soil as a natural body having its own genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way to be separated conceptually from geology and crop production and treated as a whole. as a founding father of soil science, fallou has primacy in time. fallou was working on the origins of soil before dokuchaev was born ; however dokuchaev ' s work was more extensive and is considered to be the more significant to modern soil theory than fallou ' s. previously, soil had been considered a product of chemical transformations of rocks, a dead substrate from which plants derive nutritious elements. soil and bedrock were in fact equated. dokuchaev considers the soil as a natural body having its own genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way that gives us long - term ( decade - to - decade ) feedback on our performance as stewards of the planet. the effort includes understanding the functions of soil microbiotic crusts and exploring the potential to sequester atmospheric carbon in soil organic matter. relating the concept of agriculture to soil quality, however, has not sumerians in mesopotamia used a complex system of canals and levees to divert water from the tigris and euphrates rivers for irrigation. archaeologists estimate that the wheel was invented independently and concurrently in mesopotamia ( in present - day iraq ), the northern caucasus ( maykop culture ), and central europe. time estimates range from 5, 500 to 3, 000 bce with most experts putting it closer to 4, 000 bce. the oldest artifacts with drawings depicting wheeled carts date from about 3, 500 bce. more recently, the oldest - known wooden wheel in the world as of 2024 was found in the ljubljana marsh of slovenia ; austrian experts have established that the wheel is between 5, 100 and 5, 350 years old. the invention of the wheel revolutionized trade and war. it did not take long to discover that wheeled wagons could be used to carry heavy loads. the ancient sumerians used a potter ' s wheel and may have invented it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also and nine classes, depending on its color, texture and hydrology. contemporaries friedrich albert fallou ( the german founder of modern soil science ) and vasily dokuchaev ( the russian founder of modern soil science ) are both credited with being among the first to identify soil as a resource whose distinctness and complexity deserved to be separated conceptually from geology and crop production and treated as a whole. as a founding father of soil science, fallou has primacy in time. fallou was working on the origins of soil before dokuchaev was born ; however dokuchaev ' s work was more extensive and is considered to be the more significant to modern soil theory than fallou ' s. previously, soil had been considered a product of chemical transformations of rocks, a dead substrate from which plants derive nutritious elements. soil and bedrock were in fact equated. dokuchaev considers the soil as a natural body having its own genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial ( e. g., trunks of trees, boulders and accumulations of gravel ) from a river bed furnishes a simple and efficient means of increasing the discharging capacity of its channel. such removals will consequently lower the height of floods upstream. every impediment to the flow, in proportion to its extent, raises the level of the river above it so as to produce the additional artificial fall necessary to convey the flow through the restricted channel, thereby reducing the total available fall. reducing the length of the channel by substituting straight cuts for a winding course is the only way in which the effective fall can be increased. the space station is established in intergovernmental treaties and agreements, which divide the station into two areas and allow russia to retain full ownership of the russian orbital segment ( with the exception of zarya ), with the us orbital segment allocated between the other international partners. long - duration missions to the iss are referred to as iss expeditions. expedition crew members typically spend approximately six months on the iss. the initial expedition crew size was three, temporarily decreased to two following the columbia disaster. between may 2009 and until the retirement of the space shuttle, the expedition crew size has been six crew members. as of 2024, though the commercial program ' s crew capsules can allow a crew of up to seven, expeditions using them typically consist of a crew of four. the iss has been continuously occupied for the past 24 years and 202 days, having exceeded the previous record held by mir ; and has been visited by astronauts and cosmonauts from 15 different nations. the station can be seen from the earth with the naked eye and, as of 2025, is the largest artificial satellite in earth orbit with a mass and volume greater than that of any previous space station. the russian soyuz and american dragon and starliner spacecraft are used to send astronauts to and from the iss. several uncrewed cargo spacecraft provide service to the iss ; they are the russian progress spacecraft which has done so since 2000, the european automated transfer vehicle ( atv ) since 2008, the japanese h - ii transfer vehicle ( htv ) since 2009, the ( uncrewed ) dragon since 2012, and the american cygnus spacecraft since 2013. the space shuttle, before its retirement, was also used for cargo transfer and would often switch out expedition crew members, although it did not have the capability to remain docked for the duration of their stay. between the retirement of the shuttle in 2011 and the commencement of crewed dragon flights in 2020, american astronauts exclusively used the soyuz for crew transport to and from the iss the highest number of people occupying the iss has been thirteen ; this occurred three times during the late shuttle iss assembly missions. the iss program is expected to continue until 2030, after which the space station will be retired and destroyed in a controlled de - orbit. = = = = commercial resupply services ( 2008 – present ) = = = = commercial resupply services ( crs ) are a contract solution to deliver cargo and supplies to the international space station on a commercial basis by private companies. nasa signed its first crs contracts in 2008 and awarded $ 1 Question: What is it called when the soils of the arctic tundra remain in a perennially frozen state? A) permafrost B) concentrated freeze C) glacial domination D) permafreeze
A) permafrost
Context: is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle in products for both consumers and manufacturers. metallurgy is distinct from the craft of metalworking. metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. a specialist practitioner of metallurgy is known as a metallurgist. the science of metallurgy is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle transition and lose their toughness, becoming more brittle and prone to cracking. metals under continual cyclic loading can suffer from metal fatigue. metals under constant stress at elevated temperatures can creep. = = = metalworking processes = = = casting – molten metal is poured into a shaped mold. variants of casting include sand casting, investment . historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' s definition was extended to the more general scientific study of metals, alloys, and related processes. in english, the pronunciation is the more common one in the united kingdom. the pronunciation is the more common one in the us and is the first - listed variant in various american dictionaries, including merriam - webster collegiate and american heritage. = = history = = the earliest metal employed by humans appears to be gold, which can be found " native ". small amounts of natural gold, dating to the late paleolithic period, 40, 000 bc, have been found in spanish caves. silver, copper, tin and meteoric iron based on 1 / 10 and 1 / 100 weight percentages of the carbon and other alloying elements they contain. thus, the extracting and purifying methods used to extract iron in a blast furnace can affect the quality of steel that is produced. solid materials are generally grouped into three basic classifications : ceramics, metals, and polymers. this broad classification is based on the empirical makeup and atomic structure of the solid materials, and most solids fall into one of these broad categories. an item that is often made from each of these materials types is the beverage container. the material types used for beverage containers accordingly provide different advantages and disadvantages, depending on the material used. ceramic ( glass ) containers are optically transparent, impervious to the passage of carbon dioxide, relatively inexpensive, and are easily recycled, but are also heavy and fracture easily. metal ( aluminum alloy ) is relatively strong, is a good barrier to the diffusion of carbon dioxide, and is easily recycled. however, the cans are opaque, expensive to produce, and are easily dented and punctured. polymers ( polyethylene plastic ) are relatively strong, can be optically transparent, are inexpensive and lightweight, and can be recyclable, but are not as impervious to the passage of carbon dioxide as aluminum and glass. = = = ceramics and glasses = = = another application of materials science is the study of ceramics and glasses, typically the most brittle materials with industrial relevance. many ceramics and glasses exhibit covalent or ionic - covalent bonding with sio2 ( silica ) as a fundamental building block. ceramics – not to be confused with raw, unfired clay – are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales ##chemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' s definition was extended to the more general scientific study of metals, alloys, and related processes. in english, the pronunciation is the more common one in the united kingdom. the pronunciation is the more common one in the us and is the first - listed variant in various american dictionaries, including merriam - webster collegiate iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment processes such as quenching and tempering can significantly change these properties, however. in contrast, certain metal alloys exhibit unique properties where their size and density remain unchanged across a range of temperatures. cast iron is defined as an iron – carbon alloy with more than 2. 00 %, but less than 6. 67 % carbon. stainless steel is defined as a regular steel alloy with greater than 10 % by weight alloying content of chromium. nickel and molybdenum are typically also added in stainless steels. other significant metallic alloys are those of aluminium, titanium, copper and magnesium. copper alloys have been known for a long time ( since the bronze age ), while the alloys of the other three metals have been relatively recently developed. due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. the alloys of aluminium, titanium and magnesium are also known and valued for their high strength to weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. these materials are ideal for situations where high strength to weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering applications. = = = semiconductors = = = a semiconductor is a material that has a resistivity between a conductor and insulator. modern day electronics run on semiconductors, and the industry had an estimated us $ 530 billion market in 2021. its electronic properties can be greatly altered through intentionally introducing impurities in a process referred to as doping. semiconductor materials are used to build diodes, transistors, light - emitting diodes ( leds ), and analog and digital electric circuits, among their many uses. semiconductor devices have replaced thermionic devices like vacuum tubes in most applications. semiconductor devices are manufactured both as single discrete devices and as integrated circuits ( ics ), which consist of a number β€” from a few to millions β€” of devices manufactured and interconnected on a single semiconductor substrate. of all the semiconductors in use today, silicon makes up the largest portion both by quantity and commercial value. monocrystalline silicon is used to produce wafers used in the semiconductor and electronics industry. gallium arsenide ( metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter - metallic compounds, and their mixtures, which are known as alloys. metallurgy encompasses both the science and the technology of metals, including the production of metals and the engineering of metal components used in products for both consumers and manufacturers. metallurgy is distinct from the craft of metalworking. metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. a specialist practitioner of metallurgy is known as a metallurgist. the science of metallurgy is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering Question: The three classes of elements are metals, nonmetals, and what? A) molecules B) atoms C) ionic compounds D) metalloids
D) metalloids
Context: in a predetermined sequence. after the control or power has been isolated, a key is released that can be used to grant access to individual or multiple doors. below is an example of what a trapped key interlock transfer block would look like. this is a part of a trapped key interlocking system. in order to obtain the keys in this system, a key must be inserted and turned ( like the key at the bottom of the system of the picture ). once the key is turned, the operator may retrieve the remaining keys that will be used to open other doors. once all keys are returned, then the operator will be allowed to take out the original key from the beginning. the key will not turn unless the remaining keys are put back in place. another example is an electric kiln. to prevent access to the inside of an electric kiln, a trapped key system may be used to interlock a disconnecting switch and the kiln door. while the switch is turned on, the key is held by the interlock attached to the disconnecting switch. to open the kiln door, the switch is first opened, which releases the key. the key can then be used to unlock the kiln door. while the key is removed from the switch interlock, a plunger from the interlock mechanically prevents the switch from closing. power cannot be re - applied to the kiln until the kiln door is locked, releasing the key, and the key is then returned to the disconnecting switch interlock. a similar two - part interlock system can be used anywhere it is necessary to ensure the energy supply to a machine is interrupted before the machine is entered for adjustment or maintenance. = = mechanical = = interlocks may be strictly mechanical. an example of a mechanical interlock is a steering wheel of a car. in modern days, most cars have an anti - theft feature that restricts the turning of the steering wheel if the key is not inserted in the ignition. this prevents an individual from pushing the car since the mechanical interlock restricts the directional motion of the front wheels of the car. in the operation of a device such as a press or cutter that is hand fed or the workpiece hand removed, the use of two buttons to actuate the device, one for each hand, greatly reduces the possibility of operation endangering the operator. no such system is fool - proof, and such systems are often augmented by the use of cable – pulled gloves worn by the operator ; these are lift caissons : the word caisson is also used as a synonym for the moving trough part of caisson locks, canal lifts and inclines in which boats and ships rest while being lifted from one canal elevation to another ; the water is retained on the inside of the caisson, or excluded from the caisson, according to the respective operating principle. structural caissons : caisson is also sometimes used as a colloquial term for a reinforced concrete structure formed by pouring into a hollow cylindrical form, typically by placing a caisson form below grade in an open excavation and pouring once backfill is complete, or by drilling at grade, although this can be problematic with deep caissons, as unsupported excavations can collapse before the caisson form can be inserted. in this manner, the earth placed around the empty caisson form provides stability and strength, allowing concrete to be poured with fewer complications and with less risk of a form blowout. while, technically, only the form itself is actually a caisson, it is not uncommon for any below - grade cast concrete pillar to be referred to as, simply, a caisson. ventilation filtration systems : the word caisson is also used as a name for an airtight housing for ventilation filters in facilities that handle hazardous materials. the housing usually has an upstream compartment for a pre - filter element and a downstream compartment for a high - efficiency filter element. it may have multiple sets of compartments. the housing has gasketed access doors to allow for the change out of the filter elements. the housing is usually equipped with connection points used to test the efficiency of the filters and monitor changes in the differential pressure across the filter media. = = see also = = suction caisson – open bottomed tube anchor embedded and released by pressure differential air lock diving - bell plant – underwater work support barge used at gibraltar, a mobile barge - mounted engineering caisson used in the port of gibraltar cofferdam – barrier allowing liquid to be pumped out of an enclosed area, a temporary water - excluding structure built in place, sometimes surrounding a working area as does an open caisson. offshore geotechnical engineering – sub - field of engineering concerned with human - made structures in the sea, for information on geotechnical considerations. = = patents = = u. s. patent 123, 002 – improvement in construction of sub - aqueous foundations = = references = = = = external links = = works related to caisson at wikisource in order to obtain the keys in this system, a key must be inserted and turned ( like the key at the bottom of the system of the picture ). once the key is turned, the operator may retrieve the remaining keys that will be used to open other doors. once all keys are returned, then the operator will be allowed to take out the original key from the beginning. the key will not turn unless the remaining keys are put back in place. another example is an electric kiln. to prevent access to the inside of an electric kiln, a trapped key system may be used to interlock a disconnecting switch and the kiln door. while the switch is turned on, the key is held by the interlock attached to the disconnecting switch. to open the kiln door, the switch is first opened, which releases the key. the key can then be used to unlock the kiln door. while the key is removed from the switch interlock, a plunger from the interlock mechanically prevents the switch from closing. power cannot be re - applied to the kiln until the kiln door is locked, releasing the key, and the key is then returned to the disconnecting switch interlock. a similar two - part interlock system can be used anywhere it is necessary to ensure the energy supply to a machine is interrupted before the machine is entered for adjustment or maintenance. = = mechanical = = interlocks may be strictly mechanical. an example of a mechanical interlock is a steering wheel of a car. in modern days, most cars have an anti - theft feature that restricts the turning of the steering wheel if the key is not inserted in the ignition. this prevents an individual from pushing the car since the mechanical interlock restricts the directional motion of the front wheels of the car. in the operation of a device such as a press or cutter that is hand fed or the workpiece hand removed, the use of two buttons to actuate the device, one for each hand, greatly reduces the possibility of operation endangering the operator. no such system is fool - proof, and such systems are often augmented by the use of cable – pulled gloves worn by the operator ; these are retracted away from the danger area by the stroke of the machine. a major problem in engineering operator safety is the tendency of operators to ignore safety precautions or even outright disabling forced interlocks due to work pressure and other factors. therefore, such safeties require and perhaps must facilitate operator cooperation. = = electrical = in mathematics, a reflection ( also spelled reflexion ) is a mapping from a euclidean space to itself that is an isometry with a hyperplane as the set of fixed points ; this set is called the axis ( in dimension 2 ) or plane ( in dimension 3 ) of reflection. the image of a figure by a reflection is its mirror image in the axis or plane of reflection. for example the mirror image of the small latin letter p for a reflection with respect to a vertical axis ( a vertical reflection ) would look like q. its image by reflection in a horizontal axis ( a horizontal reflection ) would look like b. a reflection is an involution : when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state. the term reflection is sometimes used for a larger class of mappings from a euclidean space to itself, namely the non - identity isometries that are involutions. the set of fixed points ( the " mirror " ) of such an isometry is an affine subspace, but is possibly smaller than a hyperplane. for instance a reflection through a point is an involutive isometry with just one fixed point ; the image of the letter p under it would look like a d. this operation is also known as a central inversion ( coxeter 1969, Β§ 7. 2 ), and exhibits euclidean space as a symmetric space. in a euclidean vector space, the reflection in the point situated at the origin is the same as vector negation. other examples include reflections in a line in three - dimensional space. typically, however, unqualified use of the term " reflection " means reflection in a hyperplane. some mathematicians use " flip " as a synonym for " reflection ". = = construction = = in a plane ( or, respectively, 3 - dimensional ) geometry, to find the reflection of a point drop a perpendicular from the point to the line ( plane ) used for reflection, and extend it the same distance on the other side. to find the reflection of a figure, reflect each point in the figure. to reflect point p through the line ab using compass and straightedge, proceed as follows ( see figure ) : step 1 ( red ) : construct a circle with center at p and some fixed radius r to create points a β€² and b β€² on the line ab, which will be equidistant from p. step 2 ( green ) : construct circles centered at a β€² and b β€² having radius r displaystyle \ mathbb { r } } that are both open and closed. a degenerate interval is any set consisting of a single real number ( i. e., an interval of the form [ a, a ] ). some authors include the empty set in this definition. a real interval that is neither empty nor degenerate is said to be proper, and has infinitely many elements. an interval is said to be left - bounded or right - bounded, if there is some real number that is, respectively, smaller than or larger than all its elements. an interval is said to be bounded, if it is both left - and right - bounded ; and is said to be unbounded otherwise. intervals that are bounded at only one end are said to be half - bounded. the empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. bounded intervals are also commonly known as finite intervals. bounded intervals are bounded sets, in the sense that their diameter ( which is equal to the absolute difference between the endpoints ) is finite. the diameter may be called the length, width, measure, range, or size of the interval. the size of unbounded intervals is usually defined as + ∞, and the size of the empty interval may be defined as 0 ( or left undefined ). the centre ( midpoint ) of a bounded interval with endpoints a and b is ( a + b ) / 2, and its radius is the half - length | a βˆ’ b | / 2. these concepts are undefined for empty or unbounded intervals. an interval is said to be left - open if and only if it contains no minimum ( an element that is smaller than all other elements ) ; right - open if it contains no maximum ; and open if it contains neither. the interval [ 0, 1 ) = { x | 0 ≀ x < 1 }, for example, is left - closed and right - open. the empty set and the set of all reals are both open and closed intervals, while the set of non - negative reals, is a closed interval that is right - open but not left - open. the open intervals are open sets of the real line in its standard topology, and form a base of the open sets. an interval is said to be left - closed if it has a minimum element or is left - unbounded, right - closed if it has a maximum or is right unbounded ; it is empty nor degenerate is said to be proper, and has infinitely many elements. an interval is said to be left - bounded or right - bounded, if there is some real number that is, respectively, smaller than or larger than all its elements. an interval is said to be bounded, if it is both left - and right - bounded ; and is said to be unbounded otherwise. intervals that are bounded at only one end are said to be half - bounded. the empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. bounded intervals are also commonly known as finite intervals. bounded intervals are bounded sets, in the sense that their diameter ( which is equal to the absolute difference between the endpoints ) is finite. the diameter may be called the length, width, measure, range, or size of the interval. the size of unbounded intervals is usually defined as + ∞, and the size of the empty interval may be defined as 0 ( or left undefined ). the centre ( midpoint ) of a bounded interval with endpoints a and b is ( a + b ) / 2, and its radius is the half - length | a βˆ’ b | / 2. these concepts are undefined for empty or unbounded intervals. an interval is said to be left - open if and only if it contains no minimum ( an element that is smaller than all other elements ) ; right - open if it contains no maximum ; and open if it contains neither. the interval [ 0, 1 ) = { x | 0 ≀ x < 1 }, for example, is left - closed and right - open. the empty set and the set of all reals are both open and closed intervals, while the set of non - negative reals, is a closed interval that is right - open but not left - open. the open intervals are open sets of the real line in its standard topology, and form a base of the open sets. an interval is said to be left - closed if it has a minimum element or is left - unbounded, right - closed if it has a maximum or is right unbounded ; it is simply closed if it is both left - closed and right closed. so, the closed intervals coincide with the closed sets in that topology. the interior of an interval i is the largest open interval that is contained in i ; it is also the set of points in i which are not endpoints of i. the closure of ##lling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up the muck tube. the pressurized air flow must be constant to ensure regular air changes for the workers and prevent excessive inflow of mud or water at the base of the caisson. when the caisson hits bedrock, the sandhogs exit through the airlock and fill the box with concrete, forming a solid foundation pier. a pneumatic ( compressed - air ) caisson has the advantage of providing dry working conditions, which is better for placing concrete. it is also well suited for foundations for which other methods might cause settlement of adjacent structures. construction workers who leave the pressurized environment of the caisson must decompress at a rate that allows symptom - free release of inert gases dissolved in the body tissues if they are to avoid decompression sickness, a condition first identified in caisson workers, and originally named " caisson disease " in recognition of the occupational hazard. construction of the brooklyn bridge, which was built with the help of pressurised caissons, resulted in numerous workers being either killed or permanently injured by caisson disease during its construction. barotrauma of the ears, sinus cavities and lungs and dysbaric osteonecrosis are other risks. = = other uses = = caissons have also been used in the installation of hydraulic elevators where a single - stage ram is installed below the ground level. caissons, codenamed phoenix, were an integral part of the mulberry harbours used during the world war ii allied invasion of normandy. = = other meanings = = boat lift caissons : the word caisson is also used as a synonym for the moving trough part of caisson locks, canal lifts and inclines in which boats and ships rest while being lifted from one canal elevation to another ; the water is retained on the inside of the caisson, or excluded from the caisson, according to the respective operating principle. structural caissons : caisson is also sometimes used as a colloquial term for a reinforced concrete structure formed by pouring into a hollow cylindrical form, typically by placing a caisson form below grade in an open excavation and pouring once backfill is complete, or by called the natural logarithm. a real function f is monotonic in an interval if the sign of f ( x ) βˆ’ f ( y ) x βˆ’ y { \ displaystyle { \ frac { f ( x ) - f ( y ) } { x - y } } } does not depend of the choice of x and y in the interval. if the function is differentiable in the interval, it is monotonic if the sign of the derivative is constant in the interval. if a real function f is monotonic in an interval i, it has an inverse function, which is a real function with domain f ( i ) and image i. this is how inverse trigonometric functions are defined in terms of trigonometric functions, where the trigonometric functions are monotonic. another example : the natural logarithm is monotonic on the positive real numbers, and its image is the whole real line ; therefore it has an inverse function that is a bijection between the real numbers and the positive real numbers. this inverse is the exponential function. many other real functions are defined either by the implicit function theorem ( the inverse function is a particular instance ) or as solutions of differential equations. for example, the sine and the cosine functions are the solutions of the linear differential equation y β€³ + y = 0 { \ displaystyle y ' ' + y = 0 } such that sin 0 = 0, cos 0 = 1, βˆ‚ sin x βˆ‚ x ( 0 ) = 1, βˆ‚ cos x βˆ‚ x ( 0 ) = 0. { \ displaystyle \ sin 0 = 0, \ quad \ cos 0 = 1, \ quad { \ frac { \ partial \ sin x } { \ partial x } } ( 0 ) = 1, \ quad { \ frac { \ partial \ cos x } { \ partial x } } ( 0 ) = 0. } = = = vector - valued function = = = when the elements of the codomain of a function are vectors, the function is said to be a vector - valued function. these functions are particularly useful in applications, for example modeling physical properties. for example, the function that associates to each point of a fluid its velocity vector is a vector - valued function. some vector - valued functions are defined on a subset of r n { \ displaystyle \ mathbb { r } ^ { n } } or other spaces that share geometric or topological properties of r n { \ displaystyle \ mathbb { made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up Question: What do you call the fixed point of a lever? A) base B) fulcrum C) caliper D) apex
B) fulcrum
Context: earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on earth, though it does include human effects on the environment. = = methodology = = methodologies vary depending on the nature of the subjects being studied. studies typically fall into one of three categories : observational, experimental, or theoretical. earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena ( water content and the internal evolution of terrestrial planets and icy bodies are closely linked. the distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. this results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. the internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short - lived 26al decay may govern the amount of hydrous silicates and leftover rock - ice mixtures available in the late stages of their evolution. in turn, water content may affect the early internal evolution of the planetesimals and in particular metal - silicate separation processes. moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of solar system objects. finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors. the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways onset of electro - chemical corrosion. similar problems are encountered in coastal and offshore structures. = = = anti - fouling = = = anti - fouling is the process of eliminating obstructive organisms from essential components of seawater systems. depending on the nature and location of marine growth, this process is performed in a number of different ways : marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. electro - chlorination involves running high electrical current through sea water, altering the water ' s chemical composition to create sodium hypochlorite, purging any bio - matter. an electrolytic method of anti - fouling involves running electrical current through two anodes ( scardino, 2009 ). these anodes typically consist of copper and aluminum ( or alternatively, iron ). the first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio - matter. the second metal, aluminum, coats the inside of the pipes to prevent corrosion. other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship ' s hull. this growth interferes with the smoothness and uniformity of the ship ' s hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel - efficient. marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms. = = = pollution control = = = = = = = sulfur emission = = = = the burning of marine fuels releases harmful pollutants into the atmosphere. ships burn marine diesel in addition to heavy fuel oil. heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. however, heavy fuel oil may only be burned in international waters due to the pollution created. it is commercially advantageous due to the cost effectiveness compared to other marine fuels. it is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 ( smith, 2018 ). = = = = oil and water discharge = = = = water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm ( parts per million ) of oil to be discharged. water is tested and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying . species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ— piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent the large scale pattern in the arrival directions of extragalactic cosmic rays that reach the earth is different from that of the flux arriving to the halo of the galaxy as a result of the propagation through the galactic magnetic field. two different effects are relevant in this process : deflections of trajectories and ( de ) acceleration by the electric field component due to the galactic rotation. the deflection of the cosmic ray trajectories makes the flux intensity arriving to the halo from some direction to appear reaching the earth from another direction. this applies to any intrinsic anisotropy in the extragalactic distribution or, even in the absence of intrinsic anisotropies, to the dipolar compton - getting anisotropy induced when the observer is moving with respect to the cosmic rays rest frame. for an observer moving with the solar system, cosmic rays traveling through far away regions of the galaxy also experience an electric force coming from the relative motion ( due to the rotation of the galaxy ) of the local system in which the field can be considered as being purely magnetic. this produces small changes in the particles momentum that can originate large scale anisotropies even for an isotropic extragalactic flux. = = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling the mechanism leading to an auger transition is based on the residual coulomb interaction between the valence electron and the core electrons. on the assumption that the wave field is switched on adiabatically, the probability of the auger effect of the inner electrons of the atom is determined. Question: What process tends to be external in aquatic species and internal in terrestrial species? A) fertilization B) infection C) migration D) pollination
A) fertilization
Context: hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility apoptosis is a complex pathway regulated by the concerted action of multiple pro - and anti - apoptotic molecules. the intrinsic ( mitochondrial ) pathway of apoptosis is governed up - stream of mitochondria, by the family of bcl - 2 proteins, and down - stream of mitochondria, by low - probability events, such as apoptosome formation, and by feedback circuits involving caspases and inhibitor of apoptosis proteins ( iaps ), such as xiap. all these regulatory mechanisms ensure that cells only commit to death once a threshold of damage has been reached and the anti - apoptotic reserve of the cell is overcome. as cancer cells are invariably exposed to strong intracellular and extracellular stress stimuli, they are particularly reliant on the expression of anti - apoptotic proteins. hence, many cancer cells undergo apoptosis when exposed to agents that inhibit anti - apoptotic bcl - 2 molecules, such as bh3 mimetics, while normal cells remain relatively insensitive to single agent treatments with the same class of molecules. targeting different proteins within the apoptotic network with combinatorial treatment approaches often achieves even greater specificity. this led us to investigate the sensitivity of leukemia and lymphoma cells to a pro - apoptotic action of a bh3 mimetic combined with a small molecule inhibitor of xiap. using computational probabilistic model of apoptotic pathway, verified by experimental results from human leukemia and lymphoma cell lines, we show that inhibition of xiap has a non - linear effect on sensitization towards apoptosis induced by the bh3 mimetic ha14 - 1. this study justifies further ex vivo and animal studies on the potential of the treatment of leukemia and lymphoma with a combination of bh3 mimetics and xiap inhibitors. radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is not the only deadly component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. civilian nuclear and radiological accidents primarily involve nuclear power plants. most common are nuclear leaks that expose workers to hazardous material. a nuclear meltdown refers to the more serious hazard of releasing nuclear material into the surrounding environment. the most significant meltdowns occurred at three mile island in pennsylvania and chernobyl in the soviet ukraine. the earthquake and tsunami on march 11, 2011 caused serious damage to three nuclear reactors and a spent fuel storage pond at the fukushima daiichi nuclear power plant in japan. military reactors that experienced similar accidents were windscale in the united kingdom and sl - 1 in the united states. military accidents usually involve the loss or unexpected detonation of nuclear weapons. the castle bravo test in 1954 produced a larger yield than expected, which contaminated nearby islands, a japanese fishing boat ( with one fatality ), and raised concerns about contaminated fish in japan. in the 1950s through 1970s, several nuclear bombs were lost from submarines and aircraft, some of which have never been recovered. the last twenty years have seen a marked decline in such accidents. = = examples of environmental benefits = = proponents of nuclear energy note that annually, nuclear - generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels. additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed / recycled for other energy uses. proponents of nuclear energy also bring to attention the opportunity cost of utilizing other forms of electricity. for example, the environmental protection agency estimates that coal kills 30, 000 people a year, as a result of its environmental impact, while 60 people died in the chernobyl disaster. a real world example of impact provided by proponents of nuclear energy is the 650, 000 ton increase in carbon emissions in the two months following the closure of the vermont yankee nuclear plant. = = see also = = atomic age lists of nuclear disasters and radioactive incidents nuclear power debate outline of nuclear technology radiology = = references = = = = external links = = nuclear energy institute – beneficial uses the first three greek letters. some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. all of the early researchers received various radiation burns, much like sunburn, and thought little of it. the new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self , no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union in 1990, the united kingdom in 1991, and both france and china continued testing until 1996. after signing the comprehensive test ban treaty in 1996 ( which had as of 2011 not entered into force ), all of these states have pledged to discontinue all nuclear testing. non - signatories india and pakistan last tested nuclear weapons in 1998. nuclear weapons are the most destructive weapons known - the archetypal weapons of mass destruction. throughout the cold war, the opposing powers had huge nuclear arsenals, sufficient to kill hundreds of millions of people. generations of people grew up under the shadow of nuclear devastation, portrayed in films such as dr. strangelove and the atomic cafe. however, the tremendous energy release in the detonation of a nuclear weapon also suggested the possibility of a new energy source. = = civilian uses = = = = = nuclear power = = = nuclear power is a type of nuclear technology involving the controlled use of nuclear fission to release energy for work including propulsion, heat, and the generation of electricity. nuclear energy is produced by a controlled nuclear chain reaction which creates heat β€” and which is used to boil water, produce steam, and drive a steam turbine. the turbine is used to generate electricity and / or to do mechanical work. currently nuclear ##iation is the process of exposing food to ionizing radiation in order to destroy microorganisms, bacteria, viruses, or insects that might be present in the food. the radiation sources used include radioisotope gamma ray sources, x - ray generators and electron accelerators. further applications include sprout inhibition, delay of ripening, increase of juice yield, and improvement of re - hydration. irradiation is a more general term of deliberate exposure of materials to radiation to achieve a technical goal ( in this context ' ionizing radiation ' is implied ). as such it is also used on non - food items, such as medical hardware, plastics, tubes for gas - pipelines, hoses for floor - heating, shrink - foils for food packaging, automobile parts, wires and cables ( isolation ), tires, and even gemstones. compared to the amount of food irradiated, the volume of those every - day applications is huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioact quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. no offspring, to reduce the population. in industrial and food applications, radiation is used for sterilization of tools and equipment. an advantage is that the object may be sealed in plastic before sterilization. an emerging use in food production is the sterilization of food using food irradiation. food irradiation is the process of exposing food to ionizing radiation in order to destroy microorganisms, bacteria, viruses, or insects that might be present in the food. the radiation sources used include radioisotope gamma ray sources, x - ray generators and electron accelerators. further applications include sprout inhibition, delay of ripening, increase of juice yield, and improvement of re - hydration. irradiation is a more general term of deliberate exposure of materials to radiation to achieve a technical goal ( in this context ' ionizing radiation ' is implied ). as such it is also used on non - food items, such as medical hardware, plastics, tubes for gas - pipelines, hoses for floor - heating, shrink - foils for food packaging, automobile parts, wires and cables ( isolation ), tires, and even gemstones. compared to the amount of food irradiated, the volume of those every - day applications is huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number which came to be called radioactivity. he, pierre curie and marie curie began investigating the phenomenon. in the process, they isolated the element radium, which is highly radioactive. they discovered that radioactive materials produce intense, penetrating rays of three distinct sorts, which they labeled alpha, beta, and gamma after the first three greek letters. some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. all of the early researchers received various radiation burns, much like sunburn, and thought little of it. the new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus Question: Which electromagnetic radiation is used to kill cancer cells? A) X-rays B) ultraviolet rays C) plasma rays D) gamma rays
D) gamma rays
Context: weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with ##hthalmology and dermatology, but are not considered surgical sub - specialties per se. surgical training in the u. s. requires a minimum of five years of residency after medical school. sub - specialties of surgery often require seven or more years. in addition, fellowships can last an additional one to three years. because post - residency fellowships can be competitive, many trainees devote two additional years to research. thus in some cases surgical training will not finish until more than a decade after medical school. furthermore, surgical training can be very difficult and time - consuming. surgical subspecialties include those a physician may specialize in after undergoing general surgery residency training as well as several surgical fields with separate residency training. surgical subspecialties that one may pursue following general surgery residency training : bariatric surgery cardiovascular surgery – may also be pursued through a separate cardiovascular surgery residency track colorectal surgery endocrine surgery general surgery hand surgery hepatico - pancreatico - biliary surgery minimally invasive surgery pediatric surgery plastic surgery – may also be pursued through a separate plastic surgery residency track surgical critical care surgical oncology transplant surgery trauma surgery vascular surgery – may also be pursued through a separate vascular surgery residency track other surgical specialties within medicine with their own individual residency training : dermatology neurosurgery ophthalmology oral and maxillofacial surgery orthopedic surgery otorhinolaryngology podiatric surgery – do not undergo medical school training, but rather separate training in podiatry school urology = = = = internal medicine specialty = = = = internal medicine is the medical specialty dealing with the prevention, diagnosis, and treatment of adult diseases. according to some sources, an emphasis on internal structures is implied. in north america, specialists in internal medicine are commonly called " internists ". elsewhere, especially in commonwealth nations, such specialists are often called physicians. these terms, internist or physician ( in the narrow sense, common outside north america ), generally exclude practitioners of gynecology and obstetrics, pathology, psychiatry, and especially surgery and its subspecialities. because their patients are often seriously ill or require complex investigations, internists do much of their work in hospitals. formerly, many internists were not subspecialized ; such general physicians would see any complex nonsurgical problem ; this style of practice has become much less common. in modern urban practice, most internists are subspecialists : that is, they generally limit their medical practice the gas giant planets in the solar system have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. if a jupiter - like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. the hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. at some planet - star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. this runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. however, for icy moons of ganymede ' s size around a sun - like star we found that surface water ( either ice or liquid ) can persist indefinitely outside the runaway greenhouse orbital distance. in contrast, the surface water on smaller moons of europa ' s size will only persist on timescales greater than 1 gyr at distances ranging 1. 49 to 0. 74 au around a sun - like star for bond albedos of 0. 2 and 0. 8, where the lower albedo becomes relevant if ice melts. consequently, small moons can lose their icy shells, which would create a torus of h atoms around their host planet that might be detectable in future observations. current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers – civil works program river morphology and stream restoration references . a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of ##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river in steady state, the fuel cycle of a fusion plasma requires inward particle fluxes of fuel ions. these particle flows are also accompanied by heating. in the case of classical transport in a rotating cylindrical plasma, this heating can proceed through several distinct channels depending on the physical mechanisms involved. some channels directly heat the fuel ions themselves, whereas others heat electrons. which channel dominates depends, in general, on the details of the temperature, density, and rotation profiles of the plasma constituents. however, remarkably, under relatively few assumptions concerning these profiles, if the alpha particles, the byproducts of the fusion reaction, can be removed directly by other means, a hot - ion mode tends to emerge naturally. Question: What is the term for going into a dormant state during the winter? A) homeostasis B) fermentation C) hibernation D) gestation
C) hibernation
Context: prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna small category. any ordinal number can be seen as a category when viewed as an ordered set. any monoid ( any algebraic structure with a single associative binary operation and an identity element ) forms a small category with a single object x. ( here, x is any fixed set. ) the morphisms from x to x are precisely the elements of the monoid, the identity morphism of x is the identity of the monoid, and the categorical composition of morphisms is given by the monoid operation. several definitions and theorems about monoids may be generalized for categories. similarly any group can be seen as a category with a single object in which every morphism is invertible, that is, for every morphism f there is a morphism g that is both left and right inverse to f under composition. a morphism that is invertible in this sense is called an isomorphism. a groupoid is a category in which every morphism is an isomorphism. groupoids are generalizations of groups, group actions and equivalence relations. actually, in the view of category the only difference between groupoid and group is that a groupoid may have more than one object but the group must have only one. consider a topological space x and fix a base point x 0 { \ displaystyle x _ { 0 } } of x, then Ο€ 1 ( x, x 0 ) { \ displaystyle \ pi _ { 1 } ( x, x _ { 0 } ) } is the fundamental group of the topological space x and the base point x 0 { \ displaystyle x _ { 0 } }, and as a set it has the structure of group ; if then let the base point x 0 { \ displaystyle x _ { 0 } } runs over all points of x, and take the union of all Ο€ 1 ( x, x 0 ) { \ displaystyle \ pi _ { 1 } ( x, x _ { 0 } ) }, then the set we get has only the structure of groupoid ( which is called as the fundamental groupoid of x ) : two loops ( under equivalence relation of homotopy ) may not have the same base point so they cannot multiply with each other. in the language of category, this means here two morphisms may not have the same source object ( or target object, because in this case for any morphism the source object and the target object are same : the base point ) so excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, three of what is called the six simple machines, from which all machines are based. these machines are the inclined plane, the wedge, and the lever, which allowed the ancient egyptians to move millions of limestone blocks which weighed approximately 3. 5 tons ( 7, 000 lbs. ) each into place to create structures like the great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna that can move between cells β€” while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e. a lattice l is " meet - distributive " if for each element of l, the meets of the elements directly below it form a boolean lattice. these objects are in bijection with " convex geometries ", which are an abstract model of convexity. do they give rise to an incidence hopf algebra of convex geometries? symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gym Question: Shrimp are an example of what group within the arthropods? A) insect B) myriapods C) crustaceans D) scorpion
C) crustaceans
Context: and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its . most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes a binary 1 - error - correcting code can always be embedded in a 1 - perfect code of some larger length three of what is called the six simple machines, from which all machines are based. these machines are the inclined plane, the wedge, and the lever, which allowed the ancient egyptians to move millions of limestone blocks which weighed approximately 3. 5 tons ( 7, 000 lbs. ) each into place to create structures like the great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu little information is known about the polarization of gluons inside a longitudinally polarized proton. i report on the sensitivity of photoproduction experiments to it. both jet and heavy quark production are considered. organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as Question: Many enzymes are simple proteins consisting entirely of one or more of these? A) interaction acid chains B) amino acid chains C) alkali acid chains D) proteins acid chains
B) amino acid chains
Context: in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionuclides in question need not have been in the rocks initially. thomas a. baillieul, a geologist and retired senior environmental scientist with the united states department of energy, disputed gentry ' s claims in an article entitled, " ' polonium haloes ' refuted : a review of ' radioactive halos in a radio - chronological and cosmological perspective ' by robert v. gentry. " baillieul noted that gentry was a physicist with no background in geology and given the absence of this background, gentry had misrepresented the geological context from which the specimens were collected. additionally, he noted that gentry relied on research from the the fundamental constants could not influence different elements uniformly, and a comparison between each of the elements ' resulting unique chronological timescales would then give inconsistent time estimates. in refutation of young earth claims of inconstant decay rates affecting the reliability of radiometric dating, roger c. wiens, a physicist specializing in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionuclides in question need not have been in the rocks initially. thomas a. baillieul, a geologist and retired senior environmental scientist with the united states department of energy, disputed gentry ' s claims in an article entitled, " ' polonium haloes ' refuted : a review of ' radioactive halos in a radio the decay rate for isotopes subject to extreme pressures, those differences were too small to significantly impact date estimates. the constancy of the decay rates is also governed by first principles in quantum mechanics, wherein any deviation in the rate would require a change in the fundamental constants. according to these principles, a change in the fundamental constants could not influence different elements uniformly, and a comparison between each of the elements ' resulting unique chronological timescales would then give inconsistent time estimates. in refutation of young earth claims of inconstant decay rates affecting the reliability of radiometric dating, roger c. wiens, a physicist specializing in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionucl ##wi, turkana, dating from 3. 3 million years ago. stone tools diversified through the pleistocene period, which ended ~ 12, 000 years ago. the earliest evidence of warfare between two groups is recorded at the site of nataruk in turkana, kenya, where human skeletons with major traumatic injuries to the head, neck, ribs, knees and hands, including an embedded obsidian bladelet on a skull, are evidence of inter - group conflict between groups of nomadic hunter - gatherers 10, 000 years ago. humans entered the bronze age as they learned to smelt copper into an alloy with tin to make weapons. in asia where copper - tin ores are rare, this development was delayed until trading in bronze began in the third millennium bce. in the middle east and southern european regions, the bronze age follows the neolithic period, but in other parts of the world, the copper age is a transition from neolithic to the bronze age. although the iron age generally follows the bronze age, in some areas the iron age intrudes directly on the neolithic from outside the region, with the exception of sub - saharan africa where it was developed independently. the first large - scale use of iron weapons began in asia minor around the 14th century bce and in central europe around the 11th century bce followed by the middle east ( about 1000 bce ) and india and china. the assyrians are credited with the introduction of horse cavalry in warfare and the extensive use of iron weapons by 1100 bce. assyrians were also the first to use iron - tipped arrows. = = = post - classical technology = = = the wujing zongyao ( essentials of the military arts ), written by zeng gongliang, ding du, and others at the order of emperor renzong around 1043 during the song dynasty illustrate the eras focus on advancing intellectual issues and military technology due to the significance of warfare between the song and the liao, jin, and yuan to their north. the book covers topics of military strategy, training, and the production and employment of advanced weaponry. advances in military technology aided the song dynasty in its defense against hostile neighbors to the north. the flamethrower found its origins in byzantine - era greece, employing greek fire ( a chemically complex, highly flammable petrol fluid ) in a device with a siphon hose by the 7th century. : 77 the earliest reference to greek fire in china was made in 917, written by wu renchen in his spring and autumn annals of the ten kingdoms. : 80 in 91 prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. this includes the ancient and medieval kingdoms and empires of the middle east and near east, ancient iran, ancient egypt, ancient nubia, and anatolia in present - day turkey, ancient nok, carthage, the celts, greeks and romans of ancient europe, medieval europe, ancient and medieval china, ancient and medieval india, ancient and medieval japan, amongst others. a 16th century book by georg agricola, de re metallica, describes the highly developed and complex processes of mining metal ores, metal extraction, and metallurgy of the time. agricola has been described as the " father of metallurgy ". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or of tool usage was found in ethiopia within the great rift valley, dating back to 2. 5 million years ago. the earliest methods of stone tool making, known as the oldowan " industry ", date back to at least 2. 3 million years ago. this era of stone tool use is called the paleolithic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop . the first major technologies were tied to survival, hunting, and food preparation. stone tools and weapons, fire, and clothing were technological developments of major importance during this period. human ancestors have been using stone and other tools since long before the emergence of homo sapiens approximately 300, 000 years ago. the earliest direct evidence of tool usage was found in ethiopia within the great rift valley, dating back to 2. 5 million years ago. the earliest methods of stone tool making, known as the oldowan " industry ", date back to at least 2. 3 million years ago. this era of stone tool use is called the paleolithic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, ##sphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as ##thic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment processes such as quenching and tempering can significantly change these properties, however. in contrast, certain metal alloys exhibit unique properties where their size and density remain unchanged across a range of temperatures. cast iron is defined as an iron – carbon alloy with more than 2. 00 %, but less than 6. 67 % carbon. stainless steel is defined as a regular steel alloy with greater than 10 % by weight alloying content of chromium. nickel and molybdenum are typically also added in stainless steels. other significant metallic alloys are those of aluminium, titanium, copper and magnesium. copper alloys have been known for a long time ( since the bronze age ), while the alloys of the other three metals have been relatively recently developed. due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. the alloys of aluminium, titanium and magnesium are also known and valued for their high strength to weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. these materials are ideal for situations where high strength to weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering applications. = = = semiconductors = = = a semiconductor is a material that has a resistivity between a conductor and insulator. modern day electronics run on semiconductors, and the industry had an estimated us $ 530 billion market in 2021. its electronic properties can be greatly altered through intentionally introducing impurities in a process referred to as doping. semiconductor materials are used to build diodes, transistors, light - emitting diodes ( leds ), and analog and digital electric circuits, among their many uses. semiconductor devices have replaced thermionic devices like vacuum tubes in most applications. semiconductor devices are manufactured both as single discrete devices and as integrated circuits ( ics ), which consist of a number β€” from a few to millions β€” of devices manufactured and interconnected on a single semiconductor substrate. of all the semiconductors in use today, silicon makes up the largest portion both by quantity and commercial value. monocrystalline silicon is used to produce wafers used in the semiconductor and electronics industry. gallium arsenide ( Question: What property of carbon and other elements can be used to date fossils and rocks, among other things? A) half-life B) mass C) full-life D) magnetic force
A) half-life
Context: the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal, which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing a discontinuity of a turbulent ideal fluid is considered. it is supposed to be split and dispersed, or spread in the stochastic environment forming a gas without hydrostatic pressure. two equal - mass fragments of a discontinuity are indistinguishable from each other. a gas, that possesses such properties, must behave itself as the madelung medium. . batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal, water, plaster and epoxy β€” most of which will be eliminated upon firing. a ceramic - filled epoxy, such as martyte, is sometimes used to protect structural steel under conditions of rocket exhaust impingement. these forming techniques are well known for providing tools and other components with dimensional stability, surface quality in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and ##g mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal, water, plaster and epoxy β€” most of which will be eliminated upon firing. a ceramic - filled epoxy, such as martyte, is sometimes used to protect structural steel under conditions of rocket exhaust impingement. these forming techniques are well known for providing tools and other components with dimensional stability, surface quality, high ( near theoretical ) density and microstructural uniformity. the increasing use and diversity of specialty forms of ceramics adds to the diversity of process technologies to be used. thus, reinforcing fibers and filaments are mainly made by polymer, sol - gel, or cvd processes, but melt generally, dead - end filtration is used for feasibility studies on a laboratory scale. the dead - end membranes are relatively easy to fabricate which reduces the cost of the separation process. the dead - end membrane separation process is easy to implement and the process is usually cheaper than cross - flow membrane filtration. the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process. the disc tube module uses a cross - flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs. = = membrane performance and governing equations = = the selection of synthetic membranes electromagnetic soliton - particle with both quasi - static and quick - oscillating wave parts is considered. its mass, spin, charge, and magnetic moment appear naturally when the interaction with distant solitons is considered. the substantiation of dirac equation for the wave part of the interacting soliton - particle is given. mixes of multi - track recordings. it is common to record a commercial record at one studio and have it mixed by different engineers in other studios. mastering engineer – the person who masters the final mixed stereo tracks ( or sometimes a series of audio stems, which consists in a mix of the main sections ) that the mix engineer produces. the mastering engineer makes any final adjustments to the overall sound of the record in the final step before commercial duplication. mastering engineers use principles of equalization, compression and limiting to fine - tune the sound timbre and dynamics and to achieve a louder recording. sound designer – broadly an artist who produces soundtracks or sound effects content for media. live sound engineer front of house ( foh ) engineer, or a1. – a person dealing with live sound reinforcement. this usually includes planning and installation of loudspeakers, cabling and equipment and mixing sound during the show. this may or may not include running the foldback sound. a live / sound reinforcement engineer hears source material and tries to correlate that sonic experience with system performance. wireless microphone engineer, or a2. this position is responsible for wireless microphones during a theatre production, a sports event or a corporate event. foldback or monitor engineer – a person running foldback sound during a live event. the term foldback comes from the old practice of folding back audio signals from the front of house ( foh ) mixing console to the stage so musicians can hear themselves while performing. monitor engineers usually have a separate audio system from the foh engineer and manipulate audio signals independently from what the audience hears so they can satisfy the requirements of each performer on stage. in - ear systems, digital and analog mixing consoles, and a variety of speaker enclosures are typically used by monitor engineers. in addition, most monitor engineers must be familiar with wireless or rf ( radio - frequency ) equipment and often must communicate personally with the artist ( s ) during each performance. systems engineer – responsible for the design setup of modern pa systems, which are often very complex. a systems engineer is usually also referred to as a crew chief on tour and is responsible for the performance and day - to - day job requirements of the audio crew as a whole along with the foh audio system. this is a sound - only position concerned with implementation, not to be confused with the interdisciplinary field of system engineering, which typically requires a college degree. re - recording mixer – a person in post - production who mixes audio tracks for feature films or television programs. = = equipment = = an audio engineer is use less energy than conventional thermal separation processes such as distillation, sublimation or crystallization. the separation process is purely physical and both fractions ( permeate and retentate ) can be obtained as useful products. cold separation using membrane technology is widely used in the food technology, biotechnology and pharmaceutical industries. furthermore, using membranes enables separations to take place that would be impossible using thermal separation methods. for example, it is impossible to separate the constituents of azeotropic liquids or solutes which form isomorphic crystals by distillation or recrystallization but such separations can be achieved using membrane technology. depending on the type of membrane, the selective separation of certain individual substances or substance mixtures is possible. important technical applications include the production of drinking water by reverse osmosis. in waste water treatment, membrane technology is becoming increasingly important. ultra / microfiltration can be very effective in removing colloids and macromolecules from wastewater. this is needed if wastewater is discharged into sensitive waters especially those designated for contact water sports and recreation. about half of the market is in medical applications such as artificial kidneys to remove toxic substances by hemodialysis and as artificial lung for bubble - free supply of oxygen in the blood. the importance of membrane technology is growing in the field of environmental protection ( nano - mem - pro ippc database ). even in modern energy recovery techniques, membranes are increasingly used, for example in fuel cells and in osmotic power plants. = = mass transfer = = two basic models can be distinguished for mass transfer through the membrane : the solution - diffusion model and the hydrodynamic model. in real membranes, these two transport mechanisms certainly occur side by side, especially during ultra - filtration. = = = solution - diffusion model = = = in the solution - diffusion model, transport occurs only by diffusion. the component that needs to be transported must first be dissolved in the membrane. the general approach of the solution - diffusion model is to assume that the chemical potential of the feed and permeate fluids are in equilibrium with the adjacent membrane surfaces such that appropriate expressions for the chemical potential in the fluid and membrane phases can be equated at the solution - membrane interface. this principle is more important for dense membranes without natural pores such as those used for reverse osmosis and in fuel cells. during the filtration process a boundary layer forms on the membrane. this concentration gradient is created by molecules which cannot pass through the membrane. the Question: A solution is what type of mixture, where the dissolved particles are spread evenly through the mixture? A) heterogeneous B) gaseous C) saline D) homogeneous
D) homogeneous
Context: ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β€” the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β€” the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron . oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be the walls of a victim ' s stomach. toxicology, a subfield of forensic chemistry, focuses on detecting and identifying drugs, poisons, and other toxic substances in biological samples. forensic toxicologists work on cases involving drug overdoses, poisoning, and substance abuse. their work is critical in determining whether harmful substances play a role in a person ’ s death or impairment. read more james marsh was the first to apply this new science to the art of forensics. he was called by the prosecution in a murder trial to give evidence as a chemist in 1832. the defendant, john bodle, was accused of poisoning his grandfather with arsenic - laced coffee. marsh performed the standard test by mixing a suspected sample with hydrogen sulfide and hydrochloric acid. while he was able to detect arsenic as yellow arsenic trisulfide, when it was shown to the jury it had deteriorated, allowing the suspect to be acquitted due to reasonable doubt. annoyed by that, marsh developed a much better test. he combined a sample containing arsenic with sulfuric acid and arsenic - free zinc, resulting in arsine gas. the gas was ignited, and it decomposed to pure metallic arsenic, which, when passed to a cold surface, would appear as a silvery - black deposit. so sensitive was the test, known formally as the marsh test, that it could detect as little as one - fiftieth of a milligram of arsenic. he first described this test in the edinburgh philosophical journal in 1836. = = = ballistics and firearms = = = ballistics is " the science of the motion of projectiles in flight ". in forensic science, analysts examine the patterns left on bullets and cartridge casings after being ejected from a weapon. when fired, a bullet is left with indentations and markings that are unique to the barrel and firing pin of the firearm that ejected the bullet. this examination can help scientists identify possible makes and models of weapons connected to a crime. henry goddard at scotland yard pioneered the use of bullet comparison in 1835. he noticed a flaw in the bullet that killed the victim and was able to trace this back to the mold that was used in the manufacturing process. = = = anthropometry = = = the french police officer alphonse bertillon was the first to apply the anthropological technique of anthropometry to law enforcement, thereby creating an identification system based on physical measurements. before that time, criminals could be identified only by name or photograph. dissatisfied with the ad hoc methods used to identify captured polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmos with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p – n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for mems in 1995 at university of california, los angeles. primarily used for releasing metal and dielectric structures by undercutting silicon, xef2 has the advantage of a stiction - free release unlike wet etchants. its etch selectivity to silicon is very high, allowing it to work with photoresist, sio2, silicon nitride, and various metals for masking. its reaction to silicon is " plasmaless ", is purely chemical and spontaneous and is often operated in pulsed mode. models of the etching action are available, and university laboratories and various commercial tools offer solutions using this approach. modern vlsi processes avoid wet etching, and use plasma etching instead. plasma etchers can operate in several modes by adjusting the parameters of the plasma. ordinary plasma etching operates between 0. 1 and 5 torr. ( this unit of pressure, commonly used in vacuum engineering, equals approximately 133. 3 pascal ( potassium hydroxide ), where si < 111 > planes etch approximately 100 times slower than other planes ( crystallographic orientations ). therefore, etching a rectangular hole in a ( 100 ) - si wafer results in a pyramid shaped etch pit with 54. 7Β° walls, instead of a hole with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p – n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for mems in 1995 at university of california, los angeles. primarily used for releasing metal and dielectric structures by undercutting silicon, xef2 has the advantage of a stiction - free release unlike wet etchants. its etch selectivity to silicon is very high, allowing it to work with photoresist, sio2, silicon nitride, and various metals for masking. its reaction to silicon is " plasmaless ", is purely chemical and spontaneous and is often operated in pulsed mode. models of the etching action are available, and university laboratories and various commercial tools offer solutions using this approach. modern Question: The base in an antacid reacts to do what to excess stomach acid? A) repel it B) oxidize it C) expel it D) neutralize it
D) neutralize it
Context: are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its . most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration kidneys and the majority of those currently in use are extracorporeal, such as with hemodialysis, which filters blood directly, or peritoneal dialysis, which filters via a fluid in the abdomen. in order to contribute to the biological functions of a kidney such as producing metabolic factors or hormones, some artificial kidneys incorporate renal cells. there has been progress in the way of making these devices smaller and more transportable, or even implantable. one challenge still to be faced in these smaller devices is countering the limited volume and therefore limited filtering capabilities. bioscaffolds have also been introduced to provide a framework upon which normal kidney tissue can be regenerated. these scaffolds encompass natural scaffolds ( e. g., decellularized kidneys, collagen hydrogel, or silk fibroin ), synthetic scaffolds ( e. g., poly [ lactic - co - glycolic acid ] or other polymers ), or a combination of two or more natural and synthetic scaffolds. these scaffolds can be implanted into the body either without cell treatment or after a period of stem cell seeding and incubation. in vitro and in vivo studies are being conducted to compare and optimize the type of scaffold and to assess whether cell seeding prior to implantation adds to the viability, regeneration and effective function of the kidneys. a recent systematic review and meta - analysis compared the results of published animal studies and identified that improved outcomes are reported with the use of hybrid ( mixed ) scaffolds and cell seeding ; however, the meta - analysis of these results were not in agreement with the evaluation of descriptive results from the review. therefore, further studies involving larger animals and novel scaffolds, and more transparent reproduction of previous studies are advisable. = = = biomimetics = = = biomimetics is a field that aims to produce materials and systems that replicate those present in nature. in the context of tissue engineering, this is a common approach used by engineers to create materials for these applications that are comparable to native tissues in terms of their structure, properties, and biocompatibility. material properties are largely dependent on physical, structural, and chemical characteristics of that material. subsequently, a biomimetic approach to system design will become significant in material integration, and a sufficient understanding of biological processes and interactions will be necessary. replication of biological systems and young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations of cells = = = autologous : the donor and the recipient of the cells are the same individual. cells are harvested, cultured or stored, and then reintroduced to the host. as a result of the host ' s own cells being reintroduced, an antigenic response is not elicited. the body ' s immune system recognizes these re - implanted cells as its own, and does not target them for attack. autologous cell dependence on host cell health and donor site morbidity may be deterrents to their use. adipose - derived and bone marrow - derived mesenchymal stem cells are commonly autologous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guide ##ization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process. the disc tube module uses a cross - flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs. = = membrane performance and governing equations = = the selection of synthetic membranes for a targeted separation process is usually based on few requirements. membranes have to provide enough mass transfer area to process large amounts of feed stream. the selected membrane has to have high selectivity ( rejection ) properties for certain particles ; it has to resist fouling and to have high mechanical stability. it also needs to be reproducible and to have low manufacturing costs. the main modeling equation for the dead - end filtration at constant pressure drop is represented by darcy ' s law : d v p d t = q = Ξ΄ p ΞΌ a ( 1 r m + r ) { \ displaystyle { \ frac { dv _ Question: In single-celled organisms, what does the plasma membrane extensions help the organisms to do? A) move B) prevent C) inspect D) increase
A) move
Context: this extra strength allows some structural components to fail without bridge collapse. the extra strength used in the design is called the margin of safety. eyes and ears provide working examples of passive redundancy. vision loss in one eye does not cause blindness but depth perception is impaired. hearing loss in one ear does not cause deafness but directionality is lost. performance decline is commonly associated with passive redundancy when a limited number of failures occur. active redundancy eliminates performance declines by monitoring the performance of individual devices, and this monitoring is used in voting logic. the voting logic is linked to switching that automatically reconfigures the components. error detection and correction and the global positioning system ( gps ) are two examples of active redundancy. electrical power distribution provides an example of active redundancy. several power lines connect each generation facility with customers. each power line includes monitors that detect overload. each power line also includes circuit breakers. the combination of power lines provides excess capacity. circuit breakers disconnect a power line when monitors detect an overload. power is redistributed across the remaining lines. at the toronto airport, there are 4 redundant electrical lines. each of the 4 lines supply enough power for the entire airport. a spot network substation uses reverse current relays to open breakers to lines that fail, but lets power continue to flow the airport. electrical power systems use power scheduling to reconfigure active redundancy. computing systems adjust the production output of each generating facility when other generating facilities are suddenly lost. this prevents blackout conditions during major events such as an earthquake. = = disadvantages = = charles perrow, author of normal accidents, has said that sometimes redundancies backfire and produce less, not more reliability. this may happen in three ways : first, redundant safety devices result in a more complex system, more prone to errors and accidents. second, redundancy may lead to shirking of responsibility among workers. third, redundancy may lead to increased production pressures, resulting in a system that operates at higher speeds, but less safely. = = voting logic = = voting logic uses performance monitoring to determine how to reconfigure individual components so that operation continues without violating specification limitations of the overall system. voting logic often involves computers, but systems composed of items other than computers may be reconfigured using voting logic. circuit breakers are an example of a form of non - computer voting logic. the simplest voting logic in computing systems involves two components : generation times. corn has been used to study mechanisms of photosynthesis and phloem loading of sugar in c4 plants. the single celled green alga chlamydomonas reinhardtii, while not an embryophyte itself, contains a green - pigmented chloroplast related to that of land plants, making it useful for study. a red alga cyanidioschyzon merolae has also been used to study some basic chloroplast functions. spinach, peas, soybeans and a moss physcomitrella patens are commonly used to study plant cell biology. agrobacterium tumefaciens, a soil rhizosphere bacterium, can attach to plant cells and infect them with a callus - inducing ti plasmid by horizontal gene transfer, causing a callus infection called crown gall disease. schell and van montagu ( 1977 ) hypothesised that the ti plasmid could be a natural vector for introducing the nif gene responsible for nitrogen fixation in the root nodules of legumes and other plant species. today, genetic modification of the ti plasmid is one of the main techniques for introduction of transgenes to plants and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various ##tes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid . species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ— piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in passive redundancy and active redundancy. both functions prevent performance decline from exceeding specification limits without human intervention using extra capacity. passive redundancy uses excess capacity to reduce the impact of component failures. one common form of passive redundancy is the extra strength of cabling and struts used in bridges. this extra strength allows some structural components to fail without bridge collapse. the extra strength used in the design is called the margin of safety. eyes and ears provide working examples of passive redundancy. vision loss in one eye does not cause blindness but depth perception is impaired. hearing loss in one ear does not cause deafness but directionality is lost. performance decline is commonly associated with passive redundancy when a limited number of failures occur. active redundancy eliminates performance declines by monitoring the performance of individual devices, and this monitoring is used in voting logic. the voting logic is linked to switching that automatically reconfigures the components. error detection and correction and the global positioning system ( gps ) are two examples of active redundancy. electrical power distribution provides an example of active redundancy. several power lines connect each generation facility with customers. each power line includes monitors that detect overload. each power line also includes circuit breakers. the combination of power lines provides excess capacity. circuit breakers disconnect a power line when monitors detect an overload. power is redistributed across the remaining lines. at the toronto airport, there are 4 redundant electrical lines. each of the 4 lines supply enough power for the entire airport. a spot network substation uses reverse current relays to open breakers to lines that fail, but lets power continue to flow the airport. electrical power systems use power scheduling to reconfigure active redundancy. computing systems adjust the production output of each generating facility when other generating facilities are suddenly lost. this prevents blackout conditions during major events such as an earthquake. = = disadvantages = = charles perrow, author of normal accidents, has said that sometimes redundancies backfire and produce less, not more reliability. this may happen in three ways : first, redundant safety devices result in a more complex system, more prone to errors and accidents. second, redundancy may lead to shirking of responsibility among workers. third, redundancy may lead to increased production pressures, resulting in a system that operates at higher speeds, but less safely. = = voting logic = = voting logic uses performance monitoring to determine how to reconfigure individual components inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form Question: Red-green color blindness is an example of a sex-linked condition caused by what? A) phenotype B) dominant gene C) genetic disorder D) recessive allele
D) recessive allele
Context: proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle , translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon, found mainly in prokaryotes and some lower eukaryotes ( e. g., caenorhabditis elegans ). in positive regulation of gene expression, the activator is the transcription factor that stimulates transcription when it binds to the sequence near or at the promoter. negative regulation occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing, translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon, found mainly in prokaryotes and some lower eukaryotes ( e. g., caenorhabditis elegans ). in positive regulation of gene expression, the activator is the transcription factor that stimulates transcription when it binds to the sequence near or at the promoter. negative regulation occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due small ubiquitin - related modifier ( sumo ) proteins are widely expressed in eukaryotic cells, which are reversibly coupled to their substrates by motif recognition, called sumoylation. two interesting questions are 1 ) how many potential sumo substrates may be included in mammalian proteomes, such as human and mouse, 2 ) and given a sumo substrate, can we recognize its sumoylation sites? to answer these two questions, previous prediction systems of sumo substrates mainly adopted the pattern recognition methods, which could get high sensitivity with relatively too many potential false positives. so we use phylogenetic conservation between mouse and human to reduce the number of potential false positives. occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes a process of fermentation. the pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. this serves the purpose of oxidizing the electron carriers so that they can perform glycolysis again and removing the excess pyruvate. fermentation oxidizes nadh to nad + so it can be re - used in glycolysis. in the absence of oxygen, fermentation prevents the buildup of nadh in the cytoplasm and provides nad + for glycolysis. this waste product varies depending on the organism. in skeletal muscles, the waste product is lactic acid. this type of fermentation is called lactic acid fermentation. in strenuous exercise, when energy demands exceed energy supply, the respiratory chain cannot process all of the hydrogen atoms joined by nadh. during anaerobic glycolysis, nad + regenerates when pairs of hydrogen combine with pyruvate to form lactate. lactate formation is catalyzed by lactate dehydrogenase in a reversible reaction. lactate can also be used as an indirect precursor for liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes a process of fermentation. the pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. this serves the purpose of oxidizing the electron carriers so that they can perform glycolysis again and removing the excess pyruvate. fermentation oxidizes nadh to nad + so it can be re - used in glycolysis. in the absence of oxygen, fermentation prevents the buildup of nadh in the cytoplasm and provides nad + for glycolysis. this waste product varies depending on the organism. in skeletal muscles, the waste product is lactic acid. this type of fermentation is called lactic acid fermentation. in strenuous exercise, when energy demands exceed energy supply, the respiratory chain cannot process all of the hydrogen atoms joined by nadh. during anaerobic glycolysis, nad + regenerates when pairs of hydrogen combine with pyruvate to form lactate. lactate formation is catalyzed by lactate dehydrogenase in a reversible reaction. lactate can also be used as an indirect precursor for liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. more sophisticated techniques are now in development that can track protein products without mitigating their function, such as the addition of small sequences that will serve as binding motifs to monoclonal antibodies. expression studies aim to discover where and when specific proteins are produced. in these experiments, the dna sequence before the dna that codes for a protein, known as a gene ' s promoter, is reintroduced into an organism with the protein coding region replaced by a reporter gene such as gfp or an enzyme that catalyses the production of a dye. thus the time and place where a particular protein is produced can be observed. expression studies can be taken a step further by altering the promoter to find which pieces are crucial for the proper expression of the gene and are actually bound by transcription factor proteins ; this process is known as promoter bashing. = = = industrial = = = organisms can have their cells transformed with a gene coding for a useful protein, such as an enzyme, so that they will overexpress the desired protein. mass quantities of the protein can then be manufactured by growing the transformed organism in bioreactor equipment using industrial fermentation, and then purifying the protein. some genes do not work well in bacteria, so yeast, insect cells or mammalian cells can also be used. these techniques are used to produce medicines such as insulin, human growth hormone, and vaccines, supplements such as tryptophan, aid in the production of food ( chymosin in cheese making ) and fuels. other applications with genetically engineered bacteria could involve making them perform tasks outside their natural cycle, such as making biofuels, cleaning up oil spills, carbon and other toxic waste and detecting arsenic in drinking water. certain genetically modified microbes can also be used in biomining and bioremediation, due to their ability to extract heavy metals from their environment and incorporate them into compounds that are more easily recover process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing, translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon, found mainly in prokaryotes and some lower eukaryotes ( e. g., caenorhabditis elegans ). in positive regulation of gene expression, the activator is the transcription factor that stimulates transcription when it binds to the sequence near or at the promoter. negative regulation occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem the manufacturer. one common distinction is by nominal pore size. it describes the maximum pore size distribution and gives only vague information about the retention capacity of a membrane. the exclusion limit or " cut - off " of the membrane is usually specified in the form of nmwc ( nominal molecular weight cut - off, or mwco, molecular weight cut off, with units in dalton ). it is defined as the minimum molecular weight of a globular molecule that is retained to 90 % by the membrane. the cut - off, depending on the method, can by converted to so - called d90, which is then expressed in a metric unit. in practice the mwco of the membrane should be at least 20 % lower than the molecular weight of the molecule that is to be separated. using track etched mica membranes beck and schultz demonstrated that hindered diffusion of molecules in pores can be described by the rankin equation. filter membranes are divided into four classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filt Question: What can be switched off by a protein called the trp repressor? A) the cytokine B) the chaperone protein C) the operon D) the genetic precursor
C) the operon
Context: the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a , there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration three of what is called the six simple machines, from which all machines are based. these machines are the inclined plane, the wedge, and the lever, which allowed the ancient egyptians to move millions of limestone blocks which weighed approximately 3. 5 tons ( 7, 000 lbs. ) each into place to create structures like the great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu shastra ', suggests a thorough understanding of materials engineering, hydrology, and sanitation. = = = = china = = = = the chinese made many first - known discoveries and developments. major technological contributions from china include the earliest known form of the binary code and epigenetic sequencing, early seismological detectors, is a verma module transformed into another verma module by a selfequivalence? the answer is affirmative and the proof suggests a notion of standard object in the category of harish - chandra modules that coincides often, but not always, with the usual one. ##ration fuel cell operations in a temperature gradient membrane distillation = = membrane shapes and flow geometries = = there are two main flow configurations of membrane processes : cross - flow ( or tangential flow ) and dead - end filtrations. in cross - flow filtration the feed flow is tangential to the surface of the membrane, retentate is removed from the same side further downstream, whereas the permeate flow is tracked on the other side. in dead - end filtration, the direction of the fluid flow is normal to the membrane surface. both flow geometries offer some advantages and disadvantages. generally, dead - end filtration is used for feasibility studies on a laboratory scale. the dead - end membranes are relatively easy to fabricate which reduces the cost of the separation process. the dead - end membrane separation process is easy to implement and the process is usually cheaper than cross - flow membrane filtration. the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an graphene oxide ( go ) is one of the important functional materials. large - scale synthesis of it is very challenging. following a simple cost - effective route, large - scale go was produced by mechanical ( ball ) milling, in air, of carbon nanoparticles ( cnps ) present in carbon soot in the present study. the thickness of the go layer was seen to decrease with an increase in milling time. ball milling provided the required energy to acquire the in - plane graphitic order in the cnps reducing the disorders in it. as the surface area of the layered structure became more and more with the increase in milling time, more and more oxygen of air got attached to the carbon in graphene leading to the formation of go. an increase in the time of the ball mill up to 5 hours leads to a significant increase in the content of go. thus ball milling can be useful to produce large - scale two - dimensional go for a short time. the $ \ simeq $ 250 kg highly radiopure nai ( tl ) dama / libra apparatus, running at the gran sasso national laboratory ( lngs ) of the i. n. f. n., is described. Question: What is the name of vesicles that are formed by the golgi apparatus? A) vessels B) lysosomes C) lymphocytes D) capillaries
B) lysosomes
Context: or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosyn stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomi , the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms ##ses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed of embryophytes ( land plants ) is called phytology. bryology is the study of mosses ( and in the broader sense also liverworts and hornworts ). pteridology ( or filicology ) is the study of ferns and allied plants. a number of other taxa of ranks varying from family to subgenus have terms for their study, including agrostology ( or graminology ) for the study of grasses, synantherology for the study of composites, and batology for the study of brambles. study can also be divided by guild rather than clade or grade. for example, dendrology is the study of woody plants. many divisions of biology have botanical subfields. these are commonly denoted by prefixing the word plant ( e. g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics ), or prefixing or substituting the prefix phyto - ( e. g. phytochemistry, phytogeography ). the study of fossil plants is called palaeobotany. other fields are denoted by adding or substituting the word botany ( e. g. systematic botany ). phytosociology is a subfield of plant ecology that classifies and studies communities of plants. the intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses. different parts of plants also give rise to their own subfields, including xylology, carpology ( or fructology ), and palynology, these being the study of wood, fruit and pollen / spores respectively. botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method , dendrology is the study of woody plants. many divisions of biology have botanical subfields. these are commonly denoted by prefixing the word plant ( e. g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics ), or prefixing or substituting the prefix phyto - ( e. g. phytochemistry, phytogeography ). the study of fossil plants is called palaeobotany. other fields are denoted by adding or substituting the word botany ( e. g. systematic botany ). phytosociology is a subfield of plant ecology that classifies and studies communities of plants. the intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses. different parts of plants also give rise to their own subfields, including xylology, carpology ( or fructology ), and palynology, these being the study of wood, fruit and pollen / spores respectively. botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of Question: What is the term for the arrangement of veins in a leaf? A) vein pattern B) venation pattern C) dorsal pattern D) cerebellum pattern
B) venation pattern
Context: other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic Question: Anabolic reactions require energy, so they are considered what type of reaction? A) hydrostatic B) endothermic C) exothermic D) autotrophic
B) endothermic
Context: or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as to investigate the affinity of acetylated wood for organic liquids, yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. the acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and / or very slowly. on the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. the effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. the easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups. single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division , the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes Question: Lack of which attachment makes ester molecules incapable of intermolecular hydrogen bonding? A) carbon fluorine atom B) carbon oxygen atom C) carbon sulfur atom D) hydrogen-oxygen atom
D) hydrogen-oxygen atom
Context: animal cells using microinjection, where it can be injected through the cell ' s nuclear envelope directly into the nucleus, or through the use of viral vectors. plant genomes can be engineered by physical methods or by use of agrobacterium for the delivery of sequences hosted in t - dna binary vectors. in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes ##logous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) are subclass of pluripotent stem cells resembling embryonic stem cells ( escs ) that have been derived from adult differentiated cells. ipscs are created by altering the expression of transcriptional factors in adult cells until they become like embryonic stem cells. multipotent stem cells can be differentiated into any cell of cells = = = autologous : the donor and the recipient of the cells are the same individual. cells are harvested, cultured or stored, and then reintroduced to the host. as a result of the host ' s own cells being reintroduced, an antigenic response is not elicited. the body ' s immune system recognizes these re - implanted cells as its own, and does not target them for attack. autologous cell dependence on host cell health and donor site morbidity may be deterrents to their use. adipose - derived and bone marrow - derived mesenchymal stem cells are commonly autologous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells s immune system recognizes these re - implanted cells as its own, and does not target them for attack. autologous cell dependence on host cell health and donor site morbidity may be deterrents to their use. adipose - derived and bone marrow - derived mesenchymal stem cells are commonly autologous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna that can move between cells β€” while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e. g., water, light, radiation, temperature, humidity, atmosphere, acidity, and soil ) of their environment is called an ecosystem. these biotic and abiotic components are linked together through nutrient cycles and energy flows. energy from the sun enters the system through photosynthesis and is incorporated into plant tissue. by feeding on plants and on one another, animals move matter and energy through the system. they also influence the quantity of plant and microbial biomass present. by breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and other microbes. = = = populations = = = a population is the group of organisms of the same species that occupies an area and reproduce from generation to generation. population size can be estimated by multiplying population density by the area or volume. the carrying capacity of an environment covid - 19, also known as novel coronavirus disease, is a highly contagious disease that first surfaced in china in late 2019. sars - cov - 2 is a coronavirus that belongs to the vast family of coronaviruses that causes this disease. the sickness originally appeared in wuhan, china in december 2019 and quickly spread to over 213 nations, becoming a global pandemic. fever, dry cough, and tiredness are the most typical covid - 19 symptoms. aches, pains, and difficulty breathing are some of the other symptoms that patients may face. the majority of these symptoms are indicators of respiratory infections and lung abnormalities, which radiologists can identify. chest x - rays of covid - 19 patients seem similar, with patchy and hazy lungs rather than clear and healthy lungs. on x - rays, however, pneumonia and other chronic lung disorders can resemble covid - 19. trained radiologists must be able to distinguish between covid - 19 and an illness that is less contagious. our ai algorithm seeks to give doctors a quantitative estimate of the risk of deterioration. so that patients at high risk of deterioration can be triaged and treated efficiently. the method could be particularly useful in pandemic hotspots when screening upon admission is important for allocating limited resources like hospital beds. in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guide an antibody is to be generated. usually this is done by a series of injections of the antigen in question, over the course of several weeks. these injections are typically followed by the use of in vivo electroporation, which significantly enhances the immune response. once splenocytes are isolated from the mammal ' s spleen, the b cells are fused with immortalised myeloma cells. the fusion of the b cells with myeloma cells can be done using electrofusion. electrofusion causes the b cells and myeloma cells to align and fuse with the application of an electric field. alternatively, the b - cells and myelomas can be made to fuse by chemical protocols, most often using polyethylene glycol. the myeloma cells are selected beforehand to ensure they are not secreting antibody themselves and that they lack the hypoxanthine - guanine phosphoribosyltransferase ( hgprt ) gene, making them sensitive ( or vulnerable ) to the hat medium ( see below ). fused cells are incubated in hat medium ( hypoxanthine - aminopterin - thymidine medium ) for roughly 10 to 14 days. aminopterin blocks the pathway that allows for nucleotide synthesis. hence, unfused myeloma cells die, as they cannot produce nucleotides by the de novo or salvage pathways because they lack hgprt. removal of the unfused myeloma cells is necessary because they have the potential to outgrow other cells, especially weakly established hybridomas. unfused b cells die as they have a short life span. in this way, only the b cell - myeloma hybrids survive, since the hgprt gene coming from the b cells is functional. these cells produce antibodies ( a property of b cells ) and are immortal ( a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then inc genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and Question: Viruses need what kind of cell in order to help themselves reproduce? A) round B) side C) host D) double
C) host
Context: in the old age, few people need special care if they are suffering from specific diseases as they can get stroke while they are in normal life routine. also patients of any age, who are not able to walk, need to be taken care of personally but for this, either they have to be in hospital or someone like nurse should be with them for better care. this is costly in terms of money and man power. a person is needed for 24x7 care of these people. to help in this aspect we purposes a vision based system which will take input from the patient and will provide information to the specified person, who is currently may not in the patient room. this will reduce the need of man power, also a continuous monitoring would not be needed. the system is using ms kinect for gesture detection for better accuracy and this system can be installed at home or hospital easily. the system provides gui for simple usage and gives visual and audio feedback to user. this system work on natural hand interaction and need no training before using and also no need to wear any glove or color strip. is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seeding and diffusion throughout the whole structure of both cells and nutrients. biodegradability is often an essential factor since scaffolds should preferably be absorbed by the surrounding tissues without the necessity of surgical removal. the rate at which degradation occurs has to coincide as much as possible with the rate of tissue formation : this means that while cells are fabricating their own natural matrix structure around themselves, the scaffold is able to provide structural integrity within the body and eventually it will break down leaving the newly formed tissue which will take over the mechanical load. injectability is also important for clinical uses. recent research on organ printing is showing how crucial a good control of the 3d environment is to ensure reproducibility of experiments and offer better results. = = = materials = = = material selection is an essential aspect of producing a scaffold. the materials utilized can be natural or synthetic and can be biodegradable or non - biodegradable. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla – polylactic acid. this is a polyester which . additionally, there are more sophisticated vr systems being developed which allow the user to use their entire body in their recovery. it also has sophisticated sensors that would allow medical professionals to collect data on muscle engagement and tension. it uses electrical impedance tomography, a form of noninvasive imaging to view muscle usage. another concern is the lack of major funding by big companies and the government into the field. many of these vr sets are off the shelf items, and not properly made for medical use. external add - ones are usually 3d printed or made from spare parts from other electronics. this lack of support means that patients who want to try this method have to be technically savvy, which is unlikely as many ailments only appear later in life. additionally, certain parts of vr like haptic feedback and tracking are still not advanced enough to be used reliably in a medical setting. another issue is the amount of vr devices that are available for purchase. while this does increase the options available, the differences between vr systems could impact patient recovery. the vast number of vr devices also makes it difficult for medical professionals to give and interpret information, as they might not have had practice with the specific model, which could lead to faulty advice being given out. = = = applications = = = currently other applications within healthcare are being explored, such as : applications for monitoring of glucose, alcohol, and lactate or blood oxygen, breath monitoring, heartbeat, heart rate and its variability, electromyography ( emg ), electrocardiogram ( ecg ) and electroencephalogram ( eeg ), body temperature, pressure ( e. g. in shoes ), sweat rate or sweat loss, levels of uric acid and ions – e. g. for preventing fatigue or injuries or for optimizing training patterns, including via " human - integrated electronics " forecasting changes in mood, stress, and health measuring blood alcohol content measuring athletic performance monitoring how sick the user is detecting early signs of infection long - term monitoring of patients with heart and circulatory problems that records an electrocardiogram and is self - moistening health risk assessment applications, including measures of frailty and risks of age - dependent diseases automatic documentation of care activities days - long continuous imaging of diverse organs via a wearable bioadhesive stretchable high - resolution ultrasound imaging patch or e. g. a wearable continuous heart ultrasound imager. ( potential novel diagnostic and monitoring tools ) sleep tracking cortisol monitoring for measuring stress measuring relaxation or alert to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthala while co - coculturing epithelial and adipocyte cells. the hystem kit is another 3 - d platform containing ecm components and hyaluronic acid that has been used for cancer research. additionally, hydrogel constituents can be chemically modified to assist in crosslinking and enhance their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a as a traditional tool of external assistance, crutches play an important role in society. they have a wide range of applications to help either the elderly and disabled to walk or to treat certain illnesses or for post - operative rehabilitation. but there are many different types of crutches, including shoulder crutches and elbow crutches. how to choose has become an issue that deserves to be debated. because while crutches help people walk, they also have an impact on the body. inappropriate choice of crutches or long - term misuse can lead to problems such as scoliosis. previous studies were mainly experimental measurements or the construction of dynamic models to calculate the load on joints with crutches. these studies focus only on the level of the joints, ignoring the role that muscles play in this process. although some also take into account the degree of muscle activation, there is still a lack of quantitative analysis. the traditional dynamic model can be used to calculate the load on each joint. however, due to the activation of the muscle, this situation only causes part of the load transmitted to the joint, and the work of the chair will compensate the other part of the load. analysis at the muscle level allows a better understanding of the impact of crutches on the body. by comparing the levels of activation of the trunk muscles, it was found that the use of crutches for walking, especially a single crutch, can cause a large difference in the activation of the back muscles on the left and right sides, and this difference will cause muscle degeneration for a long time, leading to scoliosis. in this article taking scoliosis as an example, by analyzing the muscles around the spine, we can better understand the pathology and can better prevent diseases. the objective of this article is to analyze normal walking compared to walking with one or two crutches using opensim software to obtain the degree of activation of different muscles in order to analyze the impact of crutches on the body. , characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc – 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using Question: Although vitamins and minerals do not provide what, they are still essential for good health? A) enzymes B) flavor C) energy D) antioxidants
C) energy
Context: chemistry is the scientific study of the properties and behavior of matter. it is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions : their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. chemistry also addresses the nature of chemical bonds in chemical compounds. in the scope of its subject, chemistry occupies an intermediate position between physics and biology. it is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. for example, chemistry explains aspects of plant growth ( botany ), the formation of igneous rocks ( geology ), how atmospheric ozone is formed and how environmental pollutants are degraded ( ecology ), the properties of the soil on the moon ( cosmochemistry ), how medications work ( pharmacology ), and how to collect dna evidence at a crime scene ( forensics ). chemistry has existed under various names since ancient times. it has evolved, and now chemistry encompasses various areas of specialisation, or subdisciplines, that continue to increase in number and interrelate to create further interdisciplinary fields of study. the applications of various fields of chemistry are used frequently for economic purposes in the chemical industry. = = etymology = = the word chemistry comes from a modification during the renaissance of the word alchemy, which referred to an earlier set of practices that encompassed elements of chemistry, metallurgy, philosophy, astrology, astronomy, mysticism, and medicine. alchemy is often associated with the quest to turn lead or other base metals into gold, though alchemists were also interested in many of the questions of modern chemistry. the modern word alchemy in turn is derived from the arabic word al - kimia ( Ψ§Ω„ΩƒΫŒΩ…ΫŒΨ§Ψ‘ ). this may have egyptian origins since al - kimia is derived from the ancient greek χημια, which is in turn derived from the word kemet, which is the ancient name of egypt in the egyptian language. alternately, al - kimia may derive from χημΡια ' cast together '. = = modern principles = = the current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer – resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos biology is the scientific study of life and living organisms. it is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, origin, evolution, and distribution of life. central to biology are five fundamental themes : the cell as the basic unit of life, genes and heredity as the basis of inheritance, evolution as the driver of biological diversity, energy transformation for sustaining life processes, and the maintenance of internal stability ( homeostasis ). biology examines life across multiple levels of organization, from molecules and cells to organisms, populations, and ecosystems. subdisciplines include molecular biology, physiology, ecology, evolutionary biology, developmental biology, and systematics, among others. each of these fields applies a range of methods to investigate biological phenomena, including observation, experimentation, and mathematical modeling. modern biology is grounded in the theory of evolution by natural selection, first articulated by charles darwin, and in the molecular understanding of genes encoded in dna. the discovery of the structure of dna and advances in molecular genetics have transformed many areas of biology, leading to applications in medicine, agriculture, biotechnology, and environmental science. life on earth is believed to have originated over 3. 7 billion years ago. today, it includes a vast diversity of organisms β€” from single - celled archaea and bacteria to complex multicellular plants, fungi, and animals. biologists classify organisms based on shared characteristics and evolutionary relationships, using taxonomic and phylogenetic frameworks. these organisms interact with each other and with their environments in ecosystems, where they play roles in energy flow and nutrient cycling. as a constantly evolving field, biology incorporates new discoveries and technologies that enhance the understanding of life and its processes, while contributing to solutions for challenges such as disease, climate change, and biodiversity loss. = = history = = the earliest of roots of science, which included medicine, can be traced to ancient egypt and mesopotamia in around 3000 to 1200 bce. their contributions shaped ancient greek natural philosophy. ancient greek philosophers such as aristotle ( 384 – 322 bce ) contributed extensively to the development of biological knowledge. he explored biological causation and the diversity of life. his successor, theophrastus, began the scientific study of plants. scholars of the medieval islamic world who wrote on biology included al - jahiz ( 781 – 869 ), al - dinawari ( 828 – 896 ), who wrote on botany, and rhazes ( 865 – 925 ) who wrote on anatomy and physiology. medicine was especially well ) of the mass of all organisms, with calcium, phosphorus, sulfur, sodium, chlorine, and magnesium constituting essentially all the remainder. different elements can combine to form compounds such as water, which is fundamental to life. biochemistry is the study of chemical processes within and relating to living organisms. molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on earth, though it does include human effects on the environment. = = methodology = = methodologies vary depending on the nature of the subjects being studied. studies typically fall into one of three categories : observational, experimental, or theoretical. earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena ( the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a on biological causation and the diversity of life. he made countless observations of nature, especially the habits and attributes of plants and animals on lesbos, classified more than 540 animal species, and dissected at least 50. aristotle ' s writings profoundly influenced subsequent islamic and european scholarship, though they were eventually superseded in the scientific revolution. aristotle also contributed to theories of the elements and the cosmos. he believed that the celestial bodies ( such as the planets and the sun ) had something called an unmoved mover that put the celestial bodies in motion. aristotle tried to explain everything through mathematics and physics, but sometimes explained things such as the motion of celestial bodies through a higher power such as god. aristotle did not have the technological advancements that would have explained the motion of celestial bodies. in addition, aristotle had many views on the elements. he believed that everything was derived of the elements earth, water, air, fire, and lastly the aether. the aether was a celestial element, and therefore made up the matter of the celestial bodies. the elements of earth, water, air and fire were derived of a combination of two of the characteristics of hot, wet, cold, and dry, and all had their inevitable place and motion. the motion of these elements begins with earth being the closest to " the earth, " then water, air, fire, and finally aether. in addition to the makeup of all things, aristotle came up with theories as to why things did not return to their natural motion. he understood that water sits above earth, air above water, and fire above air in their natural state. he explained that although all elements must return to their natural state, the human body and other living things have a constraint on the elements – thus not allowing the elements making one who they are to return to their natural state. the important legacy of this period included substantial advances in factual knowledge, especially in anatomy, zoology, botany, mineralogy, geography, mathematics and astronomy ; an awareness of the importance of certain scientific problems, especially those related to the problem of change and its causes ; and a recognition of the methodological importance of applying mathematics to natural phenomena and of undertaking empirical research. in the hellenistic age scholars frequently employed the principles developed in earlier greek thought : the application of mathematics and deliberate empirical research, in their scientific investigations. thus, clear unbroken lines of influence lead from ancient greek and hellenistic philosophers, to medieval muslim philosophers and scientists, to the european renaissance and enlightenment, to the secular sciences of the modern day. neither reason earth science or geoscience includes all fields of natural science related to the planet earth. this is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of earth ' s four spheres : the biosphere, hydrosphere / cryosphere, atmosphere, and geosphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and methods may be used in all subdisciplines of chemistry, excluding purely theoretical chemistry. biochemistry is the study of the chemicals, chemical reactions and interactions that take place at a molecular level in living organisms. biochemistry is highly interdisciplinary, covering medicinal chemistry, neurochemistry, molecular biology, forensics, plant science and genetics. inorganic chemistry is the study of the properties and reactions of inorganic compounds, such as metals and minerals. the distinction between organic and inorganic disciplines is not absolute and there is much overlap, most importantly in the sub - discipline of organometallic chemistry. materials chemistry is the preparation, characterization, and understanding of solid state components or devices with a useful current or future function. the field is a new breadth of study in graduate programs, and it integrates elements from all classical areas of chemistry like organic chemistry, inorganic chemistry, and crystallography with a focus on fundamental issues that are unique to materials. primary systems of study include the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but Question: What is the science of how living things interact with each other and their environment? A) zoology B) ecology C) biology D) compatibility
B) ecology
Context: shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively in future clinical stem cell therapies. mc2 biotek has also developed a bioreactor known as prototissue that uses gas exchange to maintain high oxygen levels within the cell chamber ; improving upon previous bioreactors, since the higher oxygen levels help the cell grow and undergo normal cell respiration. active areas of research on bioreactors includes increasing production scale and refining the physiological environment, both of which could improve the efficiency and efficacy of bioreactors in research or clinical use. bioreactors are currently used to study, among other things, cell and tissue level therapies, cell and tissue response to specific physiological environment changes, and development of disease and injury. = = = long fiber generation = = = in 2013, a group from the university of tokyo developed cell laden fibers up to a meter in length and on the order of 100 ΞΌm in size. these fibers were created using a microfluidic device that forms a the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a , there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations Question: What function does a vacuole do for a cell? A) transfer B) storage C) division D) reproduction
B) storage
Context: sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, , social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary which offer more ergonomic layouts of the keys. assistive technology devices have been created to enable disabled people to use modern touch screen mobile computers such as the ipad, iphone and ipod touch. the pererro is a plug and play adapter for ios devices which uses the built in apple voiceover feature in combination with a basic switch. this brings touch screen technology to those who were previously unable to use it. apple, with the release of ios 7 had introduced the ability to navigate apps using switch control. switch access could be activated either through an external bluetooth connected switch, single touch of the screen, or use of right and left head turns using the device ' s camera. additional accessibility features include the use of assistive touch which allows a user to access multi - touch gestures through pre - programmed onscreen buttons. for users with physical disabilities a large variety of switches are available and customizable to the user ' s needs varying in size, shape, or amount of pressure required for activation. switch access may be placed near any area of the body which has consistent and reliable mobility and less subject to fatigue. common sites include the hands, head, and feet. eye gaze and head mouse systems can also be used as an alternative mouse navigation. a user may use single or multiple switch sites and the process often involves a scanning through items on a screen and activating the switch once the desired object is highlighted. = = home automation = = the form of home automation called assistive domotics focuses on making it possible for elderly and disabled people to live independently. home automation is becoming a viable option for the elderly and disabled who would prefer to stay in their own homes rather than move to a healthcare facility. this field uses much of the same technology and equipment as home automation for security, entertainment, and energy conservation but tailors it towards elderly and disabled users. for example, automated prompts and reminders use motion sensors and pre - recorded audio messages ; an automated prompt in the kitchen may remind the resident to turn off the oven, and one by the front door may remind the resident to lock the door. = = assistive technology and innovation = = innovation is happening in assistive technology either through improvements to existing devices or the creation of new products. in the wipo published 2021 report on technology trends, assistive products are grouped into either conventional or emerging technologies. conventional assisting technology tracks innovation within well - established assistive products, whereas emerging assistive technology refers to more advanced products. these identified advanced assistive products are distinguished from the you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), haptic technology ( also kinaesthetic communication or 3d touch ) is technology that can create an experience of touch by applying forces, vibrations, or motions to the user. these technologies can be used to create virtual objects in a computer simulation, to control virtual objects, and to enhance remote control of machines and devices ( telerobotics ). haptic devices may incorporate tactile sensors that measure forces exerted by the user on the interface. the word haptic, from the ancient greek : απτικος ( haptikos ), means " tactile, pertaining to the sense of touch ". simple haptic devices are common in the form of game controllers, joysticks, and steering wheels. haptic technology facilitates investigation of how the human sense of touch works by allowing the creation of controlled haptic virtual objects. vibrations and other tactile cues have also become an integral part of mobile user experience and interface design. most researchers distinguish three sensory systems related to sense of touch in humans : cutaneous, kinaesthetic and haptic. all perceptions mediated by cutaneous and kinaesthetic sensibility are referred to as tactual perception. the sense of touch may be classified as passive and active, and the term " haptic " is often associated with active touch to communicate or recognize objects. = = history = = one of the earliest applications of haptic technology was in large aircraft that use servomechanism systems to operate control surfaces. in lighter aircraft without servo systems, as the aircraft approached a stall, the aerodynamic buffeting ( vibrations ) was felt in the pilot ' s controls. this was a useful warning of a dangerous flight condition. servo systems tend to be " one - way ", meaning external forces applied aerodynamically to the control surfaces are not perceived at the controls, resulting in the lack of this important sensory cue. to address this, the missing normal forces are simulated with springs and weights. the angle of attack is measured, and as the critical stall point approaches a stick shaker is engaged which simulates the response of a simpler control system. alternatively, the servo force may be measured and the signal directed to a servo system on the control, also known as force feedback. force feedback has been implemented experimentally in some excavators and is useful when excavating mixed material such as large rocks embedded in silt or clay. it allows the operator to " feel " and work around unseen obstacles. in the 1960s, paul bach - 28 size spectra of extensive air showers from 7 different experiments are analysed consistently. they are fitted by adjusting either 4 or 5 parameters : knee position, power law exponents above and below the knee, overall intensity and, in addition, a parameter describing the smoothness of the bend. the residuals are then normalized to the same knee position and averaged. when 5 parameters are employed no systematic deviation from a single smooth knee is apparent at the 1 % level up to a factor of 4 above the knee. at larger shower sizes a moderately significant deviation can be seen whose shape and position are compatible with a second knee caused by iron group nuclei. we describe a natural way to plant cherry - and plumtrees at prescribed generic locations in an orchard. one of the most important senses in human life is vision, without it life is totally filled with darkness. according to who globally millions of people are visually impaired estimated there are 285 million, of whom some millions are blind. unfortunately, there are around 2. 4 million people are blind in our beloved country pakistan. human are a crucial part of society and the blind community is a main part of society. the technologies are grown so far to make the life of humans easier more comfortable and more reliable for. however, this disability of the blind community would reduce their chance of using such innovative products. therefore, the visually impaired community believe that they are burden to other societies and they do not capture in normal activities separates the blind people from society and because of this believe did not participate in the normally tasks of society. the visual impair people mainly face most of the problems in this real - time the aim of this work is to turn the real time world into an audio world by telling blind person about the objects in their way and can read printed text. this will enable blind persons to identify the things and read the text without any external help just by using the object detection and reading system in real time. objective of this work : i ) object detection ii ) read printed text, using state - of - the - art ( sota ) technology. have you ever typed particularly powerful on your keyboard, maybe even harsh, to write and send a message with some emphasis of your emotional state or message? did it work? probably not. it didn ' t affect how you typed or interacted with your mouse. but what if you had other, connected devices, with other modalities for inputs and outputs? which would you have chosen, and how would you characterize your interactions with them? we researched with our multisensory and multimodal tool, the loaded dice, in co - design workshops the design space of iot usage scenarios : what interaction qualities users want, characterized using an interaction vocabulary, and how they might map them to a selection of sensors and actuators. we discuss based on our experience some thoughts of such a mapping. this extra strength allows some structural components to fail without bridge collapse. the extra strength used in the design is called the margin of safety. eyes and ears provide working examples of passive redundancy. vision loss in one eye does not cause blindness but depth perception is impaired. hearing loss in one ear does not cause deafness but directionality is lost. performance decline is commonly associated with passive redundancy when a limited number of failures occur. active redundancy eliminates performance declines by monitoring the performance of individual devices, and this monitoring is used in voting logic. the voting logic is linked to switching that automatically reconfigures the components. error detection and correction and the global positioning system ( gps ) are two examples of active redundancy. electrical power distribution provides an example of active redundancy. several power lines connect each generation facility with customers. each power line includes monitors that detect overload. each power line also includes circuit breakers. the combination of power lines provides excess capacity. circuit breakers disconnect a power line when monitors detect an overload. power is redistributed across the remaining lines. at the toronto airport, there are 4 redundant electrical lines. each of the 4 lines supply enough power for the entire airport. a spot network substation uses reverse current relays to open breakers to lines that fail, but lets power continue to flow the airport. electrical power systems use power scheduling to reconfigure active redundancy. computing systems adjust the production output of each generating facility when other generating facilities are suddenly lost. this prevents blackout conditions during major events such as an earthquake. = = disadvantages = = charles perrow, author of normal accidents, has said that sometimes redundancies backfire and produce less, not more reliability. this may happen in three ways : first, redundant safety devices result in a more complex system, more prone to errors and accidents. second, redundancy may lead to shirking of responsibility among workers. third, redundancy may lead to increased production pressures, resulting in a system that operates at higher speeds, but less safely. = = voting logic = = voting logic uses performance monitoring to determine how to reconfigure individual components so that operation continues without violating specification limitations of the overall system. voting logic often involves computers, but systems composed of items other than computers may be reconfigured using voting logic. circuit breakers are an example of a form of non - computer voting logic. the simplest voting logic in computing systems involves two components : Question: Sight, hearing, balance, taste, smell, and touch are types of what? A) senses B) sensation types C) memories D) temperaments
A) senses
Context: in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guide , the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomi young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations animal cells using microinjection, where it can be injected through the cell ' s nuclear envelope directly into the nucleus, or through the use of viral vectors. plant genomes can be engineered by physical methods or by use of agrobacterium for the delivery of sequences hosted in t - dna binary vectors. in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci – fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci – fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra ##logous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) are subclass of pluripotent stem cells resembling embryonic stem cells ( escs ) that have been derived from adult differentiated cells. ipscs are created by altering the expression of transcriptional factors in adult cells until they become like embryonic stem cells. multipotent stem cells can be differentiated into any cell stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : Question: During grafting, the part of the plant that is grafted is called? A) stem B) roots C) stock D) scion
D) scion
Context: current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers – civil works program river morphology and stream restoration references also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in ##ructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers – civil works program river morphology and stream restoration references - wildland hydrology at the library of congress web archives ( archived 2002 - 08 - 13 ) depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform ##lling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called sumerians in mesopotamia used a complex system of canals and levees to divert water from the tigris and euphrates rivers for irrigation. archaeologists estimate that the wheel was invented independently and concurrently in mesopotamia ( in present - day iraq ), the northern caucasus ( maykop culture ), and central europe. time estimates range from 5, 500 to 3, 000 bce with most experts putting it closer to 4, 000 bce. the oldest artifacts with drawings depicting wheeled carts date from about 3, 500 bce. more recently, the oldest - known wooden wheel in the world as of 2024 was found in the ljubljana marsh of slovenia ; austrian experts have established that the wheel is between 5, 100 and 5, 350 years old. the invention of the wheel revolutionized trade and war. it did not take long to discover that wheeled wagons could be used to carry heavy loads. the ancient sumerians used a potter ' s wheel and may have invented it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern Question: What is a winding ridge of sand deposited by a stream of meltwater called? A) desert B) oasis C) esker D) sand dune
C) esker
Context: a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 – 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 – 2 ), or a downshift maneuver in passing ( 4 – 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new part in the design must support the development and manufacturing schedule of the model. design for manufacturability ( dfm ) : dfm refers to designing vehicular components in such a way that they are not only feasible to manufacture, but also such that they are cost - efficient to produce while resulting in acceptable missiles, ships, vehicles, and also to map weather patterns and terrain. a radar set consists of a transmitter and receiver. the transmitter emits a narrow beam of radio waves which is swept around the surrounding space. when the beam strikes a target object, radio waves are reflected back to the receiver. the direction of the beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar – in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 – 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar – aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) – military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar – in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 – 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar – aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) – military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar – an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical . doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar – in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 – 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar – aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) – military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar – an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical fan - shaped beam of microwaves around the water surface surrounding the craft out to the horizon. weather radar – a doppler radar which maps weather precipitation intensities and wind speeds with the echoes returned from raindrops and their radial velocity by their doppler shift. phased - array radar – a radar set non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο€ ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example, objects with translational symmetry are invariant under certain translations. the integral [UNK] m k d ΞΌ { \ textstyle \ int _ { m } k \, d \ mu } of the gaussian curvature k { \ displaystyle k } of a two - dimensional riemannian manifold ( m, g ) { \ displaystyle ( m, g ) } is invariant under changes of the riemannian metric g { \ displaystyle g }. this is the gauss – bonnet theorem. = = = mu puzzle = = = the mu puzzle is a good example of a logical problem where determining an invariant is of use for an imp the group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the mediterranean sea at a depth of about 2. 2 km with the antares optical beacon systems. a parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the antares site is in good agreement with these measurements. and is invariant under the process of counting. an identity is an equation that remains true for all values of its variables. there are also inequalities that remain true when the values of their variables change. the distance between two points on a number line is not changed by adding the same quantity to both numbers. on the other hand, multiplication does not have this same property, as distance is not invariant under multiplication. angles and ratios of distances are invariant under scalings, rotations, translations and reflections. these transformations produce similar shapes, which is the basis of trigonometry. in contrast, angles and ratios are not invariant under non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο€ ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example, = = a simple example of invariance is expressed in our ability to count. for a finite set of objects of any kind, there is a number to which we always arrive, regardless of the order in which we count the objects in the set. the quantity β€” a cardinal number β€” is associated with the set, and is invariant under the process of counting. an identity is an equation that remains true for all values of its variables. there are also inequalities that remain true when the values of their variables change. the distance between two points on a number line is not changed by adding the same quantity to both numbers. on the other hand, multiplication does not have this same property, as distance is not invariant under multiplication. angles and ratios of distances are invariant under scalings, rotations, translations and reflections. these transformations produce similar shapes, which is the basis of trigonometry. in contrast, angles and ratios are not invariant under non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο€ ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution , its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 – 2 ), or a downshift maneuver in passing ( 4 – 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new part in the design must support the development and manufacturing schedule of the model. design for manufacturability ( dfm ) : dfm refers to designing vehicular components in such a way that they are not only feasible to manufacture, but also such that they are cost - efficient to produce while resulting in acceptable quality that meets design specifications and engineering tolerances. this requires coordination between the design engineers and the assembly / manufacturing teams. quality management : quality control is an important factor within the production process, as high quality is needed to meet customer requirements and to avoid expensive recall campaigns. the complexity of components involved in the production process requires the other hand, multiplication does not have this same property, as distance is not invariant under multiplication. angles and ratios of distances are invariant under scalings, rotations, translations and reflections. these transformations produce similar shapes, which is the basis of trigonometry. in contrast, angles and ratios are not invariant under non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο€ ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example, objects with translational symmetry are invariant under certain translations. the integral [UNK] m k d ΞΌ { \ textstyle \ int _ { m } k \, d \ mu } of the gaussian curvature k { \ displaystyle k } of a two - dimensional riemannian manifold ( m, g ) { \ Question: What is a measure of the change in velocity of a moving object? A) vibration B) kinetic energy C) inclination D) acceleration
D) acceleration
Context: species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer – resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos . species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ— piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer – resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithosphere, atmosphere, and hydrosphere ) compartments of earth. there are biogeochemical cycles for nitrogen, carbon, and water. = = = conservation = = = conservation biology is the study of the conservation of earth ' s biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates is opened and the dna is purified. the gene is separated by using restriction enzymes to cut the dna into fragments or polymerase chain reaction ( pcr ) to amplify up the gene segment. these segments can then be extracted through gel electrophoresis. if the chosen gene or the donor organism ' s genome has been well studied it may already be accessible from a genetic library. if the dna sequence is known, but no copies of the gene are available, it can also be artificially synthesised. once isolated the gene is ligated into a plasmid that is then inserted into a bacterium. the plasmid is replicated when the bacteria divide, ensuring unlimited copies of the gene are available. the rk2 plasmid is notable for its ability to replicate in a wide variety of single - celled organisms, which makes it suitable as a genetic engineering tool. before the gene is inserted into the target organism it must be combined with other genetic elements. these include a promoter and terminator region, which initiate and end transcription. a selectable marker gene is added, which in most cases confers antibiotic resistance, so researchers can easily determine which cells have been successfully transformed. the gene can also be modified at this stage for better expression or effectiveness. these manipulations are carried out using recombinant dna techniques, such as restriction digests, ligations and molecular cloning. = = = inserting dna into the host genome = = = there are a number of techniques used to insert genetic material into the host genome. some bacteria can naturally take up foreign dna. this ability can be induced in other bacteria via stress ( e. g. thermal or electric shock ), which increases the cell membrane ' s permeability to dna ; up - taken dna can either integrate with the genome or exist as extrachromosomal dna. dna is generally inserted into animal cells using microinjection, where it can be injected through the cell ' s nuclear envelope directly into the nucleus, or through the use of viral vectors. plant genomes can be engineered by physical methods or by use of agrobacterium for the delivery of sequences hosted in t - dna binary vectors. in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into the origins of the series of european cosmic - ray symposia are briefly described. the first meeting in the series, on hadronic interactions and extensive air showers, held in lodz, poland in 1968, was attended by the author : some memories are recounted. tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that . for speciation to occur, there has to be reproductive isolation. reproductive isolation can result from incompatibilities between genes as described by bateson – dobzhansky – muller model. reproductive isolation also tends to increase with genetic divergence. speciation can occur when there are physical barriers that divide an ancestral species, a process known as allopatric speciation. = = = phylogeny = = = a phylogeny is an evolutionary history of a specific group of organisms or their genes. it can be represented using a phylogenetic tree, a diagram showing lines of descent among organisms or their genes. each line drawn on the time axis of a tree represents a lineage of descendants of a particular species or population. when a lineage divides into two, it is represented as a fork or split on the phylogenetic tree. phylogenetic trees are the basis for comparing and grouping different species. different species that share a feature inherited from a common ancestor are described as having homologous features ( or synapomorphy ). phylogeny provides the basis of biological classification. this classification system is rank - based, with the highest rank being the domain followed by kingdom, phylum, class, order, family, genus, and species. all organisms can be classified as belonging to one of three domains : archaea ( originally archaebacteria ), bacteria ( originally eubacteria ), or eukarya ( includes the fungi, plant, and animal kingdoms ). = = = history of life = = = the history of life on earth traces how organisms have evolved from the earliest emergence of life to present day. earth formed about 4. 5 billion years ago and all life on earth, both living and extinct, descended from a last universal common ancestor that lived about 3. 5 billion years ago. geologists have developed a geologic time scale that divides the history of the earth into major divisions, starting with four eons ( hadean, archean, proterozoic, and phanerozoic ), the first three of which are collectively known as the precambrian, which lasted approximately 4 billion years. each eon can be divided into eras, with the phanerozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous is the scientific study of inheritance. mendelian inheritance, specifically, is the process by which genes and traits are passed on from parents to offspring. it has several principles. the first is that genetic characteristics, alleles, are discrete and have alternate forms ( e. g., purple vs. white or tall vs. dwarf ), each inherited from one of two parents. based on the law of dominance and uniformity, which states that some alleles are dominant while others are recessive ; an organism with at least one dominant allele will display the phenotype of that dominant allele. during gamete formation, the alleles for each gene segregate, so that each gamete carries only one allele for each gene. heterozygotic individuals produce gametes with an equal frequency of two alleles. finally, the law of independent assortment, states that genes of different traits can segregate independently during the formation of gametes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can Question: Sympatric type of what occurs when a single population of organisms splits into two reproductively isolated communities within the same physical region? A) biodiversity B) extraction C) speciation D) accumulation
C) speciation
Context: other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose – einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive ##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union ( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends Question: Each atom has a required number of what? A) covalent bonds B) acceleration bonds C) accretion bonds D) matrix bonds
A) covalent bonds
Context: required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the in this article i explain in detail a method for making small amounts of liquid oxygen in the classroom if there is no access to a cylinder of compressed oxygen gas. i also discuss two methods for identifying the fact that it is liquid oxygen as opposed to liquid nitrogen. osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. this paper has been withdrawn by the authors until some changes are made. results of an experiment are presented whose aim is to explore the relationship between respiration and cerebral oxygenation. measurements of end tidal co2 ( etco2 ) were taken simultaneously with cerebral oxygen saturation ( rso2 ) using the invos cerebral oximeter of somanetics. due to the device limitations we could explore only subjects who could perform with a breathing rate of around 2 / min or less. six subjects were used who were experienced in yoga breathing techniques. they performed an identical periodic breathing exercise including periodicity of about 2 / min. the results of all six subjects clearly show a periodic change of cerebral oxygenation with the same period as the breathing exercises. similar periodic changes in blood volume index were observed as well. a radioactive beam of 20na is stopped in a gas cell filled with ne gas. the stopped particles are polarized by optical pumping. the degree of polarization that can be achieved is studied. a maximum polarization of 50 % was found. the dynamic processes in the cell are described with a phenomenological model. its extent, raises the level of the river above it so as to produce the additional artificial fall necessary to convey the flow through the restricted channel, thereby reducing the total available fall. reducing the length of the channel by substituting straight cuts for a winding course is the only way in which the effective fall can be increased. this involves some loss of capacity in the channel as a whole, and in the case of a large river with a considerable flow it is difficult to maintain a straight cut owing to the tendency of the current to erode the banks and form again a sinuous channel. even if the cut is preserved by protecting the banks, it is liable to produce changes shoals and raise the flood - level in the channel just below its termination. nevertheless, where the available fall is exceptionally small, as in land originally reclaimed from the sea, such as the english fenlands, and where, in consequence, the drainage is in a great measure artificial, straight channels have been formed for the rivers. because of the perceived value in protecting these fertile, low - lying lands from inundation, additional straight channels have also been provided for the discharge of rainfall, known as drains in the fens. even extensive modification of the course of a river combined with an enlargement of its channel often produces only a limited reduction in flood damage. consequently, such floodworks are only commensurate with the expenditure involved where significant assets ( such as a town ) are under threat. additionally, even when successful, such floodworks may simply move the problem further downstream and threaten some other town. recent floodworks in europe have included restoration of natural floodplains and winding courses, so that floodwater is held back and released more slowly. human intervention sometimes inadvertently modifies the course or characteristics of a river, for example by introducing obstructions such as mining refuse, sluice gates for mills, fish - traps, unduly wide piers for bridges and solid weirs. by impeding flow these measures can raise the flood - level upstream. regulations for the management of rivers may include stringent prohibitions with regard to pollution, requirements for enlarging sluice - ways and the compulsory raising of their gates for the passage of floods, the removal of fish traps, which are frequently blocked up by leaves and floating rubbish, reduction in the number and width of bridge piers when rebuilt, and the substitution of movable weirs for solid weirs. by installing gauges in a fairly large river and its tributaries at suitable points, and keeping continuous records for the flow of a gas through porous medium is considered in the case of pressure dependent permeability. approximate self - similar solutions of the boundary - value problems are found. the atmospheric terraforming of mars, for example, would require " significant quantities of gas " to be added to the martian atmosphere. this gas has been thought to be stored in solid and liquid form within mars ' polar ice caps and underground reservoirs. it is unlikely, however, that enough co2 for sufficient atmospheric change is present within mars ' polar deposits, and liquid co2 could only be present at warmer temperatures " deep within the crust ". furthermore, sublimating the entire volume of mars ' polar caps would increase its current atmospheric pressure to 15 millibar, where an increase to around 1000 millibar would be required for habitability. for reference, earth ' s average sea - level pressure is 1013. 25 mbar. first formally proposed by astrophysicist carl sagan, the terraforming of venus has since been discussed through methods such as organic molecule - induced carbon conversion, sun reflection, increasing planetary spin, and various chemical means. due to the high presence of sulfuric acid and solar wind on venus, which are harmful to organic environments, organic methods of carbon conversion have been found unfeasible. other methods, such as solar shading, hydrogen bombardment, and magnesium - calcium bombardment are theoretically sound but would require large - scale resources and space technologies not yet available to humans. = = = ethical considerations = = = while successful terraforming would allow life to prosper on other planets, philosophers have debated whether this practice is morally sound. certain ethics experts suggest that planets like mars hold an intrinsic value independent of their utility to humanity and should therefore be free from human interference. also, some argue that through the steps that are necessary to make mars habitable - such as fusion reactors, space - based solar - powered lasers, or spreading a thin layer of soot on mars ' polar ice caps - would deteriorate the current aesthetic value that mars possesses. this calls into question humanity ' s intrinsic ethical and moral values, as it raises the question of whether humanity is willing to eradicate the current ecosystem of another planet for their benefit. through this ethical framework, terraforming attempts on these planets could be seen to threaten their intrinsically valuable environments, rendering these efforts unethical. = = seeding = = = = = environmental considerations = = = mars is the primary subject of discussion for seeding. locations for seeding are chosen based on atmospheric temperature, air pressure, existence of harmful radiation, and availability of natural resources, such as water and other compounds essential to terrestrial life. = = = developing objective : endobronchial valves are a minimally invasive treatment for emphysema. after bronchoscopic placement the valves reduce the flow of air into targeted areas of the lung, causing collapse, and allowing the remainder of the lung to function more effectively. approach : x - ray velocimetry is a novel method that uses x - ray images taken during a breath to track lung motion, producing 3d maps of local ventilation. healthy sheep received a ct scan and underwent x - ray velocimetry imaging before and after endobronchial valves were placed in the lung. sheep were imaged again when the endobronchial valves were removed after 14 days. main results : x - ray velocimetry enabled visualisation and quantification of a reduction of airflow to the areas downstream of the endobronchial valves, both in areas where collapse was and was not visible in ct. changes to ventilation were also clearly visible in the remainder of the lungs. significance : this preclinical study has shown x - ray velocimetry is capable of detecting changes to ventilation caused by endobronchial valve placement, paving the way towards use in patients. Question: When the volume of a gas is decreased, what happens to its pressure? A) increases B) drops C) STAYS THE SAME D) LOWERS
A) increases
Context: the status of the theory of color confinemnt is discussed. the creation of your own reality and your own world. the metaphor i used was humans being like magic markers. for so long, they painted black and white pictures in their life because that ' s all they thought they could do. but they can paint with a different color and make a very vibrant and beautiful picture if they take control. on the single " new skin ", he further elaborated : in " new skin ", i attribute a scab to the present state of society. the way the scab looks in its worst state is gross and chaotic and horrible, that ' s now, but when it breaks away, there ' s a brand new piece of skin that ' s stronger than before. it ' s like creation out of chaos. the song " favorite things ", according to boyd, related to the topic of religion : " my favorite things " is my personal beliefs about religion and how it oppresses the things i enjoy the most. unfortunately, the simplest things, such as thinking for myself, creating my own reality and being whatever the hell i want to be each day of my life, are a sin. to be a good christian basically means to give up the reigns of your life and let some unseen force do it for you. " favorite things " also includes a sample of the 1959 track " flamenco fantasy ", by easy listening group the 101 strings orchestra. the song has a similar title to " my favorite things ", from the mary poppins musical and film, with both songs repeatedly mentioning their titles in the lyrics. however, it does not musically reference " my favorite things ". the single " a certain shade of green " has been described as being a song about procrastination. the line " are you gonna stand around till 2012 a. d.? " is a reference to an interpretation of the mayan calendar which dictated that the world would end on december 21, 2012. boyd did not believe this to be true, but it was on his mind as his mother was researching it for a book called maya memory : the glory that was palenque. while recording " nebula ", boyd said in 1997, " we found out what it ' s like to actually plug a phaser pedal into the wall while it ' s on. it sounds like a laser gun, and that ' s the first sound you hear in ' nebula '. " he added that for the song, " we used these walkie - talkies for children that have this slinky - like coil between them. when and cell phones are a particular challenge because the stream of data can interfere with focusing and learning. although these technologies affect adults too, young people may be more influenced by it as their developing brains can easily become habituated to switching tasks and become unaccustomed to sustaining attention. too much information, coming too rapidly, can overwhelm thinking. technology is " rapidly and profoundly altering our brains. " high exposure levels stimulate brain cell alteration and release neurotransmitters, which causes the strengthening of some neural pathways and the weakening of others. this leads to heightened stress levels on the brain that, at first, boost energy levels, but, over time, actually augment memory, impair cognition, lead to depression, and alter the neural circuitry of the hippocampus, amygdala and prefrontal cortex. these are the brain regions that control mood and thought. if unchecked, the underlying structure of the brain could be altered. overstimulation due to technology may begin too young. when children are exposed before the age of seven, important developmental tasks may be delayed, and bad learning habits might develop, which " deprives children of the exploration and play that they need to develop. " media psychology is an emerging specialty field that embraces electronic devices and the sensory behaviors occurring from the use of educational technology in learning. = = = sociocultural criticism = = = according to lai, " the learning environment is a complex system where the interplay and interactions of many things impact the outcome of learning. " when technology is brought into an educational setting, the pedagogical setting changes in that technology - driven teaching can change the entire meaning of an activity without adequate research validation. if technology monopolizes an activity, students can begin to develop the sense that " life would scarcely be thinkable without technology. " leo marx considered the word " technology " itself as problematic, susceptible to reification and " phantom objectivity ", which conceals its fundamental nature as something that is only valuable insofar as it benefits the human condition. technology ultimately comes down to affecting the relations between people, but this notion is obfuscated when technology is treated as an abstract notion devoid of good and evil. langdon winner makes a similar point by arguing that the underdevelopment of the philosophy of technology leaves us with an overly simplistic reduction in our discourse to the supposedly dichotomous notions of the " making " versus the " uses " of new technologies and that a narrow focus on " use ##itive material by selective exposure to a radiation source such as light. a photosensitive material is a material that experiences a change in its physical properties when exposed to a radiation source. if a photosensitive material is selectively exposed to radiation ( e. g. by masking some of the radiation ) the pattern of the radiation on the material is transferred to the material exposed, as the properties of the exposed and unexposed regions differs. this exposed region can then be removed or treated providing a mask for the underlying substrate. photolithography is typically used with metal or other thin film deposition, wet and dry etching. sometimes, photolithography is used to create structure without any kind of post etching. one example is su8 based lens where su8 based square blocks are generated. then the photoresist is melted to form a semi - sphere which acts as a lens. electron beam lithography ( often abbreviated as e - beam lithography ) is the practice of scanning a beam of electrons in a patterned fashion across a surface covered with a film ( called the resist ), ( " exposing " the resist ) and of selectively removing either exposed or non - exposed regions of the resist ( " developing " ). the purpose, as with photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching. it was developed for manufacturing integrated circuits, and is also used for creating nanotechnology architectures. the primary advantage of electron beam lithography is that it is one of the ways to beat the diffraction limit of light and make features in the nanometer range. this form of maskless lithography has found wide usage in photomask - making used in photolithography, low - volume production of semiconductor components, and research & development. the key limitation of electron beam lithography is throughput, i. e., the very long time it takes to expose an entire silicon wafer or glass substrate. a long exposure time leaves the user vulnerable to beam drift or instability which may occur during the exposure. also, the turn - around time for reworking or re - design is lengthened unnecessarily if the pattern is not being changed the second time. it is known that focused - ion beam lithography has the capability of writing extremely fine lines ( less than 50 nm line and space has been achieved ) without proximity effect. however, because the writing field in ion - beam lit layer of the skin. these wearables are mounted directly onto the skin to continuously monitor physiological and metabolic processes, both dermal and subdermal. wireless capability is typically achieved through battery, bluetooth or nfc, making these devices convenient and portable as a type of wearable technology. currently, epidermal electronics are being developed in the fields of fitness and medical monitoring. current usage of epidermal technology is limited by existing fabrication processes. its current application relies on various sophisticated fabrication techniques such as by lithography or by directly printing on a carrier substrate before attaching directly to the body. research into printing epidermal electronics directly on the skin is currently available as a sole study source. the significance of epidermal electronics involves their mechanical properties, which resemble those of skin. the skin can be modeled as bilayer, composed of an epidermis having young ' s modulus ( e ) of 2 - 80 kpa and thickness of 0. 3 – 3 mm and a dermis having e of 140 - 600 kpa and thickness of 0. 05 - 1. 5 mm. together this bilayer responds plastically to tensile strains β‰₯ 30 %, below which the skin ' s surface stretches and wrinkles without deforming. properties of epidermal electronics mirror those of skin to allow them to perform in this same way. like skin, epidermal electronics are ultrathin ( h < 100 ΞΌm ), low - modulus ( e β‰ˆ70 kpa ), and lightweight ( < 10 mg / cm2 ), enabling them to conform to the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 reflectometer ), which takes measurements in the visible region ( and a little beyond ) of a given color sample. if the custom of taking readings at 10 nanometer increments is followed, the visible light range of 400 – 700 nm will yield 31 readings. these readings are typically used to draw the sample ' s spectral reflectance curve ( how much it reflects, as a function of wavelength ) β€” the most accurate data that can be provided regarding its characteristics. the readings by themselves are typically not as useful as their tristimulus values, which can be converted into chromaticity co - ordinates and manipulated through color space transformations. for this purpose, a spectrocolorimeter may be used. a spectrocolorimeter is simply a spectrophotometer that can estimate tristimulus values by numerical integration ( of the color matching functions ' inner product with the illuminant ' s spectral power distribution ). one benefit of spectrocolorimeters over tristimulus colorimeters is that they do not have optical filters, which are subject to manufacturing variance, and have a fixed spectral transmittance curve β€” until they age. on the other hand, tristimulus colorimeters are purpose - built, cheaper, and easier to use. the cie ( international commission on illumination ) recommends using measurement intervals under 5 nm, even for smooth spectra. sparser measurements fail to accurately characterize spiky emission spectra, such as that of the red phosphor of a crt display, depicted aside. = = = color temperature meter = = = photographers and cinematographers use information provided by these meters to decide what color balancing should be done to make different light sources appear to have the same color temperature. if the user enters the reference color temperature, the meter can calculate the mired difference between the measurement and the reference, enabling the user to choose a corrective color gel or photographic filter with the closest mired factor. internally the meter is typically a silicon photodiode tristimulus colorimeter. the correlated color temperature can be calculated from the tristimulus values by first calculating the chromaticity co - ordinates in the cie 1960 color space, then finding the closest point on the planckian locus. = = see also = = color science photometry radiometry = = references = = = = further reading = = schanda, janos d. ( 1997 ). " colorimetry " ( pdf ). in casimer decusatis ( ed. ). handbook directly on the skin is currently available as a sole study source. the significance of epidermal electronics involves their mechanical properties, which resemble those of skin. the skin can be modeled as bilayer, composed of an epidermis having young ' s modulus ( e ) of 2 - 80 kpa and thickness of 0. 3 – 3 mm and a dermis having e of 140 - 600 kpa and thickness of 0. 05 - 1. 5 mm. together this bilayer responds plastically to tensile strains β‰₯ 30 %, below which the skin ' s surface stretches and wrinkles without deforming. properties of epidermal electronics mirror those of skin to allow them to perform in this same way. like skin, epidermal electronics are ultrathin ( h < 100 ΞΌm ), low - modulus ( e β‰ˆ70 kpa ), and lightweight ( < 10 mg / cm2 ), enabling them to conform to the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support of a light source can be measured with a spectroradiometer, which works by optically collecting the light, then passing it through a monochromator before reading it in narrow bands of wavelength. reflected color can be measured using a spectrophotometer ( also called spectroreflectometer or reflectometer ), which takes measurements in the visible region ( and a little beyond ) of a given color sample. if the custom of taking readings at 10 nanometer increments is followed, the visible light range of 400 – 700 nm will yield 31 readings. these readings are typically used to draw the sample ' s spectral reflectance curve ( how much it reflects, as a function of wavelength ) β€” the most accurate data that can be provided regarding its characteristics. the readings by themselves are typically not as useful as their tristimulus values, which can be converted into chromaticity co - ordinates and manipulated through color space transformations. for this purpose, a spectrocolorimeter may be used. a spectrocolorimeter is simply a spectrophotometer that can estimate tristimulus values by numerical integration ( of the color matching functions ' inner product with the illuminant ' s spectral power distribution ). one benefit of spectrocolorimeters over tristimulus colorimeters is that they do not have optical filters, which are subject to manufacturing variance, and have a fixed spectral transmittance curve β€” until they age. on the other hand, tristimulus colorimeters are purpose - built, cheaper, and easier to use. the cie ( international commission on illumination ) recommends using measurement intervals under 5 nm, even for smooth spectra. sparser measurements fail to accurately characterize spiky emission spectra, such as that of the red phosphor of a crt display, depicted aside. = = = color temperature meter = = = photographers and cinematographers use information provided by these meters to decide what color balancing should be done to make different light sources appear to have the same color temperature. if the user enters the reference color temperature, the meter can calculate the mired difference between the measurement and the reference, enabling the user to choose a corrective color gel or photographic filter with the closest mired factor. internally the meter is typically a silicon photodiode tristimulus colorimeter. the correlated color temperature can be calculated from the tristimulus values by first calculating the chromaticity co - ordinates in the cie 1960 color space, then finding the closest was used before copper smelting was known. copper smelting is believed to have originated when the technology of pottery kilns allowed sufficiently high temperatures. the concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently work hardened to be suitable for making tools. bronze is an alloy of copper with tin ; the latter being found in relatively few deposits globally caused a long time to elapse before true tin bronze became widespread. ( see : tin sources and trade in ancient times ) bronze was a major advancement over stone as a material for making tools, both because of its mechanical properties like strength and ductility and because it could be cast in molds to make intricately shaped objects. bronze significantly advanced shipbuilding technology with better tools and bronze nails. bronze nails replaced the old method of attaching boards of the hull with cord woven through drilled holes. better ships enabled long - distance trade and the advance of civilization. this technological trend apparently began in the fertile crescent and spread outward over time. these developments were not, and still are not, universal. the three - age system does not accurately describe the technology history of groups outside of eurasia, and does not apply at all in the case of some isolated populations, such as the spinifex people, the sentinelese, and various amazonian tribes, which still make use of stone age technology, and have not developed agricultural or metal technology. these villages preserve traditional customs in the face of global modernity, exhibiting a remarkable resistance to the rapid advancement of technology. = = = = iron age = = = = before iron smelting was developed the only iron was obtained from meteorites and is usually identified by having nickel content. meteoric iron was rare and valuable, but was sometimes used to make tools and other implements, such as fish hooks. the iron age involved the adoption of iron smelting technology. it generally replaced bronze and made it possible to produce tools which were stronger, lighter and cheaper to make than bronze equivalents. the raw materials to make iron, such as ore and limestone, are far more abundant than copper and especially tin ores. consequently, iron was produced in many areas. it was not possible to mass manufacture steel or pure iron because of the high temperatures required. furnaces could reach melting temperature but the crucibles and molds needed for melting and casting had not been developed. steel could be produced by forging bloomery iron to reduce the carbon content in a effect of irradiation on graphene oxide by sunlight, uv light and krf excimer laser has been investigated in detail. both sunlight and ultraviolet light reduce graphene oxide well after prolonged irradiation, but laser irradiation produces graphene with negligible oxygen functionalities within a short time. laser irradiation is also useful for one - step synthesis of metal particle decorated graphene. laser irradiation of graphene oxide appears to be an efficient procedure for large - scale synthesis of graphene. Question: Exposure to what causes skin color to darken? A) heat B) sunlight C) hormones D) pressure
B) sunlight
Context: oscillations of the sun have been used to understand its interior structure. the extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. the corot ( convection rotation and planetary transits ) satellite, launched in december 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. the oscillation amplitudes are about 1. 5 times as large as those in the sun ; the stellar granulation is up to three times as high. the stellar amplitudes are about 25 % below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars. the first observations of saturn ' s visible - wavelength aurora were made by the cassini camera. the aurora was observed between 2006 and 2013 in the northern and southern hemispheres. the color of the aurora changes from pink at a few hundred km above the horizon to purple at 1000 - 1500 km above the horizon. the spectrum observed in 9 filters spanning wavelengths from 250 nm to 1000 nm has a prominent h - alpha line and roughly agrees with laboratory simulated auroras. auroras in both hemispheres vary dramatically with longitude. auroras form bright arcs between 70 and 80 degree latitude north and between 65 and 80 degree latitude south, which sometimes spiral around the pole, and sometimes form double arcs. a large 10, 000 - km - scale longitudinal brightness structure persists for more than 100 hours. this structure rotates approximately together with saturn. on top of the large steady structure, the auroras brighten suddenly on the timescales of a few minutes. these brightenings repeat with a period of about 1 hour. smaller, 1000 - km - scale structures may move faster or lag behind saturn ' s rotation on timescales of tens of minutes. the persistence of nearly - corotating large bright longitudinal structure in the auroral oval seen in two movies spanning 8 and 11 rotations gives an estimate on the period of 10. 65 $ \ pm $ 0. 15 h for 2009 in the northern oval and 10. 8 $ \ pm $ 0. 1 h for 2012 in the southern oval. the 2009 north aurora period is close to the north branch of saturn kilometric radiation ( skr ) detected at that time. enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the ammonium hydrosulphide has long since been postulated to exist at least in certain layers of the giant planets. its radiation products may be the reason for the red colour seen on jupiter. several ammonium salts, the products of nh3 and an acid, have previously been detected at comet 67p / churyumov - gerasimenko. the acid h2s is the fifth most abundant molecule in the coma of 67p followed by nh3. in order to look for the salt nh4 + sh -, we analysed in situ measurements from the rosetta / rosina double focusing mass spectrometer during the rosetta mission. nh3 and h2s appear to be independent of each other when sublimating directly from the nucleus. however, we observe a strong correlation between the two species during dust impacts, clearly pointing to the salt. we find that nh4 + sh - is by far the most abundant salt, more abundant in the dust impacts than even water. we also find all previously detected ammonium salts and for the first time ammonium fluoride. the amount of ammonia and acids balance each other, confirming that ammonia is mostly in the form of salt embedded into dust grains. allotropes s2 and s3 are strongly enhanced in the impacts, while h2s2 and its fragment hs2 are not detected, which is most probably the result of radiolysis of nh4 + sh -. this makes a prestellar origin of the salt likely. our findings may explain the apparent depletion of nitrogen in comets and maybe help to solve the riddle of the missing sulphur in star forming regions. higher concentrations of atmospheric nitrous oxide ( n2o ) are expected to slightly warm earth ' s surface because of increases in radiative forcing. radiative forcing is the difference in the net upward thermal radiation flux from the earth through a transparent atmosphere and radiation through an otherwise identical atmosphere with greenhouse gases. radiative forcing, normally measured in w / m ^ 2, depends on latitude, longitude and altitude, but it is often quoted for the tropopause, about 11 km of altitude for temperate latitudes, or for the top of the atmosphere at around 90 km. for current concentrations of greenhouse gases, the radiative forcing per added n2o molecule is about 230 times larger than the forcing per added carbon dioxide ( co2 ) molecule. this is due to the heavy saturation of the absorption band of the relatively abundant greenhouse gas, co2, compared to the much smaller saturation of the absorption bands of the trace greenhouse gas n2o. but the rate of increase of co2 molecules, about 2. 5 ppm / year ( ppm = part per million by mole ), is about 3000 times larger than the rate of increase of n2o molecules, which has held steady at around 0. 00085 ppm / year since 1985. so, the contribution of nitrous oxide to the annual increase in forcing is 230 / 3000 or about 1 / 13 that of co2. if the main greenhouse gases, co2, ch4 and n2o have contributed about 0. 1 c / decade of the warming observed over the past few decades, this would correspond to about 0. 00064 k per year or 0. 064 k per century of warming from n2o. proposals to place harsh restrictions on nitrous oxide emissions because of warming fears are not justified by these facts. restrictions would cause serious harm ; for example, by jeopardizing world food supplies. a minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0. 1 bar in the atmospheres of earth, titan, jupiter, saturn, uranus and neptune, despite great differences in atmospheric composition, gravity, internal heat and sunlight. in all these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of shortwave solar radiation, from a region below characterised by convection, weather, and clouds. however, it is not obvious why the tropopause occurs at the specific pressure near 0. 1 bar. here we use a physically - based model to demonstrate that, at atmospheric pressures lower than 0. 1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. at higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. a common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets the 0. 1 bar tropopause. we hypothesize that a tropopause at a pressure of approximately 0. 1 bar is characteristic of many thick atmospheres, including exoplanets and exomoons in our galaxy and beyond. judicious use of this rule could help constrain the atmospheric structure, and thus the surface environments and habitability, of exoplanets. parts of australia have been privileged to see dazzling lights in the night sky as the aurora australis ( known as the southern lights ) puts on a show this year. aurorae are significant in australian indigenous astronomical traditions. aboriginal people associate aurorae with fire, death, blood, and omens, sharing many similarities with native american communities. nuclear jets containing relativistic ` ` hot ' ' particles close to the central engine cool dramatically by producing high energy radiation. the radiative dissipation is similar to the famous compton drag acting upon ` ` cold ' ' thermal particles in a relativistic bulk flow. highly relativistic protons induce anisotropic showers raining electromagnetic power down onto the putative accretion disk. thus, the radiative signature of hot hadronic jets is x - ray irradiation of cold thermal matter. the synchrotron radio emission of the accelerated electrons is self - absorbed due to the strong magnetic fields close to the magnetic nozzle. cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make the location of a repeat plume detected at europa is found to be coincident with the strongest ionosphere detection made by galileo radio occultation in 1997. Question: What colorful phenomenon occurs in the northern sky when particles from the sun energize ions in the thermosphere? A) Coriolis effect B) aurora nervosa C) northern lights D) meteor shower
C) northern lights
Context: current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers – civil works program river morphology and stream restoration references onset of electro - chemical corrosion. similar problems are encountered in coastal and offshore structures. = = = anti - fouling = = = anti - fouling is the process of eliminating obstructive organisms from essential components of seawater systems. depending on the nature and location of marine growth, this process is performed in a number of different ways : marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. electro - chlorination involves running high electrical current through sea water, altering the water ' s chemical composition to create sodium hypochlorite, purging any bio - matter. an electrolytic method of anti - fouling involves running electrical current through two anodes ( scardino, 2009 ). these anodes typically consist of copper and aluminum ( or alternatively, iron ). the first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio - matter. the second metal, aluminum, coats the inside of the pipes to prevent corrosion. other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship ' s hull. this growth interferes with the smoothness and uniformity of the ship ' s hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel - efficient. marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms. = = = pollution control = = = = = = = sulfur emission = = = = the burning of marine fuels releases harmful pollutants into the atmosphere. ships burn marine diesel in addition to heavy fuel oil. heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. however, heavy fuel oil may only be burned in international waters due to the pollution created. it is commercially advantageous due to the cost effectiveness compared to other marine fuels. it is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 ( smith, 2018 ). = = = = oil and water discharge = = = = water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm ( parts per million ) of oil to be discharged. water is tested ##ructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers – civil works program river morphology and stream restoration references - wildland hydrology at the library of congress web archives ( archived 2002 - 08 - 13 ) the injuries of the inundations they have been designed to prevent, as the escape of floods from the raised river must occur sooner or later. inadequate planning controls which have permitted development on floodplains have been blamed for the flooding of domestic properties. channelization was done under the auspices or overall direction of engineers employed by the local authority or the national government. one of the most heavily channelized areas in the united states is west tennessee, where every major stream with one exception ( the hatchie river ) has been partially or completely channelized. channelization of a stream may be undertaken for several reasons. one is to make a stream more suitable for navigation or for navigation by larger vessels with deep draughts. another is to restrict water to a certain area of a stream ' s natural bottom lands so that the bulk of such lands can be made available for agriculture. a third reason is flood control, with the idea of giving a stream a sufficiently large and deep channel so that flooding beyond those limits will be minimal or nonexistent, at least on a routine basis. one major reason is to reduce natural erosion ; as a natural waterway curves back and forth, it usually deposits sand and gravel on the inside of the corners where the water flows slowly, and cuts sand, gravel, subsoil, and precious topsoil from the outside corners where it flows rapidly due to a change in direction. unlike sand and gravel, the topsoil that is eroded does not get deposited on the inside of the next corner of the river. it simply washes away. = = loss of wetlands = = channelization has several predictable and negative effects. one of them is loss of wetlands. wetlands are an excellent habitat for multiple forms of wildlife, and additionally serve as a " filter " for much of the world ' s surface fresh water. another is the fact that channelized streams are almost invariably straightened. for example, the channelization of florida ' s kissimmee river has been cited as a cause contributing to the loss of wetlands. this straightening causes the streams to flow more rapidly, which can, in some instances, vastly increase soil erosion. it can also increase flooding downstream from the channelized area, as larger volumes of water traveling more rapidly than normal can reach choke points over a shorter period of time than they otherwise would, with a net effect of flood control in one area coming at the expense of aggravated flooding in another. in addition, studies have shown that stream channelization results in declines of river fish populations. : 3 - 1ff a above any tidal limit and their average freshwater discharge are proportionate to the extent of their basins and the amount of rain which, after falling over these basins, reaches the river channels in the bottom of the valleys, by which it is conveyed to the sea. the drainage basin of a river is the expanse of country bounded by a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform be the more significant to modern soil theory than fallou ' s. previously, soil had been considered a product of chemical transformations of rocks, a dead substrate from which plants derive nutritious elements. soil and bedrock were in fact equated. dokuchaev considers the soil as a natural body having its own genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their ##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river Question: By what processes does the ocean modify landforms? A) splash and deposition B) erosion and deposition C) sweeping and deposition D) shape and deposition
B) erosion and deposition
Context: classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose – einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds . the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose – einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction the standard theory of ideal gases ignores the interaction of the gas particles with the thermal radiation ( photon gas ) that fills the otherwise vacuum space between them. this is an unphysical feature since every material absorbs and radiates thermal energy. this interaction may be important in gases since the latter, unlike solids and liquids are capable of undergoing conspicuous volume changes. taking it into account makes the behaviour of the ideal gases more realistic and removes gibbs ' paradox. of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose – einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for two possible interpretations of frw cosmologies ( perfect fluid or dissipative fluid ) are considered as consecutive phases of the system. necessary conditions are found, for the transition from perfect fluid to dissipative regime to occur, bringing out the conspicuous role played by a particular state of the system ( the ' ' critical point ' ' ). possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as a minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0. 1 bar in the atmospheres of earth, titan, jupiter, saturn, uranus and neptune, despite great differences in atmospheric composition, gravity, internal heat and sunlight. in all these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of shortwave solar radiation, from a region below characterised by convection, weather, and clouds. however, it is not obvious why the tropopause occurs at the specific pressure near 0. 1 bar. here we use a physically - based model to demonstrate that, at atmospheric pressures lower than 0. 1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. at higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. a common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets the 0. 1 bar tropopause. we hypothesize that a tropopause at a pressure of approximately 0. 1 bar is characteristic of many thick atmospheres, including exoplanets and exomoons in our galaxy and beyond. judicious use of this rule could help constrain the atmospheric structure, and thus the surface environments and habitability, of exoplanets. Question: The term β€œvapor” refers to the gas phase when it exists at a temperature below what? A) contaminated temperature B) boiling temperature C) freezing temperature D) liquid temperature
B) boiling temperature
Context: managing blood lipid levels is important for the treatment and prevention of diabetes, cardiovascular disease, and obesity. an easy - to - use, portable lipid blood test will accelerate more frequent testing by patients and at - risk populations. we used smartphone systems that are already familiar to many people. because smartphone systems can be carried around everywhere, blood can be measured easily and frequently. we compared the results of lipid tests with those of existing clinical diagnostic laboratory methods. we found that smartphone - based point - of - care lipid blood tests are as accurate as hospital - grade laboratory tests. our system will be useful for those who need to manage blood lipid levels to motivate them to track and control their behavior. required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of anemia is a major health burden worldwide. examining the hemoglobin level of blood is an important way to achieve the diagnosis of anemia, but it requires blood drawing and a blood test. in this work we propose a non - invasive, fast, and cost - effective screening test for iron - deficiency anemia in peruvian young children. our initial results show promising evidence for detecting conjunctival pallor anemia and artificial intelligence techniques with photos taken with a popular smartphone. the energy conditions of classical einstein gravity fail once quantum effects are introduced. these quantum violations of the energy conditions are not subtle high - energy planck scale effects. rather the quantum violations of the energy conditions already occur in semiclassical quantum gravity and are first - order o ( \ hbar ) effects. quantum violations of the energy conditions are widespread, albeit small. soft sensors that can discriminate shear and normal force could help provide machines the fine control desirable for safe and effective physical interactions with people. a capacitive sensor is made for this purpose, composed of patterned elastomer and containing both fixed and sliding pillars that allow the sensor to deform and buckle, much like skin itself. the sensor differentiates between simultaneously applied pressure and shear. in addition, finger proximity is detectable up to 15 mm, with a pressure and shear sensitivity of 1 kpa and a displacement resolution of 50 $ \ mu $ m. the operation is demonstrated on a simple gripper holding a cup. the combination of features and the straightforward fabrication method make this sensor a candidate for implementation as a sensing skin for humanoid robotics applications. the prevalence of sexual reproduction ( " sex " ) in eukaryotes is an enigma of evolutionary biology. sex increases genetic variation only tells its long - term superiority in essence. the accumulation of harmful mutations causes an immediate and ubiquitous pressure for organisms. contrary to the common sense, our theoretical model suggests that reproductive rate can influence initiatively the accumulation of harmful mutations. the interaction of reproductive rate and the integrated harm of mutations causes a critical reproductive rate r *. a population will become irreversibly extinct once the reproductive rate reduces to lower than r *. a sexual population has a r * lower than 1 and an asexual population has a r * higher than 1. the mean reproductive rate of a population reached to the carrying capacity has to reduce to 1. that explains the widespread sex as well as the persistence of facultative and asexual organisms. computer simulations support significantly our conclusion. the developed system using a mobile electronic device for monitoring and warnings of heart problems, when the heart rate is outside the nominal range, which ranges from 60 to 100 beats per minute. also, a system has been developed to save and monitor in real time changes of the cardiac pulsations, through a sensor connected to a control system. the connection of the communication module for arduino gsm / gprs / gps, using the gps network to locate the user. in addition, this device connects with gsm / gprs technology that allows text messages to be sent to the contact number configured in the device, when warnings of heart problems are issued, moreover connects to the internet to store data in the cloud. humanoid robots could replace humans in hazardous situations but most of such situations are equally dangerous for them, which means that they have a high chance of being damaged and falling. we hypothesize that humanoid robots would be mostly used in buildings, which makes them likely to be close to a wall. to avoid a fall, they can therefore lean on the closest wall, as a human would do, provided that they find in a few milliseconds where to put the hand ( s ). this article introduces a method, called d - reflex, that learns a neural network that chooses this contact position given the wall orientation, the wall distance, and the posture of the robot. this contact position is then used by a whole - body controller to reach a stable posture. we show that d - reflex allows a simulated talos robot ( 1. 75m, 100kg, 30 degrees of freedom ) to avoid more than 75 % of the avoidable falls and can work on the real robot. have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and biofuels. in the current decades, significant progress has been done in creating genetically modified organisms ( gmos ) that enhance the diversity of applications and economical viability of industrial biotechnology. by using renewable raw materials to produce a variety of chemicals and fuels, industrial biotechnology is actively advancing towards lowering greenhouse Question: Hypertension, or high blood pressure, can increase the risk of what? A) cardiovascular disease B) abnormal disease C) bone disease D) physiological disease
A) cardiovascular disease
Context: single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population ##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and integrated circuits. wafer bonding involves joining two or more substrates ( usually having the same diameter ) to one another to form a composite structure. there are several types of wafer bonding processes that are used in microsystems fabrication including : direct or fusion wafer bonding, wherein two or more wafers are bonded together that are usually made of silicon or some other semiconductor material ; anodic bonding wherein a boron - doped glass wafer is bonded to a semiconductor wafer, usually silicon ; thermocompression bonding, wherein an intermediary thin - film material layer is used to facilitate wafer bonding ; and eutectic bonding, wherein a thin - film layer of gold is used to bond two silicon wafers. each of these methods have specific uses depending on the circumstances. most wafer bonding processes rely on three basic criteria for successfully bonding : the wafers to be bonded are sufficiently flat ; the wafer surfaces are sufficiently smooth ; and the wafer surfaces are sufficiently clean. the most stringent criteria for wafer bonding is usually the direct fusion wafer bonding since even one or more small particulates can render the bonding unsuccessful. in comparison, wafer bonding methods that use intermediary layers are often far more forgiving. both bulk and surface silicon micromachining are used in the industrial production of sensors, ink - jet nozzles, and other devices. but in many cases the distinction between these two has diminished. a new etching technology, deep reactive - ion etching, has made it possible to combine good performance typical of bulk micromachining with comb structures and in - plane operation typical of surface micromachining. while it is common in surface micromachining to have structural layer thickness in the range of 2 ΞΌm, in har silicon micromachining the thickness can be from 10 to 100 ΞΌm. the materials commonly used in har silicon micromachining are thick polycrystalline silicon, known as epi - poly, and bonded silicon - on - insulator ( soi ) wafers although processes for bulk silicon wafer also have been created ( scream ). bonding a second wafer by glass frit bonding, anodic bonding or alloy bonding is used to protect the mems structures. integrated circuits are typically not combined with har silicon micromachining. = = applications = = some common commercial applications of mems include : inkjet printers, which use piezoelectrics or thermal bubble ejection to charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change industry is making composite materials. these are structured materials composed of two or more macroscopic phases. applications range from structural elements such as steel - reinforced concrete, to the thermal insulating tiles, which play a key and integral role in nasa ' s space shuttle thermal protection system, which is used to protect the surface of the shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap. rcc is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. after curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfuryl alcohol in a vacuum chamber, and cured - pyrolized to convert the furfuryl alcohol to carbon. to provide oxidation resistance for reusability, the outer layers of the rcc are converted to silicon carbide. other examples can be seen in the " plastic " casings of television sets, cell - phones and so on. these plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile butadiene styrene ( abs ) in which calcium carbonate chalk, talc, glass fibers or carbon fibers have been added for added strength, bulk, or electrostatic dispersion. these additions may be termed reinforcing fibers, or dispersants, depending on their purpose. = = = polymers = = = polymers are chemical compounds made up of a large number of identical components linked together like chains. polymers are the raw materials ( the resins ) used to make what are commonly called plastics and rubber. plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. plastics in former and in current widespread use include polyethylene, polypropylene, polyvinyl chloride ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of Question: The carbon atoms are bonded together, with each carbon also being bonded to two of what kind of atoms? A) ions B) helium C) hydrogen D) calcium
C) hydrogen
Context: the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted β€œ the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilis of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ft protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = mei ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by ##ochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a Question: What is the final stage of cell division in eukaryotes as well as prokaryotes? A) electrolysis B) anaphase C) mitosis D) cytokinesis
D) cytokinesis
Context: ; austrian experts have established that the wheel is between 5, 100 and 5, 350 years old. the invention of the wheel revolutionized trade and war. it did not take long to discover that wheeled wagons could be used to carry heavy loads. the ancient sumerians used a potter ' s wheel and may have invented it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools time estimates range from 5, 500 to 3, 000 bce with most experts putting it closer to 4, 000 bce. the oldest artifacts with drawings depicting wheeled carts date from about 3, 500 bce. more recently, the oldest - known wooden wheel in the world as of 2024 was found in the ljubljana marsh of slovenia ; austrian experts have established that the wheel is between 5, 100 and 5, 350 years old. the invention of the wheel revolutionized trade and war. it did not take long to discover that wheeled wagons could be used to carry heavy loads. the ancient sumerians used a potter ' s wheel and may have invented it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans dish " antennas up to 25 metres ( 82 ft ) in diameter and extremely sensitive receivers. high frequencies in the microwave band are used, since microwaves pass through the ionosphere without refraction, and at microwave frequencies the high - gain antennas needed to focus the radio energy into a narrow beam pointed at the receiver are small and take up a minimum of space in a satellite. portions of the uhf, l, c, s, ku and ka band are allocated for space communication. a radio link that transmits data from the earth ' s surface to a spacecraft is called an uplink, while a link that transmits data from the spacecraft to the ground is called a downlink. communication satellite – an artificial satellite used as a telecommunications relay to transmit data between widely separated points on earth. these are used because the microwaves used for telecommunications travel by line of sight and so cannot propagate around the curve of the earth. as of 1 january 2021, there were 2, 224 communications satellites in earth orbit. most are in geostationary orbit 22, 200 miles ( 35, 700 km ) above the equator, so that the satellite appears stationary at the same point in the sky, so the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track it. in a satellite ground station a microwave transmitter and large satellite dish antenna transmit a microwave uplink beam to the satellite. the uplink signal carries many channels of telecommunications traffic, such as long - distance telephone calls, television programs, and internet signals, using a technique called frequency - division multiplexing ( fdm ). on the satellite, a transponder receives the signal, translates it to a different downlink frequency to avoid interfering with the uplink signal, and retransmits it down to another ground station, which may be widely separated from the first. there the downlink signal is demodulated and the telecommunications traffic it carries is sent to its local destinations through landlines. communication satellites typically have several dozen transponders on different frequencies, which are leased by different users. direct broadcast satellite – a geostationary communication satellite that transmits retail programming directly to receivers in subscriber ' s homes and vehicles on earth, in satellite radio and tv systems. it uses a higher transmitter power than other communication satellites, to allow the signal to be received by consumers with a small unobtrusive antenna. for example, satellite television uses downlink frequencies from 12. 2 to 12. 7 ghz in the ku band transmitted at we reply to the comment arxiv : quant - ph / 0702060 on our letter arxiv : quant - ph / 0603120 [ phys. rev. lett. 96, 100402 ( 2006 ) ] which offer more ergonomic layouts of the keys. assistive technology devices have been created to enable disabled people to use modern touch screen mobile computers such as the ipad, iphone and ipod touch. the pererro is a plug and play adapter for ios devices which uses the built in apple voiceover feature in combination with a basic switch. this brings touch screen technology to those who were previously unable to use it. apple, with the release of ios 7 had introduced the ability to navigate apps using switch control. switch access could be activated either through an external bluetooth connected switch, single touch of the screen, or use of right and left head turns using the device ' s camera. additional accessibility features include the use of assistive touch which allows a user to access multi - touch gestures through pre - programmed onscreen buttons. for users with physical disabilities a large variety of switches are available and customizable to the user ' s needs varying in size, shape, or amount of pressure required for activation. switch access may be placed near any area of the body which has consistent and reliable mobility and less subject to fatigue. common sites include the hands, head, and feet. eye gaze and head mouse systems can also be used as an alternative mouse navigation. a user may use single or multiple switch sites and the process often involves a scanning through items on a screen and activating the switch once the desired object is highlighted. = = home automation = = the form of home automation called assistive domotics focuses on making it possible for elderly and disabled people to live independently. home automation is becoming a viable option for the elderly and disabled who would prefer to stay in their own homes rather than move to a healthcare facility. this field uses much of the same technology and equipment as home automation for security, entertainment, and energy conservation but tailors it towards elderly and disabled users. for example, automated prompts and reminders use motion sensors and pre - recorded audio messages ; an automated prompt in the kitchen may remind the resident to turn off the oven, and one by the front door may remind the resident to lock the door. = = assistive technology and innovation = = innovation is happening in assistive technology either through improvements to existing devices or the creation of new products. in the wipo published 2021 report on technology trends, assistive products are grouped into either conventional or emerging technologies. conventional assisting technology tracks innovation within well - established assistive products, whereas emerging assistive technology refers to more advanced products. these identified advanced assistive products are distinguished from the world made wide use of hydropower, along with early uses of tidal power, wind power, fossil fuels such as petroleum, and large factory complexes ( tiraz in arabic ). a variety of industrial mills were employed in the islamic world, including fulling mills, gristmills, hullers, sawmills, ship mills, stamp mills, steel mills, and tide mills. by the 11th century, every province throughout the islamic world had these industrial mills in operation. muslim engineers also employed water turbines and gears in mills and water - raising machines, and pioneered the use of dams as a source of water power, used to provide additional power to watermills and water - raising machines. many of these technologies were transferred to medieval europe. wind - powered machines used to grind grain and pump water, the windmill and wind pump, first appeared in what are now iran, afghanistan and pakistan by the 9th century. they were used to grind grains and draw up water, and used in the gristmilling and sugarcane industries. sugar mills first appeared in the medieval islamic world. they were first driven by watermills, and then windmills from the 9th and 10th centuries in what are today afghanistan, pakistan and iran. crops such as almonds and citrus fruit were brought to europe through al - andalus, and sugar cultivation was gradually adopted across europe. arab merchants dominated trade in the indian ocean until the arrival of the portuguese in the 16th century. the muslim world adopted papermaking from china. the earliest paper mills appeared in abbasid - era baghdad during 794 – 795. the knowledge of gunpowder was also transmitted from china via predominantly islamic countries, where formulas for pure potassium nitrate were developed. the spinning wheel was invented in the islamic world by the early 11th century. it was later widely adopted in europe, where it was adapted into the spinning jenny, a key device during the industrial revolution. the crankshaft was invented by al - jazari in 1206, and is central to modern machinery such as the steam engine, internal combustion engine and automatic controls. the camshaft was also first described by al - jazari in 1206. early programmable machines were also invented in the muslim world. the first music sequencer, a programmable musical instrument, was an automated flute player invented by the banu musa brothers, described in their book of ingenious devices, in the 9th century. in 1206, al - jazari invented programmable automata / robots. he described four automaton musicians, including two to the ground is called a downlink. communication satellite – an artificial satellite used as a telecommunications relay to transmit data between widely separated points on earth. these are used because the microwaves used for telecommunications travel by line of sight and so cannot propagate around the curve of the earth. as of 1 january 2021, there were 2, 224 communications satellites in earth orbit. most are in geostationary orbit 22, 200 miles ( 35, 700 km ) above the equator, so that the satellite appears stationary at the same point in the sky, so the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track it. in a satellite ground station a microwave transmitter and large satellite dish antenna transmit a microwave uplink beam to the satellite. the uplink signal carries many channels of telecommunications traffic, such as long - distance telephone calls, television programs, and internet signals, using a technique called frequency - division multiplexing ( fdm ). on the satellite, a transponder receives the signal, translates it to a different downlink frequency to avoid interfering with the uplink signal, and retransmits it down to another ground station, which may be widely separated from the first. there the downlink signal is demodulated and the telecommunications traffic it carries is sent to its local destinations through landlines. communication satellites typically have several dozen transponders on different frequencies, which are leased by different users. direct broadcast satellite – a geostationary communication satellite that transmits retail programming directly to receivers in subscriber ' s homes and vehicles on earth, in satellite radio and tv systems. it uses a higher transmitter power than other communication satellites, to allow the signal to be received by consumers with a small unobtrusive antenna. for example, satellite television uses downlink frequencies from 12. 2 to 12. 7 ghz in the ku band transmitted at 100 to 250 watts, which can be received by relatively small 43 – 80 cm ( 17 – 31 in ) satellite dishes mounted on the outside of buildings. = = = other applications = = = = = = = radar = = = = radar is a radiolocation method used to locate and track aircraft, spacecraft, missiles, ships, vehicles, and also to map weather patterns and terrain. a radar set consists of a transmitter and receiver. the transmitter emits a narrow beam of radio waves which is swept around the surrounding space. when the beam strikes a target object, radio waves are reflected back to the receiver. the direction of the and take up a minimum of space in a satellite. portions of the uhf, l, c, s, ku and ka band are allocated for space communication. a radio link that transmits data from the earth ' s surface to a spacecraft is called an uplink, while a link that transmits data from the spacecraft to the ground is called a downlink. communication satellite – an artificial satellite used as a telecommunications relay to transmit data between widely separated points on earth. these are used because the microwaves used for telecommunications travel by line of sight and so cannot propagate around the curve of the earth. as of 1 january 2021, there were 2, 224 communications satellites in earth orbit. most are in geostationary orbit 22, 200 miles ( 35, 700 km ) above the equator, so that the satellite appears stationary at the same point in the sky, so the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track it. in a satellite ground station a microwave transmitter and large satellite dish antenna transmit a microwave uplink beam to the satellite. the uplink signal carries many channels of telecommunications traffic, such as long - distance telephone calls, television programs, and internet signals, using a technique called frequency - division multiplexing ( fdm ). on the satellite, a transponder receives the signal, translates it to a different downlink frequency to avoid interfering with the uplink signal, and retransmits it down to another ground station, which may be widely separated from the first. there the downlink signal is demodulated and the telecommunications traffic it carries is sent to its local destinations through landlines. communication satellites typically have several dozen transponders on different frequencies, which are leased by different users. direct broadcast satellite – a geostationary communication satellite that transmits retail programming directly to receivers in subscriber ' s homes and vehicles on earth, in satellite radio and tv systems. it uses a higher transmitter power than other communication satellites, to allow the signal to be received by consumers with a small unobtrusive antenna. for example, satellite television uses downlink frequencies from 12. 2 to 12. 7 ghz in the ku band transmitted at 100 to 250 watts, which can be received by relatively small 43 – 80 cm ( 17 – 31 in ) satellite dishes mounted on the outside of buildings. = = = other applications = = = = = = = radar = = = = radar is a radiolocation method used to locate and track aircraft, spacecraft, Question: The metacarpophalangeal joints in the finger are examples of what kind of joints? A) condyloid B) fibrous C) hinge D) saddle
A) condyloid
Context: has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named the thickness and the density of the material to be measured. the method is used for containers of liquids or of grainy substances thickness gauges : if the material is of constant density, the signal measured by the radiation detector depends on the thickness of the material. this is useful for continuous production, like of paper, rubber, etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison, the other is open to ambient air ; it has a gridded electrode. when smoke enters the open chamber, the current is disrupted as the smoke particles attach to the charged ions and restore them to a neutral electrical state. this reduces the current in the open chamber. when the current drops below a certain threshold, the of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose – einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive to investigate the affinity of acetylated wood for organic liquids, yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. the acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and / or very slowly. on the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. the effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. the easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups. the manufacturer. one common distinction is by nominal pore size. it describes the maximum pore size distribution and gives only vague information about the retention capacity of a membrane. the exclusion limit or " cut - off " of the membrane is usually specified in the form of nmwc ( nominal molecular weight cut - off, or mwco, molecular weight cut off, with units in dalton ). it is defined as the minimum molecular weight of a globular molecule that is retained to 90 % by the membrane. the cut - off, depending on the method, can by converted to so - called d90, which is then expressed in a metric unit. in practice the mwco of the membrane should be at least 20 % lower than the molecular weight of the molecule that is to be separated. using track etched mica membranes beck and schultz demonstrated that hindered diffusion of molecules in pores can be described by the rankin equation. filter membranes are divided into four classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filt in this article i explain in detail a method for making small amounts of liquid oxygen in the classroom if there is no access to a cylinder of compressed oxygen gas. i also discuss two methods for identifying the fact that it is liquid oxygen as opposed to liquid nitrogen. railgun currently cannot achieve a higher muzzle velocity than the amount of energy input. even at 50 % efficiency a rail gun launching a projectile with a kinetic energy of 20 mj would require an energy input into the rails of 40 mj, and 50 % efficiency has not yet been achieved. to put this into perspective, a rail gun launching at 9 mj of energy would need roughly 32 mj worth of energy from capacitors. current advances in energy storage allow for energy densities as high as 2. 5 mj / dm3, which means that a battery delivering 32 mj of energy would require a volume of 12. 8 dm3 per shot ; this is not a viable volume for use in a modern main battle tank, especially one designed to be lighter than existing models. there has even been discussion about eliminating the necessity for an outside electrical source in etc ignition by initiating the plasma cartridge through a small explosive force. furthermore, etc technology is not only applicable to solid propellants. to increase muzzle velocity even further electrothermal - chemical ignition can work with liquid propellants, although this would require further research into plasma ignition. etc technology is also compatible with existing projects to reduce the amount of recoil delivered to the vehicle while firing. understandably, recoil of a gun firing a projectile at 17 mj or more will increase directly with the increase in muzzle energy in accordance to newton ' s third law of motion and successful implementation of recoil reduction mechanisms will be vital to the installation of an etc powered gun in an existing vehicle design. for example, oto melara ' s new lightweight 120 mm l / 45 gun has achieved a recoil force of 25 t by using a longer recoil mechanism ( 550 mm ) and a pepperpot muzzle brake. reduction in recoil can also be achieved through mass attenuation of the thermal sleeve. the ability of etc technology to be applied to existing gun designs means that for future gun upgrades there ' s no longer the necessity to redesign the turret to include a larger breech or caliber gun barrel. several countries have already determined that etc technology is viable for the future and have funded indigenous projects considerably. these include the united states, germany and the united kingdom, amongst others. the united states ' xm360, which was planned to equip the future combat systems mounted combat system light tank and may be the m1 abrams ' next gun upgrade, is reportedly based on the xm291 and may include etc technology, or portions of etc technology. tests of this gun have been performed using " index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry gabriel ' s horn is the famous mathematical object that has finite volume and infinite surface area. this article gives a template for making gabriel ' s horn out of paper cones. it also describes the mathematics behind the construction of the template. we cut the volume of surface code s gates by 25 % by omitting a hadamard gate. Question: What is idefined as the mass of a substance divided by its volume? A) height B) length C) weight D) density
D) density
Context: and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable the transition of our energy system to renewable energies is necessary in order not to heat up the climate any further and to achieve climate neutrality. the use of wind energy plays an important role in this transition in germany. but how much wind energy can be used and what are the possible consequences for the atmosphere if more and more wind energy is used? cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions industrial applications. this branch of biotechnology is the most used for the industries of refining and combustion principally on the production of bio - oils with photosynthetic micro - algae. green biotechnology is biotechnology applied to agricultural processes. an example would be the selection and domestication of plants via micropropagation. another example is the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of poll higher concentrations of atmospheric nitrous oxide ( n2o ) are expected to slightly warm earth ' s surface because of increases in radiative forcing. radiative forcing is the difference in the net upward thermal radiation flux from the earth through a transparent atmosphere and radiation through an otherwise identical atmosphere with greenhouse gases. radiative forcing, normally measured in w / m ^ 2, depends on latitude, longitude and altitude, but it is often quoted for the tropopause, about 11 km of altitude for temperate latitudes, or for the top of the atmosphere at around 90 km. for current concentrations of greenhouse gases, the radiative forcing per added n2o molecule is about 230 times larger than the forcing per added carbon dioxide ( co2 ) molecule. this is due to the heavy saturation of the absorption band of the relatively abundant greenhouse gas, co2, compared to the much smaller saturation of the absorption bands of the trace greenhouse gas n2o. but the rate of increase of co2 molecules, about 2. 5 ppm / year ( ppm = part per million by mole ), is about 3000 times larger than the rate of increase of n2o molecules, which has held steady at around 0. 00085 ppm / year since 1985. so, the contribution of nitrous oxide to the annual increase in forcing is 230 / 3000 or about 1 / 13 that of co2. if the main greenhouse gases, co2, ch4 and n2o have contributed about 0. 1 c / decade of the warming observed over the past few decades, this would correspond to about 0. 00064 k per year or 0. 064 k per century of warming from n2o. proposals to place harsh restrictions on nitrous oxide emissions because of warming fears are not justified by these facts. restrictions would cause serious harm ; for example, by jeopardizing world food supplies. . nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality ( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or this is an expository paper about the topics listed in the title. elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmos occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary Question: What does the kyoto protocol focus on controlling? A) Helium emissions B) Ozone emissions C) carbonate gas emissions D) greenhouse gas emissions
D) greenhouse gas emissions
Context: a rydberg gas of no entrained in a supersonic molecular beam releases electrons as it evolves to form an ultracold plasma. the size of this signal, compared with that extracted by the subsequent application of a pulsed electric field, determines the absolute magnitude of the plasma charge. this information, combined with the number density of ions, supports a simple thermochemical model that explains the evolution of the plasma to an ultracold electron temperature. in a voltaic cell, positive ( negative ) ions flow from the low ( high ) potential electrode to the high ( low ) potential electrode, driven by an ` electromotive force ' which points in opposite direction and overcomes the electric force. similarly in a superconductor charge flows in direction opposite to that dictated by the faraday electric field as the magnetic field is expelled in the meissner effect. the puzzle is the same in both cases : what drives electric charges against electromagnetic forces? i propose that the answer is also the same in both cases : kinetic energy lowering, or ` quantum pressure '. polymer diodes require cathodes that do not corrode the polymer but do have low work function to minimize the electron injection barrier. first - principles calculations demonstrate that the work function of the ( 1000 ) surface of the compound ca2n is half an ev lower than that of the elemental metal ca ( 2. 35 vs. 2. 87 ev ). moreover its reactivity is expected to be smaller. this makes ca2n an interesting candidate to replace calcium as cathode material for polymer light emitting diode devices. the paper erroneously assumed that the normal carriers giving rise to the backflow could be either electrons or holes. stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably various charge pairings in strongly correlated electron systems are interpreted as quantum entanglement of a composite system. particles in the intermediate phase have a tendency to form the coherent superposition state of the localized state and the itinerant state, which induces the entanglement of both particles in the bipartite subsystems for increasing the entropy of the system. the correction to the entropic coulomb force becomes an immediate cause of charge pairing. equivalent of us $ 790 million in state subsidies. the same year, catl introduced its m3p battery, offering a 15 % increase in energy density, reaching 210 wh / kg. the battery replaces the iron in the lithium iron phosphate battery with a combination of magnesium, zinc, and aluminum. later that year, the company announced its shenxing lfp battery. the cathode of shenxing lfp is fully nano - crystallized, which accelerates ion movement and the response to charging signals. the anode ' s second - generation fast ion ring technology increases intercalation channels and shortens intercalation distance. its superconducting electrolyte formula reduces viscosity and improves conductivity. a new separator film reduces resistance. at room temperature, shenxing can charge from 0 to 80 % in 10 minutes and in just 30 minutes at - 10 Β°c, maintains 0 - 100 kph performance at low temperatures. safety is enhanced by using a safe coating for the electrolyte and the separator. a real - time fault testing system allows safe and fast refueling. ford announced a 2, 500 worker battery plant in marshall, michigan using catl technology. the facility would be a ford subsidiary. making the batteries domestically would enable ford customers to access federal subsidies. the project was paused after lawmakers questioned the tax subsidies. in november 2023, catl and stellantis announced that they are considering the possibility of a joint investment in the form of a joint venture with equivalent contributions. on 7 december 2023, catl and hong kong science and technology parks corporation ( hkstp ) signed a memorandum of understanding to establish a catl research center at the hkstp with investment of over hkd 1. 2 billion. in 2023, the world intellectual property organization ( wipo ) ’ s annual pct review ranked catl ' s number of patent applications published under the pct system as 8th in the world, with 1, 799 patent applications being published during 2023. in april 2024, catl announced tener, a large scale stationary energy storage system. it is claimed to feature all - round safety, zero degradation over five - years and 6. 25 mwh capacity per unit. it incorporates biomimetic sei ( solid electrolyte interphase ) and self - assembled electrolyte technologies. in august 2024, american legislators marco rubio and john moolenaar asked defense secretary lloyd austin to add catl to a list of companies prohibited of cells = = = autologous : the donor and the recipient of the cells are the same individual. cells are harvested, cultured or stored, and then reintroduced to the host. as a result of the host ' s own cells being reintroduced, an antigenic response is not elicited. the body ' s immune system recognizes these re - implanted cells as its own, and does not target them for attack. autologous cell dependence on host cell health and donor site morbidity may be deterrents to their use. adipose - derived and bone marrow - derived mesenchymal stem cells are commonly autologous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change ##logous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) are subclass of pluripotent stem cells resembling embryonic stem cells ( escs ) that have been derived from adult differentiated cells. ipscs are created by altering the expression of transcriptional factors in adult cells until they become like embryonic stem cells. multipotent stem cells can be differentiated into any cell Question: A van de graff generator produces what type of charge on its dome, causing the tendency to give up electrons? A) negative charge B) positive charge C) similar charge D) no charge
A) negative charge
Context: . throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β€” one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley – to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β€” one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley – to form ( potassium hydroxide ), where si < 111 > planes etch approximately 100 times slower than other planes ( crystallographic orientations ). therefore, etching a rectangular hole in a ( 100 ) - si wafer results in a pyramid shaped etch pit with 54. 7Β° walls, instead of a hole with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p – n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for mems in 1995 at university of california, los angeles. primarily used for releasing metal and dielectric structures by undercutting silicon, xef2 has the advantage of a stiction - free release unlike wet etchants. its etch selectivity to silicon is very high, allowing it to work with photoresist, sio2, silicon nitride, and various metals for masking. its reaction to silicon is " plasmaless ", is purely chemical and spontaneous and is often operated in pulsed mode. models of the etching action are available, and university laboratories and various commercial tools offer solutions using this approach. modern resistant to the wet etchants. this has been used in mews pressure sensor manufacturing for example. etching progresses at the same speed in all directions. long and narrow holes in a mask will produce v - shaped grooves in the silicon. the surface of these grooves can be atomically smooth if the etch is carried out correctly, with dimensions and angles being extremely accurate. some single crystal materials, such as silicon, will have different etching rates depending on the crystallographic orientation of the substrate. this is known as anisotropic etching and one of the most common examples is the etching of silicon in koh ( potassium hydroxide ), where si < 111 > planes etch approximately 100 times slower than other planes ( crystallographic orientations ). therefore, etching a rectangular hole in a ( 100 ) - si wafer results in a pyramid shaped etch pit with 54. 7Β° walls, instead of a hole with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p – n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for me process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley – to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states supreme court ruled that a genetically modified microorganism could be patented in the case of diamond v. chakrabarty. indian - born ananda chakrabarty, working for general electric, had modified a bacterium ( of the genus pseudomonas ) capable of breaking down crude oil, which he proposed to carried out correctly, with dimensions and angles being extremely accurate. some single crystal materials, such as silicon, will have different etching rates depending on the crystallographic orientation of the substrate. this is known as anisotropic etching and one of the most common examples is the etching of silicon in koh ( potassium hydroxide ), where si < 111 > planes etch approximately 100 times slower than other planes ( crystallographic orientations ). therefore, etching a rectangular hole in a ( 100 ) - si wafer results in a pyramid shaped etch pit with 54. 7Β° walls, instead of a hole with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p – n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for mems in 1995 at university of california, los angeles. primarily used for releasing metal and dielectric structures by undercutting silicon, xef2 has the advantage of a stiction - free release unlike wet etchants. its etch selectivity to silicon is very high, allowing it to work with photores the origin of the arc - shaped stellar complexes in the lmc4 region is still unknown. these perfect arcs could not have been formed by o - stars and sne in their centers ; the strong arguments exist also against the possibility of their formation from infalling gas clouds. the origin from microquasars / grb jets is not excluded, because there is the strong concentration of x - ray binaries in the same region and the massive old cluster ngc 1978, probable site of formation of binaries with compact components, is there also. the last possibility is that the source of energy for formation of the stellar arcs and the lmc4 supershell might be the the giant jet from the nucleus of the milky way, which might be active a dozen myr ago. the paper erroneously assumed that the normal carriers giving rise to the backflow could be either electrons or holes. are commonly referred to as " cross - hatching ". phantom – ( not shown ) are alternately long - and double short - dashed thin lines used to represent a feature or component that is not part of the specified part or assembly. e. g. billet ends that may be used for testing, or the machined product that is the focus of a tooling drawing. lines can also be classified by a letter classification in which each line is given a letter. type a lines show the outline of the feature of an object. they are the thickest lines on a drawing and done with a pencil softer than hb. type b lines are dimension lines and are used for dimensioning, projecting, extending, or leaders. a harder pencil should be used, such as a 2h pencil. type c lines are used for breaks when the whole object is not shown. these are freehand drawn and only for short breaks. 2h pencil type d lines are similar to type c, except these are zigzagged and only for longer breaks. 2h pencil type e lines indicate hidden outlines of internal features of an object. these are dotted lines. 2h pencil type f lines are type e lines, except these are used for drawings in electrotechnology. 2h pencil type g lines are used for centre lines. these are dotted lines, but a long line of 10 – 20 mm, then a 1 mm gap, then a small line of 2 mm. 2h pencil type h lines are the same as type g, except that every second long line is thicker. these indicate the cutting plane of an object. 2h pencil type k lines indicate the alternate positions of an object and the line taken by that object. these are drawn with a long line of 10 – 20 mm, then a small gap, then a small line of 2 mm, then a gap, then another small line. 2h pencil. = = = multiple views and projections = = = in most cases, a single view is not sufficient to show all necessary features, and several views are used. types of views include the following : = = = = multiview projection = = = = a multiview projection is a type of orthographic projection that shows the object as it looks from the front, right, left, top, bottom, or back ( e. g. the primary views ), and is typically positioned relative to each other according to the rules of either first - angle or third - angle projection. the origin and vector direction of the projectors ( we cut the volume of surface code s gates by 25 % by omitting a hadamard gate. Question: What forms the small holes found in bread? A) carbon monoxide gas B) carbon dioxide gas C) oxygen D) yeast
B) carbon dioxide gas
Context: 1. quantized conductance 2. when 1 mode = 1 atom 3. photons and cooper pairs 4. thermal analogues 5. shot noise 6. solid - state electron optics 7. ultimate confinement 8. landauer formulas the motion and photon emission of electrons in a superlattice may be described as in an undulator. therefore, there is a close analogy between ballistic electrons in a superlattice and electrons in a free electron laser ( fel ). touching upon this analogy the intensity of photon emission in the ir region and the gain are calculated. it is shown that the amplification can be significant, reaching tens of percent. a theory is put forward that the electronic phase transition at 0. 2 k in ni - doped bi $ _ { 2 } $ sr $ _ { 2 } $ cacu $ _ { 2 } $ o $ _ { 8 } $ is result of the formation of a spin density wave in the system of ni impurities. the driving force for the transition is the exchange interaction between the impurity spins and the spins of the conduction electrons. this creates a small gap at two of the four nodes of the superconducting gap. the effect is to reduce the thermal conductivity by a factor of two, as observed. the mechanism leading to an auger transition is based on the residual coulomb interaction between the valence electron and the core electrons. on the assumption that the wave field is switched on adiabatically, the probability of the auger effect of the inner electrons of the atom is determined. oxygen ion migration in li2mno3 was systematically studied by first - principles calculations. hole polaron is found effective to lower the migration barrier of oxygen ion. attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited billet is passed through successively narrower rollers to create a sheet. extrusion – a hot and malleable metal is forced under pressure through a die, which shapes it before it cools. machining – lathes, milling machines and drills cut the cold metal to shape. sintering – a powdered metal is heated in a non - oxidizing environment after being compressed into a die. fabrication – sheets of metal are cut with guillotines or gas cutters and bent and welded into structural shape. laser cladding – metallic powder is blown through a movable laser beam ( e. g. mounted on a nc 5 - axis machine ). the resulting melted metal reaches a substrate to form a melt pool. by moving the laser head, it is possible to stack the tracks and build up a three - dimensional piece. 3d printing – sintering or melting amorphous powder metal in a 3d space to make any object to shape. cold - working processes, in which the product ' s shape is altered by rolling, fabrication or other processes, while the product is cold, can increase the strength of the product by a process called work hardening. work hardening creates microscopic defects in the metal, which resist further changes of shape. = = = heat treatment = = = metals can be heat - treated to alter the properties of strength, ductility, toughness, hardness and resistance to corrosion. common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering : annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft - edged so that, when the metal is hit or stressed it dents or perhaps bends, rather than breaking ; it is also easier to sand, grind, or cut annealed metal. quenching is the process of cooling metal very quickly after heating, thus " freezing " the metal ' s molecules in the very hard martensite form, which makes the metal harder. tempering relieves stresses in the metal that were caused by the hardening process ; tempering makes the metal less hard while making it better able to sustain impacts without breaking. often, mechanical and thermal treatments are combined in what are known as thermo - mechanical treatments for better properties and more efficient processing of materials. these processes are common to high - alloy special steels, superalloys and titanium alloys. = = = plating = = = electroplating is resistivity between a conductor and insulator. modern day electronics run on semiconductors, and the industry had an estimated us $ 530 billion market in 2021. its electronic properties can be greatly altered through intentionally introducing impurities in a process referred to as doping. semiconductor materials are used to build diodes, transistors, light - emitting diodes ( leds ), and analog and digital electric circuits, among their many uses. semiconductor devices have replaced thermionic devices like vacuum tubes in most applications. semiconductor devices are manufactured both as single discrete devices and as integrated circuits ( ics ), which consist of a number β€” from a few to millions β€” of devices manufactured and interconnected on a single semiconductor substrate. of all the semiconductors in use today, silicon makes up the largest portion both by quantity and commercial value. monocrystalline silicon is used to produce wafers used in the semiconductor and electronics industry. gallium arsenide ( gaas ) is the second most popular semiconductor used. due to its higher electron mobility and saturation velocity compared to silicon, it is a material of choice for high - speed electronics applications. these superior properties are compelling reasons to use gaas circuitry in mobile phones, satellite communications, microwave point - to - point links and higher frequency radar systems. other semiconductor materials include germanium, silicon carbide, and gallium nitride and have various applications. = = relation with other fields = = materials science evolved, starting from the 1950s because it was recognized that to create, discover and design new materials, one had to approach it in a unified manner. thus, materials science and engineering emerged in many ways : renaming and / or combining existing metallurgy and ceramics engineering departments ; splitting from existing solid state physics research ( itself growing into condensed matter physics ) ; pulling in relatively new polymer engineering and polymer science ; recombining from the previous, as well as chemistry, chemical engineering, mechanical engineering, and electrical engineering ; and more. the field of materials science and engineering is important both from a scientific perspective, as well as for applications field. materials are of the utmost importance for engineers ( or other applied fields ) because usage of the appropriate materials is crucial when designing systems. as a result, materials science is an increasingly important part of an engineer ' s education. materials physics is the use of physics to describe the physical properties of materials. it is a synthesis of physical sciences such as chemistry, solid mechanics, solid state physics, and materials science. materials physics is considered a subset of international space station ( iss ) under contract to nasa, conducting crew rotations between the expeditions of the international space station program. american space manufacturer spacex began providing service in 2020, using the crew dragon spacecraft, while boeing ' s starliner spacecraft began providing service in 2024. nasa has contracted for six operational missions from boeing and fourteen from spacex, ensuring sufficient support for iss through 2030. the spacecraft are owned and operated by the vendor, and crew transportation is provided to nasa as a commercial service. each mission sends up to four astronauts to the iss, with an option for a fifth passenger available. operational flights occur approximately once every six months for missions that last for approximately six months. a spacecraft remains docked to the iss during its mission, and missions usually overlap by at least a few days. between the retirement of the space shuttle in 2011 and the first operational ccp mission in 2020, nasa relied on the soyuz program to transport its astronauts to the iss. a crew dragon spacecraft is launched to space atop a falcon 9 block 5 launch vehicle and the capsule returns to earth via splashdown in the ocean near florida. the program ' s first operational mission, spacex crew - 1, launched on november 16, 2020. boeing starliner operational flights will now commence with boeing starliner - 1 which will launched atop an atlas v n22 launch vehicle. instead of a splashdown, starliner capsules return on land with airbags at one of four designated sites in the western united states. = = = = artemis ( 2017 – present ) = = = = since 2017, nasa ' s crewed spaceflight program has been the artemis program, which involves the help of us commercial spaceflight companies and international partners such as esa, jaxa, and csa. the goal of this program is to land " the first woman and the next man " on the lunar south pole region by 2025. artemis would be the first step towards the long - term goal of establishing a sustainable presence on the moon, laying the foundation for companies to build a lunar economy, and eventually sending humans to mars. the orion crew exploration vehicle was held over from the canceled constellation program for artemis. artemis i was the uncrewed initial launch of space launch system ( sls ) that would also send an orion spacecraft on a distant retrograde orbit. the first tentative steps of returning to crewed lunar missions will be artemis ii, which is to include the orion crew module, propelled by the sls, and is expected to launch no later than april 2026. this mission yttrium ( y ) substituted mg zn ferrites with the compositions of mg0. 5zn0. 5yxfe2 xo4 have been synthesized by conventional standard ceramic technique. the effect of y3 + substitution on the structural, electrical, dielectric and magnetic properties of mg zn ferrites has been studied. Question: In order to conduct what, electrons must move from the filled valence band to the empty conduction band where they can move throughout the solid? A) light B) electricity C) matter D) heat
B) electricity
Context: this extra strength allows some structural components to fail without bridge collapse. the extra strength used in the design is called the margin of safety. eyes and ears provide working examples of passive redundancy. vision loss in one eye does not cause blindness but depth perception is impaired. hearing loss in one ear does not cause deafness but directionality is lost. performance decline is commonly associated with passive redundancy when a limited number of failures occur. active redundancy eliminates performance declines by monitoring the performance of individual devices, and this monitoring is used in voting logic. the voting logic is linked to switching that automatically reconfigures the components. error detection and correction and the global positioning system ( gps ) are two examples of active redundancy. electrical power distribution provides an example of active redundancy. several power lines connect each generation facility with customers. each power line includes monitors that detect overload. each power line also includes circuit breakers. the combination of power lines provides excess capacity. circuit breakers disconnect a power line when monitors detect an overload. power is redistributed across the remaining lines. at the toronto airport, there are 4 redundant electrical lines. each of the 4 lines supply enough power for the entire airport. a spot network substation uses reverse current relays to open breakers to lines that fail, but lets power continue to flow the airport. electrical power systems use power scheduling to reconfigure active redundancy. computing systems adjust the production output of each generating facility when other generating facilities are suddenly lost. this prevents blackout conditions during major events such as an earthquake. = = disadvantages = = charles perrow, author of normal accidents, has said that sometimes redundancies backfire and produce less, not more reliability. this may happen in three ways : first, redundant safety devices result in a more complex system, more prone to errors and accidents. second, redundancy may lead to shirking of responsibility among workers. third, redundancy may lead to increased production pressures, resulting in a system that operates at higher speeds, but less safely. = = voting logic = = voting logic uses performance monitoring to determine how to reconfigure individual components so that operation continues without violating specification limitations of the overall system. voting logic often involves computers, but systems composed of items other than computers may be reconfigured using voting logic. circuit breakers are an example of a form of non - computer voting logic. the simplest voting logic in computing systems involves two components : ##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb – usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently , heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seeding and diffusion throughout the whole structure of both cells and nutrients. biodegradability is often an essential factor since scaffolds should preferably be absorbed by the surrounding tissues without the necessity of surgical removal. the rate at which degradation occurs has to coincide as much as possible with the rate of tissue formation : this means that while cells are fabricating their own natural matrix structure around themselves, the scaffold is able to provide structural integrity within the body and eventually it will break down leaving the newly formed tissue which will take over the mechanical load. injectability is also important for clinical uses. recent research on organ printing is showing how crucial a good control of the 3d environment is to ensure reproducibility of experiments and offer better results. = = = materials = = = material selection is an essential aspect of producing a scaffold. the materials utilized can be natural or synthetic and can be biodegradable or non - biodegradable. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla – polylactic acid. this is a polyester which it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. the modulation signal is converted by a transducer back to a human - usable form : an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display, while a digital signal is applied to a computer or microprocessor, which interacts with human users. the radio waves from many transmitters pass through the air simultaneously without interfering with each other because each transmitter ' s radio waves oscillate at a different frequency, measured in hertz ( hz ), kilohertz ( khz ), megahertz ( mhz ) or gigahertz ( ghz ). the receiving antenna typically picks up the radio signals of many transmitters. the receiver uses tuned circuits to select the radio signal desired out of all the signals picked up by the antenna and reject the others. a tuned circuit acts like a resonator, similar to a tuning fork. it has a natural resonant frequency at which it oscillates. the resonant frequency of the receiver ' s tuned circuit is adjusted by the user to the frequency of the desired radio station ; this is called tuning. the oscillating radio signal from the desired station causes the tuned circuit to oscillate in sympathy, and it passes the signal on to the rest of the receiver. radio signals at other frequencies are blocked by the tuned circuit and not passed on. = = = bandwidth = = = a modulated radio wave, carrying an information signal, occupies a range of frequencies. the information in a radio signal is usually concentrated in narrow frequency bands called sidebands ( sb ) just above and below the carrier frequency. the width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth ( bw ). for any given signal - to - noise ratio, a given bandwidth can carry the same amount of information regardless of where in the radio frequency spectrum it is located ; bandwidth is a measure of information - carrying capacity. the bandwidth required by a radio transmission depends on the data rate of the information being sent, and the spectral efficiency of the modulation method used ; how much data it can transmit in each unit of bandwidth. different types of information signals carried by radio have different data rates. for example, a television signal has a greater data rate than an audio signal. the radio spectrum, the total range of with cross linking agents ( e. g. glutaraldehyde, water - soluble carbodiimide, etc. ), is one of the possible choices as scaffold material. due to the covalent attachment of thiol groups to these polymers, they can crosslink via disulfide bond formation. the use of thiolated polymers ( thiomers ) as scaffold material for tissue engineering was initially introduced at the 4th central european symposium on pharmaceutical technology in vienna 2001. as thiomers are biocompatible, exhibit cellular mimicking properties and efficiently support proliferation and differentiation of various cell types, they are extensively used as scaffolds for tissue engineering. furthermore thiomers such as thiolated hyaluronic acid and thiolated chitosan were shown to exhibit wound healing properties and are subject of numerous clinical trials. additionally, a fragment of an extracellular matrix protein, such as the rgd peptide, can be coupled to a non - bioactive material to promote cell attachment. another form of scaffold is decellularized tissue. this is a process where chemicals are used to extracts cells from tissues, leaving just the extracellular matrix. this has the benefit of a fully formed matrix specific to the desired tissue type. however, the decellurised scaffold may present immune problems with future introduced cells. = = = synthesis = = = a number of different methods have been described in the literature for preparing porous structures to be employed as tissue engineering scaffolds. each of these techniques presents its own advantages, but none are free of drawbacks. = = = = nanofiber self - assembly = = = = molecular self - assembly is one of the few methods for creating biomaterials with properties similar in scale and chemistry to that of the natural in vivo extracellular matrix ( ecm ), a crucial step toward tissue engineering of complex tissues. moreover, these hydrogel scaffolds have shown superiority in in vivo toxicology and biocompatibility compared to traditional macro - scaffolds and animal - derived materials. = = = = textile technologies = = = = these techniques include all the approaches that have been successfully employed for the preparation of non - woven meshes of different polymers. in particular, non - woven polyglycolide structures have been tested for tissue engineering applications : such fibrous structures have been found useful to grow different types of cells. the principal drawbacks are related to the difficulties in obtaining high por medical purposes. cells are often ' seeded ' into these structures capable of supporting three - dimensional tissue formation. scaffolds mimic the extracellular matrix of the native tissue, recapitulating the in vivo milieu and allowing cells to influence their own microenvironments. they usually serve at least one of the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seeding and diffusion throughout the whole structure of both cells and nutrients. biodegradability is often an essential factor since scaffolds should preferably be absorbed by the surrounding tissues without the necessity of surgical removal. the rate at which degradation occurs has to coincide as much as possible with the rate of tissue formation : this means that while cells are fabricating their own natural matrix structure around themselves, the scaffold is able to provide structural integrity within the body and eventually it will break down leaving the newly formed tissue which will take over the mechanical load. injectability is also important for clinical uses. recent research on organ printing is showing how crucial a good control of the 3d environment is to ensure reproducibility of experiments and offer better results. = = = materials = = = material selection is an essential aspect of producing a scaffold. the materials utilized can be natural or synthetic and can be biodegradable or non - biodegradable. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), casting, also called the lost wax process, die casting, centrifugal casting, both vertical and horizontal, and continuous castings. each of these forms has advantages for certain metals and applications considering factors like magnetism and corrosion. forging – a red - hot billet is hammered into shape. rolling – a billet is passed through successively narrower rollers to create a sheet. extrusion – a hot and malleable metal is forced under pressure through a die, which shapes it before it cools. machining – lathes, milling machines and drills cut the cold metal to shape. sintering – a powdered metal is heated in a non - oxidizing environment after being compressed into a die. fabrication – sheets of metal are cut with guillotines or gas cutters and bent and welded into structural shape. laser cladding – metallic powder is blown through a movable laser beam ( e. g. mounted on a nc 5 - axis machine ). the resulting melted metal reaches a substrate to form a melt pool. by moving the laser head, it is possible to stack the tracks and build up a three - dimensional piece. 3d printing – sintering or melting amorphous powder metal in a 3d space to make any object to shape. cold - working processes, in which the product ' s shape is altered by rolling, fabrication or other processes, while the product is cold, can increase the strength of the product by a process called work hardening. work hardening creates microscopic defects in the metal, which resist further changes of shape. = = = heat treatment = = = metals can be heat - treated to alter the properties of strength, ductility, toughness, hardness and resistance to corrosion. common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering : annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft - edged so that, when the metal is hit or stressed it dents or perhaps bends, rather than breaking ; it is also easier to sand, grind, or cut annealed metal. quenching is the process of cooling metal very quickly after heating, thus " freezing " the metal ' s molecules in the very hard martensite form, which makes the metal harder. tempering relieves stresses in the metal that were caused by the hardening process ; tempering makes the metal less hard while making it better able to sustain like it, assist physical therapists by providing task - specific practice of walking in people following neurological injury. = = = prosthesis = = = a prosthesis, prosthetic, or prosthetic limb is a device that replaces a missing body part. it is part of the field of biomechatronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb – usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the Question: Conductive losses in the middle ear can be partially overcome by sending sound vibrations to what structure through the skull, the principle behind implants for hearing loss patients? A) hammer and anvil B) tympanic membrane C) cornea D) cochlea
D) cochlea
Context: enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make a minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0. 1 bar in the atmospheres of earth, titan, jupiter, saturn, uranus and neptune, despite great differences in atmospheric composition, gravity, internal heat and sunlight. in all these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of shortwave solar radiation, from a region below characterised by convection, weather, and clouds. however, it is not obvious why the tropopause occurs at the specific pressure near 0. 1 bar. here we use a physically - based model to demonstrate that, at atmospheric pressures lower than 0. 1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. at higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. a common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets the 0. 1 bar tropopause. we hypothesize that a tropopause at a pressure of approximately 0. 1 bar is characteristic of many thick atmospheres, including exoplanets and exomoons in our galaxy and beyond. judicious use of this rule could help constrain the atmospheric structure, and thus the surface environments and habitability, of exoplanets. generation of direct current in zigzag carbon nanotubes due to harmonic mixing of two coherent electromagnetic waves is being considered. the electromagnetic waves have commensurate frequencies of omega and two omega. the rectification of the waves at high frequencies is quite smooth whiles at low frequencies there are some fluctuations. the nonohmicity observed in the i - vcharacteristics is attributed to the nonparabolicity of the electron energy band which is very strong in carbon nanotubes because of high stark component. it is observed that the current falls off faster at lower electric field than the case in superlattice. for omega tau equal to two? the external electric field strength emax for the observation of negative differential conductivity occurs around 1. 03x10e6 v / m which is quite weak. it is interesting to note that the peak of the curve shifts to the left with increasing value of omega tau? higher concentrations of atmospheric nitrous oxide ( n2o ) are expected to slightly warm earth ' s surface because of increases in radiative forcing. radiative forcing is the difference in the net upward thermal radiation flux from the earth through a transparent atmosphere and radiation through an otherwise identical atmosphere with greenhouse gases. radiative forcing, normally measured in w / m ^ 2, depends on latitude, longitude and altitude, but it is often quoted for the tropopause, about 11 km of altitude for temperate latitudes, or for the top of the atmosphere at around 90 km. for current concentrations of greenhouse gases, the radiative forcing per added n2o molecule is about 230 times larger than the forcing per added carbon dioxide ( co2 ) molecule. this is due to the heavy saturation of the absorption band of the relatively abundant greenhouse gas, co2, compared to the much smaller saturation of the absorption bands of the trace greenhouse gas n2o. but the rate of increase of co2 molecules, about 2. 5 ppm / year ( ppm = part per million by mole ), is about 3000 times larger than the rate of increase of n2o molecules, which has held steady at around 0. 00085 ppm / year since 1985. so, the contribution of nitrous oxide to the annual increase in forcing is 230 / 3000 or about 1 / 13 that of co2. if the main greenhouse gases, co2, ch4 and n2o have contributed about 0. 1 c / decade of the warming observed over the past few decades, this would correspond to about 0. 00064 k per year or 0. 064 k per century of warming from n2o. proposals to place harsh restrictions on nitrous oxide emissions because of warming fears are not justified by these facts. restrictions would cause serious harm ; for example, by jeopardizing world food supplies. when fast radio burst ( frb ) waves propagate through the local ( < 1 pc ) environment of the frb source, electrons in the plasma undergo large - amplitude oscillations. the finite - amplitude effects cause the effective plasma frequency and cyclotron frequency to be dependent on the wave strength. the dispersion measure and rotation measure should therefore vary slightly from burst to burst for a repeating source, depending on the luminosity and frequency of the individual burst. furthermore, free - free absorption of strong waves is suppressed due to the accelerated electrons ' reduced energy exchange in coulomb collisions. this allows bright low - frequency bursts to propagate through an environment that would be optically thick to low - amplitude waves. given a large sample of bursts from a repeating source, it would be possible to use the deficit of low - frequency and low - luminosity bursts to infer the emission measure of the local intervening plasma and its distance from the source. information about the local environment will shed light on the nature of frb sources. , its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 – 2 ), or a downshift maneuver in passing ( 4 – 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new part in the design must support the development and manufacturing schedule of the model. design for manufacturability ( dfm ) : dfm refers to designing vehicular components in such a way that they are not only feasible to manufacture, but also such that they are cost - efficient to produce while resulting in acceptable quality that meets design specifications and engineering tolerances. this requires coordination between the design engineers and the assembly / manufacturing teams. quality management : quality control is an important factor within the production process, as high quality is needed to meet customer requirements and to avoid expensive recall campaigns. the complexity of components involved in the production process requires a review of mhd dynamos and turbulence. oscillations of the sun have been used to understand its interior structure. the extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. the corot ( convection rotation and planetary transits ) satellite, launched in december 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. the oscillation amplitudes are about 1. 5 times as large as those in the sun ; the stellar granulation is up to three times as high. the stellar amplitudes are about 25 % below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars. ultra high energy particles arrive at earth constantly. they provide a beam at energies higher than any man - made accelerator, but at a very low rate. two large experiments, the pierre auger observatory and the telescope array experiment, have been taking data for several years now covering together the whole sky. i summarize the most recent measurements from both experiments, i compare their results and, for a change, i highlight their agreements. Question: What is the term for the fast-moving air currents high in the troposphere? A) global winds B) jet streams C) gale force winds D) ocean streams
B) jet streams
Context: torsion oscillations of the neutron star crust are landau damped by the alfven continuum in the bulk. for strong magnetic fields ( in magnetars ), undamped alfven eigenmodes appear. generation of direct current in zigzag carbon nanotubes due to harmonic mixing of two coherent electromagnetic waves is being considered. the electromagnetic waves have commensurate frequencies of omega and two omega. the rectification of the waves at high frequencies is quite smooth whiles at low frequencies there are some fluctuations. the nonohmicity observed in the i - vcharacteristics is attributed to the nonparabolicity of the electron energy band which is very strong in carbon nanotubes because of high stark component. it is observed that the current falls off faster at lower electric field than the case in superlattice. for omega tau equal to two? the external electric field strength emax for the observation of negative differential conductivity occurs around 1. 03x10e6 v / m which is quite weak. it is interesting to note that the peak of the curve shifts to the left with increasing value of omega tau? after a short introduction on how we get information of the magnetic fields from radio observations i discuss the results concerning the magnetic field structure in galaxies : large - scale regular magnetic field pattern of spiral structure exist in grand - design spirals, flocculent and even irregular galaxies. the regular field in spirals is aligned along the optical spiral arms but strongest in the interarm region, sometimes forming ' magnetic arms '. the strongest total field is found in the optical arms, but mainly irregular. the large - scale regular field is best explained by some kind of dynamo action. only a few galaxies show a dominant axisymmetric field pattern, most field structures seem to be a superposition of different dynamo modes or rather reveal more local effects related to density waves, bars or shocks. observations of edge - on galaxies show that the magnetic fields are mainly parallel to the disk except in some galaxies with strong star formation and strong galactic winds as e. g. ngc 4631. an extended josephson junction consists of two superconducting electrodes that are separated by an insulator and it is therefore also a microwave cavity. the superconducting phase difference across the junction determines the supercurrent as well as its spatial distribution. both, an external magnetic field and a resonant cavity intrafield produce a spatial modification of the superconducting phase along the junction. the interplay between these two effects leads to interference in the critical current of the junction and allows us to continuously tune the coupling strength between the first cavity mode and the josephson phase from 1 to - 0. 5. this enables static and dynamic control over the junction in the ultra - strong coupling regime. electromagnetic soliton - particle with both quasi - static and quick - oscillating wave parts is considered. its mass, spin, charge, and magnetic moment appear naturally when the interaction with distant solitons is considered. the substantiation of dirac equation for the wave part of the interacting soliton - particle is given. ultramagnetized neutron stars or magnetars are magnetically powered neutron stars. their strong magnetic fields dominate the physical processes in their crusts and their surroundings. the past few years have seen several advances in our theoretical and observational understanding of these objects. in spite of a surfeit of observations, their spectra are still poorly understood. i will discuss the emission from strongly magnetized condensed matter surfaces of neutron stars, recent advances in our expectations of the surface composition of magnetars and a model for the non - thermal emission from these objects. parametric excitation of rotons by oscillating electric field exhibits a narrow resonance at the roton minimum frequency. the resonance width is in good agreement with experimental results on the microwave absorption in superfluid helium. the curvature radiation is applied to the explain the circular polarization of frbs. significant circular polarization is reported in both apparently non - repeating and repeating frbs. curvature radiation can produce significant circular polarization at the wing of the radiation beam. in the curvature radiation scenario, in order to see significant circular polarization in frbs ( 1 ) more energetic bursts, ( 2 ) burst with electrons having higher lorentz factor, ( 3 ) a slowly rotating neutron star at the centre are required. different rotational period of the central neutron star may explain why some frbs have high circular polarization, while others don ' t. considering possible difference in refractive index for the parallel and perpendicular component of electric field, the position angle may change rapidly over the narrow pulse window of the radiation beam. the position angle swing in frbs may also be explained by this non - geometric origin, besides that of the rotating vector model. two types of stars are known to have strong, large scale magnetic fields : the main sequence ap stars and the magnetic white dwarfs. this suggest that the former might be the progenitors of the latter. in order to test this idea, i have carried out a search for large scale magnetic fields in stars with evolutionary states which are intermediate, i. e. in horizontal branch stars and in hot subdwarfs. the gravitational waves are non - physical sinuosities generated, in the last analysis, by undulating reference frames. Question: Vibrating electric and magnetic fields make up what kinds of waves? A) mechanical B) eletrical C) electromagnetic D) seismic
C) electromagnetic
Context: and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population, much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, variation in total solar irradiance is thought to have little effect on the earth ' s surface temperature because of the thermal time constant - - the characteristic response time of the earth ' s global surface temperature to changes in forcing. this time constant is large enough to smooth annual variations but not necessarily variations having a longer period such as those due to solar inertial motion ; the magnitude of these surface temperature variations is estimated. the universe is found to have undergone several phases in which the gravitational constant had different behaviors. during some epochs the energy density of the universe remained constant and the universe remained static. in the radiation dominated epoch the radiation field satisfies stefan ' s formula while the scale factor varies linearly with time. the model enhances the formation of the structure in the universe as observed today. the greek letter Ο€ ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example, objects with translational symmetry are invariant under certain translations. the integral [UNK] m k d ΞΌ { \ textstyle \ int _ { m } k \, d \ mu } of the gaussian curvature k { \ displaystyle k } of a two - dimensional riemannian manifold ( m, g ) { \ displaystyle ( m, g ) } is invariant under changes of the riemannian metric g { \ displaystyle g }. this is the gauss – bonnet theorem. = = = mu puzzle = = = the mu puzzle is a good example of a logical problem where determining an invariant is of use for an impossibility proof. the puzzle asks one to start with the word mi and transform it into the word mu, using in each step one of the following transformation rules : if a string ends with an i, a u may be appended ( xi β†’ xiu ) the string after the m may be completely duplicated ( non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο€ ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example, objects with translational symmetry are invariant under certain translations. the integral [UNK] m k d ΞΌ { \ textstyle \ int _ { m } k \, d \ mu } of the gaussian curvature k { \ displaystyle k } of a two - dimensional riemannian manifold ( m, g ) { \ displaystyle ( m, g ) } is invariant under changes of the riemannian metric g { \ displaystyle g }. this is the gauss – bonnet theorem. = = = mu puzzle = = = the mu puzzle is a good example of a logical problem where determining an invariant is of use for an imp are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example, objects with translational symmetry are invariant under certain translations. the integral [UNK] m k d ΞΌ { \ textstyle \ int _ { m } k \, d \ mu } of the gaussian curvature k { \ displaystyle k } of a two - dimensional riemannian manifold ( m, g ) { \ displaystyle ( m, g ) } is invariant under changes of the riemannian metric g { \ displaystyle g }. this is the gauss – bonnet theorem. = = = mu puzzle = = = the mu puzzle is a good example of a logical problem where determining an invariant is of use for an impossibility proof. the puzzle asks one to start with the word mi and transform it into the word mu, using in each step one of the following transformation rules : if a string ends with an i, a u may be appended ( xi β†’ xiu ) the string after the m may be completely duplicated ( mx β†’ mxx ) any three consecutive i ' s ( iii ) may be replaced with a single u ( xiiiy β†’ xuy ) any two consecutive u ' s may be removed ( xuuy β†’ xy ) an example derivation ( with superscripts indicating the applied rules ) is mi β†’2 mii β†’ to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population, darwin argued that in the natural world, it was nature that played the role of humans in selecting for specific traits. darwin inferred that individuals who possessed heritable traits better adapted to their environments are more likely to survive and produce more offspring than other individuals. he further inferred that this would lead to the Question: What do you call the regular changes in biology or behavior that occur in a 24-hour cycle? A) cognitive rhythms B) variable rhythms C) sleep rhythms D) circadian rhythms
D) circadian rhythms
Context: the large scale pattern in the arrival directions of extragalactic cosmic rays that reach the earth is different from that of the flux arriving to the halo of the galaxy as a result of the propagation through the galactic magnetic field. two different effects are relevant in this process : deflections of trajectories and ( de ) acceleration by the electric field component due to the galactic rotation. the deflection of the cosmic ray trajectories makes the flux intensity arriving to the halo from some direction to appear reaching the earth from another direction. this applies to any intrinsic anisotropy in the extragalactic distribution or, even in the absence of intrinsic anisotropies, to the dipolar compton - getting anisotropy induced when the observer is moving with respect to the cosmic rays rest frame. for an observer moving with the solar system, cosmic rays traveling through far away regions of the galaxy also experience an electric force coming from the relative motion ( due to the rotation of the galaxy ) of the local system in which the field can be considered as being purely magnetic. this produces small changes in the particles momentum that can originate large scale anisotropies even for an isotropic extragalactic flux. i suggest that the main process that amplifies magnetic fields in cooling flows in clusters and group of galaxies is a jet - driven dynamo ( jedd ). the main processes that are behind the jedd is the turbulence that is formed by the many vortices formed in the inflation processes of bubbles, and the large scale shear formed by the propagating jet. it is sufficient that a strong turbulence exits in the vicinity of the jets and bubbles, just where the shear is large. the typical amplification time of magnetic fields by the jedd near the jets and bubbles is approximately hundred million years. the amplification time in the entire cooling flow region is somewhat longer. the vortices that create the turbulence are those that also transfer energy from the jets to the intra - cluster medium, by mixing shocked jet gas with the intra - cluster medium gas, and by exciting sound waves. the jedd model adds magnetic fields to the cyclical behavior of energy and mass in the jet - feedback mechanism ( jfm ) in cooling flows. generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygenated blood in a particular region is assumed to correlate with an increase in neural activity in that part of the brain. this allows us to localize particular functions within different brain regions. fmri has moderate spatial and temporal resolution. optical imaging. this technique uses infrared transmitters and receivers to measure the amount of light reflectance by blood near different areas of the brain. since oxygenated and deoxygenated blood reflects light by different amounts, we can study which areas are more active ( i. e., those that have more oxygenated blood ). optical imaging has moderate temporal resolution, but poor spatial resolution. it also has the advantage that it is extremely safe and can be used to study infants ' brains. magnetoencephalography. meg measures magnetic fields resulting from cortical activity. it is similar to eeg, except that it has improved spatial resolution since the magnetic fields it measures are not as blurred or attenuated by the scalp, meninges and so forth as the electrical activity measured in eeg is. meg uses squid sensors to detect tiny magnetic fields. = = = computational modeling = = = computational models require a mathematically and logically formal representation of a problem. computer models are used in the simulation and experimental verification of different specific and general properties of intelligence. computational modeling can help us understand the functional organization of a particular cognitive phenomenon. approaches to cognitive modeling can be categorized as : ( 1 ) symbolic, on abstract mental functions of an intelligent mind by means of symbols ; ( 2 ) subsymbolic, on the neural and associative properties of the human brain ; and ( 3 ) across the symbolic – subsymbolic border, including hybrid. symbolic modeling evolved from the computer science paradigms using the technologies of knowledge - based systems, as well as a philosophical perspective ( e. g. " good old - fashioned artificial intelligence " ( gofai ) ). they were developed by the first cognitive researchers and later used in information engineering for expert systems. since the early 1990s it was generalized in systemics for the investigation of functional human - like intelligence models, such as personoids, and, in parallel, developed as the soar environment. recently, especially in the magnetization of superconducting samples is influenced by their porosity. in addition to structural modifications and improved cooling, the presence of pores also plays a role in trapping magnetic flux. pores have an impact on the irreversibility field, the full penetration field, and the remnant magnetization. generally, as porosity increases, these parameters tend to decrease. however, in the case of mesoscopic samples or samples with low critical current densities, increased porosity can actually enhance the trapping of magnetic flux. two types of stars are known to have strong, large scale magnetic fields : the main sequence ap stars and the magnetic white dwarfs. this suggest that the former might be the progenitors of the latter. in order to test this idea, i have carried out a search for large scale magnetic fields in stars with evolutionary states which are intermediate, i. e. in horizontal branch stars and in hot subdwarfs. ultramagnetized neutron stars or magnetars are magnetically powered neutron stars. their strong magnetic fields dominate the physical processes in their crusts and their surroundings. the past few years have seen several advances in our theoretical and observational understanding of these objects. in spite of a surfeit of observations, their spectra are still poorly understood. i will discuss the emission from strongly magnetized condensed matter surfaces of neutron stars, recent advances in our expectations of the surface composition of magnetars and a model for the non - thermal emission from these objects. in a voltaic cell, positive ( negative ) ions flow from the low ( high ) potential electrode to the high ( low ) potential electrode, driven by an ` electromotive force ' which points in opposite direction and overcomes the electric force. similarly in a superconductor charge flows in direction opposite to that dictated by the faraday electric field as the magnetic field is expelled in the meissner effect. the puzzle is the same in both cases : what drives electric charges against electromagnetic forces? i propose that the answer is also the same in both cases : kinetic energy lowering, or ` quantum pressure '. an extended josephson junction consists of two superconducting electrodes that are separated by an insulator and it is therefore also a microwave cavity. the superconducting phase difference across the junction determines the supercurrent as well as its spatial distribution. both, an external magnetic field and a resonant cavity intrafield produce a spatial modification of the superconducting phase along the junction. the interplay between these two effects leads to interference in the critical current of the junction and allows us to continuously tune the coupling strength between the first cavity mode and the josephson phase from 1 to - 0. 5. this enables static and dynamic control over the junction in the ultra - strong coupling regime. after a short introduction on how we get information of the magnetic fields from radio observations i discuss the results concerning the magnetic field structure in galaxies : large - scale regular magnetic field pattern of spiral structure exist in grand - design spirals, flocculent and even irregular galaxies. the regular field in spirals is aligned along the optical spiral arms but strongest in the interarm region, sometimes forming ' magnetic arms '. the strongest total field is found in the optical arms, but mainly irregular. the large - scale regular field is best explained by some kind of dynamo action. only a few galaxies show a dominant axisymmetric field pattern, most field structures seem to be a superposition of different dynamo modes or rather reveal more local effects related to density waves, bars or shocks. observations of edge - on galaxies show that the magnetic fields are mainly parallel to the disk except in some galaxies with strong star formation and strong galactic winds as e. g. ngc 4631. nuclear jets containing relativistic ` ` hot ' ' particles close to the central engine cool dramatically by producing high energy radiation. the radiative dissipation is similar to the famous compton drag acting upon ` ` cold ' ' thermal particles in a relativistic bulk flow. highly relativistic protons induce anisotropic showers raining electromagnetic power down onto the putative accretion disk. thus, the radiative signature of hot hadronic jets is x - ray irradiation of cold thermal matter. the synchrotron radio emission of the accelerated electrons is self - absorbed due to the strong magnetic fields close to the magnetic nozzle. Question: The electric and magnetic fields are closely related and propagate as what? A) sound wave B) electromagnetic wave C) thermal energy D) mechanical wave
B) electromagnetic wave
Context: the ratio of the self - gravitational energy density of the scattering particles in the universe to the energy density of the scattered photons in the cosmic microwave background ( cmb ) is the same in any volume of space. these two energy densities are equal at a radiation temperature on the order of the present cmb temperature. the thickness and the density of the material to be measured. the method is used for containers of liquids or of grainy substances thickness gauges : if the material is of constant density, the signal measured by the radiation detector depends on the thickness of the material. this is useful for continuous production, like of paper, rubber, etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison, the other is open to ambient air ; it has a gridded electrode. when smoke enters the open chamber, the current is disrupted as the smoke particles attach to the charged ions and restore them to a neutral electrical state. this reduces the current in the open chamber. when the current drops below a certain threshold, the earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on earth, though it does include human effects on the environment. = = methodology = = methodologies vary depending on the nature of the subjects being studied. studies typically fall into one of three categories : observational, experimental, or theoretical. earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena ( to investigate the affinity of acetylated wood for organic liquids, yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. the acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and / or very slowly. on the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. the effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. the easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups. ring mass density and the corresponding circular velocity in thin disk model are known to be integral transforms of one another. but it may be less familiar that the transforms can be reduced to one - fold integrals with identical weight functions. it may be of practical value that the integral for the surface density does not involve the velocity derivative, unlike the equivalent and widely known toomre ' s formula. has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named water content and the internal evolution of terrestrial planets and icy bodies are closely linked. the distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. this results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. the internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short - lived 26al decay may govern the amount of hydrous silicates and leftover rock - ice mixtures available in the late stages of their evolution. in turn, water content may affect the early internal evolution of the planetesimals and in particular metal - silicate separation processes. moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of solar system objects. finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors. a producer or independently. recording engineer – the engineer who records sound. assistant engineer – often employed in larger studios, allowing them to train to become full - time engineers. they often assist full - time engineers with microphone setups, session breakdowns and in some cases, rough mixes. mixing engineer – a person who creates mixes of multi - track recordings. it is common to record a commercial record at one studio and have it mixed by different engineers in other studios. mastering engineer – the person who masters the final mixed stereo tracks ( or sometimes a series of audio stems, which consists in a mix of the main sections ) that the mix engineer produces. the mastering engineer makes any final adjustments to the overall sound of the record in the final step before commercial duplication. mastering engineers use principles of equalization, compression and limiting to fine - tune the sound timbre and dynamics and to achieve a louder recording. sound designer – broadly an artist who produces soundtracks or sound effects content for media. live sound engineer front of house ( foh ) engineer, or a1. – a person dealing with live sound reinforcement. this usually includes planning and installation of loudspeakers, cabling and equipment and mixing sound during the show. this may or may not include running the foldback sound. a live / sound reinforcement engineer hears source material and tries to correlate that sonic experience with system performance. wireless microphone engineer, or a2. this position is responsible for wireless microphones during a theatre production, a sports event or a corporate event. foldback or monitor engineer – a person running foldback sound during a live event. the term foldback comes from the old practice of folding back audio signals from the front of house ( foh ) mixing console to the stage so musicians can hear themselves while performing. monitor engineers usually have a separate audio system from the foh engineer and manipulate audio signals independently from what the audience hears so they can satisfy the requirements of each performer on stage. in - ear systems, digital and analog mixing consoles, and a variety of speaker enclosures are typically used by monitor engineers. in addition, most monitor engineers must be familiar with wireless or rf ( radio - frequency ) equipment and often must communicate personally with the artist ( s ) during each performance. systems engineer – responsible for the design setup of modern pa systems, which are often very complex. a systems engineer is usually also referred to as a crew chief on tour and is responsible for the performance and day - to - day job requirements of the audio crew as a whole along with the foh mixes of multi - track recordings. it is common to record a commercial record at one studio and have it mixed by different engineers in other studios. mastering engineer – the person who masters the final mixed stereo tracks ( or sometimes a series of audio stems, which consists in a mix of the main sections ) that the mix engineer produces. the mastering engineer makes any final adjustments to the overall sound of the record in the final step before commercial duplication. mastering engineers use principles of equalization, compression and limiting to fine - tune the sound timbre and dynamics and to achieve a louder recording. sound designer – broadly an artist who produces soundtracks or sound effects content for media. live sound engineer front of house ( foh ) engineer, or a1. – a person dealing with live sound reinforcement. this usually includes planning and installation of loudspeakers, cabling and equipment and mixing sound during the show. this may or may not include running the foldback sound. a live / sound reinforcement engineer hears source material and tries to correlate that sonic experience with system performance. wireless microphone engineer, or a2. this position is responsible for wireless microphones during a theatre production, a sports event or a corporate event. foldback or monitor engineer – a person running foldback sound during a live event. the term foldback comes from the old practice of folding back audio signals from the front of house ( foh ) mixing console to the stage so musicians can hear themselves while performing. monitor engineers usually have a separate audio system from the foh engineer and manipulate audio signals independently from what the audience hears so they can satisfy the requirements of each performer on stage. in - ear systems, digital and analog mixing consoles, and a variety of speaker enclosures are typically used by monitor engineers. in addition, most monitor engineers must be familiar with wireless or rf ( radio - frequency ) equipment and often must communicate personally with the artist ( s ) during each performance. systems engineer – responsible for the design setup of modern pa systems, which are often very complex. a systems engineer is usually also referred to as a crew chief on tour and is responsible for the performance and day - to - day job requirements of the audio crew as a whole along with the foh audio system. this is a sound - only position concerned with implementation, not to be confused with the interdisciplinary field of system engineering, which typically requires a college degree. re - recording mixer – a person in post - production who mixes audio tracks for feature films or television programs. = = equipment = = an audio engineer is which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat treatment the glass partly crystallizes. in many cases, so - called ' nucleation agents ' are added in order to regulate and control the crystallization process. because there is usually no pressing and sintering, glass - ceramics do not contain the volume fraction of porosity typically present in sintered ceramics. the term mainly refers to a mix of lithium and aluminosilicates which yields an array of materials with interesting thermomechanical properties. the most commercially important of these have the distinction of being impervious to thermal shock. thus, glass - ceramics have become extremely useful for countertop cooking. the negative thermal expansion coefficient ( tec ) of the crystalline ceramic phase can be balanced with the positive tec of the glassy phase. at a certain point ( ~ 70 % crystalline ) the glass - ceramic has a net tec near zero. this type of glass - ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β†’ batching β†’ mixing β†’ forming β†’ drying β†’ firing β†’ assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression Question: What do you get by multiplying volume by the density of water? A) velocity of water B) weight of water C) mass of water D) temperature of water
C) mass of water
Context: excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, ##ochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guide symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that given invariant percolation on a regular tree, where the probability of an edge to be open equals $ p $, is it always possible to find an infinite self - avoiding path along which the density of open edges is bigger then $ p $? with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gym young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable Question: Plant-like protists are autotrophs capable of what process? A) photosynthesis B) sexual reproduction C) microevolution D) regeneration
A) photosynthesis
Context: energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photos ##logous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) are subclass of pluripotent stem cells resembling embryonic stem cells ( escs ) that have been derived from adult differentiated cells. ipscs are created by altering the expression of transcriptional factors in adult cells until they become like embryonic stem cells. multipotent stem cells can be differentiated into any cell energy is no doubt an intuitive concept. following a previous analysis on the nature of elementary particles and associated elementary quantum fields, the peculiar status and role of energy is scrutinised further at elementary and larger scales. energy physical characterisation shows that it is a primordial component of reality highlighting the quantum fields natural tendencies to interact, the elementary particles natural tendency to constitute complex bodies and every material thing natural tendency to actualise and be active. energy therefore is a primordial notion in need of a proper assessment. ##physical processes which take place in human beings as they make sense of information received through the visual system. the subject of the image. when developing an imaging system, designers must consider the observables associated with the subjects which will be imaged. these observables generally take the form of emitted or reflected energy, such as electromagnetic energy or mechanical energy. the capture device. once the observables associated with the subject are characterized, designers can then identify and integrate the technologies needed to capture those observables. for example, in the case of consumer digital cameras, those technologies include optics for collecting energy in the visible portion of the electromagnetic spectrum, and electronic detectors for converting the electromagnetic energy into an electronic signal. the processor. for all digital imaging systems, the electronic signals produced by the capture device must be manipulated by an algorithm which formats the signals so they can be displayed as an image. in practice, there are often multiple processors involved in the creation of a digital image. the display. the display takes the electronic signals which have been manipulated by the processor and renders them on some visual medium. examples include paper ( for printed, or " hard copy " images ), television, computer monitor, or projector. note that some imaging scientists will include additional " links " in their description of the imaging chain. for example, some will include the " source " of the energy which " illuminates " or interacts with the subject of the image. others will include storage and / or transmission systems. = = subfields = = subfields within imaging science include : image processing, computer vision, 3d computer graphics, animations, atmospheric optics, astronomical imaging, biological imaging, digital image restoration, digital imaging, color science, digital photography, holography, magnetic resonance imaging, medical imaging, microdensitometry, optics, photography, remote sensing, radar imaging, radiometry, silver halide, ultrasound imaging, photoacoustic imaging, thermal imaging, visual perception, and various printing technologies. = = methodologies = = acoustic imaging coherent imaging uses an active coherent illumination source, such as in radar, synthetic aperture radar ( sar ), medical ultrasound and optical coherence tomography ; non - coherent imaging systems include fluorescent microscopes, optical microscopes, and telescopes. chemical imaging, the simultaneous measurement of spectra and pictures digital imaging, creating digital images, generally by scanning or through digital photography disk image, a file which contains the exact content of a data storage medium document imaging, replicating documents commonly the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seeding and diffusion throughout the whole structure of both cells and nutrients. biodegradability is often an essential factor since scaffolds should preferably be absorbed by the surrounding tissues without the necessity of surgical removal. the rate at which degradation occurs has to coincide as much as possible with the rate of tissue formation : this means that while cells are fabricating their own natural matrix structure around themselves, the scaffold is able to provide structural integrity within the body and eventually it will break down leaving the newly formed tissue which will take over the mechanical load. injectability is also important for clinical uses. recent research on organ printing is showing how crucial a good control of the 3d environment is to ensure reproducibility of experiments and offer better results. = = = materials = = = material selection is an essential aspect of producing a scaffold. the materials utilized can be natural or synthetic and can be biodegradable or non - biodegradable. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla – polylactic acid. this is a polyester which be a low - cost, feasible, and accessible way for promoting pa. " essentially, this insinuates that wearable technology can be beneficial to everyone and really is not cost prohibited. also, when consistently seeing wearable technology being actually utilized and worn by other people, it promotes the idea of physical activity and pushes more individuals to take part. wearable technology also helps with chronic disease development and monitoring physical activity in terms of context. for example, according to the american journal of preventive medicine, " wearables can be used across different chronic disease trajectory phases ( e. g., pre - versus post - surgery ) and linked to medical record data to obtain granular data on how activity frequency, intensity, and duration changes over the disease course and with different treatments. " wearable technology can be beneficial in tracking and helping analyze data in terms of how one is performing as time goes on, and how they may be performing with different changes in their diet, workout routine, or sleep patterns. also, not only can wearable technology be helpful in measuring results pre and post surgery, but it can also help measure results as someone may be rehabbing from a chronic disease such as cancer, or heart disease, etc. wearable technology has the potential to create new and improved ways of how we look at health and how we actually interpret that science behind our health. it can propel us into higher levels of medicine and has already made a significant impact on how patients are diagnosed, treated, and rehabbed over time. however, extensive research still needs to be continued on how to properly integrate wearable technology into health care and how to best utilize it. in addition, despite the reaping benefits of wearable technology, a lot of research still also has to be completed in order to start transitioning wearable technology towards very sick high risk patients. = = = sense - making of the data = = = while wearables can collect data in aggregate form, most of them are limited in their ability to analyze or make conclusions based on this data – thus, most are used primarily for general health information. end user perception of how their data is used plays a big role in how such datasets can be fully optimized. exception include seizure - alerting wearables, which continuously analyze the wearer ' s data and make a decision about calling for help – the data collected can then provide doctors with objective evidence that they may find useful in diagnoses. wearables can account for individual differences, although most use less energy than conventional thermal separation processes such as distillation, sublimation or crystallization. the separation process is purely physical and both fractions ( permeate and retentate ) can be obtained as useful products. cold separation using membrane technology is widely used in the food technology, biotechnology and pharmaceutical industries. furthermore, using membranes enables separations to take place that would be impossible using thermal separation methods. for example, it is impossible to separate the constituents of azeotropic liquids or solutes which form isomorphic crystals by distillation or recrystallization but such separations can be achieved using membrane technology. depending on the type of membrane, the selective separation of certain individual substances or substance mixtures is possible. important technical applications include the production of drinking water by reverse osmosis. in waste water treatment, membrane technology is becoming increasingly important. ultra / microfiltration can be very effective in removing colloids and macromolecules from wastewater. this is needed if wastewater is discharged into sensitive waters especially those designated for contact water sports and recreation. about half of the market is in medical applications such as artificial kidneys to remove toxic substances by hemodialysis and as artificial lung for bubble - free supply of oxygen in the blood. the importance of membrane technology is growing in the field of environmental protection ( nano - mem - pro ippc database ). even in modern energy recovery techniques, membranes are increasingly used, for example in fuel cells and in osmotic power plants. = = mass transfer = = two basic models can be distinguished for mass transfer through the membrane : the solution - diffusion model and the hydrodynamic model. in real membranes, these two transport mechanisms certainly occur side by side, especially during ultra - filtration. = = = solution - diffusion model = = = in the solution - diffusion model, transport occurs only by diffusion. the component that needs to be transported must first be dissolved in the membrane. the general approach of the solution - diffusion model is to assume that the chemical potential of the feed and permeate fluids are in equilibrium with the adjacent membrane surfaces such that appropriate expressions for the chemical potential in the fluid and membrane phases can be equated at the solution - membrane interface. this principle is more important for dense membranes without natural pores such as those used for reverse osmosis and in fuel cells. during the filtration process a boundary layer forms on the membrane. this concentration gradient is created by molecules which cannot pass through the membrane. the medical purposes. cells are often ' seeded ' into these structures capable of supporting three - dimensional tissue formation. scaffolds mimic the extracellular matrix of the native tissue, recapitulating the in vivo milieu and allowing cells to influence their own microenvironments. they usually serve at least one of the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seeding and diffusion throughout the whole structure of both cells and nutrients. biodegradability is often an essential factor since scaffolds should preferably be absorbed by the surrounding tissues without the necessity of surgical removal. the rate at which degradation occurs has to coincide as much as possible with the rate of tissue formation : this means that while cells are fabricating their own natural matrix structure around themselves, the scaffold is able to provide structural integrity within the body and eventually it will break down leaving the newly formed tissue which will take over the mechanical load. injectability is also important for clinical uses. recent research on organ printing is showing how crucial a good control of the 3d environment is to ensure reproducibility of experiments and offer better results. = = = materials = = = material selection is an essential aspect of producing a scaffold. the materials utilized can be natural or synthetic and can be biodegradable or non - biodegradable. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), s immune system recognizes these re - implanted cells as its own, and does not target them for attack. autologous cell dependence on host cell health and donor site morbidity may be deterrents to their use. adipose - derived and bone marrow - derived mesenchymal stem cells are commonly autologous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool Question: What type of energy is useful to humans because it's ease of transport and conversion to other forms of energy? A) electrical B) physical C) potential D) heat
A) electrical
Context: the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then ##colysis. this waste product varies depending on the organism. in skeletal muscles, the waste product is lactic acid. this type of fermentation is called lactic acid fermentation. in strenuous exercise, when energy demands exceed energy supply, the respiratory chain cannot process all of the hydrogen atoms joined by nadh. during anaerobic glycolysis, nad + regenerates when pairs of hydrogen combine with pyruvate to form lactate. lactate formation is catalyzed by lactate dehydrogenase in a reversible reaction. lactate can also be used as an indirect precursor for liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma transparent pure and cu - doped ( 2. 5, 5 and 10 at. % ) anatase tio2 thin films were grown by pulsed laser deposition technique on laalo3 substrates. the samples were structurally characterized by x - ray absorption spectroscopy and x - ray diffraction. the magnetic properties were measured using a squid. all films have a fm - like behaviour. in the case of the cu - doped samples, the magnetic cycles are almost independent of the cu concentration. cu atoms are forming cuo and / or substituting ti in tio2. the thermal treatment in air promotes the cuo segregation. since cuo is antiferromagnetic, the magnetic signals present in the films could be assigned to this cu substitutionally replacing cations in tio2. nadh. during anaerobic glycolysis, nad + regenerates when pairs of hydrogen combine with pyruvate to form lactate. lactate formation is catalyzed by lactate dehydrogenase in a reversible reaction. lactate can also be used as an indirect precursor for liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of ##nosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in the transpiration stream. diffusion, osmosis, and active transport and mass flow are all different ways transport can occur. examples of elements that plants need to transport are nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. in vascular plants, these elements are extracted from the soil as soluble ions by the roots and transported throughout the plant in the xylem. most of the elements required for plant nutrition come from the chemical breakdown of soil minerals. sucrose produced by photosynthesis is transported from the leaves to other parts of the plant in the phloem and plant hormones are transported by a variety of processes. = = = plant hormones = = = plants are not passive, but respond to external signals such as light, touch, and injury by moving or growing towards or away from the stimulus, as appropriate. tangible evidence of touch sensitivity is the almost instantaneous collapse of leaflets of mimosa pudica, the insect traps of neo - assyrian period ( 911 – 609 ) bc. the egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever, to create structures like the great pyramid of giza. the earliest civil engineer known by name is imhotep. as one of the officials of the pharaoh, djoser, he probably designed and supervised the construction of the pyramid of djoser ( the step pyramid ) at saqqara in egypt around 2630 – 2611 bc. the earliest practical water - powered machines, the water wheel and watermill, first appeared in the persian empire, in what are now iraq and iran, by the early 4th century bc. kush developed the sakia during the 4th century bc, which relied on animal power instead of human energy. hafirs were developed as a type of reservoir in kush to store and contain water as well as boost irrigation. sappers were employed to build causeways during military campaigns. kushite ancestors built speos during the bronze age between 3700 and 3250 bc. bloomeries and blast furnaces were also created during the 7th centuries bc in kush. ancient greece developed machines in both civilian and military domains. the antikythera mechanism, an early known mechanical analog computer, and the mechanical inventions of archimedes, are examples of greek mechanical engineering. some of archimedes ' inventions, as well as the antikythera mechanism, required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the industrial revolution, and are widely used in fields such as robotics and automotive engineering. ancient chinese, greek, roman and hunnic armies employed military machines and inventions such as artillery which was developed by the greeks around the 4th century bc, the trireme, the ballista and the catapult, the trebuchet by chinese circa 6th - 5th century bce. = = = middle ages = = = the earliest practical wind - powered machines, the windmill and wind pump, first appeared in the muslim world during the islamic golden age, in what are now iran, afghanistan, and pakistan, by the 9th century ad. the earliest practical steam - powered machine was a steam jack driven by a steam turbine, described in 1551 by taqi al - din muhammad ibn ma ' ruf in ottoman egypt. the cotton gin was invented in india by the 6th century ad, and the spinning wheel was invented in the islamic as a traditional tool of external assistance, crutches play an important role in society. they have a wide range of applications to help either the elderly and disabled to walk or to treat certain illnesses or for post - operative rehabilitation. but there are many different types of crutches, including shoulder crutches and elbow crutches. how to choose has become an issue that deserves to be debated. because while crutches help people walk, they also have an impact on the body. inappropriate choice of crutches or long - term misuse can lead to problems such as scoliosis. previous studies were mainly experimental measurements or the construction of dynamic models to calculate the load on joints with crutches. these studies focus only on the level of the joints, ignoring the role that muscles play in this process. although some also take into account the degree of muscle activation, there is still a lack of quantitative analysis. the traditional dynamic model can be used to calculate the load on each joint. however, due to the activation of the muscle, this situation only causes part of the load transmitted to the joint, and the work of the chair will compensate the other part of the load. analysis at the muscle level allows a better understanding of the impact of crutches on the body. by comparing the levels of activation of the trunk muscles, it was found that the use of crutches for walking, especially a single crutch, can cause a large difference in the activation of the back muscles on the left and right sides, and this difference will cause muscle degeneration for a long time, leading to scoliosis. in this article taking scoliosis as an example, by analyzing the muscles around the spine, we can better understand the pathology and can better prevent diseases. the objective of this article is to analyze normal walking compared to walking with one or two crutches using opensim software to obtain the degree of activation of different muscles in order to analyze the impact of crutches on the body. some examples and basic properties of ultrametric spaces are briefly discussed. an alternative explanation of 1 / f - noise in manganites is suggested and discussed international space station ( iss ) under contract to nasa, conducting crew rotations between the expeditions of the international space station program. american space manufacturer spacex began providing service in 2020, using the crew dragon spacecraft, while boeing ' s starliner spacecraft began providing service in 2024. nasa has contracted for six operational missions from boeing and fourteen from spacex, ensuring sufficient support for iss through 2030. the spacecraft are owned and operated by the vendor, and crew transportation is provided to nasa as a commercial service. each mission sends up to four astronauts to the iss, with an option for a fifth passenger available. operational flights occur approximately once every six months for missions that last for approximately six months. a spacecraft remains docked to the iss during its mission, and missions usually overlap by at least a few days. between the retirement of the space shuttle in 2011 and the first operational ccp mission in 2020, nasa relied on the soyuz program to transport its astronauts to the iss. a crew dragon spacecraft is launched to space atop a falcon 9 block 5 launch vehicle and the capsule returns to earth via splashdown in the ocean near florida. the program ' s first operational mission, spacex crew - 1, launched on november 16, 2020. boeing starliner operational flights will now commence with boeing starliner - 1 which will launched atop an atlas v n22 launch vehicle. instead of a splashdown, starliner capsules return on land with airbags at one of four designated sites in the western united states. = = = = artemis ( 2017 – present ) = = = = since 2017, nasa ' s crewed spaceflight program has been the artemis program, which involves the help of us commercial spaceflight companies and international partners such as esa, jaxa, and csa. the goal of this program is to land " the first woman and the next man " on the lunar south pole region by 2025. artemis would be the first step towards the long - term goal of establishing a sustainable presence on the moon, laying the foundation for companies to build a lunar economy, and eventually sending humans to mars. the orion crew exploration vehicle was held over from the canceled constellation program for artemis. artemis i was the uncrewed initial launch of space launch system ( sls ) that would also send an orion spacecraft on a distant retrograde orbit. the first tentative steps of returning to crewed lunar missions will be artemis ii, which is to include the orion crew module, propelled by the sls, and is expected to launch no later than april 2026. this mission Question: When performing anaerobic exercise, your muscles work against what? A) momentum B) gravity C) inertia D) resistance
D) resistance
Context: sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetic the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice the term most responsible physician ( mrp ) or attending physician is also used interchangeably to describe this role. laser medicine involves the use of lasers in the diagnostics or treatment of various conditions. many other health science fields, e. g. dietetics medical ethics deals with ethical and moral principles that apply values and judgments to the practice of medicine. medical humanities includes the humanities ( literature, philosophy, ethics, history and religion ), social science ( anthropology, cultural studies, psychology, sociology ), and the arts ( literature, theater, film, and visual arts ) and their application to medical education and practice. nosokinetics is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around , followed by a medical interview and a physical examination. basic diagnostic medical devices ( e. g., stethoscope, tongue depressor ) are typically used. after examining for signs and interviewing for symptoms, the doctor may order medical tests ( e. g., blood tests ), take a biopsy, or prescribe pharmaceutical drugs or other therapies. differential diagnosis methods help to rule out conditions based on the information provided. during the encounter, properly informing the patient of all relevant facts is an important part of the relationship and the development of trust. the medical encounter is then documented in the medical record, which is a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history , social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary ##al radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation and management. diving medicine ( or hyperbaric medicine ) is the prevention and treatment of diving - related problems. evolutionary medicine is a perspective on medicine derived through applying evolutionary theory. forensic medicine deals with medical questions in legal context, such as determination of the time and cause of death, type of weapon used to inflict the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family Question: What type of doctor specializes in the laboratory detection of disease? A) infectious disease physician B) diagnostician C) pathologist D) internist
C) pathologist
Context: and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell ##yotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the material includes the unit cell, which is the smallest unit of a crystal lattice ( space lattice ) that repeats to make up the macroscopic crystal structure. most common structural materials include parallelpiped and hexagonal lattice types. in single crystals, the effects of the crystalline arrangement of atoms is often easy to see macroscopically, because the natural shapes of crystals reflect the atomic structure. further, physical properties are often controlled by crystalline defects. the understanding of crystal structures is an important prerequisite for understanding crystallographic defects. examples of crystal defects consist of dislocations including edges, screws, vacancies, self inter - stitials, and more that are linear, planar, and three dimensional types of defects. new and advanced materials that are being developed include nanomaterials, biomaterials. mostly, materials do not occur as a single crystal, but in polycrystalline form, as an aggregate of small crystals or grains with different orientations. because of this, the powder diffraction method, which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. most materials have a crystalline structure, but some important materials do not exhibit regular crystal structure. polymers display varying degrees of crystallinity, and many are completely non - crystalline. glass, some ceramics, and many natural materials are amorphous, not possessing any long - range order in their atomic arrangements. the study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic and mechanical descriptions of physical properties. = = = = nanostructure = = = = materials, which atoms and molecules form constituents in the nanoscale ( i. e., they form nanostructures ) are called nanomaterials. nanomaterials are the subject of intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 – 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm ) of the mass of all organisms, with calcium, phosphorus, sulfur, sodium, chlorine, and magnesium constituting essentially all the remainder. different elements can combine to form compounds such as water, which is fundamental to life. biochemistry is the study of chemical processes within and relating to living organisms. molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry 0. 1 and 100 nm in each spatial dimension. the terms nanoparticles and ultrafine particles ( ufp ) often are used synonymously although ufp can reach into the micrometre range. the term ' nanostructure ' is often used, when referring to magnetic technology. nanoscale structure in biology is often called ultrastructure. = = = = microstructure = = = = microstructure is defined as the structure of a prepared surface or thin foil of material as revealed by a microscope above 25Γ— magnification. it deals with objects from 100 nm to a few cm. the microstructure of a material ( which can be broadly classified into metallic, polymeric, ceramic and composite ) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high / low temperature behavior, wear resistance, and so on. most of the traditional materials ( such as metals and ceramics ) are microstructured. the manufacture of a perfect crystal of a material is physically impossible. for example, any crystalline material will contain defects such as precipitates, grain boundaries ( hall – petch relationship ), vacancies, interstitial atoms or substitutional atoms. the microstructure of materials reveals these larger defects and advances in simulation have allowed an increased understanding of how defects can be used to enhance material properties. = = = = macrostructure = = = = macrostructure is the appearance of a material in the scale millimeters to meters, it is the structure of the material as seen with the naked eye. = = = properties = = = materials exhibit myriad properties, including the following. mechanical properties, see strength of materials chemical properties, see chemistry electrical properties, see electricity thermal properties, see thermodynamics optical properties, see optics and photonics magnetic properties, see magnetism the properties of a material determine its usability and hence its engineering application. = = = processing = = = synthesis and processing involves the creation of a material with the desired micro - nanostructure. a material cannot be used in industry if no economically viable production method for it has been developed. therefore, developing processing methods for materials that are reasonably effective and cost - efficient is vital to the field of materials science. different materials require different processing or synthesis methods. for example, the processing of metals has historically defined eras such as the bronze age and iron age and is studied under the branch of materials science named physical metallurgy. small category. any ordinal number can be seen as a category when viewed as an ordered set. any monoid ( any algebraic structure with a single associative binary operation and an identity element ) forms a small category with a single object x. ( here, x is any fixed set. ) the morphisms from x to x are precisely the elements of the monoid, the identity morphism of x is the identity of the monoid, and the categorical composition of morphisms is given by the monoid operation. several definitions and theorems about monoids may be generalized for categories. similarly any group can be seen as a category with a single object in which every morphism is invertible, that is, for every morphism f there is a morphism g that is both left and right inverse to f under composition. a morphism that is invertible in this sense is called an isomorphism. a groupoid is a category in which every morphism is an isomorphism. groupoids are generalizations of groups, group actions and equivalence relations. actually, in the view of category the only difference between groupoid and group is that a groupoid may have more than one object but the group must have only one. consider a topological space x and fix a base point x 0 { \ displaystyle x _ { 0 } } of x, then Ο€ 1 ( x, x 0 ) { \ displaystyle \ pi _ { 1 } ( x, x _ { 0 } ) } is the fundamental group of the topological space x and the base point x 0 { \ displaystyle x _ { 0 } }, and as a set it has the structure of group ; if then let the base point x 0 { \ displaystyle x _ { 0 } } runs over all points of x, and take the union of all Ο€ 1 ( x, x 0 ) { \ displaystyle \ pi _ { 1 } ( x, x _ { 0 } ) }, then the set we get has only the structure of groupoid ( which is called as the fundamental groupoid of x ) : two loops ( under equivalence relation of homotopy ) may not have the same base point so they cannot multiply with each other. in the language of category, this means here two morphisms may not have the same source object ( or target object, because in this case for any morphism the source object and the target object are same : the base point ) so , but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase it is hard for us humans to recognize things in nature until we have invented them ourselves. for image - forming optics, nature has made virtually every kind of lens humans have devised. but what about lensless " imaging "? recently, we showed that a bare array of sensors on a curved substrate could achieve resolution not limited by diffraction - without any lens at all provided that the objects imaged conform to our a priori assumptions. is it possible that somewhere in nature we will find this kind of vision system? we think so and provide examples that seem to make no sense whatever unless they are using something like our lensless imaging work. Question: The smallest unit of structure and function in all living organisms is what? A) mineral B) particle C) cell D) compound
C) cell
Context: reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit , behind which are structures termed reentrant triangles. radar waves penetrating the skin get trapped in these structures, reflecting off the internal faces and losing energy. this method was first used on the blackbird series : a - 12, yf - 12a, lockheed sr - 71 blackbird. the most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth air the boron buckyball avoids the high symmetry icosahedral cage structure. the previously reported ih symmetric structure is not an energy minimum in the potential energy surface and exhibits a spontaneous symmetry breaking to yield a puckered cage with a rare th symmetry. the homo - lumo gap is twice as large as the reported value and amounts to 1. 94 ev at b3lyp / 6 - 31g ( d ) level. the valence orbital structure of boron buckyball is identical to the one in the carbon analogue. and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has we prove that all 2 - bridge ribbon knots are symmetric unions. bear ' ) was conspicuous on radar. it is now known that propellers and jet turbine blades produce a bright radar image ; the bear has four pairs of large 18 - foot ( 5. 6 m ) diameter contra - rotating propellers. another important factor is internal construction. some stealth aircraft have skin that is radar transparent or absorbing, behind which are structures termed reentrant triangles. radar waves penetrating the skin get trapped in these structures, reflecting off the internal faces and losing energy. this method was first used on the blackbird series : a - 12, yf - 12a, lockheed sr - 71 blackbird. the most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar in mathematics, a reflection ( also spelled reflexion ) is a mapping from a euclidean space to itself that is an isometry with a hyperplane as the set of fixed points ; this set is called the axis ( in dimension 2 ) or plane ( in dimension 3 ) of reflection. the image of a figure by a reflection is its mirror image in the axis or plane of reflection. for example the mirror image of the small latin letter p for a reflection with respect to a vertical axis ( a vertical reflection ) would look like q. its image by reflection in a horizontal axis ( a horizontal reflection ) would look like b. a reflection is an involution : when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state. the term reflection is sometimes used for a larger class of mappings from a euclidean space to itself, namely the non - identity isometries that are involutions. the set of fixed points ( the " mirror " ) of such an isometry is an affine subspace, but is possibly smaller than a hyperplane. for instance a reflection through a point is an involutive isometry with just one fixed point ; the image of the letter p under it would look like a d. this operation is also known as a central inversion ( coxeter 1969, Β§ 7. 2 ), and exhibits euclidean space as a symmetric space. in a euclidean vector space, the reflection in the point situated at the origin is the same as vector negation. other examples include reflections in a line in three - dimensional space. typically, however, unqualified use of the term " reflection " means reflection in a hyperplane. some mathematicians use " flip " as a synonym for " reflection ". = = construction = = in a plane ( or, respectively, 3 - dimensional ) geometry, to find the reflection of a point drop a perpendicular from the point to the line ( plane ) used for reflection, and extend it the same distance on the other side. to find the reflection of a figure, reflect each point in the figure. to reflect point p through the line ab using compass and straightedge, proceed as follows ( see figure ) : step 1 ( red ) : construct a circle with center at p and some fixed radius r to create points a β€² and b β€² on the line ab, which will be equidistant from p. step 2 ( green ) : construct circles centered at a β€² and b β€² having radius r side aspect rcs ), compared with three or more on most other types. while writing about radar systems, authors simon kingsley and shaun quegan singled out the vulcan ' s shape as acting to reduce the rcs. in contrast, the tupolev tu - 95 russian long - range bomber ( nato reporting name ' bear ' ) was conspicuous on radar. it is now known that propellers and jet turbine blades produce a bright radar image ; the bear has four pairs of large 18 - foot ( 5. 6 m ) diameter contra - rotating propellers. another important factor is internal construction. some stealth aircraft have skin that is radar transparent or absorbing, behind which are structures termed reentrant triangles. radar waves penetrating the skin get trapped in these structures, reflecting off the internal faces and losing energy. this method was first used on the blackbird series : a - 12, yf - 12a, lockheed sr - 71 blackbird. the most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22 ##logous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) are subclass of pluripotent stem cells resembling embryonic stem cells ( escs ) that have been derived from adult differentiated cells. ipscs are created by altering the expression of transcriptional factors in adult cells until they become like embryonic stem cells. multipotent stem cells can be differentiated into any cell Question: Bilaterally symmetrical animals have both dorsal and what type of sides? A) ventral B) posterior C) anterior D) exterior
A) ventral
Context: that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit glasses constitute a widespread form of solid matter, and glass production has been an important human technology for more than 3000 years. despite that long history, new ways to understand the fundamental physics of glasses continue to emerge. ##sphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as earth science or geoscience includes all fields of natural science related to the planet earth. this is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of earth ' s four spheres : the biosphere, hydrosphere / cryosphere, atmosphere, and geosphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " , but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase Question: Which state of matter is not common on earth? A) liquid B) plasma C) respiration D) gas
B) plasma
Context: the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the , characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc – 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using a minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0. 1 bar in the atmospheres of earth, titan, jupiter, saturn, uranus and neptune, despite great differences in atmospheric composition, gravity, internal heat and sunlight. in all these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of shortwave solar radiation, from a region below characterised by convection, weather, and clouds. however, it is not obvious why the tropopause occurs at the specific pressure near 0. 1 bar. here we use a physically - based model to demonstrate that, at atmospheric pressures lower than 0. 1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. at higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. a common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets the 0. 1 bar tropopause. we hypothesize that a tropopause at a pressure of approximately 0. 1 bar is characteristic of many thick atmospheres, including exoplanets and exomoons in our galaxy and beyond. judicious use of this rule could help constrain the atmospheric structure, and thus the surface environments and habitability, of exoplanets. the motion of celestial bodies through a higher power such as god. aristotle did not have the technological advancements that would have explained the motion of celestial bodies. in addition, aristotle had many views on the elements. he believed that everything was derived of the elements earth, water, air, fire, and lastly the aether. the aether was a celestial element, and therefore made up the matter of the celestial bodies. the elements of earth, water, air and fire were derived of a combination of two of the characteristics of hot, wet, cold, and dry, and all had their inevitable place and motion. the motion of these elements begins with earth being the closest to " the earth, " then water, air, fire, and finally aether. in addition to the makeup of all things, aristotle came up with theories as to why things did not return to their natural motion. he understood that water sits above earth, air above water, and fire above air in their natural state. he explained that although all elements must return to their natural state, the human body and other living things have a constraint on the elements – thus not allowing the elements making one who they are to return to their natural state. the important legacy of this period included substantial advances in factual knowledge, especially in anatomy, zoology, botany, mineralogy, geography, mathematics and astronomy ; an awareness of the importance of certain scientific problems, especially those related to the problem of change and its causes ; and a recognition of the methodological importance of applying mathematics to natural phenomena and of undertaking empirical research. in the hellenistic age scholars frequently employed the principles developed in earlier greek thought : the application of mathematics and deliberate empirical research, in their scientific investigations. thus, clear unbroken lines of influence lead from ancient greek and hellenistic philosophers, to medieval muslim philosophers and scientists, to the european renaissance and enlightenment, to the secular sciences of the modern day. neither reason nor inquiry began with the ancient greeks, but the socratic method did, along with the idea of forms, give great advances in geometry, logic, and the natural sciences. according to benjamin farrington, former professor of classics at swansea university : " men were weighing for thousands of years before archimedes worked out the laws of equilibrium ; they must have had practical and intuitional knowledge of the principals involved. what archimedes did was to sort out the theoretical implications of this practical knowledge and present the resulting body of knowledge as a logically coherent system. " and again : " with astonishment we find ourselves on the threshold of modern science ##nts from the air to reduce the potential adverse effects on humans and the environment. the process of air purification may be performed using methods such as mechanical filtration, ionization, activated carbon adsorption, photocatalytic oxidation, and ultraviolet light germicidal irradiation. = = = sewage treatment = = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the porosimetry are utilized. = = introduction = = membrane technology covers all engineering approaches for the transport of substances between two fractions with the help of semi - permeable membranes. in general, mechanical separation processes for separating gaseous or liquid streams use membrane technology. in recent years, different methods have been used to remove environmental pollutants, like adsorption, oxidation, and membrane separation. different pollution occurs in the environment like air pollution, waste water pollution etc. as per industry requirement to prevent industrial pollution because more than 70 % of environmental pollution occurs due to industries. it is their responsibility to follow government rules of the air pollution control & prevention act 1981 to maintain and prevent the harmful chemical release into the environment. make sure to do prevention & safety processes after that industries are able to release their waste in the environment. biomass - based membrane technology is one of the most promising technologies for use as a pollutants removal weapon because it has low cost, more efficiency, & lack of secondary pollutants. typically polysulfone, polyvinylidene fluoride, and polypropylene are used in the membrane preparation process. these membrane materials are non - renewable and non - biodegradable which create harmful environmental pollution. researchers are trying to find a solution to synthesize an eco - friendly membrane which avoids environmental pollution. synthesis of biodegradable material with the help of naturally available material such as biomass - based membrane synthesis can be used to remove pollutants. = = = membrane overview = = = membrane separation processes operate without heating and therefore use less energy than conventional thermal separation processes such as distillation, sublimation or crystallization. the separation process is purely physical and both fractions ( permeate and retentate ) can be obtained as useful products. cold separation using membrane technology is widely used in the food technology, biotechnology and pharmaceutical industries. furthermore, using membranes enables separations to take place that would be impossible using thermal separation methods. for example, it is impossible to separate the constituents of azeotropic liquids or solutes which form isomorphic crystals by distillation or recrystallization but such separations can be achieved using membrane technology. depending on the type of membrane, the selective separation of certain individual substances or substance mixtures is possible. important technical applications include the production of drinking water by reverse osmosis. in waste water treatment, membrane technology is becoming increasingly important. ultra / microfiltration can be very effective in removing colloids and macro enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the the most puzzling issue in the foundations of quantum mechanics is perhaps that of the status of the wave function of a system in a quantum universe. is the wave function objective or subjective? does it represent the physical state of the system or merely our information about the system? and if the former, does it provide a complete description of the system or only a partial description? we shall address these questions here mainly from a bohmian perspective, and shall argue that part of the difficulty in ascertaining the status of the wave function in quantum mechanics arises from the fact that there are two different sorts of wave functions involved. the most fundamental wave function is that of the universe. from it, together with the configuration of the universe, one can define the wave function of a subsystem. we argue that the fundamental wave function, the wave function of the universe, has a law - like character. horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ) the muck tube. the pressurized air flow must be constant to ensure regular air changes for the workers and prevent excessive inflow of mud or water at the base of the caisson. when the caisson hits bedrock, the sandhogs exit through the airlock and fill the box with concrete, forming a solid foundation pier. a pneumatic ( compressed - air ) caisson has the advantage of providing dry working conditions, which is better for placing concrete. it is also well suited for foundations for which other methods might cause settlement of adjacent structures. construction workers who leave the pressurized environment of the caisson must decompress at a rate that allows symptom - free release of inert gases dissolved in the body tissues if they are to avoid decompression sickness, a condition first identified in caisson workers, and originally named " caisson disease " in recognition of the occupational hazard. construction of the brooklyn bridge, which was built with the help of pressurised caissons, resulted in numerous workers being either killed or permanently injured by caisson disease during its construction. barotrauma of the ears, sinus cavities and lungs and dysbaric osteonecrosis are other risks. = = other uses = = caissons have also been used in the installation of hydraulic elevators where a single - stage ram is installed below the ground level. caissons, codenamed phoenix, were an integral part of the mulberry harbours used during the world war ii allied invasion of normandy. = = other meanings = = boat lift caissons : the word caisson is also used as a synonym for the moving trough part of caisson locks, canal lifts and inclines in which boats and ships rest while being lifted from one canal elevation to another ; the water is retained on the inside of the caisson, or excluded from the caisson, according to the respective operating principle. structural caissons : caisson is also sometimes used as a colloquial term for a reinforced concrete structure formed by pouring into a hollow cylindrical form, typically by placing a caisson form below grade in an open excavation and pouring once backfill is complete, or by drilling at grade, although this can be problematic with deep caissons, as unsupported excavations can collapse before the caisson form can be inserted. in this manner, the earth placed around the empty caisson form provides stability and strength, allowing concrete to be poured with fewer complications and with less risk of a Question: Which system of the body is responsible for bringing air into the body? A) digestive system B) excretory system C) vascular system D) respiratory system
D) respiratory system
Context: much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable the rapidly developing research field of organic analogue sensors aims to replace traditional semiconductors with naturally occurring materials. photosensors, or photodetectors, change their electrical properties in response to the light levels they are exposed to. organic photosensors can be functionalised to respond to specific wavelengths, from ultra - violet to red light. performing cyclic voltammetry on fungal mycelium and fruiting bodies under different lighting conditions shows no appreciable response to changes in lighting condition. however, functionalising the specimen using pedot : pss yields in a photosensor that produces large, instantaneous current spikes when the light conditions change. future works would look at interfacing this organic photosensor with an appropriate digital back - end for interpreting and processing the response. protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions in mathematics, a reflection ( also spelled reflexion ) is a mapping from a euclidean space to itself that is an isometry with a hyperplane as the set of fixed points ; this set is called the axis ( in dimension 2 ) or plane ( in dimension 3 ) of reflection. the image of a figure by a reflection is its mirror image in the axis or plane of reflection. for example the mirror image of the small latin letter p for a reflection with respect to a vertical axis ( a vertical reflection ) would look like q. its image by reflection in a horizontal axis ( a horizontal reflection ) would look like b. a reflection is an involution : when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state. the term reflection is sometimes used for a larger class of mappings from a euclidean space to itself, namely the non - identity isometries that are involutions. the set of fixed points ( the " mirror " ) of such an isometry is an affine subspace, but is possibly smaller than a hyperplane. for instance a reflection through a point is an involutive isometry with just one fixed point ; the image of the letter p under it would look like a d. this operation is also known as a central inversion ( coxeter 1969, Β§ 7. 2 ), and exhibits euclidean space as a symmetric space. in a euclidean vector space, the reflection in the point situated at the origin is the same as vector negation. other examples include reflections in a line in three - dimensional space. typically, however, unqualified use of the term " reflection " means reflection in a hyperplane. some mathematicians use " flip " as a synonym for " reflection ". = = construction = = in a plane ( or, respectively, 3 - dimensional ) geometry, to find the reflection of a point drop a perpendicular from the point to the line ( plane ) used for reflection, and extend it the same distance on the other side. to find the reflection of a figure, reflect each point in the figure. to reflect point p through the line ab using compass and straightedge, proceed as follows ( see figure ) : step 1 ( red ) : construct a circle with center at p and some fixed radius r to create points a β€² and b β€² on the line ab, which will be equidistant from p. step 2 ( green ) : construct circles centered at a β€² and b β€² having radius r , even if the idempotence property is lost. an everyday example of a projection is the casting of shadows onto a plane ( sheet of paper ) : the projection of a point is its shadow on the sheet of paper, and the projection ( shadow ) of a point on the sheet of paper is that point itself ( idempotency ). the shadow of a three - dimensional sphere is a disk. originally, the notion of projection was introduced in euclidean geometry to denote the projection of the three - dimensional euclidean space onto a plane in it, like the shadow example. the two main projections of this kind are : the projection from a point onto a plane or central projection : if c is a point, called the center of projection, then the projection of a point p different from c onto a plane that does not contain c is the intersection of the line cp with the plane. the points p such that the line cp is parallel to the plane does not have any image by the projection, but one often says that they project to a point at infinity of the plane ( see projective geometry for a formalization of this terminology ). the projection of the point c itself is not defined. the projection parallel to a direction d, onto a plane or parallel projection : the image of a point p is the intersection of the plane with the line parallel to d passing through p. see affine space Β§ projection for an accurate definition, generalized to any dimension. the concept of projection in mathematics is a very old one, and most likely has its roots in the phenomenon of the shadows cast by real - world objects on the ground. this rudimentary idea was refined and abstracted, first in a geometric context and later in other branches of mathematics. over time different versions of the concept developed, but today, in a sufficiently abstract setting, we can unify these variations. in cartography, a map projection is a map of a part of the surface of the earth onto a plane, which, in some cases, but not always, is the restriction of a projection in the above meaning. the 3d projections are also at the basis of the theory of perspective. the need for unifying the two kinds of projections and of defining the image by a central projection of any point different of the center of projection are at the origin of projective geometry. = = definition = = generally, a mapping where the domain and codomain are the same set ( or mathematical structure ) is a projection if the mapping is idempotent, which means that a projection is substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the of a light source can be measured with a spectroradiometer, which works by optically collecting the light, then passing it through a monochromator before reading it in narrow bands of wavelength. reflected color can be measured using a spectrophotometer ( also called spectroreflectometer or reflectometer ), which takes measurements in the visible region ( and a little beyond ) of a given color sample. if the custom of taking readings at 10 nanometer increments is followed, the visible light range of 400 – 700 nm will yield 31 readings. these readings are typically used to draw the sample ' s spectral reflectance curve ( how much it reflects, as a function of wavelength ) β€” the most accurate data that can be provided regarding its characteristics. the readings by themselves are typically not as useful as their tristimulus values, which can be converted into chromaticity co - ordinates and manipulated through color space transformations. for this purpose, a spectrocolorimeter may be used. a spectrocolorimeter is simply a spectrophotometer that can estimate tristimulus values by numerical integration ( of the color matching functions ' inner product with the illuminant ' s spectral power distribution ). one benefit of spectrocolorimeters over tristimulus colorimeters is that they do not have optical filters, which are subject to manufacturing variance, and have a fixed spectral transmittance curve β€” until they age. on the other hand, tristimulus colorimeters are purpose - built, cheaper, and easier to use. the cie ( international commission on illumination ) recommends using measurement intervals under 5 nm, even for smooth spectra. sparser measurements fail to accurately characterize spiky emission spectra, such as that of the red phosphor of a crt display, depicted aside. = = = color temperature meter = = = photographers and cinematographers use information provided by these meters to decide what color balancing should be done to make different light sources appear to have the same color temperature. if the user enters the reference color temperature, the meter can calculate the mired difference between the measurement and the reference, enabling the user to choose a corrective color gel or photographic filter with the closest mired factor. internally the meter is typically a silicon photodiode tristimulus colorimeter. the correlated color temperature can be calculated from the tristimulus values by first calculating the chromaticity co - ordinates in the cie 1960 color space, then finding the closest decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygenated blood in a particular region is assumed to correlate with an increase in neural activity in that part of the brain. this allows us to localize particular functions within different brain regions. fmri has moderate spatial and temporal resolution. optical imaging. this technique uses infrared transmitters and receivers to measure the amount of light reflectance by blood near different areas of the brain. since oxygenated and deoxygenated blood reflects light by different amounts, we can study which areas are more active ( i. e., those that have more oxygenated blood ). optical imaging has moderate temporal resolution, but poor spatial resolution. it also has the advantage that it is extremely safe and can be used to study infants ' brains. magnetoencephalography. meg measures magnetic fields resulting from cortical activity. it is similar to eeg, except that it has improved spatial resolution since the magnetic fields it measures are not as blurred or attenuated by the scalp, meninges and so forth as the electrical activity measured in eeg is. meg uses squid sensors to detect tiny magnetic fields. = = = computational modeling = = = computational models require a mathematically and logically formal representation of a problem. computer models are used in the simulation and experimental verification of different Question: The photoreceptive cells of the eye, where transduction of light to nervous impulses occurs, are located in this? A) cornea B) retina C) sclera D) pupil
B) retina
Context: ##yotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β€” the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws as medical hardware, plastics, tubes for gas - pipelines, hoses for floor - heating, shrink - foils for food packaging, automobile parts, wires and cables ( isolation ), tires, and even gemstones. compared to the amount of food irradiated, the volume of those every - day applications is huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley – to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states supreme court ruled that a genetically modified microorganism could be patented in the case of diamond v. chakrabarty. indian - born ananda chakrabarty, working for general electric, had modified a bacterium ( of the genus pseudomonas ) capable of breaking down crude oil, which he proposed to antibiotic - resistant bacterial infection becomes one of the most serious risks to public health care today. however, discouragingly, the development of new antibiotics has been little progressed over the last decade. there is an urgent need of the alternative approaches to treat the antibiotic - resistant bacteria. the novel methods, which include photothermal therapy based on gold nano - materials and ionizing radiation such as x - rays and gamma rays, have been reported. studies of the effects of high - energy proton radiation on bacteria are mainly focused on bacillus species and its spores. the effect of proton beams on escherichia coli ( e. coli ) has been limitedly reported. the escherichia coli is an important biological tool to obtain the metabolic and genetic information and also a common model microorganism for studying toxicity and antimicrobial activity. in addition, e. coli is a common bacterium in the intestinal tract of mammals. herein, the morphological and physiological changes of e. coli after proton irradiation were investigated. the diluted solutions of the cells were used for proton beam radiation. lb agar plates were used to count the number of colonies formed. the growing profile of the cells was monitored by optical density at 600 nm. the morphology of the irradiated cells was analyzed with optical microscope. microarray analysis was performed to examine the gene expression changes between irradiated samples and control samples without irradiation. it is explained why excessive mu to e gamma can be a problem in susy gut see - saw models of neutrino mass, and ways that this problem might be avoided are discussed. their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can is opened and the dna is purified. the gene is separated by using restriction enzymes to cut the dna into fragments or polymerase chain reaction ( pcr ) to amplify up the gene segment. these segments can then be extracted through gel electrophoresis. if the chosen gene or the donor organism ' s genome has been well studied it may already be accessible from a genetic library. if the dna sequence is known, but no copies of the gene are available, it can also be artificially synthesised. once isolated the gene is ligated into a plasmid that is then inserted into a bacterium. the plasmid is replicated when the bacteria divide, ensuring unlimited copies of the gene are available. the rk2 plasmid is notable for its ability to replicate in a wide variety of single - celled organisms, which makes it suitable as a genetic engineering tool. before the gene is inserted into the target organism it must be combined with other genetic elements. these include a promoter and terminator region, which initiate and end transcription. a selectable marker gene is added, which in most cases confers antibiotic resistance, so researchers can easily determine which cells have been successfully transformed. the gene can also be modified at this stage for better expression or effectiveness. these manipulations are carried out using recombinant dna techniques, such as restriction digests, ligations and molecular cloning. = = = inserting dna into the host genome = = = there are a number of techniques used to insert genetic material into the host genome. some bacteria can naturally take up foreign dna. this ability can be induced in other bacteria via stress ( e. g. thermal or electric shock ), which increases the cell membrane ' s permeability to dna ; up - taken dna can either integrate with the genome or exist as extrachromosomal dna. dna is generally inserted into animal cells using microinjection, where it can be injected through the cell ' s nuclear envelope directly into the nucleus, or through the use of viral vectors. plant genomes can be engineered by physical methods or by use of agrobacterium for the delivery of sequences hosted in t - dna binary vectors. in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell Question: E. coli need what kind of acids to survive? A) amino B) boric C) bacterial D) hydrochloric
A) amino
Context: of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose – einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive contains a unique number that when added with any number leaves the latter unchanged. this unique number is known as the system ' s additive identity element. for example, the integers has the structure of an ordered ring. this number is generally denoted as 0. because of the total order in this ring, there are numbers greater than zero, called the positive numbers. another property required for a ring to be ordered is that, for each positive number, there exists a unique corresponding number less than 0 whose sum with the original positive number is 0. these numbers less than 0 are called the negative numbers. the numbers in each such pair are their respective additive inverses. this attribute of a number, being exclusively either zero ( 0 ), positive ( + ), or negative ( βˆ’ ), is called its sign, and is often encoded to the real numbers 0, 1, and βˆ’1, respectively ( similar to the way the sign function is defined ). since rational and real numbers are also ordered rings ( in fact ordered fields ), the sign attribute also applies to these number systems. when a minus sign is used in between two numbers, it represents the binary operation of subtraction. when a minus sign is written before a single number, it represents the unary operation of yielding the additive inverse ( sometimes called negation ) of the operand. abstractly then, the difference of two number is the sum of the minuend with the additive inverse of the subtrahend. while 0 is its own additive inverse ( βˆ’0 = 0 ), the additive inverse of a positive number is negative, and the additive inverse of a negative number is positive. a double application of this operation is written as βˆ’ ( βˆ’3 ) = 3. the plus sign is predominantly used in algebra to denote the binary operation of addition, and only rarely to emphasize the positivity of an expression. in common numeral notation ( used in arithmetic and elsewhere ), the sign of a number is often made explicit by placing a plus or a minus sign before the number. for example, + 3 denotes " positive three ", and βˆ’3 denotes " negative three " ( algebraically : the additive inverse of 3 ). without specific context ( or when no explicit sign is given ), a number is interpreted per default as positive. this notation establishes a strong association of the minus sign " βˆ’ " with negative numbers, and the plus sign " + " with positive numbers. = = = sign of zero = = = within the convention of zero being neither positive nor negative, Β§ other meanings below. = = sign of a number = = numbers from various number systems, like integers, rationals, complex numbers, quaternions, octonions,... may have multiple attributes, that fix certain properties of a number. a number system that bears the structure of an ordered ring contains a unique number that when added with any number leaves the latter unchanged. this unique number is known as the system ' s additive identity element. for example, the integers has the structure of an ordered ring. this number is generally denoted as 0. because of the total order in this ring, there are numbers greater than zero, called the positive numbers. another property required for a ring to be ordered is that, for each positive number, there exists a unique corresponding number less than 0 whose sum with the original positive number is 0. these numbers less than 0 are called the negative numbers. the numbers in each such pair are their respective additive inverses. this attribute of a number, being exclusively either zero ( 0 ), positive ( + ), or negative ( βˆ’ ), is called its sign, and is often encoded to the real numbers 0, 1, and βˆ’1, respectively ( similar to the way the sign function is defined ). since rational and real numbers are also ordered rings ( in fact ordered fields ), the sign attribute also applies to these number systems. when a minus sign is used in between two numbers, it represents the binary operation of subtraction. when a minus sign is written before a single number, it represents the unary operation of yielding the additive inverse ( sometimes called negation ) of the operand. abstractly then, the difference of two number is the sum of the minuend with the additive inverse of the subtrahend. while 0 is its own additive inverse ( βˆ’0 = 0 ), the additive inverse of a positive number is negative, and the additive inverse of a negative number is positive. a double application of this operation is written as βˆ’ ( βˆ’3 ) = 3. the plus sign is predominantly used in algebra to denote the binary operation of addition, and only rarely to emphasize the positivity of an expression. in common numeral notation ( used in arithmetic and elsewhere ), the sign of a number is often made explicit by placing a plus or a minus sign before the number. for example, + 3 denotes " positive three ", and βˆ’3 denotes " negative three " ( algebraically : the additive inverse of 3 ). without specific context ( or when has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union may not be defined for every possible value of its domain. for example, in the real numbers one cannot divide by zero or take square roots of negative numbers. the values for which an operation is defined form a set called its domain of definition or active domain. the set which contains the values produced is called the codomain, but the set of actual values attained by the operation is its codomain of definition, active codomain, image or range. for example, in the real numbers, the squaring operation only produces non - negative numbers ; the codomain is the set of real numbers, but the range is the non - negative numbers. operations can involve dissimilar objects : a vector can be multiplied by a scalar to form another vector ( an operation known as scalar multiplication ), and the inner product operation on two vectors produces a quantity that is scalar. an operation may or may not have certain properties, for example it may be associative, commutative, anticommutative, idempotent, and so on. the values combined are called operands, arguments, or inputs, and the value produced is called the value, result, or output. operations can have fewer or more than two inputs ( including the case of zero input and infinitely many inputs ). an operator is similar to an operation in that it refers to the symbol or the process used to denote the operation. hence, their point of view is different. for instance, one often speaks of " the operation of addition " or " the addition operation, " when focusing on the operands and result, but one switch to " addition operator " ( rarely " operator of addition " ), when focusing on the process, or from the more symbolic viewpoint, the function + : x Γ— x β†’ x ( where x is a set such as the set of real numbers ). = = definition = = an n - ary operation Ο‰ on a set x is a function Ο‰ : xn β†’ x. the set xn is called the domain of the operation, the output set is called the codomain of the operation, and the fixed non - negative integer n ( the number of operands ) is called the arity of the operation. thus a unary operation has arity one, and a binary operation has arity two. an operation of arity zero, called a nullary operation, is simply an element of the codomain y. an n - ary operation can also be viewed is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named according to the organic nomenclature system. the names for inorganic compounds are created according to the inorganic nomenclature system. when a compound has more than one component, then they are divided into two classes, the electropositive and the electronegative components. in addition the chemical abstracts service ( cas ) has devised a method to index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry odd numbers. the above definition of parity applies only to integer numbers, hence it cannot be applied to numbers with decimals or fractions like 1 / 2 or 4. 6978. see the section " higher mathematics " below for some extensions of the notion of parity to a larger class of " numbers " or in other more general settings. even and odd numbers have opposite parities, e. g., 22 ( even number ) and 13 ( odd number ) have opposite parities. in particular, the parity of zero is even. any two consecutive integers have opposite parity. a number ( i. e., integer ) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. that is, if the last digit is 1, 3, 5, 7, or 9, then it is odd ; otherwise it is even β€” as the last digit of any even number is 0, 2, 4, 6, or 8. the same idea will work using any even base. in particular, a number expressed in the binary numeral system is odd if its last digit is 1 ; and it is even if its last digit is 0. in an odd base, the number is even according to the sum of its digits β€” it is even if and only if the sum of its digits is even. = = definition = = an even number is an integer of the form x = 2 k { \ displaystyle x = 2k } where k is an integer ; an odd number is an integer of the form x = 2 k + 1. { \ displaystyle x = 2k + 1. } an equivalent definition is that an even number is divisible by 2 : 2 | x { \ displaystyle 2 \ | \ x } and an odd number is not : 2 [UNK] | x { \ displaystyle 2 \ not | \ x } the sets of even and odd numbers can be defined as following : { 2 k : k ∈ z } { \ displaystyle \ { 2k : k \ in \ mathbb { z } \ } } { 2 k + 1 : k ∈ z } { \ displaystyle \ { 2k + 1 : k \ in \ mathbb { z } \ } } the set of even numbers is a prime ideal of z { \ displaystyle \ mathbb { z } } and the quotient ring z / 2 z { \ displaystyle \ mathbb { z } / 2 \ mathbb { z } empty nor degenerate is said to be proper, and has infinitely many elements. an interval is said to be left - bounded or right - bounded, if there is some real number that is, respectively, smaller than or larger than all its elements. an interval is said to be bounded, if it is both left - and right - bounded ; and is said to be unbounded otherwise. intervals that are bounded at only one end are said to be half - bounded. the empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. bounded intervals are also commonly known as finite intervals. bounded intervals are bounded sets, in the sense that their diameter ( which is equal to the absolute difference between the endpoints ) is finite. the diameter may be called the length, width, measure, range, or size of the interval. the size of unbounded intervals is usually defined as + ∞, and the size of the empty interval may be defined as 0 ( or left undefined ). the centre ( midpoint ) of a bounded interval with endpoints a and b is ( a + b ) / 2, and its radius is the half - length | a βˆ’ b | / 2. these concepts are undefined for empty or unbounded intervals. an interval is said to be left - open if and only if it contains no minimum ( an element that is smaller than all other elements ) ; right - open if it contains no maximum ; and open if it contains neither. the interval [ 0, 1 ) = { x | 0 ≀ x < 1 }, for example, is left - closed and right - open. the empty set and the set of all reals are both open and closed intervals, while the set of non - negative reals, is a closed interval that is right - open but not left - open. the open intervals are open sets of the real line in its standard topology, and form a base of the open sets. an interval is said to be left - closed if it has a minimum element or is left - unbounded, right - closed if it has a maximum or is right unbounded ; it is simply closed if it is both left - closed and right closed. so, the closed intervals coincide with the closed sets in that topology. the interior of an interval i is the largest open interval that is contained in i ; it is also the set of points in i which are not endpoints of i. the closure of Question: Elements are defined by their atomic number, a number that describes the amount of what in the element? A) bonds B) electrons C) neutrons D) protons
D) protons
Context: the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetic the film is developed and it shows any internal defects of the material. gauges - gauges use the exponential absorption law of gamma rays level indicators : source and detector are placed at opposite sides of a container, indicating the presence or absence of material in the horizontal radiation path. beta or gamma sources are used, depending on the thickness and the density of the material to be measured. the method is used for containers of liquids or of grainy substances thickness gauges : if the material is of constant density, the signal measured by the radiation detector depends on the thickness of the material. this is useful for continuous production, like of paper, rubber, etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also of measuring methods. x - rays and gamma rays are used in industrial radiography to make images of the inside of solid products, as a means of nondestructive testing and inspection. the piece to be radiographed is placed between the source and a photographic film in a cassette. after a certain exposure time, the film is developed and it shows any internal defects of the material. gauges - gauges use the exponential absorption law of gamma rays level indicators : source and detector are placed at opposite sides of a container, indicating the presence or absence of material in the horizontal radiation path. beta or gamma sources are used, depending on the thickness and the density of the material to be measured. the method is used for containers of liquids or of grainy substances thickness gauges : if the material is of constant density, the signal measured by the radiation detector depends on the thickness of the material. this is useful for continuous production, like of paper, rubber, etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics the thickness and the density of the material to be measured. the method is used for containers of liquids or of grainy substances thickness gauges : if the material is of constant density, the signal measured by the radiation detector depends on the thickness of the material. this is useful for continuous production, like of paper, rubber, etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison, the other is open to ambient air ; it has a gridded electrode. when smoke enters the open chamber, the current is disrupted as the smoke particles attach to the charged ions and restore them to a neutral electrical state. this reduces the current in the open chamber. when the current drops below a certain threshold, the strangelets ( stable lumps of quark matter ) can have masses and charges much higher than those of nuclei, but have very low charge - to - mass ratios. this is confirmed in a relativistic thomas - fermi model. the high charge allows astrophysical strangelet acceleration to energies orders of magnitude higher than for protons. in addition, strangelets are much less susceptible to the interactions with the cosmic microwave background that suppress the flux of cosmic ray protons and nuclei above energies of $ 10 ^ { 19 } $ - - $ 10 ^ { 20 } $ ev ( the gzk - cutoff ). this makes strangelets an interesting possibility for explaining ultra - high energy cosmic rays. sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, , etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison, the other is open to ambient air ; it has a gridded electrode. when smoke enters the open chamber, the current is disrupted as the smoke particles attach to the charged ions and restore them to a neutral electrical state. this reduces the current in the open chamber. when the current drops below a certain threshold, the alarm is triggered. = = = food processing and agriculture = = = in biology and agriculture, radiation is used to induce mutations to produce new or improved species, such as in atomic gardening. another use in insect control is the sterile insect technique, where male insects are sterilized by radiation and released, so they have listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to Question: What laboratory instrument is used to analyze and test for static charge? A) bunsen burner B) electroscope C) microscope D) microtome
B) electroscope
Context: protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = mei it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ft of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted β€œ the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilis activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population, darwin argued that in the natural world, it was nature that played the role of humans in selecting for specific traits. darwin inferred that individuals who possessed heritable traits better adapted to their environments are more likely to survive and produce more offspring than other individuals. he further inferred that this would lead to the the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophy could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how Question: Through a succession of mitotic cell divisions, what gives rise to a large number of cells? A) air B) condensation C) cytoplasm D) zygote
D) zygote
Context: current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers – civil works program river morphology and stream restoration references made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up ##lling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in ##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river river - beds ), but not for where there may be large obstructions in the ground. an open caisson that is used in soft grounds or high water tables, where open trench excavations are impractical, can also be used to install deep manholes, pump stations and reception / launch pits for microtunnelling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caisson equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers – civil works program river morphology and stream restoration references - wildland hydrology at the library of congress web archives ( archived 2002 - 08 - 13 ) a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform Question: Contour tillage helps slow water run-off and what process that causes topsoil loss? A) water erosion B) plate tectonics C) soil erosion D) ice shelf erosion
C) soil erosion
Context: calculus and its application to physics and other sciences, it is rather common to consider a variable, say y, whose possible values depend on the value of another variable, say x. in mathematical terms, the dependent variable y represents the value of a function of x. to simplify formulas, it is often useful to use the same symbol for the dependent variable y and the function mapping x onto y. for example, the state of a physical system depends on measurable quantities such as the pressure, the temperature, the spatial position,..., and all these quantities vary when the system evolves, that is, they are function of the time. in the formulas describing the system, these quantities are represented by variables which are dependent on the time, and thus considered implicitly as functions of the time. therefore, in a formula, a dependent variable is a variable that is implicitly a function of another ( or several other ) variables. an independent variable is a variable that is not dependent. the property of a variable to be dependent or independent depends often of the point of view and is not intrinsic. for example, in the notation f ( x, y, z ), the three variables may be all independent and the notation represents a function of three variables. on the other hand, if y and z depend on x ( are dependent variables ) then the notation represents a function of the single independent variable x. = = = examples = = = if one defines a function f from the real numbers to the real numbers by f ( x ) = x 2 + sin ( x + 4 ) { \ displaystyle f ( x ) = x ^ { 2 } + \ sin ( x + 4 ) } then x is a variable standing for the argument of the function being defined, which can be any real number. in the identity [UNK] i = 1 n i = n 2 + n 2 { \ displaystyle \ sum _ { i = 1 } ^ { n } i = { \ frac { n ^ { 2 } + n } { 2 } } } the variable i is a summation variable which designates in turn each of the integers 1, 2,..., n ( it is also called index because its variation is over a discrete set of values ) while n is a parameter ( it does not vary within the formula ). in the theory of polynomials, a polynomial of degree 2 is generally denoted as ax2 + bx + c, where a, b and c are called coefficients ( they are assumed to be the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. more sophisticated techniques are now in development that can track protein products without mitigating their function, such as the addition of small sequences that will serve as binding motifs to monoclonal antibodies. expression studies aim to discover where and when specific proteins are produced. in these experiments, the dna sequence before the dna that codes for designates the relationship between two or more variables. conceptual definition : description of a concept by relating it to other concepts. operational definition : details in regards to defining the variables and how they will be measured / assessed in the study. gathering of data : consists of identifying a population and selecting samples, gathering information from or about these samples by using specific research instruments. the instruments used for data collection must be valid and reliable. analysis of data : involves breaking down the individual pieces of data to draw conclusions about it. data interpretation : this can be represented through tables, figures, and pictures, and then described in words. test, revising of hypothesis conclusion, reiteration if necessary a common misconception is that a hypothesis will be proven ( see, rather, null hypothesis ). generally, a hypothesis is used to make predictions that can be tested by observing the outcome of an experiment. if the outcome is inconsistent with the hypothesis, then the hypothesis is rejected ( see falsifiability ). however, if the outcome is consistent with the hypothesis, the experiment is said to support the hypothesis. this careful language is used because researchers recognize that alternative hypotheses may also be consistent with the observations. in this sense, a hypothesis can never be proven, but rather only supported by surviving rounds of scientific testing and, eventually, becoming widely thought of as true. a useful hypothesis allows prediction and within the accuracy of observation of the time, the prediction will be verified. as the accuracy of observation improves with time, the hypothesis may no longer provide an accurate prediction. in this case, a new hypothesis will arise to challenge the old, and to the extent that the new hypothesis makes more accurate predictions than the old, the new will supplant it. researchers can also use a null hypothesis, which states no relationship or difference between the independent or dependent variables. = = = research in the humanities = = = research in the humanities involves different methods such as for example hermeneutics and semiotics. humanities scholars usually do not search for the ultimate correct answer to a question, but instead, explore the issues and details that surround it. context is always important, and context can be social, historical, political, cultural, or ethnic. an example of research in the humanities is historical research, which is embodied in historical method. historians use primary sources and other evidence to systematically investigate a topic, and then to write histories in the form of accounts of the past. other studies aim to merely examine the occurrence of behaviours in societies and communities options ( e. g., voting behavior, choice of a punishment for another participant ). reaction time. the time between the presentation of a stimulus and an appropriate response can indicate differences between two cognitive processes, and can indicate some things about their nature. for example, if in a search task the reaction times vary proportionally with the number of elements, then it is evident that this cognitive process of searching involves serial instead of parallel processing. psychophysical responses. psychophysical experiments are an old psychological technique, which has been adopted by cognitive psychology. they typically involve making judgments of some physical property, e. g. the loudness of a sound. correlation of subjective scales between individuals can show cognitive or sensory biases as compared to actual physical measurements. some examples include : sameness judgments for colors, tones, textures, etc. threshold differences for colors, tones, textures, etc. eye tracking. this methodology is used to study a variety of cognitive processes, most notably visual perception and language processing. the fixation point of the eyes is linked to an individual ' s focus of attention. thus, by monitoring eye movements, we can study what information is being processed at a given time. eye tracking allows us to study cognitive processes on extremely short time scales. eye movements reflect online decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygen here are a few random thoughts on the interpretations of the quantum double slit experiment, the mach zehnder experiment, the delayed - choice experiment and the measurement problem. the realization of karl popper ' s epr - like experiment by shih and kim ( published 1999 ) produced the result that popper hoped for : no ` ` action at a distance ' ' on one photon of an entangled pair when a measurement is made on the other photon. this experimental result is interpretable in local realistic terms : each photon has a definite position and transverse momentum most of the time ; the position measurement on one photon ( localization within a slit ) disturbs the transverse momentum of that photon in a non - predictable way in accordance with the uncertainty principle ; however, there is no effect on the other photon ( the photon that is not in a slit ) no action at a distance. the position measurement ( localization within a slit ) of the one photon destroys the entanglement between the photons ; i. e. decoherence occurs. and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, or more variables. some examples include 7, 5 x, 13 x 2 y, 4 b { \ displaystyle 7, \ ; 5x, \ ; 13x ^ { 2 } y, \ ; 4b } the constant of the product is called the coefficient. terms that are either constants or have the same variables raised to the same powers are called like terms. if there are like terms in an expression, one can simplify the expression by combining the like terms. one adds the coefficients and keeps the same variable. 4 x + 7 x + 2 x = 15 x { \ displaystyle 4x + 7x + 2x = 15x } any variable can be classified as being either a free variable or a bound variable. for a given combination of values for the free variables, an expression may be evaluated, although for some combinations of values of the free variables, the value of the expression may be undefined. thus an expression represents an operation over constants and free variables and whose output is the resulting value of the expression. for a non - formalized language, that is, in most mathematical texts outside of mathematical logic, for an individual expression it is not always possible to identify which variables are free and bound. for example, in [UNK] i < k a i k { \ textstyle \ sum _ { i < k } a _ { ik } }, depending on the context, the variable i { \ textstyle i } can be free and k { \ textstyle k } bound, or vice - versa, but they cannot both be free. determining which value is assumed to be free depends on context and semantics. = = = equivalence = = = an expression is often used to define a function, or denote compositions of functions, by taking the variables to be arguments, or inputs, of the function, and assigning the output to be the evaluation of the resulting expression. for example, x ↦ x 2 + 1 { \ displaystyle x \ mapsto x ^ { 2 } + 1 } and f ( x ) = x 2 + 1 { \ displaystyle f ( x ) = x ^ { 2 } + 1 } define the function that associates to each number its square plus one. an expression with no variables would define a constant function. in this way, two expressions are said to be equivalent if, for each combination of values for the free variables, they have the same output, i. e., they represent the same function. the equivalence between two expressions is called an identity and is sometimes the celebrated franck - hertz experiment is reinterpreted by analogy with the glimmentladung experiment, formerly performed by heinrich hertz. are independent of x define constant functions and are therefore called constant. for example, a constant of integration is an arbitrary constant function that is added to a particular antiderivative to obtain the other antiderivatives. because of the strong relationship between polynomials and polynomial functions, the term " constant " is often used to denote the coefficients of a polynomial, which are constant functions of the indeterminates. other specific names for variables are : an unknown is a variable in an equation which has to be solved for. an indeterminate is a symbol, commonly called variable, that appears in a polynomial or a formal power series. formally speaking, an indeterminate is not a variable, but a constant in the polynomial ring or the ring of formal power series. however, because of the strong relationship between polynomials or power series and the functions that they define, many authors consider indeterminates as a special kind of variables. a parameter is a quantity ( usually a number ) which is a part of the input of a problem, and remains constant during the whole solution of this problem. for example, in mechanics the mass and the size of a solid body are parameters for the study of its movement. in computer science, parameter has a different meaning and denotes an argument of a function. free variables and bound variables a random variable is a kind of variable that is used in probability theory and its applications. all these denominations of variables are of semantic nature, and the way of computing with them ( syntax ) is the same for all. = = = dependent and independent variables = = = in calculus and its application to physics and other sciences, it is rather common to consider a variable, say y, whose possible values depend on the value of another variable, say x. in mathematical terms, the dependent variable y represents the value of a function of x. to simplify formulas, it is often useful to use the same symbol for the dependent variable y and the function mapping x onto y. for example, the state of a physical system depends on measurable quantities such as the pressure, the temperature, the spatial position,..., and all these quantities vary when the system evolves, that is, they are function of the time. in the formulas describing the system, these quantities are represented by variables which are dependent on the time, and thus considered implicitly as functions of the time. therefore, in a formula, a dependent variable is a variable that is implicitly a function of another ( or several other ) variables. an independent variable Question: In a scientific experiment, the variable that is affected by the other one is called what? A) essential variable B) dependent variable C) effective variable D) independent variable
B) dependent variable
Context: within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with . most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively in future clinical stem cell therapies. mc2 biotek has also developed a bioreactor known as prototissue that uses gas exchange to maintain high oxygen levels within the cell chamber ; improving upon previous bioreactors, since the higher oxygen levels help the cell grow and undergo normal cell respiration. active areas of research on bioreactors includes increasing production scale and refining the physiological environment, both of which could improve the efficiency and efficacy of bioreactors in research or clinical use. bioreactors are currently used to study, among other things, cell and tissue level therapies, cell and tissue response to specific physiological environment changes, and development of disease and injury. = = = long fiber generation = = = in 2013, a group from the university of tokyo developed cell laden fibers up to a meter in length and on the order of 100 ΞΌm in size. these fibers were created using a microfluidic device that forms a for nucleotide synthesis. hence, unfused myeloma cells die, as they cannot produce nucleotides by the de novo or salvage pathways because they lack hgprt. removal of the unfused myeloma cells is necessary because they have the potential to outgrow other cells, especially weakly established hybridomas. unfused b cells die as they have a short life span. in this way, only the b cell - myeloma hybrids survive, since the hgprt gene coming from the b cells is functional. these cells produce antibodies ( a property of b cells ) and are immortal ( a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectrometry facilitates screening and ranking of clones which bind to the native ( non - denaturated ) forms of antigen proteins. flow cytometry screening has been used for primary screening of a large number ( ~ 1000 ) of hybridoma clones recognizing the native form of the antigen on the cell surface. in the flow cytometry - based screening, a mixture of antigen - negative cells and antigen - positive cells is used as the antigen to be tested for each hybridoma supernatant sample. the b cell that produces the desired antibodies can be cloned to produce many identical daughter clones. supplemental media containing interleukin - 6 ( such as briclone ) are essential for this step. once a hybridoma colony is established, it will continually grow in culture medium like rpmi - 1640 ( with antibiotics and fetal bovine serum ) and produce antibodies. multiwell plates are used initially to grow the hybridomas, and after selection, young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively in future clinical stem cell therapies. mc2 biotek has also developed a bioreactor known as prototissue that uses gas exchange to maintain high oxygen levels within the cell chamber ; improving upon previous bioreactors, since the higher oxygen levels help the cell grow and undergo normal cell respiration. active areas of research on bioreactors includes increasing production scale and refining the physiological environment, both of which could improve the efficiency and efficacy of bioreactors in research or clinical use. bioreactors are currently used to study, among other things, cell and tissue level therapies, cell and tissue response to specific physiological induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) are subclass of pluripotent stem cells resembling embryonic stem cells ( escs ) that have been derived from adult differentiated cells. ipscs are created by altering the expression of transcriptional factors in adult cells until they become like embryonic stem cells. multipotent stem cells can be differentiated into any cell within the same class, such as blood or bone. a common example of multipotent cells is mesenchymal stem cells ( mscs ). = = scaffolds = = scaffolds are materials that have been engineered to cause desirable cellular interactions to contribute to the formation of new functional tissues for medical purposes. cells are often ' seeded ' into these structures capable of supporting three - dimensional tissue formation. scaffolds mimic the extracellular matrix of the native tissue, recapitulating the in vivo milieu and allowing cells to influence their own microenvironments. they usually serve at least one of the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seed use less energy than conventional thermal separation processes such as distillation, sublimation or crystallization. the separation process is purely physical and both fractions ( permeate and retentate ) can be obtained as useful products. cold separation using membrane technology is widely used in the food technology, biotechnology and pharmaceutical industries. furthermore, using membranes enables separations to take place that would be impossible using thermal separation methods. for example, it is impossible to separate the constituents of azeotropic liquids or solutes which form isomorphic crystals by distillation or recrystallization but such separations can be achieved using membrane technology. depending on the type of membrane, the selective separation of certain individual substances or substance mixtures is possible. important technical applications include the production of drinking water by reverse osmosis. in waste water treatment, membrane technology is becoming increasingly important. ultra / microfiltration can be very effective in removing colloids and macromolecules from wastewater. this is needed if wastewater is discharged into sensitive waters especially those designated for contact water sports and recreation. about half of the market is in medical applications such as artificial kidneys to remove toxic substances by hemodialysis and as artificial lung for bubble - free supply of oxygen in the blood. the importance of membrane technology is growing in the field of environmental protection ( nano - mem - pro ippc database ). even in modern energy recovery techniques, membranes are increasingly used, for example in fuel cells and in osmotic power plants. = = mass transfer = = two basic models can be distinguished for mass transfer through the membrane : the solution - diffusion model and the hydrodynamic model. in real membranes, these two transport mechanisms certainly occur side by side, especially during ultra - filtration. = = = solution - diffusion model = = = in the solution - diffusion model, transport occurs only by diffusion. the component that needs to be transported must first be dissolved in the membrane. the general approach of the solution - diffusion model is to assume that the chemical potential of the feed and permeate fluids are in equilibrium with the adjacent membrane surfaces such that appropriate expressions for the chemical potential in the fluid and membrane phases can be equated at the solution - membrane interface. this principle is more important for dense membranes without natural pores such as those used for reverse osmosis and in fuel cells. during the filtration process a boundary layer forms on the membrane. this concentration gradient is created by molecules which cannot pass through the membrane. the combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively in future clinical stem cell therapies. mc2 biotek has also developed a bioreactor known as prototissue that uses gas exchange to maintain high oxygen levels within the cell chamber ; improving upon previous bioreactors, since the higher oxygen levels help the cell grow and undergo normal cell respiration. active Question: Cells must also be able to separate their relatively stable interior from what? A) competition and chaos B) predators C) the external environment D) their habitat
C) the external environment
Context: . species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ— piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying ##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer – resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of the major staple foods, such as hemp, teff, maize, rice, wheat and other cereal grasses, pulses, bananas and plantains, as well as hemp, flax and cotton grown for their fibres, are the outcome of prehistoric selection over thousands of years from among wild ancestral plants with the most desirable characteristics. botanists study how plants produce food and how to increase yields, for example through plant breeding, making their work important to humanity ' s ability to feed the world and provide food security for future generations. botanists also study weeds, which are a considerable problem in agriculture, and the biology and control of plant pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant – people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection as iss expeditions. expedition crew members typically spend approximately six months on the iss. the initial expedition crew size was three, temporarily decreased to two following the columbia disaster. between may 2009 and until the retirement of the space shuttle, the expedition crew size has been six crew members. as of 2024, though the commercial program ' s crew capsules can allow a crew of up to seven, expeditions using them typically consist of a crew of four. the iss has been continuously occupied for the past 24 years and 202 days, having exceeded the previous record held by mir ; and has been visited by astronauts and cosmonauts from 15 different nations. the station can be seen from the earth with the naked eye and, as of 2025, is the largest artificial satellite in earth orbit with a mass and volume greater than that of any previous space station. the russian soyuz and american dragon and starliner spacecraft are used to send astronauts to and from the iss. several uncrewed cargo spacecraft provide service to the iss ; they are the russian progress spacecraft which has done so since 2000, the european automated transfer vehicle ( atv ) since 2008, the japanese h - ii transfer vehicle ( htv ) since 2009, the ( uncrewed ) dragon since 2012, and the american cygnus spacecraft since 2013. the space shuttle, before its retirement, was also used for cargo transfer and would often switch out expedition crew members, although it did not have the capability to remain docked for the duration of their stay. between the retirement of the shuttle in 2011 and the commencement of crewed dragon flights in 2020, american astronauts exclusively used the soyuz for crew transport to and from the iss the highest number of people occupying the iss has been thirteen ; this occurred three times during the late shuttle iss assembly missions. the iss program is expected to continue until 2030, after which the space station will be retired and destroyed in a controlled de - orbit. = = = = commercial resupply services ( 2008 – present ) = = = = commercial resupply services ( crs ) are a contract solution to deliver cargo and supplies to the international space station on a commercial basis by private companies. nasa signed its first crs contracts in 2008 and awarded $ 1. 6 billion to spacex for twelve cargo dragon and $ 1. 9 billion to orbital sciences for eight cygnus flights, covering deliveries until 2016. both companies evolved or created their launch vehicle products to launch the spacecrafts ( spacex with the falcon 9 and orbital with the antares ). spacex flew its biology is the scientific study of life and living organisms. it is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, origin, evolution, and distribution of life. central to biology are five fundamental themes : the cell as the basic unit of life, genes and heredity as the basis of inheritance, evolution as the driver of biological diversity, energy transformation for sustaining life processes, and the maintenance of internal stability ( homeostasis ). biology examines life across multiple levels of organization, from molecules and cells to organisms, populations, and ecosystems. subdisciplines include molecular biology, physiology, ecology, evolutionary biology, developmental biology, and systematics, among others. each of these fields applies a range of methods to investigate biological phenomena, including observation, experimentation, and mathematical modeling. modern biology is grounded in the theory of evolution by natural selection, first articulated by charles darwin, and in the molecular understanding of genes encoded in dna. the discovery of the structure of dna and advances in molecular genetics have transformed many areas of biology, leading to applications in medicine, agriculture, biotechnology, and environmental science. life on earth is believed to have originated over 3. 7 billion years ago. today, it includes a vast diversity of organisms β€” from single - celled archaea and bacteria to complex multicellular plants, fungi, and animals. biologists classify organisms based on shared characteristics and evolutionary relationships, using taxonomic and phylogenetic frameworks. these organisms interact with each other and with their environments in ecosystems, where they play roles in energy flow and nutrient cycling. as a constantly evolving field, biology incorporates new discoveries and technologies that enhance the understanding of life and its processes, while contributing to solutions for challenges such as disease, climate change, and biodiversity loss. = = history = = the earliest of roots of science, which included medicine, can be traced to ancient egypt and mesopotamia in around 3000 to 1200 bce. their contributions shaped ancient greek natural philosophy. ancient greek philosophers such as aristotle ( 384 – 322 bce ) contributed extensively to the development of biological knowledge. he explored biological causation and the diversity of life. his successor, theophrastus, began the scientific study of plants. scholars of the medieval islamic world who wrote on biology included al - jahiz ( 781 – 869 ), al - dinawari ( 828 – 896 ), who wrote on botany, and rhazes ( 865 – 925 ) who wrote on anatomy and physiology. medicine was especially well higher concentrations of atmospheric nitrous oxide ( n2o ) are expected to slightly warm earth ' s surface because of increases in radiative forcing. radiative forcing is the difference in the net upward thermal radiation flux from the earth through a transparent atmosphere and radiation through an otherwise identical atmosphere with greenhouse gases. radiative forcing, normally measured in w / m ^ 2, depends on latitude, longitude and altitude, but it is often quoted for the tropopause, about 11 km of altitude for temperate latitudes, or for the top of the atmosphere at around 90 km. for current concentrations of greenhouse gases, the radiative forcing per added n2o molecule is about 230 times larger than the forcing per added carbon dioxide ( co2 ) molecule. this is due to the heavy saturation of the absorption band of the relatively abundant greenhouse gas, co2, compared to the much smaller saturation of the absorption bands of the trace greenhouse gas n2o. but the rate of increase of co2 molecules, about 2. 5 ppm / year ( ppm = part per million by mole ), is about 3000 times larger than the rate of increase of n2o molecules, which has held steady at around 0. 00085 ppm / year since 1985. so, the contribution of nitrous oxide to the annual increase in forcing is 230 / 3000 or about 1 / 13 that of co2. if the main greenhouse gases, co2, ch4 and n2o have contributed about 0. 1 c / decade of the warming observed over the past few decades, this would correspond to about 0. 00064 k per year or 0. 064 k per century of warming from n2o. proposals to place harsh restrictions on nitrous oxide emissions because of warming fears are not justified by these facts. restrictions would cause serious harm ; for example, by jeopardizing world food supplies. Question: For any given species, what term means the maximum population that can be supported by the environment? A) carrying capacity B) tipping point C) zero population growth D) mass extinction
A) carrying capacity
Context: can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population, for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals ( cattle or pigs ). the genetically engineered bacteria are able to produce large quantities of synthetic human insulin at relatively low cost. biotechnology has also enabled emerging therapeutics like gene therapy. the application of biotechnology to basic science ( for example through the human genome project ) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well. genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child ' s parentage ( genetic mother and father ) or in general a person ' s ancestry. in addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. genetic testing identifies changes in chromosomes, genes, or proteins. most of the time, testing is used to find changes that are associated with inherited disorders. the results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person ' s chance of developing or passing on a genetic disorder. as of 2011 several hundred genetic tests were in use. since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling. = = = agriculture = = = genetically modified crops ( " gm crops ", or " biotech crops " ) are plants used in agriculture, the dna of which has been modified with genetic engineering techniques. in most cases, the main aim is to introduce a new trait that does not occur naturally in the species. biotechnology firms can contribute to future food security by improving the nutrition and viability of urban agriculture. furthermore, the protection of intellectual property rights encourages private sector investment in agrobiotechnology. examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments ( e. g. resistance to a herbicide ), reduction of spoilage, or improving the nutrient profile of the crop. examples in non - food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation. farmers have widely adopted gm technology. between 1996 and 2011, the total surface area of land cultivated with gm crops had increased by a factor of 94, from 17, 000 to 1, 600, 000 square genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and used to manufacture existing medicines relatively easily and cheaply. the first genetically engineered products were medicines designed to treat human diseases. to cite one example, in 1978 genentech developed synthetic humanized insulin by joining its gene with a plasmid vector inserted into the bacterium escherichia coli. insulin, widely used for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals ( cattle or pigs ). the genetically engineered bacteria are able to produce large quantities of synthetic human insulin at relatively low cost. biotechnology has also enabled emerging therapeutics like gene therapy. the application of biotechnology to basic science ( for example through the human genome project ) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well. genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child ' s parentage ( genetic mother and father ) or in general a person ' s ancestry. in addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. genetic testing identifies changes in chromosomes, genes, or proteins. most of the time, testing is used to find changes that are associated with inherited disorders. the results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person ' s chance of developing or passing on a genetic disorder. as of 2011 several hundred genetic tests were in use. since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling. = = = agriculture = = = genetically modified crops ( " gm crops ", or " biotech crops " ) are plants used in agriculture, the dna of which has been modified with genetic engineering techniques. in most cases, the main aim is to introduce a new trait that does not occur naturally in the species. biotechnology firms can contribute to future food security by improving the nutrition and viability of urban agriculture. furthermore, the protection of intellectual property rights encourages private sector investment in agrobiotechnology. examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments ( e. g. resistance to a herbicide ), reduction of spoilage, or improving the nutrient profile of the crop. examples in non - food crops include production of monoclonal antibodies, antihemophilic factors, vaccines and many other drugs. mouse hybridomas, cells fused together to create monoclonal antibodies, have been adapted through genetic engineering to create human monoclonal antibodies. genetically engineered viruses are being developed that can still confer immunity, but lack the infectious sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. these concerns have led to the development of a regulatory framework, which started in 1975. it has led to an international treaty, the cartagena protocol on biosafety, that was adopted in 2000. individual countries have developed their own regulatory systems regarding gmos, with the most marked differences occurring between the united states and europe. = = overview = = genetic engineering is a process that alters the genetic structure of an organism by either removing or introducing dna, or modifying existing genetic material in situ. unlike traditional animal and plant breeding, which involves doing multiple crosses and then selecting for the organism with the desired phenotype, genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the include the manufacturing of drugs, creation of model animals that mimic human conditions and gene therapy. one of the earliest uses of genetic engineering was to mass - produce human insulin in bacteria. this application has now been applied to human growth hormones, follicle stimulating hormones ( for treating infertility ), human albumin, monoclonal antibodies, antihemophilic factors, vaccines and many other drugs. mouse hybridomas, cells fused together to create monoclonal antibodies, have been adapted through genetic engineering to create human monoclonal antibodies. genetically engineered viruses are being developed that can still confer immunity, but lack the infectious sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, ##ply quickly, relatively easy to transform and can be stored at - 80 Β°c almost indefinitely. once a gene is isolated it can be stored inside the bacteria providing an unlimited supply for research. organisms are genetically engineered to discover the functions of certain genes. this could be the effect on the phenotype of the organism, where the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and mutations has only existed since the 1970s. the term " genetic engineering " was coined by the russian - born geneticist nikolay timofeev - ressovsky in his 1934 paper " the experimental production of mutations ", published in the british journal biological reviews. jack williamson used the term in his science fiction novel dragon ' Question: With an increased understanding of gene regulation and gene function, medicines can be designed to specifically target diseased cells without harming these? A) pathogens B) healthy cells C) stem cells D) hosts
B) healthy cells
Context: in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid , valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive the less of it people would be prepared to buy ( other things unchanged ). as the price of a commodity falls, consumers move toward it from relatively more expensive goods ( the substitution effect ). in addition, purchasing power from the price decline increases ability to buy ( the income effect ). other factors can change demand ; for example an increase in income will shift the demand curve for a normal good outward relative to the origin, as in the figure. all determinants are predominantly taken as constant factors of demand and supply. supply is the relation between the price of a good and the quantity available for sale at that price. it may be represented as a table or graph relating price and quantity supplied. producers, for example business firms, are hypothesised to be profit maximisers, meaning that they attempt to produce and supply the amount of goods that will bring them the highest profit. supply is typically represented as a function relating price and quantity, if other factors are unchanged. that is, the higher the price at which the good can be sold, the more of it producers will supply, as in the figure. the higher price makes it profitable to increase production. just as on the demand side, the position of the supply can shift, say from a change in the price of a productive input or a technical improvement. the " law of supply " states that, in general, a rise in price leads to an expansion in supply and a fall in price leads to a contraction in supply. here as well, the determinants of supply, such as price of substitutes, cost of production, technology applied and various factors inputs of production are all taken to be constant for a specific time period of evaluation of supply. market equilibrium occurs where quantity supplied equals quantity demanded, the intersection of the supply and demand curves in the figure above. at a price below equilibrium, there is a shortage of quantity supplied compared to quantity demanded. this is posited to bid the price up. at a price above equilibrium, there is a surplus of quantity supplied compared to quantity demanded. this pushes the price down. the model of supply and demand predicts that for given supply and demand curves, price and quantity will stabilise at the price that makes quantity supplied equal to quantity demanded. similarly, demand - and - supply theory predicts a new price - quantity combination from a shift in demand ( as to the figure ), or in supply. = = = firms = = = people frequently do not trade directly on markets. instead, on the supply side, they may work factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic . a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β†’ batching β†’ mixing β†’ forming β†’ drying β†’ firing β†’ assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, options ( e. g., voting behavior, choice of a punishment for another participant ). reaction time. the time between the presentation of a stimulus and an appropriate response can indicate differences between two cognitive processes, and can indicate some things about their nature. for example, if in a search task the reaction times vary proportionally with the number of elements, then it is evident that this cognitive process of searching involves serial instead of parallel processing. psychophysical responses. psychophysical experiments are an old psychological technique, which has been adopted by cognitive psychology. they typically involve making judgments of some physical property, e. g. the loudness of a sound. correlation of subjective scales between individuals can show cognitive or sensory biases as compared to actual physical measurements. some examples include : sameness judgments for colors, tones, textures, etc. threshold differences for colors, tones, textures, etc. eye tracking. this methodology is used to study a variety of cognitive processes, most notably visual perception and language processing. the fixation point of the eyes is linked to an individual ' s focus of attention. thus, by monitoring eye movements, we can study what information is being processed at a given time. eye tracking allows us to study cognitive processes on extremely short time scales. eye movements reflect online decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygen endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer for example an increase in income will shift the demand curve for a normal good outward relative to the origin, as in the figure. all determinants are predominantly taken as constant factors of demand and supply. supply is the relation between the price of a good and the quantity available for sale at that price. it may be represented as a table or graph relating price and quantity supplied. producers, for example business firms, are hypothesised to be profit maximisers, meaning that they attempt to produce and supply the amount of goods that will bring them the highest profit. supply is typically represented as a function relating price and quantity, if other factors are unchanged. that is, the higher the price at which the good can be sold, the more of it producers will supply, as in the figure. the higher price makes it profitable to increase production. just as on the demand side, the position of the supply can shift, say from a change in the price of a productive input or a technical improvement. the " law of supply " states that, in general, a rise in price leads to an expansion in supply and a fall in price leads to a contraction in supply. here as well, the determinants of supply, such as price of substitutes, cost of production, technology applied and various factors inputs of production are all taken to be constant for a specific time period of evaluation of supply. market equilibrium occurs where quantity supplied equals quantity demanded, the intersection of the supply and demand curves in the figure above. at a price below equilibrium, there is a shortage of quantity supplied compared to quantity demanded. this is posited to bid the price up. at a price above equilibrium, there is a surplus of quantity supplied compared to quantity demanded. this pushes the price down. the model of supply and demand predicts that for given supply and demand curves, price and quantity will stabilise at the price that makes quantity supplied equal to quantity demanded. similarly, demand - and - supply theory predicts a new price - quantity combination from a shift in demand ( as to the figure ), or in supply. = = = firms = = = people frequently do not trade directly on markets. instead, on the supply side, they may work in and produce through firms. the most obvious kinds of firms are corporations, partnerships and trusts. according to ronald coase, people begin to organise their production in firms when the costs of doing business becomes lower than doing it on the market. firms combine labour and capital, and can achieve far greater economies of scale ( when . oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be Question: The rate of a reaction can be expressed either in terms of the decrease in the amount of what or the increase in the amount of a product per unit time? A) plasma B) reactant C) isotope D) sulfate
B) reactant