input
stringlengths 2.6k
28.8k
| output
stringlengths 4
150
|
---|---|
Context:
energy is no doubt an intuitive concept. following a previous analysis on the nature of elementary particles and associated elementary quantum fields, the peculiar status and role of energy is scrutinised further at elementary and larger scales. energy physical characterisation shows that it is a primordial component of reality highlighting the quantum fields natural tendencies to interact, the elementary particles natural tendency to constitute complex bodies and every material thing natural tendency to actualise and be active. energy therefore is a primordial notion in need of a proper assessment.
einstein, when he began working on the general theory of relativity, believed that energy of any kind is the source of the gravitational field. therefore, the energy of gravity, like any energy, must be the source of the field. it was previously discovered that the energy - momentum tensor of the gravitational field is already contained in the ricci tensor. this hypothesis is used to construct a new equation of the gravitational field.
##physical processes which take place in human beings as they make sense of information received through the visual system. the subject of the image. when developing an imaging system, designers must consider the observables associated with the subjects which will be imaged. these observables generally take the form of emitted or reflected energy, such as electromagnetic energy or mechanical energy. the capture device. once the observables associated with the subject are characterized, designers can then identify and integrate the technologies needed to capture those observables. for example, in the case of consumer digital cameras, those technologies include optics for collecting energy in the visible portion of the electromagnetic spectrum, and electronic detectors for converting the electromagnetic energy into an electronic signal. the processor. for all digital imaging systems, the electronic signals produced by the capture device must be manipulated by an algorithm which formats the signals so they can be displayed as an image. in practice, there are often multiple processors involved in the creation of a digital image. the display. the display takes the electronic signals which have been manipulated by the processor and renders them on some visual medium. examples include paper ( for printed, or " hard copy " images ), television, computer monitor, or projector. note that some imaging scientists will include additional " links " in their description of the imaging chain. for example, some will include the " source " of the energy which " illuminates " or interacts with the subject of the image. others will include storage and / or transmission systems. = = subfields = = subfields within imaging science include : image processing, computer vision, 3d computer graphics, animations, atmospheric optics, astronomical imaging, biological imaging, digital image restoration, digital imaging, color science, digital photography, holography, magnetic resonance imaging, medical imaging, microdensitometry, optics, photography, remote sensing, radar imaging, radiometry, silver halide, ultrasound imaging, photoacoustic imaging, thermal imaging, visual perception, and various printing technologies. = = methodologies = = acoustic imaging coherent imaging uses an active coherent illumination source, such as in radar, synthetic aperture radar ( sar ), medical ultrasound and optical coherence tomography ; non - coherent imaging systems include fluorescent microscopes, optical microscopes, and telescopes. chemical imaging, the simultaneous measurement of spectra and pictures digital imaging, creating digital images, generally by scanning or through digital photography disk image, a file which contains the exact content of a data storage medium document imaging, replicating documents commonly
strangelets ( stable lumps of quark matter ) can have masses and charges much higher than those of nuclei, but have very low charge - to - mass ratios. this is confirmed in a relativistic thomas - fermi model. the high charge allows astrophysical strangelet acceleration to energies orders of magnitude higher than for protons. in addition, strangelets are much less susceptible to the interactions with the cosmic microwave background that suppress the flux of cosmic ray protons and nuclei above energies of $ 10 ^ { 19 } $ - - $ 10 ^ { 20 } $ ev ( the gzk - cutoff ). this makes strangelets an interesting possibility for explaining ultra - high energy cosmic rays.
; austrian experts have established that the wheel is between 5, 100 and 5, 350 years old. the invention of the wheel revolutionized trade and war. it did not take long to discover that wheeled wagons could be used to carry heavy loads. the ancient sumerians used a potter ' s wheel and may have invented it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground
the paper has been withdrawn by the author since the protocol is not new. it is just the oldest version of bb84.
the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in the transpiration stream. diffusion, osmosis, and active transport and mass flow are all different ways transport can occur. examples of elements that plants need to transport are nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. in vascular plants, these elements are extracted from the soil as soluble ions by the roots and transported throughout the plant in the xylem. most of the elements required for plant nutrition come from the chemical breakdown of soil minerals. sucrose produced by photosynthesis is transported from the leaves to other parts of the plant in the phloem and plant hormones are transported by a variety of processes. = = = plant hormones = = = plants are not passive, but respond to external signals such as light, touch, and injury by moving or growing towards or away from the stimulus, as appropriate. tangible evidence of touch sensitivity is the almost instantaneous collapse of leaflets of mimosa pudica, the insect traps of venus flytrap and bladderworts, and the pollinia of orchids. the hypothesis that plant growth and development is coordinated by plant hormones or plant growth regulators first emerged in the late 19th century. darwin experimented on the movements of plant shoots and roots towards light and gravity, and concluded " it is hardly an exaggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist
a rail gun launching at 9 mj of energy would need roughly 32 mj worth of energy from capacitors. current advances in energy storage allow for energy densities as high as 2. 5 mj / dm3, which means that a battery delivering 32 mj of energy would require a volume of 12. 8 dm3 per shot ; this is not a viable volume for use in a modern main battle tank, especially one designed to be lighter than existing models. there has even been discussion about eliminating the necessity for an outside electrical source in etc ignition by initiating the plasma cartridge through a small explosive force. furthermore, etc technology is not only applicable to solid propellants. to increase muzzle velocity even further electrothermal - chemical ignition can work with liquid propellants, although this would require further research into plasma ignition. etc technology is also compatible with existing projects to reduce the amount of recoil delivered to the vehicle while firing. understandably, recoil of a gun firing a projectile at 17 mj or more will increase directly with the increase in muzzle energy in accordance to newton ' s third law of motion and successful implementation of recoil reduction mechanisms will be vital to the installation of an etc powered gun in an existing vehicle design. for example, oto melara ' s new lightweight 120 mm l / 45 gun has achieved a recoil force of 25 t by using a longer recoil mechanism ( 550 mm ) and a pepperpot muzzle brake. reduction in recoil can also be achieved through mass attenuation of the thermal sleeve. the ability of etc technology to be applied to existing gun designs means that for future gun upgrades there ' s no longer the necessity to redesign the turret to include a larger breech or caliber gun barrel. several countries have already determined that etc technology is viable for the future and have funded indigenous projects considerably. these include the united states, germany and the united kingdom, amongst others. the united states ' xm360, which was planned to equip the future combat systems mounted combat system light tank and may be the m1 abrams ' next gun upgrade, is reportedly based on the xm291 and may include etc technology, or portions of etc technology. tests of this gun have been performed using " precision ignition " technology, which may refer to etc ignition. = = notes = = = = bibliography = = = = external links = = electromagnetic launch symposium http : / / www. powerlabs. org / electrothermal. htm
it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools
quantum mechanics is interpreted by the adjacent vacuum that behaves as a virtual particle to be absorbed and emitted by its matter. as described in the vacuum universe model, the adjacent vacuum is derived from the pre - inflationary universe in which the pre - adjacent vacuum is absorbed by the pre - matter. this absorbed pre - adjacent vacuum is emitted to become the added space for the inflation in the inflationary universe whose space - time is separated from the pre - inflationary universe. this added space is the adjacent vacuum. the absorption of the adjacent vacuum as the added space results in the adjacent zero space ( no space ), quantum mechanics is the interaction between matter and the three different types of vacuum : the adjacent vacuum, the adjacent zero space, and the empty space. the absorption of the adjacent vacuum results in the empty space superimposed with the adjacent zero space, confining the matter in the form of particle. when the absorbed vacuum is emitted, the adjacent vacuum can be anywhere instantly in the empty space superimposed with the adjacent zero space where any point can be the starting point ( zero point ) of space - time. consequently, the matter that expands into the adjacent vacuum has the probability to be anywhere instantly in the form of wavefunction. in the vacuum universe model, the universe not only gains its existence from the vacuum but also fattens itself with the vacuum. during the inflation, the adjacent vacuum also generates the periodic table of elementary particles to account for all elementary particles and their masses in a good agreement with the observed values.
Question: What type of energy is the energy of moving matter?
A) dynamic energy
B) kinetic energy
C) potential energy
D) residual energy
|
B) kinetic energy
|
Context:
##artificial liver device, " temporary liver ", extracorporeal liver assist device ( elad ) : the human hepatocyte cell line ( c3a line ) in a hollow fiber bioreactor can mimic the hepatic function of the liver for acute instances of liver failure. a fully capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to
as a traditional tool of external assistance, crutches play an important role in society. they have a wide range of applications to help either the elderly and disabled to walk or to treat certain illnesses or for post - operative rehabilitation. but there are many different types of crutches, including shoulder crutches and elbow crutches. how to choose has become an issue that deserves to be debated. because while crutches help people walk, they also have an impact on the body. inappropriate choice of crutches or long - term misuse can lead to problems such as scoliosis. previous studies were mainly experimental measurements or the construction of dynamic models to calculate the load on joints with crutches. these studies focus only on the level of the joints, ignoring the role that muscles play in this process. although some also take into account the degree of muscle activation, there is still a lack of quantitative analysis. the traditional dynamic model can be used to calculate the load on each joint. however, due to the activation of the muscle, this situation only causes part of the load transmitted to the joint, and the work of the chair will compensate the other part of the load. analysis at the muscle level allows a better understanding of the impact of crutches on the body. by comparing the levels of activation of the trunk muscles, it was found that the use of crutches for walking, especially a single crutch, can cause a large difference in the activation of the back muscles on the left and right sides, and this difference will cause muscle degeneration for a long time, leading to scoliosis. in this article taking scoliosis as an example, by analyzing the muscles around the spine, we can better understand the pathology and can better prevent diseases. the objective of this article is to analyze normal walking compared to walking with one or two crutches using opensim software to obtain the degree of activation of different muscles in order to analyze the impact of crutches on the body.
capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function
- sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei ; they must be slowed ( slow neutrons ), generally by collision with the nuclei of a neutron moderator, before they can be easily captured. today, this type of fission is commonly used to generate electricity. = = = nuclear fusion = = = if nuclei are forced to collide, they can undergo nuclear fusion. this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleosynthesis, the light elements ( lithium to calcium ) as well as some of the heavy elements ( beyond iron and nickel, via the s - process ). the remaining abundance of heavy elements, from nickel to uranium and beyond, is due to supernova nucleosynthesis, the r - process. of course
molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is not the only deadly component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. civilian nuclear and radiological accidents primarily involve nuclear power plants. most common are nuclear leaks that expose workers to hazardous material. a nuclear meltdown refers to the more serious hazard of
( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non -
the cross section of elastic electron - proton scattering taking place in an electron gas is calculated within the closed time path method. it is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. the other term is due to the scattering particles - electron gas entanglement. this term dominates the usual one when the exchange energy is in the vicinity of the fermi energy. furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime.
these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family
in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and biofuels. in the current decades, significant progress has been done in creating genetically modified organisms ( gmos ) that enhance the diversity of applications and economical viability of industrial biotechnology. by using renewable raw materials to produce a variety of chemicals and fuels, industrial biotechnology is actively advancing towards lowering greenhouse gas emissions and moving away from a petrochemical - based economy. synthetic biology is considered one of the essential cornerstones in industrial biotechnology due to its financial and sustainable contribution to the manufacturing sector. jointly biotechnology and synthetic biology play a crucial role in generating cost - effective products with nature - friendly features by using bio - based
, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei ; they must be slowed ( slow neutrons ), generally by collision with the nuclei of a neutron moderator, before they can be easily captured. today, this type of fission is commonly used to generate electricity. = = = nuclear fusion = = = if nuclei are forced to collide, they can undergo nuclear fusion. this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleos
Question: What does bile help to digest ?
A) protein
B) fat
C) nuts
D) food
|
B) fat
|
Context:
genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism ' s genes using technology. it is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. new dna is obtained by either isolating and copying the genetic material of interest using recombinant dna methods or by artificially synthesising the dna. a construct is usually created and used to insert this dna into the host organism. the first recombinant dna molecule was made by paul berg in 1972 by combining dna from the monkey virus sv40 with the lambda virus. as well as inserting genes, the process can be used to remove, or " knock out ", genes. the new dna can be inserted randomly, or targeted to a specific part of the genome. an organism that is generated through genetic engineering is considered to be genetically modified ( gm ) and the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such
is opened and the dna is purified. the gene is separated by using restriction enzymes to cut the dna into fragments or polymerase chain reaction ( pcr ) to amplify up the gene segment. these segments can then be extracted through gel electrophoresis. if the chosen gene or the donor organism ' s genome has been well studied it may already be accessible from a genetic library. if the dna sequence is known, but no copies of the gene are available, it can also be artificially synthesised. once isolated the gene is ligated into a plasmid that is then inserted into a bacterium. the plasmid is replicated when the bacteria divide, ensuring unlimited copies of the gene are available. the rk2 plasmid is notable for its ability to replicate in a wide variety of single - celled organisms, which makes it suitable as a genetic engineering tool. before the gene is inserted into the target organism it must be combined with other genetic elements. these include a promoter and terminator region, which initiate and end transcription. a selectable marker gene is added, which in most cases confers antibiotic resistance, so researchers can easily determine which cells have been successfully transformed. the gene can also be modified at this stage for better expression or effectiveness. these manipulations are carried out using recombinant dna techniques, such as restriction digests, ligations and molecular cloning. = = = inserting dna into the host genome = = = there are a number of techniques used to insert genetic material into the host genome. some bacteria can naturally take up foreign dna. this ability can be induced in other bacteria via stress ( e. g. thermal or electric shock ), which increases the cell membrane ' s permeability to dna ; up - taken dna can either integrate with the genome or exist as extrachromosomal dna. dna is generally inserted into animal cells using microinjection, where it can be injected through the cell ' s nuclear envelope directly into the nucleus, or through the use of viral vectors. plant genomes can be engineered by physical methods or by use of agrobacterium for the delivery of sequences hosted in t - dna binary vectors. in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into
of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an
genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and
##ply quickly, relatively easy to transform and can be stored at - 80 Β°c almost indefinitely. once a gene is isolated it can be stored inside the bacteria providing an unlimited supply for research. organisms are genetically engineered to discover the functions of certain genes. this could be the effect on the phenotype of the organism, where the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment.
for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals ( cattle or pigs ). the genetically engineered bacteria are able to produce large quantities of synthetic human insulin at relatively low cost. biotechnology has also enabled emerging therapeutics like gene therapy. the application of biotechnology to basic science ( for example through the human genome project ) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well. genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child ' s parentage ( genetic mother and father ) or in general a person ' s ancestry. in addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. genetic testing identifies changes in chromosomes, genes, or proteins. most of the time, testing is used to find changes that are associated with inherited disorders. the results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person ' s chance of developing or passing on a genetic disorder. as of 2011 several hundred genetic tests were in use. since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling. = = = agriculture = = = genetically modified crops ( " gm crops ", or " biotech crops " ) are plants used in agriculture, the dna of which has been modified with genetic engineering techniques. in most cases, the main aim is to introduce a new trait that does not occur naturally in the species. biotechnology firms can contribute to future food security by improving the nutrition and viability of urban agriculture. furthermore, the protection of intellectual property rights encourages private sector investment in agrobiotechnology. examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments ( e. g. resistance to a herbicide ), reduction of spoilage, or improving the nutrient profile of the crop. examples in non - food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation. farmers have widely adopted gm technology. between 1996 and 2011, the total surface area of land cultivated with gm crops had increased by a factor of 94, from 17, 000 to 1, 600, 000 square
sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool
and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next,
or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry,
##tes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna
Question: A gene may have different versions called what?
A) alleles
B) genomes
C) locus
D) peptides
|
A) alleles
|
Context:
unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomi
##ta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. hetero
or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosyn
##ses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed
plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually,
, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms
stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is :
ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an o
hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots.
pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form
Question: Nonvascular plants lack vascular tissue and what?
A) seeds
B) chlorophyll
C) cytoplasm
D) cells
|
A) seeds
|
Context:
is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek ΞΌΞ΅ΟαλλοΟ
ΟΞ³ΞΏΟ, metallourgos, " worker in metal ", from ΞΌΞ΅Οαλλον, metallon, " mine, metal " + Ξ΅ΟΞ³ΞΏΞ½, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy '
the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron β carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle
. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek ΞΌΞ΅ΟαλλοΟ
ΟΞ³ΞΏΟ, metallourgos, " worker in metal ", from ΞΌΞ΅Οαλλον, metallon, " mine, metal " + Ξ΅ΟΞ³ΞΏΞ½, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' s definition was extended to the more general scientific study of metals, alloys, and related processes. in english, the pronunciation is the more common one in the united kingdom. the pronunciation is the more common one in the us and is the first - listed variant in various american dictionaries, including merriam - webster collegiate and american heritage. = = history = = the earliest metal employed by humans appears to be gold, which can be found " native ". small amounts of natural gold, dating to the late paleolithic period, 40, 000 bc, have been found in spanish caves. silver, copper, tin and meteoric iron
is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron β carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales
in products for both consumers and manufacturers. metallurgy is distinct from the craft of metalworking. metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. a specialist practitioner of metallurgy is known as a metallurgist. the science of metallurgy is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek ΞΌΞ΅ΟαλλοΟ
ΟΞ³ΞΏΟ, metallourgos, " worker in metal ", from ΞΌΞ΅Οαλλον, metallon, " mine, metal " + Ξ΅ΟΞ³ΞΏΞ½, ergon
based on 1 / 10 and 1 / 100 weight percentages of the carbon and other alloying elements they contain. thus, the extracting and purifying methods used to extract iron in a blast furnace can affect the quality of steel that is produced. solid materials are generally grouped into three basic classifications : ceramics, metals, and polymers. this broad classification is based on the empirical makeup and atomic structure of the solid materials, and most solids fall into one of these broad categories. an item that is often made from each of these materials types is the beverage container. the material types used for beverage containers accordingly provide different advantages and disadvantages, depending on the material used. ceramic ( glass ) containers are optically transparent, impervious to the passage of carbon dioxide, relatively inexpensive, and are easily recycled, but are also heavy and fracture easily. metal ( aluminum alloy ) is relatively strong, is a good barrier to the diffusion of carbon dioxide, and is easily recycled. however, the cans are opaque, expensive to produce, and are easily dented and punctured. polymers ( polyethylene plastic ) are relatively strong, can be optically transparent, are inexpensive and lightweight, and can be recyclable, but are not as impervious to the passage of carbon dioxide as aluminum and glass. = = = ceramics and glasses = = = another application of materials science is the study of ceramics and glasses, typically the most brittle materials with industrial relevance. many ceramics and glasses exhibit covalent or ionic - covalent bonding with sio2 ( silica ) as a fundamental building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another
applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle transition and lose their toughness, becoming more brittle and prone to cracking. metals under continual cyclic loading can suffer from metal fatigue. metals under constant stress at elevated temperatures can creep. = = = metalworking processes = = = casting β molten metal is poured into a shaped mold. variants of casting include sand casting, investment
casting, foundry methods, blast furnace extraction, and electrolytic extraction are all part of the required knowledge of a materials engineer. often the presence, absence, or variation of minute quantities of secondary elements and compounds in a bulk material will greatly affect the final properties of the materials produced. for example, steels are classified based on 1 / 10 and 1 / 100 weight percentages of the carbon and other alloying elements they contain. thus, the extracting and purifying methods used to extract iron in a blast furnace can affect the quality of steel that is produced. solid materials are generally grouped into three basic classifications : ceramics, metals, and polymers. this broad classification is based on the empirical makeup and atomic structure of the solid materials, and most solids fall into one of these broad categories. an item that is often made from each of these materials types is the beverage container. the material types used for beverage containers accordingly provide different advantages and disadvantages, depending on the material used. ceramic ( glass ) containers are optically transparent, impervious to the passage of carbon dioxide, relatively inexpensive, and are easily recycled, but are also heavy and fracture easily. metal ( aluminum alloy ) is relatively strong, is a good barrier to the diffusion of carbon dioxide, and is easily recycled. however, the cans are opaque, expensive to produce, and are easily dented and punctured. polymers ( polyethylene plastic ) are relatively strong, can be optically transparent, are inexpensive and lightweight, and can be recyclable, but are not as impervious to the passage of carbon dioxide as aluminum and glass. = = = ceramics and glasses = = = another application of materials science is the study of ceramics and glasses, typically the most brittle materials with industrial relevance. many ceramics and glasses exhibit covalent or ionic - covalent bonding with sio2 ( silica ) as a fundamental building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and
". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or mostly waste. concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products. mining may not be necessary, if the ore body and physical environment are conducive to leaching. leaching dissolves minerals in an ore body and results in an enriched solution. the solution is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron β carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications
iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment processes such as quenching and tempering can significantly change these properties, however. in contrast, certain metal alloys exhibit unique properties where their size and density remain unchanged across a range of temperatures. cast iron is defined as an iron β carbon alloy with more than 2. 00 %, but less than 6. 67 % carbon. stainless steel is defined as a regular steel alloy with greater than 10 % by weight alloying content of chromium. nickel and molybdenum are typically also added in stainless steels. other significant metallic alloys are those of aluminium, titanium, copper and magnesium. copper alloys have been known for a long time ( since the bronze age ), while the alloys of the other three metals have been relatively recently developed. due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. the alloys of aluminium, titanium and magnesium are also known and valued for their high strength to weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. these materials are ideal for situations where high strength to weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering applications. = = = semiconductors = = = a semiconductor is a material that has a resistivity between a conductor and insulator. modern day electronics run on semiconductors, and the industry had an estimated us $ 530 billion market in 2021. its electronic properties can be greatly altered through intentionally introducing impurities in a process referred to as doping. semiconductor materials are used to build diodes, transistors, light - emitting diodes ( leds ), and analog and digital electric circuits, among their many uses. semiconductor devices have replaced thermionic devices like vacuum tubes in most applications. semiconductor devices are manufactured both as single discrete devices and as integrated circuits ( ics ), which consist of a number β from a few to millions β of devices manufactured and interconnected on a single semiconductor substrate. of all the semiconductors in use today, silicon makes up the largest portion both by quantity and commercial value. monocrystalline silicon is used to produce wafers used in the semiconductor and electronics industry. gallium arsenide (
Question: What is a mixture of metal with one or more other elements?
A) an alloy
B) an alkali metal
C) a metalloid
D) a halloid
|
A) an alloy
|
Context:
functionalobjects. h allows the c + + programmer performing common mathematical calculations to use a more symbolic syntax rather than an algorithmic syntax. this is not as ambitious as a symbolic manipulation program such as mathematica ; it is more like having the ability to drop a very simple mathematica statement into a c + + program.
species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos
this is a thesis submitted for the degree of doctor philosophiae at s. i. s. s. a. / i. s. a. s.
, evaporation, and sputtering processes. commonly used metals include gold, nickel, aluminium, copper, chromium, titanium, tungsten, platinum, and silver. ceramics the nitrides of silicon, aluminium and titanium as well as silicon carbide and other ceramics are increasingly applied in mems fabrication due to advantageous combinations of material properties. aln crystallizes in the wurtzite structure and thus shows pyroelectric and piezoelectric properties enabling sensors, for instance, with sensitivity to normal and shear forces. tin, on the other hand, exhibits a high electrical conductivity and large elastic modulus, making it possible to implement electrostatic mems actuation schemes with ultrathin beams. moreover, the high resistance of tin against biocorrosion qualifies the material for applications in biogenic environments. the figure shows an electron - microscopic picture of a mems biosensor with a 50 nm thin bendable tin beam above a tin ground plate. both can be driven as opposite electrodes of a capacitor, since the beam is fixed in electrically isolating side walls. when a fluid is suspended in the cavity its viscosity may be derived from bending the beam by electrical attraction to the ground plate and measuring the bending velocity. = = basic processes = = = = = deposition processes = = = one of the basic building blocks in mems processing is the ability to deposit thin films of material with a thickness anywhere from one micrometre to about 100 micrometres. the nems process is the same, although the measurement of film deposition ranges from a few nanometres to one micrometre. there are two types of deposition processes, as follows. = = = = physical deposition = = = = physical vapor deposition ( " pvd " ) consists of a process in which a material is removed from a target, and deposited on a surface. techniques to do this include the process of sputtering, in which an ion beam liberates atoms from a target, allowing them to move through the intervening space and deposit on the desired substrate, and evaporation, in which a material is evaporated from a target using either heat ( thermal evaporation ) or an electron beam ( e - beam evaporation ) in a vacuum system. = = = = chemical deposition = = = = chemical deposition techniques include chemical vapor deposition ( cvd ), in which a stream of source gas reacts on the substrate to grow the material desired. this can
consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β of which around 1 million are insects β but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β pieces of dna that can move between cells β while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e. g., water, light, radiation, temperature, humidity, atmosphere, acidity, and soil ) of their environment is called an ecosystem. these biotic and abiotic components are linked together through nutrient cycles and energy flows. energy from the sun enters the system through photosynthesis and is incorporated into plant tissue. by feeding on plants and on one another, animals move matter and energy through the system. they also influence the quantity of plant and microbial biomass present. by breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and other microbes. = = = populations = = = a population is the group of organisms of the same species that occupies an area and reproduce from generation to generation. population size can be estimated by multiplying population density by the area or volume. the carrying capacity of an environment
improve the yield of a smelting process. coke is now widely used to produce carbide ceramics. potter josiah wedgwood opened the first modern ceramics factory in stoke - on - trent, england, in 1759. austrian chemist carl josef bayer, working for the textile industry in russia, developed a process to separate alumina from bauxite ore in 1888. the bayer process is still used to purify alumina for the ceramic and aluminium industries. brothers pierre and jacques curie discovered piezoelectricity in rochelle salt c. 1880. piezoelectricity is one of the key properties of electroceramics. e. g. acheson heated a mixture of coke and clay in 1893, and invented carborundum, or synthetic silicon carbide. henri moissan also synthesized sic and tungsten carbide in his electric arc furnace in paris about the same time as acheson. karl schroter used liquid - phase sintering to bond or " cement " moissan ' s tungsten carbide particles with cobalt in 1923 in germany. cemented ( metal - bonded ) carbide edges greatly increase the durability of hardened steel cutting tools. w. h. nernst developed cubic - stabilized zirconia in the 1920s in berlin. this material is used as an oxygen sensor in exhaust systems. the main limitation on the use of ceramics in engineering is brittleness. = = = military = = = the military requirements of world war ii encouraged developments, which created a need for high - performance materials and helped speed the development of ceramic science and engineering. throughout the 1960s and 1970s, new types of ceramics were developed in response to advances in atomic energy, electronics, communications, and space travel. the discovery of ceramic superconductors in 1986 has spurred intense research to develop superconducting ceramic parts for electronic devices, electric motors, and transportation equipment. there is an increasing need in the military sector for high - strength, robust materials which have the capability to transmit light around the visible ( 0. 4 β 0. 7 micrometers ) and mid - infrared ( 1 β 5 micrometers ) regions of the spectrum. these materials are needed for applications requiring transparent armour. transparent armour is a material or system of materials designed to be optically transparent, yet protect from fragmentation or ballistic impacts. the primary requirement for a transparent armour system is to not only defeat the designated threat but also provide a multi - hit capability with minimized distortion of surrounding areas.
the measured capacitance, modulus and strength of carbon nanotube - polyaniline ( cnt - pani ) composite electrodes render them promising candidates for structural energy storage devices. here, cnt - pani composite electrodes are manufactured with electrodeposition of pani onto the bundle network of cnt mats produced via a floating catalyst chemical vapour deposition process. pani comprises 0 % to 30 % by volume of the electrode. the composition, modulus, strength and capacitance of the electrodes is measured in the initial state, after the first charge, and after 1000 charge / discharge cycles. electrode modulus and strength increase with increasing cnt volume fraction ; in contrast, the capacitance increases with increasing pani mass. charging or cycling reduce the electrode modulus and strength due to a decrease in cnt bundle volume fraction caused by swelling ; the electrode capacitance also decreases due to a reduction in pani mass. a micromechanical model is able to predict the stress - strain response of pre - charged and cycled electrodes, based upon their measured composition after pre - charging and cycling. the electrodes possess up to 63 % of their theoretical capacitance, and their tensile strengths are comparable to those of engineering alloys. their capacitance and strength decrease by less than 15 % after the application of 1000 charge / discharge cycles. these properties illustrate their potential as structural energy storage devices.
or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws
we group materials into five symmetry classes and determine in which of these classes phonons carry angular momentum in the brillouin zone, away from a high - symmetry point, line, or plane. in some materials phonons acquire angular momentum via the forces induced by relative displacements of atoms out of their equilibrium positions. however, for other materials, such as ferromagnetic iron, phonon angular momentum arises from the forces induced by relative velocities of atoms. these effects are driven by the spin - orbit interaction.
in supersymmetric theories, the presence of axions usually implies the existence of a non - compact, ( pseudo ) moduli space. in gauge mediated models, the axion would seem a particularly promising dark matter candidate. the cosmology of the moduli then constrains the gravitino mass and the axion decay constant ; the former can ' t be much below 10 mev ; the latter can ' t be much larger than 10 ^ { 13 } gev. axinos, when identifiable, are typically heavy and do not play an important role in cosmology.
Question: Pheromones enable what, which is vital for organisms like ants that live in a large community?
A) adaptation
B) communication
C) asexual reproduction
D) migration
|
B) communication
|
Context:
, even if the idempotence property is lost. an everyday example of a projection is the casting of shadows onto a plane ( sheet of paper ) : the projection of a point is its shadow on the sheet of paper, and the projection ( shadow ) of a point on the sheet of paper is that point itself ( idempotency ). the shadow of a three - dimensional sphere is a disk. originally, the notion of projection was introduced in euclidean geometry to denote the projection of the three - dimensional euclidean space onto a plane in it, like the shadow example. the two main projections of this kind are : the projection from a point onto a plane or central projection : if c is a point, called the center of projection, then the projection of a point p different from c onto a plane that does not contain c is the intersection of the line cp with the plane. the points p such that the line cp is parallel to the plane does not have any image by the projection, but one often says that they project to a point at infinity of the plane ( see projective geometry for a formalization of this terminology ). the projection of the point c itself is not defined. the projection parallel to a direction d, onto a plane or parallel projection : the image of a point p is the intersection of the plane with the line parallel to d passing through p. see affine space Β§ projection for an accurate definition, generalized to any dimension. the concept of projection in mathematics is a very old one, and most likely has its roots in the phenomenon of the shadows cast by real - world objects on the ground. this rudimentary idea was refined and abstracted, first in a geometric context and later in other branches of mathematics. over time different versions of the concept developed, but today, in a sufficiently abstract setting, we can unify these variations. in cartography, a map projection is a map of a part of the surface of the earth onto a plane, which, in some cases, but not always, is the restriction of a projection in the above meaning. the 3d projections are also at the basis of the theory of perspective. the need for unifying the two kinds of projections and of defining the image by a central projection of any point different of the center of projection are at the origin of projective geometry. = = definition = = generally, a mapping where the domain and codomain are the same set ( or mathematical structure ) is a projection if the mapping is idempotent, which means that a projection is
reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 '
##itive material by selective exposure to a radiation source such as light. a photosensitive material is a material that experiences a change in its physical properties when exposed to a radiation source. if a photosensitive material is selectively exposed to radiation ( e. g. by masking some of the radiation ) the pattern of the radiation on the material is transferred to the material exposed, as the properties of the exposed and unexposed regions differs. this exposed region can then be removed or treated providing a mask for the underlying substrate. photolithography is typically used with metal or other thin film deposition, wet and dry etching. sometimes, photolithography is used to create structure without any kind of post etching. one example is su8 based lens where su8 based square blocks are generated. then the photoresist is melted to form a semi - sphere which acts as a lens. electron beam lithography ( often abbreviated as e - beam lithography ) is the practice of scanning a beam of electrons in a patterned fashion across a surface covered with a film ( called the resist ), ( " exposing " the resist ) and of selectively removing either exposed or non - exposed regions of the resist ( " developing " ). the purpose, as with photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching. it was developed for manufacturing integrated circuits, and is also used for creating nanotechnology architectures. the primary advantage of electron beam lithography is that it is one of the ways to beat the diffraction limit of light and make features in the nanometer range. this form of maskless lithography has found wide usage in photomask - making used in photolithography, low - volume production of semiconductor components, and research & development. the key limitation of electron beam lithography is throughput, i. e., the very long time it takes to expose an entire silicon wafer or glass substrate. a long exposure time leaves the user vulnerable to beam drift or instability which may occur during the exposure. also, the turn - around time for reworking or re - design is lengthened unnecessarily if the pattern is not being changed the second time. it is known that focused - ion beam lithography has the capability of writing extremely fine lines ( less than 50 nm line and space has been achieved ) without proximity effect. however, because the writing field in ion - beam lit
, behind which are structures termed reentrant triangles. radar waves penetrating the skin get trapped in these structures, reflecting off the internal faces and losing energy. this method was first used on the blackbird series : a - 12, yf - 12a, lockheed sr - 71 blackbird. the most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth air
the radiation on the material is transferred to the material exposed, as the properties of the exposed and unexposed regions differs. this exposed region can then be removed or treated providing a mask for the underlying substrate. photolithography is typically used with metal or other thin film deposition, wet and dry etching. sometimes, photolithography is used to create structure without any kind of post etching. one example is su8 based lens where su8 based square blocks are generated. then the photoresist is melted to form a semi - sphere which acts as a lens. electron beam lithography ( often abbreviated as e - beam lithography ) is the practice of scanning a beam of electrons in a patterned fashion across a surface covered with a film ( called the resist ), ( " exposing " the resist ) and of selectively removing either exposed or non - exposed regions of the resist ( " developing " ). the purpose, as with photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching. it was developed for manufacturing integrated circuits, and is also used for creating nanotechnology architectures. the primary advantage of electron beam lithography is that it is one of the ways to beat the diffraction limit of light and make features in the nanometer range. this form of maskless lithography has found wide usage in photomask - making used in photolithography, low - volume production of semiconductor components, and research & development. the key limitation of electron beam lithography is throughput, i. e., the very long time it takes to expose an entire silicon wafer or glass substrate. a long exposure time leaves the user vulnerable to beam drift or instability which may occur during the exposure. also, the turn - around time for reworking or re - design is lengthened unnecessarily if the pattern is not being changed the second time. it is known that focused - ion beam lithography has the capability of writing extremely fine lines ( less than 50 nm line and space has been achieved ) without proximity effect. however, because the writing field in ion - beam lithography is quite small, large area patterns must be created by stitching together the small fields. ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. it is capable of generating holes in thin films without any development process. structural depth can be defined
are continuous lines used to depict edges directly visible from a particular angle. hidden β are short - dashed lines that may be used to represent edges that are not directly visible. center β are alternately long - and short - dashed lines that may be used to represent the axes of circular features. cutting plane β are thin, medium - dashed lines, or thick alternately long - and double short - dashed that may be used to define sections for section views. section β are thin lines in a pattern ( pattern determined by the material being " cut " or " sectioned " ) used to indicate surfaces in section views resulting from " cutting ". section lines are commonly referred to as " cross - hatching ". phantom β ( not shown ) are alternately long - and double short - dashed thin lines used to represent a feature or component that is not part of the specified part or assembly. e. g. billet ends that may be used for testing, or the machined product that is the focus of a tooling drawing. lines can also be classified by a letter classification in which each line is given a letter. type a lines show the outline of the feature of an object. they are the thickest lines on a drawing and done with a pencil softer than hb. type b lines are dimension lines and are used for dimensioning, projecting, extending, or leaders. a harder pencil should be used, such as a 2h pencil. type c lines are used for breaks when the whole object is not shown. these are freehand drawn and only for short breaks. 2h pencil type d lines are similar to type c, except these are zigzagged and only for longer breaks. 2h pencil type e lines indicate hidden outlines of internal features of an object. these are dotted lines. 2h pencil type f lines are type e lines, except these are used for drawings in electrotechnology. 2h pencil type g lines are used for centre lines. these are dotted lines, but a long line of 10 β 20 mm, then a 1 mm gap, then a small line of 2 mm. 2h pencil type h lines are the same as type g, except that every second long line is thicker. these indicate the cutting plane of an object. 2h pencil type k lines indicate the alternate positions of an object and the line taken by that object. these are drawn with a long line of 10 β 20 mm, then a small gap, then a small line of 2 mm, then a gap, then another small line. 2h
##hography is quite small, large area patterns must be created by stitching together the small fields. ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. it is capable of generating holes in thin films without any development process. structural depth can be defined either by ion range or by material thickness. aspect ratios up to several 104 can be reached. the technique can shape and texture materials at a defined inclination angle. random pattern, single - ion track structures and an aimed pattern consisting of individual single tracks can be generated. x - ray lithography is a process used in the electronic industry to selectively remove parts of a thin film. it uses x - rays to transfer a geometric pattern from a mask to a light - sensitive chemical photoresist, or simply " resist ", on the substrate. a series of chemical treatments then engraves the produced pattern into the material underneath the photoresist. diamond patterning is a method of forming diamond mems. it is achieved by the lithographic application of diamond films to a substrate such as silicon. the patterns can be formed by selective deposition through a silicon dioxide mask, or by deposition followed by micromachining or focused ion beam milling. = = = etching processes = = = there are two basic categories of etching processes : wet etching and dry etching. in the former, the material is dissolved when immersed in a chemical solution. in the latter, the material is sputtered or dissolved using reactive ions or a vapor phase etchant. = = = = wet etching = = = = wet chemical etching consists of the selective removal of material by dipping a substrate into a solution that dissolves it. the chemical nature of this etching process provides good selectivity, which means the etching rate of the target material is considerably higher than the mask material if selected carefully. wet etching can be performed using either isotropic wet etchants or anisotropic wet etchants. isotropic wet etchant etch in all directions of the crystalline silicon at approximately equal rates. anisotropic wet etchants preferably etch along certain crystal planes at faster rates than other planes, thereby allowing more complicated 3 - d microstructures to be implemented. wet anisotropic etchants are often used in conjunction with boron etch stops wherein the surface of the silicon is heavily doped with boron resulting in a silicon material layer that is
much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost
lengthened unnecessarily if the pattern is not being changed the second time. it is known that focused - ion beam lithography has the capability of writing extremely fine lines ( less than 50 nm line and space has been achieved ) without proximity effect. however, because the writing field in ion - beam lithography is quite small, large area patterns must be created by stitching together the small fields. ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. it is capable of generating holes in thin films without any development process. structural depth can be defined either by ion range or by material thickness. aspect ratios up to several 104 can be reached. the technique can shape and texture materials at a defined inclination angle. random pattern, single - ion track structures and an aimed pattern consisting of individual single tracks can be generated. x - ray lithography is a process used in the electronic industry to selectively remove parts of a thin film. it uses x - rays to transfer a geometric pattern from a mask to a light - sensitive chemical photoresist, or simply " resist ", on the substrate. a series of chemical treatments then engraves the produced pattern into the material underneath the photoresist. diamond patterning is a method of forming diamond mems. it is achieved by the lithographic application of diamond films to a substrate such as silicon. the patterns can be formed by selective deposition through a silicon dioxide mask, or by deposition followed by micromachining or focused ion beam milling. = = = etching processes = = = there are two basic categories of etching processes : wet etching and dry etching. in the former, the material is dissolved when immersed in a chemical solution. in the latter, the material is sputtered or dissolved using reactive ions or a vapor phase etchant. = = = = wet etching = = = = wet chemical etching consists of the selective removal of material by dipping a substrate into a solution that dissolves it. the chemical nature of this etching process provides good selectivity, which means the etching rate of the target material is considerably higher than the mask material if selected carefully. wet etching can be performed using either isotropic wet etchants or anisotropic wet etchants. isotropic wet etchant etch in all directions of the crystalline silicon at approximately equal rates. anisotropic wet etchants preferably etch along certain crystal
bear ' ) was conspicuous on radar. it is now known that propellers and jet turbine blades produce a bright radar image ; the bear has four pairs of large 18 - foot ( 5. 6 m ) diameter contra - rotating propellers. another important factor is internal construction. some stealth aircraft have skin that is radar transparent or absorbing, behind which are structures termed reentrant triangles. radar waves penetrating the skin get trapped in these structures, reflecting off the internal faces and losing energy. this method was first used on the blackbird series : a - 12, yf - 12a, lockheed sr - 71 blackbird. the most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar
Question: What is the part of the shadow that is partially lit called?
A) pleura
B) pentila
C) penumbra
D) eclipse
|
C) penumbra
|
Context:
also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in
a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern
from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their
depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform
becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under
approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with
##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river
##ructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models
current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers β civil works program river morphology and stream restoration references
above any tidal limit and their average freshwater discharge are proportionate to the extent of their basins and the amount of rain which, after falling over these basins, reaches the river channels in the bottom of the valleys, by which it is conveyed to the sea. the drainage basin of a river is the expanse of country bounded by a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer
Question: When a mountain stream flows onto flatter land and comes to a stop rapidly, what do the deposits form?
A) vertical fan
B) upstream fan
C) conical fan
D) alluvial fan
|
D) alluvial fan
|
Context:
assuming only statistical mechanics and general relativity, we calculate the maximal temperature of gas of particles placed in ads space - time. if two particles with a given center of mass energy come close enough, according to classical gravity they will form a black hole. we focus only on the black holes with hawking temperature lower than the environment, because they do not disappear. the number density of such black holes grows with the temperature in the system. at a certain finite temperature, the thermodynamical system will be dominated by black holes. this critical temperature is lower than the planck temperature for the values of the ads vacuum energy density below the planck density. this result might be interesting from the ads / cft correspondence point of view, since it is different from the hawking - page phase transition, and it is not immediately clear what effect dynamically limits the maximal temperature of the thermal state on the cft side of the correspondence.
a comparison of the sensitivities of methods which allow us to determine the coordinates of a moving hot body is made.
high temperature superconducting ( hts ) tape can be cut and stacked to generate large magnetic fields at cryogenic temperatures after inducing persistent currents in the superconducting layers. a field of 17. 7 t was trapped between two stacks of hts tape at 8 k with no external mechanical reinforcement. 17. 6 t could be sustained when warming the stack up to 14 k. a new type of hybrid stack was used consisting of a 12 mm square insert stack embedded inside a larger 34. 4 mm diameter stack made from different tape. the magnetic field generated is the largest for any trapped field magnet reported and 30 % greater than previously achieved in a stack of hts tapes. such stacks are being considered for superconducting motors as rotor field poles where the cryogenic penalty is justified by the increased power to weight ratio. the sample reported can be considered the strongest permanent magnet ever created.
is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemical
may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha
metal hydrides have earlier been suggested for utilization in solar cells. with this as a motivation we have prepared thin films of yttrium hydride by reactive magnetron sputter deposition. the resulting films are metallic for low partial pressure of hydrogen during the deposition, and black or yellow - transparent for higher partial pressure of hydrogen. both metallic and semiconducting transparent yhx films have been prepared directly in - situ without the need of capping layers and post - deposition hydrogenation. optically the films are similar to what is found for yhx films prepared by other techniques, but the crystal structure of the transparent films differ from the well - known yh3 phase, as they have an fcc lattice instead of hcp.
which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat treatment the glass partly crystallizes. in many cases, so - called ' nucleation agents ' are added in order to regulate and control the crystallization process. because there is usually no pressing and sintering, glass - ceramics do not contain the volume fraction of porosity typically present in sintered ceramics. the term mainly refers to a mix of lithium and aluminosilicates which yields an array of materials with interesting thermomechanical properties. the most commercially important of these have the distinction of being impervious to thermal shock. thus, glass - ceramics have become extremely useful for countertop cooking. the negative thermal expansion coefficient ( tec ) of the crystalline ceramic phase can be balanced with the positive tec of the glassy phase. at a certain point ( ~ 70 % crystalline ) the glass - ceramic has a net tec near zero. this type of glass - ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β batching β mixing β forming β drying β firing β assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression
i transform the trapdoor problem of hfe into a linear algebra problem.
while co - coculturing epithelial and adipocyte cells. the hystem kit is another 3 - d platform containing ecm components and hyaluronic acid that has been used for cancer research. additionally, hydrogel constituents can be chemically modified to assist in crosslinking and enhance their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a
of highly anisotropic thermal expansion. examples include al2o3, tio2, graphite, and boron nitride. in processing particulate composites, the issue is not only homogeneity of the size and spatial distribution of the dispersed and matrix phases, but also control of the matrix grain size. however, there is some built - in self - control due to inhibition of matrix grain growth by the dispersed phase. particulate composites, though generally offer increased resistance to damage, failure, or both, are still quite sensitive to inhomogeneities of composition as well as other processing defects such as pores. thus they need good processing to be effective. particulate composites have been made on a commercial basis by simply mixing powders of the two constituents. although this approach is inherently limited in the homogeneity that can be achieved, it is the most readily adaptable for existing ceramic production technology. however, other approaches are of interest. from the technological standpoint, a particularly desirable approach to fabricating particulate composites is to coat the matrix or its precursor onto fine particles of the dispersed phase with good control of the starting dispersed particle size and the resultant matrix coating thickness. one should in principle be able to achieve the ultimate in homogeneity of distribution and thereby optimize composite performance. this can also have other ramifications, such as allowing more useful composite performance to be achieved in a body having porosity, which might be desired for other factors, such as limiting thermal conductivity. there are also some opportunities to utilize melt processing for fabrication of ceramic, particulate, whisker and short - fiber, and continuous - fiber composites. both particulate and whisker composites are conceivable by solid - state precipitation after solidification of the melt. this can also be obtained in some cases by sintering, as for precipitation - toughened, partially stabilized zirconia. similarly, it is known that one can directionally solidify ceramic eutectic mixtures and hence obtain uniaxially aligned fiber composites. such composite processing has typically been limited to very simple shapes and thus suffers from serious economic problems due to high machining costs. there is a possibility for melt casting to be used for many of these approaches. potentially even more desirable is using melt - derived particles. in this method, quenching is done in a solid solution or in a fine eutectic structure, in which the particles are then processed by more typical
Question: The processes of homeostasis and temperature control are centered in the hypothalamus of the advanced animal brain, thus thermoregulation depends on what organ system?
A) cardiovascular system
B) nervous system
C) circulatory system
D) digestive system
|
B) nervous system
|
Context:
in gravitational lensing, the concept of optical depth assumes the lens is dark. several microlensing detections have now been made where the lens may be bright. relations are developed between apparent and absolute optical depth in the regime of the apparent and absolute brightness of the lens. an apparent optical depth through bright lenses is always less than the true, absolute optical depth. the greater the intrinsic brightness of the lens, the more likely it will be found nearer the source.
as subjects perceive the sensory world, different stimuli elicit a number of neural representations. here, a subjective distance between stimuli is defined, measuring the degree of similarity between the underlying representations. as an example, the subjective distance between different locations in space is calculated from the activity of rodent hippocampal place cells, and lateral septal cells. such a distance is compared to the real distance, between locations. as the number of sampled neurons increases, the subjective distance shows a tendency to resemble the metrics of real space.
beacon transmits two signals simultaneously on different frequencies. a directional antenna transmits a beam of radio waves that rotates like a lighthouse at a fixed rate, 30 times per second. when the directional beam is facing north, an omnidirectional antenna transmits a pulse. by measuring the difference in phase of these two signals, an aircraft can determine its bearing ( or " radial " ) from the station accurately. by taking a bearing on two vor beacons an aircraft can determine its position ( called a " fix " ) to an accuracy of about 90 metres ( 300 ft ). most vor beacons also have a distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) β legacy fixed radio beacons used before the vo
the group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the mediterranean sea at a depth of about 2. 2 km with the antares optical beacon systems. a parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the antares site is in good agreement with these measurements.
the realization of karl popper ' s epr - like experiment by shih and kim ( published 1999 ) produced the result that popper hoped for : no ` ` action at a distance ' ' on one photon of an entangled pair when a measurement is made on the other photon. this experimental result is interpretable in local realistic terms : each photon has a definite position and transverse momentum most of the time ; the position measurement on one photon ( localization within a slit ) disturbs the transverse momentum of that photon in a non - predictable way in accordance with the uncertainty principle ; however, there is no effect on the other photon ( the photon that is not in a slit ) no action at a distance. the position measurement ( localization within a slit ) of the one photon destroys the entanglement between the photons ; i. e. decoherence occurs.
the luminosity variation of a stellar source due to the gravitational microlensing effect can be considered also if the light rays are defocused ( instead of focused ) toward the observer. in this case, we should detect a gap instead of a peak in the light curve of the source. actually, we describe how the phenomenon depends on the relative position of source and lens with respect to the observer : if the lens is between, we have focusing, if the lens is behind, we have defocusing. it is shown that the number of events with predicted gaps is equal to the number of events with peaks in the light curves.
beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar β an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical
distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) β legacy fixed radio beacons used before the vor system that transmit a simple signal in all directions for aircraft or ships to use for radio direction finding. aircraft use automatic direction finder ( adf ) receivers which use a directional antenna to determine the bearing to the beacon. by taking bearings on two beacons they can determine their position. ndbs use frequencies between 190 and 1750 khz in the lf and mf bands which propagate beyond the horizon as ground waves or skywaves much farther than vor beacons. they transmit a callsign consisting of one to 3 morse code letters as an identifier. emergency locator beacon β a portable battery powered radio
missiles, ships, vehicles, and also to map weather patterns and terrain. a radar set consists of a transmitter and receiver. the transmitter emits a narrow beam of radio waves which is swept around the surrounding space. when the beam strikes a target object, radio waves are reflected back to the receiver. the direction of the beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it
these two signals, an aircraft can determine its bearing ( or " radial " ) from the station accurately. by taking a bearing on two vor beacons an aircraft can determine its position ( called a " fix " ) to an accuracy of about 90 metres ( 300 ft ). most vor beacons also have a distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) β legacy fixed radio beacons used before the vor system that transmit a simple signal in all directions for aircraft or ships to use for radio direction finding. aircraft use automatic direction finder ( adf ) receivers which use a directional antenna to determine the bearing to the beacon. by taking bearings on two beacons they can determine their position. ndbs use frequencies between
Question: Light from objects at different distances is focused by what part of the eye?
A) iris
B) pupil
C) lens
D) meniscus
|
C) lens
|
Context:
three separate questions of relevance to major league baseball are investigated from a physics perspective. first, can a baseball be hit farther with a corked bat? second, is there evidence that the baseball is more lively today than in earlier years? third, can storing baseballs in a temperature - or humidity - controlled environment significantly affect home run production? each of these questions is subjected to a physics analysis, including an experiment, an interpretation of the data, and a definitive answer. the answers to the three questions are no, no, and yes.
the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal,
in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and
analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (
what kind of new physics, if any, we expect to discover at the lhc? i will try to address this formidable question by re - formulating it as follows : is the breaking of the electroweak symmetry strong or weak?
al - kimia is derived from the ancient greek ΟΞ·ΞΌΞΉΞ±, which is in turn derived from the word kemet, which is the ancient name of egypt in the egyptian language. alternately, al - kimia may derive from ΟημΡια ' cast together '. = = modern principles = = the current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = =
accept that deflection effects in materials with roughly equiaxial grains may increase the fracture toughness by about twice the grain boundary value. the model reveals that the increase in toughness is dependent on particle shape and the volume fraction of the second phase, with the most effective morphology being the rod of high aspect ratio, which can account for a fourfold increase in fracture toughness. the toughening arises primarily from the twist of the crack front between particles, as indicated by deflection profiles. disc - shaped particles and spheres are less effective in toughening. fracture toughness, regardless of morphology, is determined by the twist of the crack front at its most severe configuration, rather than the initial tilt of the crack front. only for disc - shaped particles does the initial tilting of the crack front provide significant toughening ; however, the twist component still overrides the tilt - derived toughening. additional important features of the deflection analysis include the appearance of asymptotic toughening for the three morphologies at volume fractions in excess of 0. 2. it is also noted that a significant influence on the toughening by spherical particles is exerted by the interparticle spacing distribution ; greater toughening is afforded when spheres are nearly contacting such that twist angles approach Ο / 2. these predictions provide the basis for the design of high - toughness two - phase ceramic materials. the ideal second phase, in addition to maintaining chemical compatibility, should be present in amounts of 10 to 20 volume percent. greater amounts may diminish the toughness increase due to overlapping particles. particles with high aspect ratios, especially those with rod - shaped morphologies, are most suitable for maximum toughening. this model is often used to determine the factors that contribute to the increase in fracture toughness in ceramics which is ultimately useful in the development of advanced ceramic materials with improved performance. = = theory of chemical processing = = = = = microstructural uniformity = = = in the processing of fine ceramics, the irregular particle sizes and shapes in a typical powder often lead to non - uniform packing morphologies that result in packing density variations in the powder compact. uncontrolled agglomeration of powders due to attractive van der waals forces can also give rise to in microstructural inhomogeneities. differential stresses that develop as a result of non - uniform drying shrinkage are directly related to the rate at which the solvent can be removed, and thus highly dependent upon the
missiles, ships, vehicles, and also to map weather patterns and terrain. a radar set consists of a transmitter and receiver. the transmitter emits a narrow beam of radio waves which is swept around the surrounding space. when the beam strikes a target object, radio waves are reflected back to the receiver. the direction of the beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it
temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β batching β mixing β forming β drying β firing β assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first,
current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the
Question: Breaking a window with a baseball is an example of what kind of change in matter?
A) physical
B) unusual
C) sudden
D) chemical
|
A) physical
|
Context:
scientists look through telescopes, study images on electronic screens, record meter readings, and so on. generally, on a basic level, they can agree on what they see, e. g., the thermometer shows 37. 9 degrees c. but, if these scientists have different ideas about the theories that have been developed to explain these basic observations, they may disagree about what they are observing. for example, before albert einstein ' s general theory of relativity, observers would have likely interpreted an image of the einstein cross as five different objects in space. in light of that theory, however, astronomers will tell you that there are actually only two objects, one in the center and four different images of a second object around the sides. alternatively, if other scientists suspect that something is wrong with the telescope and only one object is actually being observed, they are operating under yet another theory. observations that cannot be separated from theoretical interpretation are said to be theory - laden. all observation involves both perception and cognition. that is, one does not make an observation passively, but rather is actively engaged in distinguishing the phenomenon being observed from surrounding sensory data. therefore, observations are affected by one ' s underlying understanding of the way in which the world functions, and that understanding may influence what is perceived, noticed, or deemed worthy of consideration. in this sense, it can be argued that all observation is theory - laden. = = = the purpose of science = = = should science aim to determine ultimate truth, or are there questions that science cannot answer? scientific realists claim that science aims at truth and that one ought to regard scientific theories as true, approximately true, or likely true. conversely, scientific anti - realists argue that science does not aim ( or at least does not succeed ) at truth, especially truth about unobservables like electrons or other universes. instrumentalists argue that scientific theories should only be evaluated on whether they are useful. in their view, whether theories are true or not is beside the point, because the purpose of science is to make predictions and enable effective technology. realists often point to the success of recent scientific theories as evidence for the truth ( or near truth ) of current theories. antirealists point to either the many false theories in the history of science, epistemic morals, the success of false modeling assumptions, or widely termed postmodern criticisms of objectivity as evidence against scientific realism. antirealists attempt to explain the success of scientific theories without reference to truth. some antirealists claim that scientific
a pomeron phenomenon remains a mystery. a short review of the experimental situation in diffractive physics and an account of some spectacular manifestations of the pomeron are given.
the union of space telescopes and interstellar spaceships guarantees that if extraterrestrial civilizations were common, someone would have come here long ago.
one of the greatest discoveries of modern times is that of the expanding universe, almost invariably attributed to hubble ( 1929 ). what is not widely known is that the original treatise by lemaitre ( 1927 ) contained a rich fusion of both theory and of observation. stiglers law of eponymy is yet again affirmed : no scientific discovery is named after its original discoverer ( merton, 1957 ). an appeal is made for a lemaitre telescope, to honour the discoverer of the expanding universe.
the celebrated franck - hertz experiment is reinterpreted by analogy with the glimmentladung experiment, formerly performed by heinrich hertz.
the myth that the expansion of the universe was discovered by hubble was first propagated by humason ( 1931 ). the true nature of this discovery turns out to have been both more complex and more interesting.
so mars below means blood and war ", is a false cause fallacy. : 26 many astrologers claim that astrology is scientific. if one were to attempt to try to explain it scientifically, there are only four fundamental forces ( conventionally ), limiting the choice of possible natural mechanisms. : 65 some astrologers have proposed conventional causal agents such as electromagnetism and gravity. the strength of these forces drops off with distance. : 65 scientists reject these proposed mechanisms as implausible since, for example, the magnetic field, when measured from earth, of a large but distant planet such as jupiter is far smaller than that produced by ordinary household appliances. astronomer phil plait noted that in terms of magnitude, the sun is the only object with an electromagnetic field of note, but astrology isn ' t based just off the sun alone. : 65 while astrologers could try to suggest a fifth force, this is inconsistent with the trends in physics with the unification of electromagnetism and the weak force into the electroweak force. if the astrologer insisted on being inconsistent with the current understanding and evidential basis of physics, that would be an extraordinary claim. : 65 it would also be inconsistent with the other forces which drop off with distance. : 65 if distance is irrelevant, then, logically, all objects in space should be taken into account. : 66 carl jung sought to invoke synchronicity, the claim that two events have some sort of acausal connection, to explain the lack of statistically significant results on astrology from a single study he conducted. however, synchronicity itself is considered neither testable nor falsifiable. the study was subsequently heavily criticised for its non - random sample and its use of statistics and also its lack of consistency with astrology. = = psychology = = psychological studies have not found any robust relationship between astrological signs and life outcomes. for example, a study showed that zodiac signs are no more effective than random numbers in predicting subjective well - being and quality of life. it has also been shown that confirmation bias is a psychological factor that contributes to belief in astrology. : 344 : 180 β 181 : 42 β 48 confirmation bias is a form of cognitive bias. : 553 from the literature, astrology believers often tend to selectively remember those predictions that turned out to be true and do not remember those that turned out false. another, separate, form of confirmation bias also plays a role, where believers often fail to
a minus sign is inserted, for good reason, into the formula for the energy - momentum tensor for tachyons. this leads to remarkable theoretical consequences and a plausible explanation for the phenomenon called dark energy in the cosmos.
observations of an ancient stellar stream provide the first evidence of a vanished population of extremely metal - poor stellar clusters. their remnants might reveal how the early assembly of the milky way proceeded.
there are a few different mechanisms that can cause white dwarf stars to vary in brightness, providing opportunities to probe the physics, structures, and formation of these compact stellar remnants. the observational characteristics of the three most common types of white dwarf variability are summarized : stellar pulsations, rotation, and ellipsoidal variations from tidal distortion in binary systems. stellar pulsations are emphasized as the most complex type of variability, which also has the greatest potential to reveal the conditions of white dwarf interiors.
Question: Scientists will often observe and then what the reason why a phenomenon occurred?
A) realize
B) theorize
C) hypothesize
D) normalize
|
C) hypothesize
|
Context:
the magnetization of superconducting samples is influenced by their porosity. in addition to structural modifications and improved cooling, the presence of pores also plays a role in trapping magnetic flux. pores have an impact on the irreversibility field, the full penetration field, and the remnant magnetization. generally, as porosity increases, these parameters tend to decrease. however, in the case of mesoscopic samples or samples with low critical current densities, increased porosity can actually enhance the trapping of magnetic flux.
##tering - based methods are simple ( " sinter " has roots in the english " cinder " ). the firing is done at a temperature below the melting point of the ceramic. once a roughly - held - together object called a " green body " is made, it is fired in a kiln, where atomic and molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 β 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for
two types of stars are known to have strong, large scale magnetic fields : the main sequence ap stars and the magnetic white dwarfs. this suggest that the former might be the progenitors of the latter. in order to test this idea, i have carried out a search for large scale magnetic fields in stars with evolutionary states which are intermediate, i. e. in horizontal branch stars and in hot subdwarfs.
oscillations of the sun have been used to understand its interior structure. the extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. the corot ( convection rotation and planetary transits ) satellite, launched in december 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. the oscillation amplitudes are about 1. 5 times as large as those in the sun ; the stellar granulation is up to three times as high. the stellar amplitudes are about 25 % below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.
v735 sgr was known as an enigmatic star with rapid brightness variations. long - term ogle photometry, brightness measurements in infrared bands, and recently obtained moderate resolution spectrum from the 6. 5 - m magellan telescope show that this star is an active young stellar object of herbig ae / be type.
ultramagnetized neutron stars or magnetars are magnetically powered neutron stars. their strong magnetic fields dominate the physical processes in their crusts and their surroundings. the past few years have seen several advances in our theoretical and observational understanding of these objects. in spite of a surfeit of observations, their spectra are still poorly understood. i will discuss the emission from strongly magnetized condensed matter surfaces of neutron stars, recent advances in our expectations of the surface composition of magnetars and a model for the non - thermal emission from these objects.
molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 β 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for electronics, in capacitors, inductors, sensors, etc. ) a slurry can be used in place of a powder, and then cast into a desired shape, dried and then sintered. indeed, traditional pottery is done with this type of method, using a plastic mixture worked with the hands.
do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal
the curvature radiation is applied to the explain the circular polarization of frbs. significant circular polarization is reported in both apparently non - repeating and repeating frbs. curvature radiation can produce significant circular polarization at the wing of the radiation beam. in the curvature radiation scenario, in order to see significant circular polarization in frbs ( 1 ) more energetic bursts, ( 2 ) burst with electrons having higher lorentz factor, ( 3 ) a slowly rotating neutron star at the centre are required. different rotational period of the central neutron star may explain why some frbs have high circular polarization, while others don ' t. considering possible difference in refractive index for the parallel and perpendicular component of electric field, the position angle may change rapidly over the narrow pulse window of the radiation beam. the position angle swing in frbs may also be explained by this non - geometric origin, besides that of the rotating vector model.
while the modern stellar imf shows a rapid decline with increasing mass, theoretical investigations suggest that very massive stars ( > 100 solar masses ) may have been abundant in the early universe. other calculations also indicate that, lacking metals, these same stars reach their late evolutionary stages without appreciable mass loss. after central helium burning, they encounter the electron - positron pair instability, collapse, and burn oxygen and silicon explosively. if sufficient energy is released by the burning, these stars explode as brilliant supernovae with energies up to 100 times that of an ordinary core collapse supernova. they also eject up to 50 solar masses of radioactive ni56. stars less massive than 140 solar masses or more massive than 260 solar masses should collapse into black holes instead of exploding, thus bounding the pair - creation supernovae with regions of stellar mass that are nucleosynthetically sterile. pair - instability supernovae might be detectable in the near infrared out to redshifts of 20 or more and their ashes should leave a distinctive nucleosynthetic pattern.
Question: Similar to the coil on a stove, changes in what reflect an increase in the temperature of a star?
A) texture
B) color
C) rotation
D) direction
|
B) color
|
Context:
young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations
could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of
can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population,
, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in
or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry,
the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophy
for nucleotide synthesis. hence, unfused myeloma cells die, as they cannot produce nucleotides by the de novo or salvage pathways because they lack hgprt. removal of the unfused myeloma cells is necessary because they have the potential to outgrow other cells, especially weakly established hybridomas. unfused b cells die as they have a short life span. in this way, only the b cell - myeloma hybrids survive, since the hgprt gene coming from the b cells is functional. these cells produce antibodies ( a property of b cells ) and are immortal ( a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectrometry facilitates screening and ranking of clones which bind to the native ( non - denaturated ) forms of antigen proteins. flow cytometry screening has been used for primary screening of a large number ( ~ 1000 ) of hybridoma clones recognizing the native form of the antigen on the cell surface. in the flow cytometry - based screening, a mixture of antigen - negative cells and antigen - positive cells is used as the antigen to be tested for each hybridoma supernatant sample. the b cell that produces the desired antibodies can be cloned to produce many identical daughter clones. supplemental media containing interleukin - 6 ( such as briclone ) are essential for this step. once a hybridoma colony is established, it will continually grow in culture medium like rpmi - 1640 ( with antibiotics and fetal bovine serum ) and produce antibodies. multiwell plates are used initially to grow the hybridomas, and after selection,
pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xyle
and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next,
of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an
Question: Proto-oncogenes are positive cell-cycle regulators but when mutated, they can become what?
A) microbes and cause cancer
B) bacteria and cause cancer
C) cultigens and cause cancer
D) oncogenes and cause cancer
|
D) oncogenes and cause cancer
|
Context:
end { aligned } } } in summary, a set of the real numbers is an interval, if and only if it is an open interval, a closed interval, or a half - open interval. the only intervals that appear twice in the above classification are β
{ \ displaystyle \ emptyset } and r { \ displaystyle \ mathbb { r } } that are both open and closed. a degenerate interval is any set consisting of a single real number ( i. e., an interval of the form [ a, a ] ). some authors include the empty set in this definition. a real interval that is neither empty nor degenerate is said to be proper, and has infinitely many elements. an interval is said to be left - bounded or right - bounded, if there is some real number that is, respectively, smaller than or larger than all its elements. an interval is said to be bounded, if it is both left - and right - bounded ; and is said to be unbounded otherwise. intervals that are bounded at only one end are said to be half - bounded. the empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. bounded intervals are also commonly known as finite intervals. bounded intervals are bounded sets, in the sense that their diameter ( which is equal to the absolute difference between the endpoints ) is finite. the diameter may be called the length, width, measure, range, or size of the interval. the size of unbounded intervals is usually defined as + β, and the size of the empty interval may be defined as 0 ( or left undefined ). the centre ( midpoint ) of a bounded interval with endpoints a and b is ( a + b ) / 2, and its radius is the half - length | a β b | / 2. these concepts are undefined for empty or unbounded intervals. an interval is said to be left - open if and only if it contains no minimum ( an element that is smaller than all other elements ) ; right - open if it contains no maximum ; and open if it contains neither. the interval [ 0, 1 ) = { x | 0 β€ x < 1 }, for example, is left - closed and right - open. the empty set and the set of all reals are both open and closed intervals, while the set of non - negative reals, is a closed interval that is right - open but not left - open.
= = when 0 is said to be neither positive nor negative, the following phrases may refer to the sign of a number : a number is positive if it is greater than zero. a number is negative if it is less than zero. a number is non - negative if it is greater than or equal to zero. a number is non - positive if it is less than or equal to zero. when 0 is said to be both positive and negative, modified phrases are used to refer to the sign of a number : a number is strictly positive if it is greater than zero. a number is strictly negative if it is less than zero. a number is positive if it is greater than or equal to zero. a number is negative if it is less than or equal to zero. for example, the absolute value of a real number is always " non - negative ", but is not necessarily " positive " in the first interpretation, whereas in the second interpretation, it is called " positive " β though not necessarily " strictly positive ". the same terminology is sometimes used for functions that yield real or other signed values. for example, a function would be called a positive function if its values are positive for all arguments of its domain, or a non - negative function if all of its values are non - negative. = = = complex numbers = = = complex numbers are impossible to order, so they cannot carry the structure of an ordered ring, and, accordingly, cannot be partitioned into positive and negative complex numbers. they do, however, share an attribute with the reals, which is called absolute value or magnitude. magnitudes are always non - negative real numbers, and to any non - zero number there belongs a positive real number, its absolute value. for example, the absolute value of β3 and the absolute value of 3 are both equal to 3. this is written in symbols as | β3 | = 3 and | 3 | = 3. in general, any arbitrary real value can be specified by its magnitude and its sign. using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. this relation can be generalized to define a sign for complex numbers. since the real and complex numbers both form a field and contain the positive reals, they also contain the reciprocals of the magnitudes of all non - zero numbers. this means that any non - zero number may be multiplied with the reciprocal of its magnitude, that is, divided by its magnitude. it is immediate that the quotient
to investigate the affinity of acetylated wood for organic liquids, yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. the acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and / or very slowly. on the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. the effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. the easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.
##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids,
its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) β legacy fixed radio beacons used before the vor system that transmit a simple signal in all directions for aircraft or ships to use for radio direction finding. aircraft use automatic direction finder ( adf ) receivers which use a directional antenna to determine the bearing to the beacon. by taking bearings on two beacons they can determine their position. ndbs use frequencies between 190 and 1750 khz in the lf and mf bands which propagate beyond the horizon as ground waves or skywaves much farther than vor beacons. they transmit a callsign consisting of one to 3 morse code letters as an identifier. emergency locator beacon β a portable battery powered radio transmitter used in emergencies to locate airplanes, vessels, and persons in distress and in need of immediate rescue. various types of emergency locator beacons are carried by aircraft, ships, vehicles, hikers and cross - country skiers. in the event of an emergency, such as the aircraft crashing, the ship sinking
mathematical analysis for one - sided limits ( right - sided limit and left - sided limit, respectively ). this notation refers to the behaviour of a function as its real input variable approaches 0 along positive ( resp., negative ) values ; the two limits need not exist or agree. = = = terminology for signs = = = when 0 is said to be neither positive nor negative, the following phrases may refer to the sign of a number : a number is positive if it is greater than zero. a number is negative if it is less than zero. a number is non - negative if it is greater than or equal to zero. a number is non - positive if it is less than or equal to zero. when 0 is said to be both positive and negative, modified phrases are used to refer to the sign of a number : a number is strictly positive if it is greater than zero. a number is strictly negative if it is less than zero. a number is positive if it is greater than or equal to zero. a number is negative if it is less than or equal to zero. for example, the absolute value of a real number is always " non - negative ", but is not necessarily " positive " in the first interpretation, whereas in the second interpretation, it is called " positive " β though not necessarily " strictly positive ". the same terminology is sometimes used for functions that yield real or other signed values. for example, a function would be called a positive function if its values are positive for all arguments of its domain, or a non - negative function if all of its values are non - negative. = = = complex numbers = = = complex numbers are impossible to order, so they cannot carry the structure of an ordered ring, and, accordingly, cannot be partitioned into positive and negative complex numbers. they do, however, share an attribute with the reals, which is called absolute value or magnitude. magnitudes are always non - negative real numbers, and to any non - zero number there belongs a positive real number, its absolute value. for example, the absolute value of β3 and the absolute value of 3 are both equal to 3. this is written in symbols as | β3 | = 3 and | 3 | = 3. in general, any arbitrary real value can be specified by its magnitude and its sign. using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. this relation can be generalized to define a sign for complex numbers. since the real and
of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to
the extention of the integrable ansatz of pure einstein gravity to supergravity is completed. the procedure of construction the exact supergravitational solitonic solutions is described.
distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) β legacy fixed radio beacons used before the vor system that transmit a simple signal in all directions for aircraft or ships to use for radio direction finding. aircraft use automatic direction finder ( adf ) receivers which use a directional antenna to determine the bearing to the beacon. by taking bearings on two beacons they can determine their position. ndbs use frequencies between 190 and 1750 khz in the lf and mf bands which propagate beyond the horizon as ground waves or skywaves much farther than vor beacons. they transmit a callsign consisting of one to 3 morse code letters as an identifier. emergency locator beacon β a portable battery powered radio
dish " antennas up to 25 metres ( 82 ft ) in diameter and extremely sensitive receivers. high frequencies in the microwave band are used, since microwaves pass through the ionosphere without refraction, and at microwave frequencies the high - gain antennas needed to focus the radio energy into a narrow beam pointed at the receiver are small and take up a minimum of space in a satellite. portions of the uhf, l, c, s, ku and ka band are allocated for space communication. a radio link that transmits data from the earth ' s surface to a spacecraft is called an uplink, while a link that transmits data from the spacecraft to the ground is called a downlink. communication satellite β an artificial satellite used as a telecommunications relay to transmit data between widely separated points on earth. these are used because the microwaves used for telecommunications travel by line of sight and so cannot propagate around the curve of the earth. as of 1 january 2021, there were 2, 224 communications satellites in earth orbit. most are in geostationary orbit 22, 200 miles ( 35, 700 km ) above the equator, so that the satellite appears stationary at the same point in the sky, so the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track it. in a satellite ground station a microwave transmitter and large satellite dish antenna transmit a microwave uplink beam to the satellite. the uplink signal carries many channels of telecommunications traffic, such as long - distance telephone calls, television programs, and internet signals, using a technique called frequency - division multiplexing ( fdm ). on the satellite, a transponder receives the signal, translates it to a different downlink frequency to avoid interfering with the uplink signal, and retransmits it down to another ground station, which may be widely separated from the first. there the downlink signal is demodulated and the telecommunications traffic it carries is sent to its local destinations through landlines. communication satellites typically have several dozen transponders on different frequencies, which are leased by different users. direct broadcast satellite β a geostationary communication satellite that transmits retail programming directly to receivers in subscriber ' s homes and vehicles on earth, in satellite radio and tv systems. it uses a higher transmitter power than other communication satellites, to allow the signal to be received by consumers with a small unobtrusive antenna. for example, satellite television uses downlink frequencies from 12. 2 to 12. 7 ghz in the ku band transmitted at
Question: When the maximum amount of solute has been dissolved in a given amount of solvent, we say that the solution is what?
A) empty
B) used
C) saturated
D) blended
|
C) saturated
|
Context:
oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and
within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with
shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration
use less energy than conventional thermal separation processes such as distillation, sublimation or crystallization. the separation process is purely physical and both fractions ( permeate and retentate ) can be obtained as useful products. cold separation using membrane technology is widely used in the food technology, biotechnology and pharmaceutical industries. furthermore, using membranes enables separations to take place that would be impossible using thermal separation methods. for example, it is impossible to separate the constituents of azeotropic liquids or solutes which form isomorphic crystals by distillation or recrystallization but such separations can be achieved using membrane technology. depending on the type of membrane, the selective separation of certain individual substances or substance mixtures is possible. important technical applications include the production of drinking water by reverse osmosis. in waste water treatment, membrane technology is becoming increasingly important. ultra / microfiltration can be very effective in removing colloids and macromolecules from wastewater. this is needed if wastewater is discharged into sensitive waters especially those designated for contact water sports and recreation. about half of the market is in medical applications such as artificial kidneys to remove toxic substances by hemodialysis and as artificial lung for bubble - free supply of oxygen in the blood. the importance of membrane technology is growing in the field of environmental protection ( nano - mem - pro ippc database ). even in modern energy recovery techniques, membranes are increasingly used, for example in fuel cells and in osmotic power plants. = = mass transfer = = two basic models can be distinguished for mass transfer through the membrane : the solution - diffusion model and the hydrodynamic model. in real membranes, these two transport mechanisms certainly occur side by side, especially during ultra - filtration. = = = solution - diffusion model = = = in the solution - diffusion model, transport occurs only by diffusion. the component that needs to be transported must first be dissolved in the membrane. the general approach of the solution - diffusion model is to assume that the chemical potential of the feed and permeate fluids are in equilibrium with the adjacent membrane surfaces such that appropriate expressions for the chemical potential in the fluid and membrane phases can be equated at the solution - membrane interface. this principle is more important for dense membranes without natural pores such as those used for reverse osmosis and in fuel cells. during the filtration process a boundary layer forms on the membrane. this concentration gradient is created by molecules which cannot pass through the membrane. the
are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its
ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis
the surface of the membrane, retentate is removed from the same side further downstream, whereas the permeate flow is tracked on the other side. in dead - end filtration, the direction of the fluid flow is normal to the membrane surface. both flow geometries offer some advantages and disadvantages. generally, dead - end filtration is used for feasibility studies on a laboratory scale. the dead - end membranes are relatively easy to fabricate which reduces the cost of the separation process. the dead - end membrane separation process is easy to implement and the process is usually cheaper than cross - flow membrane filtration. the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within
protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause
##ration fuel cell operations in a temperature gradient membrane distillation = = membrane shapes and flow geometries = = there are two main flow configurations of membrane processes : cross - flow ( or tangential flow ) and dead - end filtrations. in cross - flow filtration the feed flow is tangential to the surface of the membrane, retentate is removed from the same side further downstream, whereas the permeate flow is tracked on the other side. in dead - end filtration, the direction of the fluid flow is normal to the membrane surface. both flow geometries offer some advantages and disadvantages. generally, dead - end filtration is used for feasibility studies on a laboratory scale. the dead - end membranes are relatively easy to fabricate which reduces the cost of the separation process. the dead - end membrane separation process is easy to implement and the process is usually cheaper than cross - flow membrane filtration. the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an
proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle
Question: What is the movement of substances across the membrane without the expenditure of cellular energy called?
A) immune transport
B) inner cell transport
C) active transport
D) passive transport
|
D) passive transport
|
Context:
static black holes in two - dimensional string theory can carry tachyon hair. configurations which are non - singular at the event horizon have non - vanishing asymptotic energy density. such solutions can be smoothly extended through the event horizon and have non - vanishing energy flux emerging from the past singularity. dynamical processes will not change the amount of tachyon hair on a black hole. in particular, there will be no tachyon hair on a black hole formed in gravitational collapse if the initial geometry is the linear dilaton vacuum. there also exist static solutions with finite total energy, which have singular event horizons. simple dynamical arguments suggest that black holes formed in gravitational collapse will not have tachyon hair of this type.
quantum mechanics is interpreted by the adjacent vacuum that behaves as a virtual particle to be absorbed and emitted by its matter. as described in the vacuum universe model, the adjacent vacuum is derived from the pre - inflationary universe in which the pre - adjacent vacuum is absorbed by the pre - matter. this absorbed pre - adjacent vacuum is emitted to become the added space for the inflation in the inflationary universe whose space - time is separated from the pre - inflationary universe. this added space is the adjacent vacuum. the absorption of the adjacent vacuum as the added space results in the adjacent zero space ( no space ), quantum mechanics is the interaction between matter and the three different types of vacuum : the adjacent vacuum, the adjacent zero space, and the empty space. the absorption of the adjacent vacuum results in the empty space superimposed with the adjacent zero space, confining the matter in the form of particle. when the absorbed vacuum is emitted, the adjacent vacuum can be anywhere instantly in the empty space superimposed with the adjacent zero space where any point can be the starting point ( zero point ) of space - time. consequently, the matter that expands into the adjacent vacuum has the probability to be anywhere instantly in the form of wavefunction. in the vacuum universe model, the universe not only gains its existence from the vacuum but also fattens itself with the vacuum. during the inflation, the adjacent vacuum also generates the periodic table of elementary particles to account for all elementary particles and their masses in a good agreement with the observed values.
the extremely small probability of tunneling through an almost classical potential barrier may become not small under the action of the specially adapted non - stationary signal which selects the certain particle energy e _ r. for particle energies close to this value, the tunneling rate is not small during a finite interval of time and has a very sharp peak at the energy e _ r. after entering inside the barrier, the particle emits electromagnetic quanta and exits the barrier with a lower energy. the signal amplitude can be much less compared to the field of the static barrier. this phenomenon can be called the euclidean resonance since the under - barrier motion occurs in imaginary time. the resonance may stimulate chemical and biochemical reactions in a selective way by adapting the signal to a certain particular chemical bond. the resonance may be used in search of the soft alpha - decay for which a conventional observation is impossible due to an extremely small decay rate.
endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer
the gravitational waves are non - physical sinuosities generated, in the last analysis, by undulating reference frames.
activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by
and evaporative emissions. nvh engineering ( noise, vibration, and harshness ) : nvh involves customer feedback ( both tactile [ felt ] and audible [ heard ] ) concerning a vehicle. while sound can be interpreted as a rattle, squeal, or hot, a tactile response can be seat vibration or a buzz in the steering wheel. this feedback is generated by components either rubbing, vibrating, or rotating. nvh response can be classified in various ways : powertrain nvh, road noise, wind noise, component noise, and squeak and rattle. note, there are both good and bad nvh qualities. the nvh engineer works to either eliminate bad nvh or change the " bad nvh " to good ( i. e., exhaust tones ). vehicle electronics : automotive electronics is an increasingly important aspect of automotive engineering. modern vehicles employ dozens of electronic systems. these systems are responsible for operational controls such as the throttle, brake and steering controls ; as well as many comfort - and - convenience systems such as the hvac, infotainment, and lighting systems. it would not be possible for automobiles to meet modern safety and fuel - economy requirements without electronic controls. performance : performance is a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 β 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 β 2 ), or a downshift maneuver in passing ( 4 β 2
an important question of theoretical physics is whether sound is able to propagate in vacuums at all and if this is the case, then it must lead to the reinterpretation of one zero - restmass particle which corresponds to vacuum - sound waves. taking the electron - neutrino as the corresponding particle, its observed non - vanishing rest - energy may only appear for neutrino - propagation inside material media. the idea may also influence the physics of dense matter, restricting the maximum speed of sound, both in vacuums and in matter to the speed of light.
einstein, when he began working on the general theory of relativity, believed that energy of any kind is the source of the gravitational field. therefore, the energy of gravity, like any energy, must be the source of the field. it was previously discovered that the energy - momentum tensor of the gravitational field is already contained in the ricci tensor. this hypothesis is used to construct a new equation of the gravitational field.
vehicle crashes. fuel economy / emissions : fuel economy is the measured fuel efficiency of the vehicle in miles per gallon or kilometers per liter. emissions - testing covers the measurement of vehicle emissions, including hydrocarbons, nitrogen oxides ( nox ), carbon monoxide ( co ), carbon dioxide ( co2 ), and evaporative emissions. nvh engineering ( noise, vibration, and harshness ) : nvh involves customer feedback ( both tactile [ felt ] and audible [ heard ] ) concerning a vehicle. while sound can be interpreted as a rattle, squeal, or hot, a tactile response can be seat vibration or a buzz in the steering wheel. this feedback is generated by components either rubbing, vibrating, or rotating. nvh response can be classified in various ways : powertrain nvh, road noise, wind noise, component noise, and squeak and rattle. note, there are both good and bad nvh qualities. the nvh engineer works to either eliminate bad nvh or change the " bad nvh " to good ( i. e., exhaust tones ). vehicle electronics : automotive electronics is an increasingly important aspect of automotive engineering. modern vehicles employ dozens of electronic systems. these systems are responsible for operational controls such as the throttle, brake and steering controls ; as well as many comfort - and - convenience systems such as the hvac, infotainment, and lighting systems. it would not be possible for automobiles to meet modern safety and fuel - economy requirements without electronic controls. performance : performance is a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 β 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and power
Question: What energy, produced by vibrations, cannot travel through empty space?
A) heat
B) light
C) sound
D) plasma
|
C) sound
|
Context:
has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named
did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union in 1990, the united kingdom in 1991, and both france and china continued testing until 1996. after signing the comprehensive test ban treaty in 1996 ( which had as of 2011 not entered into force ), all of these states have pledged to discontinue all nuclear testing. non - signatories india and pakistan last tested nuclear weapons in 1998. nuclear weapons are the most destructive weapons known - the archetypal weapons of mass destruction. throughout the cold war, the opposing powers had huge nuclear arsenals, sufficient to kill hundreds of millions of people. generations of people grew up under the shadow of nuclear devastation, portrayed in films such as dr. strangelove and the atomic cafe. however, the tremendous energy release in the detonation of a nuclear weapon also suggested the possibility of a new energy source. = = civilian uses = = = = = nuclear power = = = nuclear power is a type of nuclear technology involving the controlled use of nuclear fission
. nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality ( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or
( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non -
on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union
the r - process of nucleosynthesis requires a large neutron - to - seed nucleus ratio. this does not, however, that there be an excess of neutrons over protons. if the expansion of the material is sufficiently rapid and the entropy per nucleon is sufficiently high, the nucleosynthesis enters a heavy - element synthesis regime heretofore unexplored. in this extreme regime, characterized by a persistent disequilibrium between free nucleons and the abundant alpha particles, heavy r - process nuclei can form even in matter with more protons than neutrons. this observation bears on the issue of the site of the r - process, on the variability of abundance yields from r - process events, and on cnstraints on neutrino physics derived from nucleosynthesis. it also clarifies the difference between nucleosynthesis in the early universe and that in less extreme stellar explosive environments.
, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union in 1990, the united kingdom in 1991, and both france and china continued testing until 1996. after signing the comprehensive test ban treaty in 1996 ( which had as of 2011 not entered into force ), all of these states have pledged to discontinue all nuclear testing. non - signatories india and pakistan last tested nuclear weapons in 1998. nuclear weapons are the most destructive weapons known - the archetypal weapons of mass destruction. throughout the cold war, the opposing powers had huge nuclear arsenals, sufficient to kill hundreds of millions of people. generations of people grew up under the shadow of nuclear devastation, portrayed in films such as dr. strangelove and the atomic cafe. however, the tremendous energy release in the detonation of a nuclear weapon also suggested the possibility of a new energy source. = = civilian uses = = = = = nuclear power = = = nuclear power is a type of nuclear technology involving the controlled use of nuclear fission to release energy for work including propulsion, heat, and the generation of electricity. nuclear energy is produced by a controlled nuclear chain reaction which creates heat β and which is used to boil water, produce steam, and drive a steam turbine. the turbine is used to generate electricity and / or to do mechanical work. currently nuclear
, calorimetry, nuclear microscopy ( hefib ), rutherford backscattering, neutron diffraction, small - angle x - ray scattering ( saxs ), etc. ). besides material characterization, the material scientist or engineer also deals with extracting materials and converting them into useful forms. thus ingot casting, foundry methods, blast furnace extraction, and electrolytic extraction are all part of the required knowledge of a materials engineer. often the presence, absence, or variation of minute quantities of secondary elements and compounds in a bulk material will greatly affect the final properties of the materials produced. for example, steels are classified based on 1 / 10 and 1 / 100 weight percentages of the carbon and other alloying elements they contain. thus, the extracting and purifying methods used to extract iron in a blast furnace can affect the quality of steel that is produced. solid materials are generally grouped into three basic classifications : ceramics, metals, and polymers. this broad classification is based on the empirical makeup and atomic structure of the solid materials, and most solids fall into one of these broad categories. an item that is often made from each of these materials types is the beverage container. the material types used for beverage containers accordingly provide different advantages and disadvantages, depending on the material used. ceramic ( glass ) containers are optically transparent, impervious to the passage of carbon dioxide, relatively inexpensive, and are easily recycled, but are also heavy and fracture easily. metal ( aluminum alloy ) is relatively strong, is a good barrier to the diffusion of carbon dioxide, and is easily recycled. however, the cans are opaque, expensive to produce, and are easily dented and punctured. polymers ( polyethylene plastic ) are relatively strong, can be optically transparent, are inexpensive and lightweight, and can be recyclable, but are not as impervious to the passage of carbon dioxide as aluminum and glass. = = = ceramics and glasses = = = another application of materials science is the study of ceramics and glasses, typically the most brittle materials with industrial relevance. many ceramics and glasses exhibit covalent or ionic - covalent bonding with sio2 ( silica ) as a fundamental building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon
which came to be called radioactivity. he, pierre curie and marie curie began investigating the phenomenon. in the process, they isolated the element radium, which is highly radioactive. they discovered that radioactive materials produce intense, penetrating rays of three distinct sorts, which they labeled alpha, beta, and gamma after the first three greek letters. some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. all of the early researchers received various radiation burns, much like sunburn, and thought little of it. the new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus
, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei ; they must be slowed ( slow neutrons ), generally by collision with the nuclei of a neutron moderator, before they can be easily captured. today, this type of fission is commonly used to generate electricity. = = = nuclear fusion = = = if nuclei are forced to collide, they can undergo nuclear fusion. this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleos
Question: According to rutherford, where is the vast majority of the mass of an atom located?
A) the shell
B) the nucleus
C) the cytoplasm
D) the electrons
|
B) the nucleus
|
Context:
the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. these concerns have led to the development of a regulatory framework, which started in 1975. it has led to an international treaty, the cartagena protocol on biosafety, that was adopted in 2000. individual countries have developed their own regulatory systems regarding gmos, with the most marked differences occurring between the
in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and biofuels. in the current decades, significant progress has been done in creating genetically modified organisms ( gmos ) that enhance the diversity of applications and economical viability of industrial biotechnology. by using renewable raw materials to produce a variety of chemicals and fuels, industrial biotechnology is actively advancing towards lowering greenhouse gas emissions and moving away from a petrochemical - based economy. synthetic biology is considered one of the essential cornerstones in industrial biotechnology due to its financial and sustainable contribution to the manufacturing sector. jointly biotechnology and synthetic biology play a crucial role in generating cost - effective products with nature - friendly features by using bio - based
the broad definition of " utilizing a biotechnological system to make products ". indeed, the cultivation of plants may be viewed as the earliest biotechnological enterprise. agriculture has been theorized to have become the dominant way of producing food since the neolithic revolution. through early biotechnology, the earliest farmers selected and bred the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united
new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper
pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation. farmers have widely adopted gm technology. between 1996 and 2011, the total surface area of land cultivated with gm crops had increased by a factor of 94, from 17, 000 to 1, 600, 000 square kilometers ( 4, 200, 000 to 395, 400, 000 acres ). 10 % of the world ' s crop lands were planted with gm crops in 2010. as of 2011, 11 different transgenic crops were grown commercially on 395 million acres ( 160 million hectares ) in 29 countries such as the us, brazil, argentina, india, canada, china, paraguay, pakistan, south africa, uruguay, bolivia, australia, philippines, myanmar, burkina faso, mexico and spain. genetically modified foods are foods produced from organisms that have had specific changes introduced into their dna with the methods of genetic engineering. these techniques have allowed for the introduction of new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic
##tion, and pasteurization in order to become products that can be sold. there are three levels of food processing : primary, secondary, and tertiary. primary food processing involves turning agricultural products into other products that can be turned into food, secondary food processing is the making of food from readily available ingredients, and tertiary food processing is commercial production of ready - to eat or heat - and - serve foods. drying, pickling, salting, and fermenting foods were some of the oldest food processing techniques used to preserve food by preventing yeasts, molds, and bacteria to cause spoiling. methods for preserving food have evolved to meet current standards of food safety but still use the same processes as the past. biochemical engineers also work to improve the nutritional value of food products, such as in golden rice, which was developed to prevent vitamin a deficiency in certain areas where this was an issue. efforts to advance preserving technologies can also ensure lasting retention of nutrients as foods are stored. packaging plays a key role in preserving as well as ensuring the safety of the food by protecting the product from contamination, physical damage, and tampering. packaging can also make it easier to transport and serve food. a common job for biochemical engineers working in the food industry is to design ways to perform all these processes on a large scale in order to meet the demands of the population. responsibilities for this career path include designing and performing experiments, optimizing processes, consulting with groups to develop new technologies, and preparing project plans for equipment and facilities. = = = pharmaceuticals = = = in the pharmaceutical industry, bioprocess engineering plays a crucial role in the large - scale production of biopharmaceuticals, such as monoclonal antibodies, vaccines, and therapeutic proteins. the development and optimization of bioreactors and fermentation systems are essential for the mass production of these products, ensuring consistent quality and high yields. for example, recombinant proteins like insulin and erythropoietin are produced through cell culture systems using genetically modified cells. the bioprocess engineer β s role is to optimize variables like temperature, ph, nutrient availability, and oxygen levels to maximize the efficiency of these systems. the growing field of gene therapy also relies on bioprocessing techniques to produce viral vectors, which are used to deliver therapeutic genes to patients. this involves scaling up processes from laboratory to industrial scale while maintaining safety and regulatory compliance. as the demand for biopharmaceutical products increases, advancements
##lating and copying the genetic material of interest using recombinant dna methods or by artificially synthesising the dna. a construct is usually created and used to insert this dna into the host organism. the first recombinant dna molecule was made by paul berg in 1972 by combining dna from the monkey virus sv40 with the lambda virus. as well as inserting genes, the process can be used to remove, or " knock out ", genes. the new dna can be inserted randomly, or targeted to a specific part of the genome. an organism that is generated through genetic engineering is considered to be genetically modified ( gm ) and the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by
process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states supreme court ruled that a genetically modified microorganism could be patented in the case of diamond v. chakrabarty. indian - born ananda chakrabarty, working for general electric, had modified a bacterium ( of the genus pseudomonas ) capable of breaking down crude oil, which he proposed to
kilometers ( 4, 200, 000 to 395, 400, 000 acres ). 10 % of the world ' s crop lands were planted with gm crops in 2010. as of 2011, 11 different transgenic crops were grown commercially on 395 million acres ( 160 million hectares ) in 29 countries such as the us, brazil, argentina, india, canada, china, paraguay, pakistan, south africa, uruguay, bolivia, australia, philippines, myanmar, burkina faso, mexico and spain. genetically modified foods are foods produced from organisms that have had specific changes introduced into their dna with the methods of genetic engineering. these techniques have allowed for the introduction of new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in
with the lambda virus. as well as inserting genes, the process can be used to remove, or " knock out ", genes. the new dna can be inserted randomly, or targeted to a specific part of the genome. an organism that is generated through genetic engineering is considered to be genetically modified ( gm ) and the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential
Question: What is the term for organisms that make their own food?
A) plastids
B) monocots
C) autotrophs
D) omnivores
|
C) autotrophs
|
Context:
set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature.
to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of
is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population
has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named
other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit
##als force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants
ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their
, natural phenomena on earth only involve gravity and electromagnetism, and not nuclear reactions. this is because atomic nuclei are generally kept apart because they contain positive electrical charges and therefore repel each other. in 1896, henri becquerel was investigating phosphorescence in uranium salts when he discovered a new phenomenon which came to be called radioactivity. he, pierre curie and marie curie began investigating the phenomenon. in the process, they isolated the element radium, which is highly radioactive. they discovered that radioactive materials produce intense, penetrating rays of three distinct sorts, which they labeled alpha, beta, and gamma after the first three greek letters. some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. all of the early researchers received various radiation burns, much like sunburn, and thought little of it. the new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy.
quantum well of algaas / gaas is very important to study transport properties of electrons due to its wider application in electronic devices. hence, the double well of algaas / gaas with triple barrier is taken to study transmission probability. transmission probability is found to decrease with the increase in the height and width of the barrier. transmission probability with energy of electron shows two peaks while taking all three barrier of the same height. whereas a single and higher value of peak is found when the height of the central barrier is slightly reduced.
is a verma module transformed into another verma module by a selfequivalence? the answer is affirmative and the proof suggests a notion of standard object in the category of harish - chandra modules that coincides often, but not always, with the usual one.
Question: What happens to neutral matter when electrons are transferred between objects?
A) osmosis
B) it stays neutral
C) it becomes charged
D) it dissolves itself
|
C) it becomes charged
|
Context:
river - beds ), but not for where there may be large obstructions in the ground. an open caisson that is used in soft grounds or high water tables, where open trench excavations are impractical, can also be used to install deep manholes, pump stations and reception / launch pits for microtunnelling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caisson
, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the widespread application of the factory system. this was followed a century later by the second industrial revolution which led to rapid scientific discovery, standardization, and mass production. new technologies were developed, including sewage systems, electricity, light bulbs, electric motors, railroads, automobiles, and airplanes. these technological advances led to significant developments in medicine
current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers β civil works program river morphology and stream restoration references
made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up
##lling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called
the injuries of the inundations they have been designed to prevent, as the escape of floods from the raised river must occur sooner or later. inadequate planning controls which have permitted development on floodplains have been blamed for the flooding of domestic properties. channelization was done under the auspices or overall direction of engineers employed by the local authority or the national government. one of the most heavily channelized areas in the united states is west tennessee, where every major stream with one exception ( the hatchie river ) has been partially or completely channelized. channelization of a stream may be undertaken for several reasons. one is to make a stream more suitable for navigation or for navigation by larger vessels with deep draughts. another is to restrict water to a certain area of a stream ' s natural bottom lands so that the bulk of such lands can be made available for agriculture. a third reason is flood control, with the idea of giving a stream a sufficiently large and deep channel so that flooding beyond those limits will be minimal or nonexistent, at least on a routine basis. one major reason is to reduce natural erosion ; as a natural waterway curves back and forth, it usually deposits sand and gravel on the inside of the corners where the water flows slowly, and cuts sand, gravel, subsoil, and precious topsoil from the outside corners where it flows rapidly due to a change in direction. unlike sand and gravel, the topsoil that is eroded does not get deposited on the inside of the next corner of the river. it simply washes away. = = loss of wetlands = = channelization has several predictable and negative effects. one of them is loss of wetlands. wetlands are an excellent habitat for multiple forms of wildlife, and additionally serve as a " filter " for much of the world ' s surface fresh water. another is the fact that channelized streams are almost invariably straightened. for example, the channelization of florida ' s kissimmee river has been cited as a cause contributing to the loss of wetlands. this straightening causes the streams to flow more rapidly, which can, in some instances, vastly increase soil erosion. it can also increase flooding downstream from the channelized area, as larger volumes of water traveling more rapidly than normal can reach choke points over a shorter period of time than they otherwise would, with a net effect of flood control in one area coming at the expense of aggravated flooding in another. in addition, studies have shown that stream channelization results in declines of river fish populations. : 3 - 1ff a
are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the
##ructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models
##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river
equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers β civil works program river morphology and stream restoration references - wildland hydrology at the library of congress web archives ( archived 2002 - 08 - 13 )
Question: Seawalls and breakwaters are built parallel to what?
A) center-point
B) the deep
C) ocean base
D) shore
|
D) shore
|
Context:
scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws, which have become fundamental concepts in chemistry. some of them are : = = history = = the history of chemistry spans a period from the ancient past to the present. since several millennia bc, civilizations were using technologies that would eventually form the basis of the various branches of chemistry. examples include extracting metals from ores
to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of
i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an
this extra strength allows some structural components to fail without bridge collapse. the extra strength used in the design is called the margin of safety. eyes and ears provide working examples of passive redundancy. vision loss in one eye does not cause blindness but depth perception is impaired. hearing loss in one ear does not cause deafness but directionality is lost. performance decline is commonly associated with passive redundancy when a limited number of failures occur. active redundancy eliminates performance declines by monitoring the performance of individual devices, and this monitoring is used in voting logic. the voting logic is linked to switching that automatically reconfigures the components. error detection and correction and the global positioning system ( gps ) are two examples of active redundancy. electrical power distribution provides an example of active redundancy. several power lines connect each generation facility with customers. each power line includes monitors that detect overload. each power line also includes circuit breakers. the combination of power lines provides excess capacity. circuit breakers disconnect a power line when monitors detect an overload. power is redistributed across the remaining lines. at the toronto airport, there are 4 redundant electrical lines. each of the 4 lines supply enough power for the entire airport. a spot network substation uses reverse current relays to open breakers to lines that fail, but lets power continue to flow the airport. electrical power systems use power scheduling to reconfigure active redundancy. computing systems adjust the production output of each generating facility when other generating facilities are suddenly lost. this prevents blackout conditions during major events such as an earthquake. = = disadvantages = = charles perrow, author of normal accidents, has said that sometimes redundancies backfire and produce less, not more reliability. this may happen in three ways : first, redundant safety devices result in a more complex system, more prone to errors and accidents. second, redundancy may lead to shirking of responsibility among workers. third, redundancy may lead to increased production pressures, resulting in a system that operates at higher speeds, but less safely. = = voting logic = = voting logic uses performance monitoring to determine how to reconfigure individual components so that operation continues without violating specification limitations of the overall system. voting logic often involves computers, but systems composed of items other than computers may be reconfigured using voting logic. circuit breakers are an example of a form of non - computer voting logic. the simplest voting logic in computing systems involves two components :
charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change
##ting the principle of conservation of mass and developing a new system of chemical nomenclature used to this day. english scientist john dalton proposed the modern theory of atoms ; that all substances are composed of indivisible ' atoms ' of matter and that different atoms have varying atomic weights. the development of the electrochemical theory of chemical combinations occurred in the early 19th century as the result of the work of two scientists in particular, jons jacob berzelius and humphry davy, made possible by the prior invention of the voltaic pile by alessandro volta. davy discovered nine new elements including the alkali metals by extracting them from their oxides with electric current. british william prout first proposed ordering all the elements by their atomic weight as all atoms had a weight that was an exact multiple of the atomic weight of hydrogen. j. a. r. newlands devised an early table of elements, which was then developed into the modern periodic table of elements in the 1860s by dmitri mendeleev and independently by several other scientists including julius lothar meyer. the inert gases, later called the noble gases were discovered by william ramsay in collaboration with lord rayleigh at the end of the century, thereby filling in the basic structure of the table. organic chemistry was developed by justus von liebig and others, following friedrich wohler ' s synthesis of urea. other crucial 19th century advances were ; an understanding of valence bonding ( edward frankland in 1852 ) and the application of thermodynamics to chemistry ( j. w. gibbs and svante arrhenius in the 1870s ). at the turn of the twentieth century the theoretical underpinnings of chemistry were finally understood due to a series of remarkable discoveries that succeeded in probing and discovering the very nature of the internal structure of atoms. in 1897, j. j. thomson of the university of cambridge discovered the electron and soon after the french scientist becquerel as well as the couple pierre and marie curie investigated the phenomenon of radioactivity. in a series of pioneering scattering experiments ernest rutherford at the university of manchester discovered the internal structure of the atom and the existence of the proton, classified and explained the different types of radioactivity and successfully transmuted the first element by bombarding nitrogen with alpha particles. his work on atomic structure was improved on by his students, the danish physicist niels bohr, the englishman henry moseley and the german otto hahn, who went on to father the emerging nuclear chemistry and discovered nuclear fission. the electronic theory
oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws, which have become fundamental concepts in chemistry. some of them are : = = history = = the history of chemistry spans a period from the ancient past to the present. since several millennia bc, civilizations were using technologies that would eventually form the basis of the various branches of chemistry. examples include extracting metals from ores, making pottery and glazes, fermenting beer and wine, extracting chemicals from plants for medicine and perfume, rendering fat into soap, making glass, and making alloys like bronze. chemistry was preceded by its protoscience, alchemy, which operated a non - scientific approach to understanding the constituents of matter and their interactions. despite being unsuccessful in explaining the nature of matter and its transformations, alchemists set the stage for modern chemistry by performing experiments and recording the results. robert boyle, although skeptical of elements and convinced of alchemy, played a key part in elevating the " sacred art " as an
is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population
, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid
ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their
Question: What is the term for the loss of one or more electrons by an atom?
A) oxidation
B) evaporation
C) half-life
D) decomposition
|
A) oxidation
|
Context:
and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell
prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as
modern electronics rely on devices whose functionality can be adjusted by the end - user with an external ' knob '. a new tuning knob to modify the band gap of black phosphorus has been experimentally demonstrated.
( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed
conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes
are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the
here are discussed some problems concerning quant - ph / 0208006.
medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on
, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the widespread application of the factory system. this was followed a century later by the second industrial revolution which led to rapid scientific discovery, standardization, and mass production. new technologies were developed, including sewage systems, electricity, light bulbs, electric motors, railroads, automobiles, and airplanes. these technological advances led to significant developments in medicine
managing blood lipid levels is important for the treatment and prevention of diabetes, cardiovascular disease, and obesity. an easy - to - use, portable lipid blood test will accelerate more frequent testing by patients and at - risk populations. we used smartphone systems that are already familiar to many people. because smartphone systems can be carried around everywhere, blood can be measured easily and frequently. we compared the results of lipid tests with those of existing clinical diagnostic laboratory methods. we found that smartphone - based point - of - care lipid blood tests are as accurate as hospital - grade laboratory tests. our system will be useful for those who need to manage blood lipid levels to motivate them to track and control their behavior.
Question: What are the lipids containing phosphorus?
A) hemoglobin
B) eukaryotes
C) alkaloids
D) phospholipids
|
D) phospholipids
|
Context:
the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o β h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such
not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic (
##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids,
set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature.
other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit
index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry
the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the smart shoe. in 2019 german footwear company puma was recognized as one of the " 100 best inventions of 2019 " by time for its fi laceless shoe that uses micro - motors to adjust the fit from an iphone. nike also introduced a smart shoe in 2019 known as adapt bb. the shoe featured buttons on the side to loosen or tighten the fit with a custom motor and gear, which could also be controlled by a smartphone. = = modern technologies = = on april 16, 2013, google invited " glass explorers " who had pre - ordered its wearable glasses at the 2012 google i / o conference to pick up their devices.
with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p β n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for mems in 1995 at university of california, los angeles. primarily used for releasing metal and dielectric structures by undercutting silicon, xef2 has the advantage of a stiction - free release unlike wet etchants. its etch selectivity to silicon is very high, allowing it to work with photoresist, sio2, silicon nitride, and various metals for masking. its reaction to silicon is " plasmaless ", is purely chemical and spontaneous and is often operated in pulsed mode. models of the etching action are available, and university laboratories and various commercial tools offer solutions using this approach. modern vlsi processes avoid wet etching, and use plasma etching instead. plasma etchers can operate in several modes by adjusting the parameters of the plasma. ordinary plasma etching operates between 0. 1 and 5 torr. ( this unit of pressure, commonly used in vacuum engineering, equals approximately 133. 3 pascal
to investigate the affinity of acetylated wood for organic liquids, yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. the acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and / or very slowly. on the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. the effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. the easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.
of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to
Question: Ethers readily dissolve what type of molecules?
A) lipids
B) non-polar
C) proteins
D) polar
|
B) non-polar
|
Context:
as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase
. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. =
of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive
inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat
##thic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures
##ning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and
of tool usage was found in ethiopia within the great rift valley, dating back to 2. 5 million years ago. the earliest methods of stone tool making, known as the oldowan " industry ", date back to at least 2. 3 million years ago. this era of stone tool use is called the paleolithic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop
which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures
with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat treatment the glass partly crystallizes. in many cases, so - called ' nucleation agents ' are added in order to regulate and control the crystallization process. because there is usually no pressing and sintering, glass - ceramics do not contain the volume fraction of porosity typically present in sintered ceramics. the term mainly refers to a mix of lithium and aluminosilicates which yields an array of materials with interesting thermomechanical properties. the most commercially important of these have the distinction of being impervious to thermal shock. thus, glass - ceramics have become extremely useful for countertop cooking. the negative
cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla β polylactic acid. this is a polyester which degrades within the human body to form lactic acid, a naturally occurring chemical which is easily removed from the body. similar materials are polyglycolic acid ( pga ) and polycaprolactone ( pcl ) : their degradation mechanism is similar to that of pla, but pcl degrades slower and pga degrades faster. pla is commonly combined with pga to create poly - lactic - co - glycolic acid ( plga ). this is especially useful because the degradation of plga can be tailored by altering the weight percentages of pla and pga : more pla β slower degradation, more pga β faster degradation. this tunability, along with its biocompatibility, makes it an extremely useful material for scaffold creation. scaffolds may also be constructed from natural materials : in particular different derivatives of the extracellular matrix have been studied to evaluate their ability to support cell growth. protein based materials β such as collagen, or fibrin, and polysaccharidic materials - like chitosan or glycosaminoglycans ( gags ), have all proved suitable in terms of cell compatibility. among gags, hyaluronic acid, possibly in combination with cross linking agents ( e. g. glutaraldehyde, water - soluble carbodiimide, etc. ), is one of the possible choices as scaffold material. due to the covalent attachment of thiol groups to these polymers, they can crosslink via disulfide bond formation. the use of thiolated polymers ( thiomers ) as scaffold material for tissue engineering was initially introduced at the 4th central european symposium on pharmaceutical technology in vienna 2001. as thiomers are biocompatible, exhibit cellular mimicking properties and efficiently support proliferation and differentiation of various cell types,
Question: What are bones made up of?
A) muscles
B) molecules
C) platelets
D) tissues
|
D) tissues
|
Context:
weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial
are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). "
navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea
becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under
consisting of several distinct layers, often referred to as spheres : the lithosphere, the hydrosphere, the atmosphere, and the biosphere, this concept of spheres is a useful tool for understanding the earth ' s surface and its various processes these correspond to rocks, water, air and life. also included by some are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth
cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make
##hosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " sub - disciplines of hydrology include hydrometeorology, surface water hydrology, hydrogeology, watershed science, forest hydrology, and water chemistry. " glaciology covers the icy parts of the earth ( or cryosphere ). atmospheric sciences cover the gaseous parts of the earth ( or atmosphere
enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the
s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " sub - disciplines of hydrology include hydrometeorology, surface water hydrology, hydrogeology, watershed science, forest hydrology, and water chemistry. " glaciology covers the icy parts of the earth ( or cryosphere ). atmospheric sciences cover the gaseous parts of the earth ( or atmosphere ) between the surface and the exosphere ( about 1000 km ). major subdisciplines include meteorology, climatology, atmospheric chemistry, and atmospheric physics. = = = earth science breakup = = = = = see also = = = = references = = = = = sources = = = = =
variation in total solar irradiance is thought to have little effect on the earth ' s surface temperature because of the thermal time constant - - the characteristic response time of the earth ' s global surface temperature to changes in forcing. this time constant is large enough to smooth annual variations but not necessarily variations having a longer period such as those due to solar inertial motion ; the magnitude of these surface temperature variations is estimated.
Question: When it is winter in the northern hemisphere the southern hemisphere experiences which season?
A) winter
B) spring
C) summer
D) autumn
|
C) summer
|
Context:
the gas giant planets in the solar system have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. if a jupiter - like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. the hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. at some planet - star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. this runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. however, for icy moons of ganymede ' s size around a sun - like star we found that surface water ( either ice or liquid ) can persist indefinitely outside the runaway greenhouse orbital distance. in contrast, the surface water on smaller moons of europa ' s size will only persist on timescales greater than 1 gyr at distances ranging 1. 49 to 0. 74 au around a sun - like star for bond albedos of 0. 2 and 0. 8, where the lower albedo becomes relevant if ice melts. consequently, small moons can lose their icy shells, which would create a torus of h atoms around their host planet that might be detectable in future observations.
becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under
##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids,
navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea
basic properties of black holes are explained in terms of trapping horizons. it is shown that matter and information will escape from an evaporating black hole. a general scenario is outlined whereby a black hole evaporates completely without singularity, event horizon or loss of energy or information.
eremets and troyan ( nature mater. 10, 927 - 931 ( 2011 ) ) claim that they produced the conducting liquid hydrogen state at 270 gpa and 295 k. their evidence consists of disappearance of raman signals, visual observations, and measurements of electrical conductivity in diamond anvil cells ( dac ). however, there is no proof that the reported observations are due to transformations in hydrogen.
the recent report on laser cooling of liquid may contradict the law of energy conservation.
to investigate the affinity of acetylated wood for organic liquids, yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. the acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and / or very slowly. on the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. the effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. the easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.
it is well - known that liquid and saturated vapor, separated by a flat interface in an unbounded space, are in equilibrium. one would similarly expect a liquid drop, sitting on a flat substrate, to be in equilibrium with the vapor surrounding it. yet, it is not : as shown in this work, the drop evaporates. mathematically, this conclusion is deduced using the diffuse - interface model, but it can also be reformulated in terms of the maximum - entropy principle, suggesting model independence. physically, evaporation of drops is due to the so - called kelvin effect, which gives rise to a liquid - to - vapor mass flux in all cases where the boundary of the liquid phase is convex.
approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with
Question: What happens when liquid water evaporates?
A) seawater happens
B) snow
C) condensation
D) humidity happens
|
D) humidity happens
|
Context:
it is hard for us humans to recognize things in nature until we have invented them ourselves. for image - forming optics, nature has made virtually every kind of lens humans have devised. but what about lensless " imaging "? recently, we showed that a bare array of sensors on a curved substrate could achieve resolution not limited by diffraction - without any lens at all provided that the objects imaged conform to our a priori assumptions. is it possible that somewhere in nature we will find this kind of vision system? we think so and provide examples that seem to make no sense whatever unless they are using something like our lensless imaging work.
lithography is throughput, i. e., the very long time it takes to expose an entire silicon wafer or glass substrate. a long exposure time leaves the user vulnerable to beam drift or instability which may occur during the exposure. also, the turn - around time for reworking or re - design is lengthened unnecessarily if the pattern is not being changed the second time. it is known that focused - ion beam lithography has the capability of writing extremely fine lines ( less than 50 nm line and space has been achieved ) without proximity effect. however, because the writing field in ion - beam lithography is quite small, large area patterns must be created by stitching together the small fields. ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. it is capable of generating holes in thin films without any development process. structural depth can be defined either by ion range or by material thickness. aspect ratios up to several 104 can be reached. the technique can shape and texture materials at a defined inclination angle. random pattern, single - ion track structures and an aimed pattern consisting of individual single tracks can be generated. x - ray lithography is a process used in the electronic industry to selectively remove parts of a thin film. it uses x - rays to transfer a geometric pattern from a mask to a light - sensitive chemical photoresist, or simply " resist ", on the substrate. a series of chemical treatments then engraves the produced pattern into the material underneath the photoresist. diamond patterning is a method of forming diamond mems. it is achieved by the lithographic application of diamond films to a substrate such as silicon. the patterns can be formed by selective deposition through a silicon dioxide mask, or by deposition followed by micromachining or focused ion beam milling. = = = etching processes = = = there are two basic categories of etching processes : wet etching and dry etching. in the former, the material is dissolved when immersed in a chemical solution. in the latter, the material is sputtered or dissolved using reactive ions or a vapor phase etchant. = = = = wet etching = = = = wet chemical etching consists of the selective removal of material by dipping a substrate into a solution that dissolves it. the chemical nature of this etching process provides good selectivity, which means the etching rate of the target material is considerably higher than the mask material if
the ways to beat the diffraction limit of light and make features in the nanometer range. this form of maskless lithography has found wide usage in photomask - making used in photolithography, low - volume production of semiconductor components, and research & development. the key limitation of electron beam lithography is throughput, i. e., the very long time it takes to expose an entire silicon wafer or glass substrate. a long exposure time leaves the user vulnerable to beam drift or instability which may occur during the exposure. also, the turn - around time for reworking or re - design is lengthened unnecessarily if the pattern is not being changed the second time. it is known that focused - ion beam lithography has the capability of writing extremely fine lines ( less than 50 nm line and space has been achieved ) without proximity effect. however, because the writing field in ion - beam lithography is quite small, large area patterns must be created by stitching together the small fields. ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. it is capable of generating holes in thin films without any development process. structural depth can be defined either by ion range or by material thickness. aspect ratios up to several 104 can be reached. the technique can shape and texture materials at a defined inclination angle. random pattern, single - ion track structures and an aimed pattern consisting of individual single tracks can be generated. x - ray lithography is a process used in the electronic industry to selectively remove parts of a thin film. it uses x - rays to transfer a geometric pattern from a mask to a light - sensitive chemical photoresist, or simply " resist ", on the substrate. a series of chemical treatments then engraves the produced pattern into the material underneath the photoresist. diamond patterning is a method of forming diamond mems. it is achieved by the lithographic application of diamond films to a substrate such as silicon. the patterns can be formed by selective deposition through a silicon dioxide mask, or by deposition followed by micromachining or focused ion beam milling. = = = etching processes = = = there are two basic categories of etching processes : wet etching and dry etching. in the former, the material is dissolved when immersed in a chemical solution. in the latter, the material is sputtered or dissolved using reactive ions or a vapor phase etchant. =
lengthened unnecessarily if the pattern is not being changed the second time. it is known that focused - ion beam lithography has the capability of writing extremely fine lines ( less than 50 nm line and space has been achieved ) without proximity effect. however, because the writing field in ion - beam lithography is quite small, large area patterns must be created by stitching together the small fields. ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. it is capable of generating holes in thin films without any development process. structural depth can be defined either by ion range or by material thickness. aspect ratios up to several 104 can be reached. the technique can shape and texture materials at a defined inclination angle. random pattern, single - ion track structures and an aimed pattern consisting of individual single tracks can be generated. x - ray lithography is a process used in the electronic industry to selectively remove parts of a thin film. it uses x - rays to transfer a geometric pattern from a mask to a light - sensitive chemical photoresist, or simply " resist ", on the substrate. a series of chemical treatments then engraves the produced pattern into the material underneath the photoresist. diamond patterning is a method of forming diamond mems. it is achieved by the lithographic application of diamond films to a substrate such as silicon. the patterns can be formed by selective deposition through a silicon dioxide mask, or by deposition followed by micromachining or focused ion beam milling. = = = etching processes = = = there are two basic categories of etching processes : wet etching and dry etching. in the former, the material is dissolved when immersed in a chemical solution. in the latter, the material is sputtered or dissolved using reactive ions or a vapor phase etchant. = = = = wet etching = = = = wet chemical etching consists of the selective removal of material by dipping a substrate into a solution that dissolves it. the chemical nature of this etching process provides good selectivity, which means the etching rate of the target material is considerably higher than the mask material if selected carefully. wet etching can be performed using either isotropic wet etchants or anisotropic wet etchants. isotropic wet etchant etch in all directions of the crystalline silicon at approximately equal rates. anisotropic wet etchants preferably etch along certain crystal
. long - term memory allows us to store information over prolonged periods ( days, weeks, years ). we do not yet know the practical limit of long - term memory capacity. short - term memory allows us to store information over short time scales ( seconds or minutes ). memory is also often grouped into declarative and procedural forms. declarative memory β grouped into subsets of semantic and episodic forms of memory β refers to our memory for facts and specific knowledge, specific meanings, and specific experiences ( e. g. " are apples food? ", or " what did i eat for breakfast four days ago? " ). procedural memory allows us to remember actions and motor sequences ( e. g. how to ride a bicycle ) and is often dubbed implicit knowledge or memory. cognitive scientists study memory just as psychologists do, but tend to focus more on how memory bears on cognitive processes, and the interrelationship between cognition and memory. one example of this could be, what mental processes does a person go through to retrieve a long - lost memory? or, what differentiates between the cognitive process of recognition ( seeing hints of something before remembering it, or memory in context ) and recall ( retrieving a memory, as in " fill - in - the - blank " )? = = = perception and action = = = perception is the ability to take in information via the senses, and process it in some way. vision and hearing are two dominant senses that allow us to perceive the environment. some questions in the study of visual perception, for example, include : ( 1 ) how are we able to recognize objects?, ( 2 ) why do we perceive a continuous visual environment, even though we only see small bits of it at any one time? one tool for studying visual perception is by looking at how people process optical illusions. the image on the right of a necker cube is an example of a bistable percept, that is, the cube can be interpreted as being oriented in two different directions. the study of haptic ( tactile ), olfactory, and gustatory stimuli also fall into the domain of perception. action is taken to refer to the output of a system. in humans, this is accomplished through motor responses. spatial planning and movement, speech production, and complex motor movements are all aspects of action. = = = consciousness = = = = = research methods = = many different methodologies are used to study cognitive science. as the field is highly interdisciplinary, research often cuts across
several thoughts are presented on the long ongoing difficulties both students and academics face related to calculus 101. some of these thoughts may have a more general interest.
##d product that is the focus of a tooling drawing. lines can also be classified by a letter classification in which each line is given a letter. type a lines show the outline of the feature of an object. they are the thickest lines on a drawing and done with a pencil softer than hb. type b lines are dimension lines and are used for dimensioning, projecting, extending, or leaders. a harder pencil should be used, such as a 2h pencil. type c lines are used for breaks when the whole object is not shown. these are freehand drawn and only for short breaks. 2h pencil type d lines are similar to type c, except these are zigzagged and only for longer breaks. 2h pencil type e lines indicate hidden outlines of internal features of an object. these are dotted lines. 2h pencil type f lines are type e lines, except these are used for drawings in electrotechnology. 2h pencil type g lines are used for centre lines. these are dotted lines, but a long line of 10 β 20 mm, then a 1 mm gap, then a small line of 2 mm. 2h pencil type h lines are the same as type g, except that every second long line is thicker. these indicate the cutting plane of an object. 2h pencil type k lines indicate the alternate positions of an object and the line taken by that object. these are drawn with a long line of 10 β 20 mm, then a small gap, then a small line of 2 mm, then a gap, then another small line. 2h pencil. = = = multiple views and projections = = = in most cases, a single view is not sufficient to show all necessary features, and several views are used. types of views include the following : = = = = multiview projection = = = = a multiview projection is a type of orthographic projection that shows the object as it looks from the front, right, left, top, bottom, or back ( e. g. the primary views ), and is typically positioned relative to each other according to the rules of either first - angle or third - angle projection. the origin and vector direction of the projectors ( also called projection lines ) differs, as explained below. in first - angle projection, the parallel projectors originate as if radiated from behind the viewer and pass through the 3d object to project a 2d image onto the orthogonal plane behind it. the 3d object is projected into 2d " paper " space as if you were looking at
lines are dimension lines and are used for dimensioning, projecting, extending, or leaders. a harder pencil should be used, such as a 2h pencil. type c lines are used for breaks when the whole object is not shown. these are freehand drawn and only for short breaks. 2h pencil type d lines are similar to type c, except these are zigzagged and only for longer breaks. 2h pencil type e lines indicate hidden outlines of internal features of an object. these are dotted lines. 2h pencil type f lines are type e lines, except these are used for drawings in electrotechnology. 2h pencil type g lines are used for centre lines. these are dotted lines, but a long line of 10 β 20 mm, then a 1 mm gap, then a small line of 2 mm. 2h pencil type h lines are the same as type g, except that every second long line is thicker. these indicate the cutting plane of an object. 2h pencil type k lines indicate the alternate positions of an object and the line taken by that object. these are drawn with a long line of 10 β 20 mm, then a small gap, then a small line of 2 mm, then a gap, then another small line. 2h pencil. = = = multiple views and projections = = = in most cases, a single view is not sufficient to show all necessary features, and several views are used. types of views include the following : = = = = multiview projection = = = = a multiview projection is a type of orthographic projection that shows the object as it looks from the front, right, left, top, bottom, or back ( e. g. the primary views ), and is typically positioned relative to each other according to the rules of either first - angle or third - angle projection. the origin and vector direction of the projectors ( also called projection lines ) differs, as explained below. in first - angle projection, the parallel projectors originate as if radiated from behind the viewer and pass through the 3d object to project a 2d image onto the orthogonal plane behind it. the 3d object is projected into 2d " paper " space as if you were looking at a radiograph of the object : the top view is under the front view, the right view is at the left of the front view. first - angle projection is the iso standard and is primarily used in europe. in third - angle projection, the parallel projectors originate as if radiated from the far side of the object
it is explained why excessive mu to e gamma can be a problem in susy gut see - saw models of neutrino mass, and ways that this problem might be avoided are discussed.
photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching. it was developed for manufacturing integrated circuits, and is also used for creating nanotechnology architectures. the primary advantage of electron beam lithography is that it is one of the ways to beat the diffraction limit of light and make features in the nanometer range. this form of maskless lithography has found wide usage in photomask - making used in photolithography, low - volume production of semiconductor components, and research & development. the key limitation of electron beam lithography is throughput, i. e., the very long time it takes to expose an entire silicon wafer or glass substrate. a long exposure time leaves the user vulnerable to beam drift or instability which may occur during the exposure. also, the turn - around time for reworking or re - design is lengthened unnecessarily if the pattern is not being changed the second time. it is known that focused - ion beam lithography has the capability of writing extremely fine lines ( less than 50 nm line and space has been achieved ) without proximity effect. however, because the writing field in ion - beam lithography is quite small, large area patterns must be created by stitching together the small fields. ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. it is capable of generating holes in thin films without any development process. structural depth can be defined either by ion range or by material thickness. aspect ratios up to several 104 can be reached. the technique can shape and texture materials at a defined inclination angle. random pattern, single - ion track structures and an aimed pattern consisting of individual single tracks can be generated. x - ray lithography is a process used in the electronic industry to selectively remove parts of a thin film. it uses x - rays to transfer a geometric pattern from a mask to a light - sensitive chemical photoresist, or simply " resist ", on the substrate. a series of chemical treatments then engraves the produced pattern into the material underneath the photoresist. diamond patterning is a method of forming diamond mems. it is achieved by the lithographic application of diamond films to a substrate such as silicon. the patterns can be formed by selective deposition through a silicon dioxide mask, or by deposition followed by micromachining or focused ion beam milling. =
Question: What vision defect occurs because the eye is too long?
A) myopia
B) blindness
C) astigmatism
D) hyperopia
|
A) myopia
|
Context:
to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of
ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their
charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change
is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population
##als force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants
i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an
scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws, which have become fundamental concepts in chemistry. some of them are : = = history = = the history of chemistry spans a period from the ancient past to the present. since several millennia bc, civilizations were using technologies that would eventually form the basis of the various branches of chemistry. examples include extracting metals from ores
, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid
a rydberg gas of no entrained in a supersonic molecular beam releases electrons as it evolves to form an ultracold plasma. the size of this signal, compared with that extracted by the subsequent application of a pulsed electric field, determines the absolute magnitude of the plasma charge. this information, combined with the number density of ions, supports a simple thermochemical model that explains the evolution of the plasma to an ultracold electron temperature.
set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature.
Question: What happens when a neutral atom gains or loses electrons?
A) it loses protons
B) it gains protons
C) it loses neutrons
D) it becomes an ion
|
D) it becomes an ion
|
Context:
to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiot
material. silicon nitride parts are used in ceramic ball bearings. their higher hardness means that they are much less susceptible to wear and can offer more than triple lifetimes. they also deform less under load meaning they have less contact with the bearing retainer walls and can roll faster. in very high speed applications, heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are
the hun tian theory ), or as being without substance while the heavenly bodies float freely ( the hsuan yeh theory ), the earth was at all times flat, although perhaps bulging up slightly. the model of an egg was often used by chinese astronomers such as zhang heng ( 78 β 139 ad ) to describe the heavens as spherical : the heavens are like a hen ' s egg and as round as a crossbow bullet ; the earth is like the yolk of the egg, and lies in the centre. this analogy with a curved egg led some modern historians, notably joseph needham, to conjecture that chinese astronomers were, after all, aware of the earth ' s sphericity. the egg reference, however, was rather meant to clarify the relative position of the flat earth to the heavens : in a passage of zhang heng ' s cosmogony not translated by needham, zhang himself says : " heaven takes its body from the yang, so it is round and in motion. earth takes its body from the yin, so it is flat and quiescent ". the point of the egg analogy is simply to stress that the earth is completely enclosed by heaven, rather than merely covered from above as the kai tian describes. chinese astronomers, many of them brilliant men by any standards, continued to think in flat - earth terms until the seventeenth century ; this surprising fact might be the starting - point for a re - examination of the apparent facility with which the idea of a spherical earth found acceptance in fifth - century bc greece. further examples cited by needham supposed to demonstrate dissenting voices from the ancient chinese consensus actually refer without exception to the earth being square, not to it being flat. accordingly, the 13th - century scholar li ye, who argued that the movements of the round heaven would be hindered by a square earth, did not advocate a spherical earth, but rather that its edge should be rounded off so as to be circular. however, needham disagrees, affirming that li ye believed the earth to be spherical, similar in shape to the heavens but much smaller. this was preconceived by the 4th - century scholar yu xi, who argued for the infinity of outer space surrounding the earth and that the latter could be either square or round, in accordance to the shape of the heavens. when chinese geographers of the 17th century, influenced by european cartography and astronomy, showed the earth as a sphere that could be circumnavigated by sailing around the globe, they
two local macros are included ( gothic. sty and fleqn. sty )
static black holes in two - dimensional string theory can carry tachyon hair. configurations which are non - singular at the event horizon have non - vanishing asymptotic energy density. such solutions can be smoothly extended through the event horizon and have non - vanishing energy flux emerging from the past singularity. dynamical processes will not change the amount of tachyon hair on a black hole. in particular, there will be no tachyon hair on a black hole formed in gravitational collapse if the initial geometry is the linear dilaton vacuum. there also exist static solutions with finite total energy, which have singular event horizons. simple dynamical arguments suggest that black holes formed in gravitational collapse will not have tachyon hair of this type.
muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up the muck tube. the pressurized air flow must be constant to ensure regular air changes for the workers and prevent excessive inflow of mud or water at the base of the caisson. when the caisson hits bedrock, the sandhogs exit through the airlock and fill the box with concrete, forming a solid foundation pier. a pneumatic ( compressed - air ) caisson has the advantage of providing dry working conditions, which is better for placing concrete. it is also well suited for foundations for which other methods might cause settlement of adjacent structures. construction workers who leave the pressurized environment of the caisson must decompress at a rate that allows symptom - free release of inert gases dissolved in the body tissues if they are to avoid decompression sickness, a condition first identified in caisson workers, and originally named " caisson disease " in recognition of the occupational hazard. construction of the brooklyn bridge, which was built with the help of pressurised caissons, resulted in numerous workers being either killed or permanently injured by caisson disease during its construction. barotrauma of the ears, sinus cavities and lungs and dysbaric osteonecrosis are other risks. = = other uses = = caissons have also been used in the installation of hydraulic elevators where a single - stage ram is installed below the ground level. caissons, codenamed phoenix, were an integral part of the mulberry harbours used during the world war ii allied invasion of normandy. = = other meanings = = boat lift caissons : the word caisson is also used as a synonym for the moving trough part of caisson locks, canal lifts and inclines in which boats and ships rest while being lifted from one canal elevation to another ; the water is retained on the inside of the caisson, or excluded from the caisson, according to the respective operating principle. structural caissons : caisson is also sometimes used as a colloquial term for a reinforced concrete structure formed by pouring into a hollow cylindrical form, typically by placing a caisson form below grade in an open excavation and pouring once backfill is complete, or by
in 1738. the spinning jenny, invented in 1764, was a machine that used multiple spinning wheels ; however, it produced low quality thread. the water frame patented by richard arkwright in 1767, produced a better quality thread than the spinning jenny. the spinning mule, patented in 1779 by samuel crompton, produced a high quality thread. the power loom was invented by edmund cartwright in 1787. in the mid - 1750s, the steam engine was applied to the water power - constrained iron, copper and lead industries for powering blast bellows. these industries were located near the mines, some of which were using steam engines for mine pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress
high quality thread. the power loom was invented by edmund cartwright in 1787. in the mid - 1750s, the steam engine was applied to the water power - constrained iron, copper and lead industries for powering blast bellows. these industries were located near the mines, some of which were using steam engines for mine pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress was made in water supply and sanitation and the engineering skills of the romans were largely neglected throughout europe. the first documented use of sand filters to purify the water supply dates to 1804, when the owner of a bleachery in paisley, scotland, john gibb, installed an experimental filter, selling his unwanted
surface. ceramics such as alumina, boron carbide and silicon carbide have been used in bulletproof vests to repel small arms rifle fire. such plates are known commonly as ballistic plates. similar material is used to protect cockpits of some military aircraft, because of the low weight of the material. silicon nitride parts are used in ceramic ball bearings. their higher hardness means that they are much less susceptible to wear and can offer more than triple lifetimes. they also deform less under load meaning they have less contact with the bearing retainer walls and can roll faster. in very high speed applications, heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or
##s ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up the muck tube. the pressurized air flow must be constant to ensure regular air changes for the workers and prevent excessive inflow of mud or water at the base of the caisson. when the caisson hits bedrock, the sandhogs exit through the airlock and fill the box with concrete, forming a solid foundation pier. a pneumatic ( compressed - air ) caisson has the advantage of providing dry working conditions, which is better for placing concrete. it is also well suited for foundations for which other methods might cause settlement of adjacent structures. construction workers who leave the pressurized environment of the caisson must decompress at a rate that allows symptom - free release of inert gases dissolved in the body tissues if they are to avoid decompression sickness, a condition first identified in caisson workers, and originally named " caisson disease " in recognition of the occupational hazard. construction of the brooklyn bridge, which was built with the help of pressurised caissons, resulted in numerous workers being either killed or permanently injured by caisson disease during its construction. barotrauma of the ears, sinus cavities and lungs and dysbaric osteonecrosis are other risks. = = other uses = = caissons have also been used in the installation of hydraulic elevators where a single - stage ram is installed below the ground level. caissons, codenamed phoenix, were an integral part of the mulberry harbours used during the world war ii allied invasion of normandy. = = other meanings = = boat lift caissons : the word caisson is also used as a synonym for the moving trough part of caisson locks, canal lifts and inclines in which boats and ships rest while being lifted from one canal elevation to another ; the water is retained on the inside of the caisson, or excluded from the caisson
Question: Why are goose feathers preferred for stuffing by manufacturers?
A) multi layers build up
B) smoothness
C) thickness
D) softness
|
D) softness
|
Context:
enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the
in the year 1598 philipp uffenbach published a printed diptych sundial, which is a forerunner of franz ritters horizantal sundial. uffenbach ' s sundial contains apart from the usual information on a sundial ascending signs of the zodiac, several brigthest stars, an almucantar and most important the oldest gnomonic world map known so far. the sundial is constructed for the polar height of 50 1 / 6 degrees, the height of frankfurt / main the town of his citizenship.
a minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0. 1 bar in the atmospheres of earth, titan, jupiter, saturn, uranus and neptune, despite great differences in atmospheric composition, gravity, internal heat and sunlight. in all these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of shortwave solar radiation, from a region below characterised by convection, weather, and clouds. however, it is not obvious why the tropopause occurs at the specific pressure near 0. 1 bar. here we use a physically - based model to demonstrate that, at atmospheric pressures lower than 0. 1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. at higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. a common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets the 0. 1 bar tropopause. we hypothesize that a tropopause at a pressure of approximately 0. 1 bar is characteristic of many thick atmospheres, including exoplanets and exomoons in our galaxy and beyond. judicious use of this rule could help constrain the atmospheric structure, and thus the surface environments and habitability, of exoplanets.
oscillations of the sun have been used to understand its interior structure. the extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. the corot ( convection rotation and planetary transits ) satellite, launched in december 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. the oscillation amplitudes are about 1. 5 times as large as those in the sun ; the stellar granulation is up to three times as high. the stellar amplitudes are about 25 % below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.
observed solar neutrino fluxes are employed to constrain the interior composition of the sun. including the effects of neutrino flavor mixing, the results from homestake, sudbury, and gallium experiments constrain the mg, si, and fe abundances in the solar interior to be within a factor 0. 89 to 1. 34 of the surface values with 68 % confidence. if the o and / or ne abundances are increased in the interior to resolve helioseismic discrepancies with recent standard solar models, then the nominal interior mg, si, and fe abundances are constrained to a range of 0. 83 to 1. 24 relative to the surface. additional research is needed to determine whether the sun ' s interior is metal poor relative to its surface.
excess lightweight products of slow neutron capture in the photosphere, over the mass range of 25 to 207 amu, confirm the solar mass separation recorded by excess lightweight isotopes in the solar wind, over the mass range of 3 to 136 amu [ solar abundance of the elements, meteoritics, volume 18, 1983, pages 209 to 222 ]. both measurements show that major elements inside the sun are fe, o, ni, si and s, like those in rocky planets.
the motion of celestial bodies through a higher power such as god. aristotle did not have the technological advancements that would have explained the motion of celestial bodies. in addition, aristotle had many views on the elements. he believed that everything was derived of the elements earth, water, air, fire, and lastly the aether. the aether was a celestial element, and therefore made up the matter of the celestial bodies. the elements of earth, water, air and fire were derived of a combination of two of the characteristics of hot, wet, cold, and dry, and all had their inevitable place and motion. the motion of these elements begins with earth being the closest to " the earth, " then water, air, fire, and finally aether. in addition to the makeup of all things, aristotle came up with theories as to why things did not return to their natural motion. he understood that water sits above earth, air above water, and fire above air in their natural state. he explained that although all elements must return to their natural state, the human body and other living things have a constraint on the elements β thus not allowing the elements making one who they are to return to their natural state. the important legacy of this period included substantial advances in factual knowledge, especially in anatomy, zoology, botany, mineralogy, geography, mathematics and astronomy ; an awareness of the importance of certain scientific problems, especially those related to the problem of change and its causes ; and a recognition of the methodological importance of applying mathematics to natural phenomena and of undertaking empirical research. in the hellenistic age scholars frequently employed the principles developed in earlier greek thought : the application of mathematics and deliberate empirical research, in their scientific investigations. thus, clear unbroken lines of influence lead from ancient greek and hellenistic philosophers, to medieval muslim philosophers and scientists, to the european renaissance and enlightenment, to the secular sciences of the modern day. neither reason nor inquiry began with the ancient greeks, but the socratic method did, along with the idea of forms, give great advances in geometry, logic, and the natural sciences. according to benjamin farrington, former professor of classics at swansea university : " men were weighing for thousands of years before archimedes worked out the laws of equilibrium ; they must have had practical and intuitional knowledge of the principals involved. what archimedes did was to sort out the theoretical implications of this practical knowledge and present the resulting body of knowledge as a logically coherent system. " and again : " with astonishment we find ourselves on the threshold of modern science
also launched missions to mercury in 2004, with the messenger probe demonstrating as the first use of a solar sail. nasa also launched probes to the outer solar system starting in the 1960s. pioneer 10 was the first probe to the outer planets, flying by jupiter, while pioneer 11 provided the first close up view of the planet. both probes became the first objects to leave the solar system. the voyager program launched in 1977, conducting flybys of jupiter and saturn, neptune, and uranus on a trajectory to leave the solar system. the galileo spacecraft, deployed from the space shuttle flight sts - 34, was the first spacecraft to orbit jupiter, discovering evidence of subsurface oceans on the europa and observed that the moon may hold ice or liquid water. a joint nasa - european space agency - italian space agency mission, cassini β huygens, was sent to saturn ' s moon titan, which, along with mars and europa, are the only celestial bodies in the solar system suspected of being capable of harboring life. cassini discovered three new moons of saturn and the huygens probe entered titan ' s atmosphere. the mission discovered evidence of liquid hydrocarbon lakes on titan and subsurface water oceans on the moon of enceladus, which could harbor life. finally launched in 2006, the new horizons mission was the first spacecraft to visit pluto and the kuiper belt. beyond interplanetary probes, nasa has launched many space telescopes. launched in the 1960s, the orbiting astronomical observatory were nasa ' s first orbital telescopes, providing ultraviolet, gamma - ray, x - ray, and infrared observations. nasa launched the orbiting geophysical observatory in the 1960s and 1970s to look down at earth and observe its interactions with the sun. the uhuru satellite was the first dedicated x - ray telescope, mapping 85 % of the sky and discovering a large number of black holes. launched in the 1990s and early 2000s, the great observatories program are among nasa ' s most powerful telescopes. the hubble space telescope was launched in 1990 on sts - 31 from the discovery and could view galaxies 15 billion light years away. a major defect in the telescope ' s mirror could have crippled the program, had nasa not used computer enhancement to compensate for the imperfection and launched five space shuttle servicing flights to replace the damaged components. the compton gamma ray observatory was launched from the atlantis on sts - 37 in 1991, discovering a possible source of antimatter at the center of the milky way and observing that the majority of gamma - ray bursts
higher concentrations of atmospheric nitrous oxide ( n2o ) are expected to slightly warm earth ' s surface because of increases in radiative forcing. radiative forcing is the difference in the net upward thermal radiation flux from the earth through a transparent atmosphere and radiation through an otherwise identical atmosphere with greenhouse gases. radiative forcing, normally measured in w / m ^ 2, depends on latitude, longitude and altitude, but it is often quoted for the tropopause, about 11 km of altitude for temperate latitudes, or for the top of the atmosphere at around 90 km. for current concentrations of greenhouse gases, the radiative forcing per added n2o molecule is about 230 times larger than the forcing per added carbon dioxide ( co2 ) molecule. this is due to the heavy saturation of the absorption band of the relatively abundant greenhouse gas, co2, compared to the much smaller saturation of the absorption bands of the trace greenhouse gas n2o. but the rate of increase of co2 molecules, about 2. 5 ppm / year ( ppm = part per million by mole ), is about 3000 times larger than the rate of increase of n2o molecules, which has held steady at around 0. 00085 ppm / year since 1985. so, the contribution of nitrous oxide to the annual increase in forcing is 230 / 3000 or about 1 / 13 that of co2. if the main greenhouse gases, co2, ch4 and n2o have contributed about 0. 1 c / decade of the warming observed over the past few decades, this would correspond to about 0. 00064 k per year or 0. 064 k per century of warming from n2o. proposals to place harsh restrictions on nitrous oxide emissions because of warming fears are not justified by these facts. restrictions would cause serious harm ; for example, by jeopardizing world food supplies.
modeling of the x - ray spectra of the galactic superluminal jet sources grs 1915 + 105 and gro j1655 - 40 reveal a three - layered atmospheric structure in the inner region of their accretion disks. above the cold and optically thick disk of a temperature 0. 2 - 0. 5 kev, there is a warm layer with a temperature of 1. 0 - 1. 5 kev and an optical depth around 10. sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kev or higher and an optical depth around unity. the structural similarity between the accretion disks and the solar atmosphere suggest that similar physical processes may be operating in these different systems.
Question: What is the outermost part of the sun's atmosphere called?
A) rays
B) ultraviolet
C) corona
D) particles
|
C) corona
|
Context:
biology is the scientific study of life and living organisms. it is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, origin, evolution, and distribution of life. central to biology are five fundamental themes : the cell as the basic unit of life, genes and heredity as the basis of inheritance, evolution as the driver of biological diversity, energy transformation for sustaining life processes, and the maintenance of internal stability ( homeostasis ). biology examines life across multiple levels of organization, from molecules and cells to organisms, populations, and ecosystems. subdisciplines include molecular biology, physiology, ecology, evolutionary biology, developmental biology, and systematics, among others. each of these fields applies a range of methods to investigate biological phenomena, including observation, experimentation, and mathematical modeling. modern biology is grounded in the theory of evolution by natural selection, first articulated by charles darwin, and in the molecular understanding of genes encoded in dna. the discovery of the structure of dna and advances in molecular genetics have transformed many areas of biology, leading to applications in medicine, agriculture, biotechnology, and environmental science. life on earth is believed to have originated over 3. 7 billion years ago. today, it includes a vast diversity of organisms β from single - celled archaea and bacteria to complex multicellular plants, fungi, and animals. biologists classify organisms based on shared characteristics and evolutionary relationships, using taxonomic and phylogenetic frameworks. these organisms interact with each other and with their environments in ecosystems, where they play roles in energy flow and nutrient cycling. as a constantly evolving field, biology incorporates new discoveries and technologies that enhance the understanding of life and its processes, while contributing to solutions for challenges such as disease, climate change, and biodiversity loss. = = history = = the earliest of roots of science, which included medicine, can be traced to ancient egypt and mesopotamia in around 3000 to 1200 bce. their contributions shaped ancient greek natural philosophy. ancient greek philosophers such as aristotle ( 384 β 322 bce ) contributed extensively to the development of biological knowledge. he explored biological causation and the diversity of life. his successor, theophrastus, began the scientific study of plants. scholars of the medieval islamic world who wrote on biology included al - jahiz ( 781 β 869 ), al - dinawari ( 828 β 896 ), who wrote on botany, and rhazes ( 865 β 925 ) who wrote on anatomy and physiology. medicine was especially well
, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive
. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of
) of the mass of all organisms, with calcium, phosphorus, sulfur, sodium, chlorine, and magnesium constituting essentially all the remainder. different elements can combine to form compounds such as water, which is fundamental to life. biochemistry is the study of chemical processes within and relating to living organisms. molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o β h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds =
various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population, darwin argued that in the natural world, it was nature that played the role of humans in selecting for specific traits. darwin inferred that individuals who possessed heritable traits better adapted to their environments are more likely to survive and produce more offspring than other individuals. he further inferred that this would lead to the accumulation of favorable traits over successive generations, thereby increasing the match between the organisms and their environment. = = = speciation = = = a species is a group of organisms that mate with one another and speciation is the process by which one lineage splits into two lineages as a result of having evolved independently from each other
##al nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the
by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which
they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea
be the more significant to modern soil theory than fallou ' s. previously, soil had been considered a product of chemical transformations of rocks, a dead substrate from which plants derive nutritious elements. soil and bedrock were in fact equated. dokuchaev considers the soil as a natural body having its own genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way
by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the
Question: What is the series of changes in the life of an organism?
A) evolution
B) circle of life
C) life cycle
D) insect metamorphosis
|
C) life cycle
|
Context:
also launched missions to mercury in 2004, with the messenger probe demonstrating as the first use of a solar sail. nasa also launched probes to the outer solar system starting in the 1960s. pioneer 10 was the first probe to the outer planets, flying by jupiter, while pioneer 11 provided the first close up view of the planet. both probes became the first objects to leave the solar system. the voyager program launched in 1977, conducting flybys of jupiter and saturn, neptune, and uranus on a trajectory to leave the solar system. the galileo spacecraft, deployed from the space shuttle flight sts - 34, was the first spacecraft to orbit jupiter, discovering evidence of subsurface oceans on the europa and observed that the moon may hold ice or liquid water. a joint nasa - european space agency - italian space agency mission, cassini β huygens, was sent to saturn ' s moon titan, which, along with mars and europa, are the only celestial bodies in the solar system suspected of being capable of harboring life. cassini discovered three new moons of saturn and the huygens probe entered titan ' s atmosphere. the mission discovered evidence of liquid hydrocarbon lakes on titan and subsurface water oceans on the moon of enceladus, which could harbor life. finally launched in 2006, the new horizons mission was the first spacecraft to visit pluto and the kuiper belt. beyond interplanetary probes, nasa has launched many space telescopes. launched in the 1960s, the orbiting astronomical observatory were nasa ' s first orbital telescopes, providing ultraviolet, gamma - ray, x - ray, and infrared observations. nasa launched the orbiting geophysical observatory in the 1960s and 1970s to look down at earth and observe its interactions with the sun. the uhuru satellite was the first dedicated x - ray telescope, mapping 85 % of the sky and discovering a large number of black holes. launched in the 1990s and early 2000s, the great observatories program are among nasa ' s most powerful telescopes. the hubble space telescope was launched in 1990 on sts - 31 from the discovery and could view galaxies 15 billion light years away. a major defect in the telescope ' s mirror could have crippled the program, had nasa not used computer enhancement to compensate for the imperfection and launched five space shuttle servicing flights to replace the damaged components. the compton gamma ray observatory was launched from the atlantis on sts - 37 in 1991, discovering a possible source of antimatter at the center of the milky way and observing that the majority of gamma - ray bursts
ammonium hydrosulphide has long since been postulated to exist at least in certain layers of the giant planets. its radiation products may be the reason for the red colour seen on jupiter. several ammonium salts, the products of nh3 and an acid, have previously been detected at comet 67p / churyumov - gerasimenko. the acid h2s is the fifth most abundant molecule in the coma of 67p followed by nh3. in order to look for the salt nh4 + sh -, we analysed in situ measurements from the rosetta / rosina double focusing mass spectrometer during the rosetta mission. nh3 and h2s appear to be independent of each other when sublimating directly from the nucleus. however, we observe a strong correlation between the two species during dust impacts, clearly pointing to the salt. we find that nh4 + sh - is by far the most abundant salt, more abundant in the dust impacts than even water. we also find all previously detected ammonium salts and for the first time ammonium fluoride. the amount of ammonia and acids balance each other, confirming that ammonia is mostly in the form of salt embedded into dust grains. allotropes s2 and s3 are strongly enhanced in the impacts, while h2s2 and its fragment hs2 are not detected, which is most probably the result of radiolysis of nh4 + sh -. this makes a prestellar origin of the salt likely. our findings may explain the apparent depletion of nitrogen in comets and maybe help to solve the riddle of the missing sulphur in star forming regions.
planets less massive than about 10 mearth are expected to have no massive h - he atmosphere and a cometary composition ( 50 % rocks, 50 % water, by mass ) provided they formed beyond the snowline of protoplanetary disks. due to inward migration, such planets could be found at any distance between their formation site and the star. if migration stops within the habitable zone, this will produce a new kind of planets, called ocean - planets. ocean - planets typically consist in a silicate core, surrounded by a thick ice mantle, itself covered by a 100 km deep ocean. the existence of ocean - planets raises important astrobiological questions : can life originate on such body, in the absence of continent and ocean - silicate interfaces? what would be the nature of the atmosphere and the geochemical cycles? in this work, we address the fate of hot ocean - planets produced when migration ends at a closer distance. in this case the liquid / gas interface can disappear, and the hot h2o envelope is made of a supercritical fluid. although we do not expect these bodies to harbor life, their detection and identification as water - rich planets would give us insight as to the abundance of hot and, by extrapolation, cool ocean - planets.
the gas giant planets in the solar system have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. if a jupiter - like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. the hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. at some planet - star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. this runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. however, for icy moons of ganymede ' s size around a sun - like star we found that surface water ( either ice or liquid ) can persist indefinitely outside the runaway greenhouse orbital distance. in contrast, the surface water on smaller moons of europa ' s size will only persist on timescales greater than 1 gyr at distances ranging 1. 49 to 0. 74 au around a sun - like star for bond albedos of 0. 2 and 0. 8, where the lower albedo becomes relevant if ice melts. consequently, small moons can lose their icy shells, which would create a torus of h atoms around their host planet that might be detectable in future observations.
water content and the internal evolution of terrestrial planets and icy bodies are closely linked. the distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. this results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. the internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short - lived 26al decay may govern the amount of hydrous silicates and leftover rock - ice mixtures available in the late stages of their evolution. in turn, water content may affect the early internal evolution of the planetesimals and in particular metal - silicate separation processes. moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of solar system objects. finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.
three planets with minimum masses less than 10 earth masses orbit the star hd 40307, suggesting these planets may be rocky. however, with only radial velocity data, it is impossible to determine if these planets are rocky or gaseous. here we exploit various dynamical features of the system in order to assess the physical properties of the planets. observations allow for circular orbits, but a numerical integration shows that the eccentricities must be at least 0. 0001. also, planets b and c are so close to the star that tidal effects are significant. if planet b has tidal parameters similar to the terrestrial planets in the solar system and a remnant eccentricity larger than 0. 001, then, going back in time, the system would have been unstable within the lifetime of the star ( which we estimate to be 6. 1 + / - 1. 6 gyr ). moreover, if the eccentricities are that large and the inner planet is rocky, then its tidal heating may be an order of magnitude greater than extremely volcanic io, on a per unit surface area basis. if planet b is not terrestrial, e. g. neptune - like, these physical constraints would not apply. this analysis suggests the planets are not terrestrial - like, and are more like our giant planets. in either case, we find that the planets probably formed at larger radii and migrated early - on ( via disk interactions ) into their current orbits. this study demonstrates how the orbital and dynamical properties of exoplanet systems may be used to constrain the planets ' physical properties.
the magnetic fields of the ice giant planets uranus and neptune ( u / n ) are unique in the solar system. based on a substantial database measured on earth for representative planetary fluids at representative dynamic pressures up to 200 gpa ( 2 mbar ) and a few 1000 k, the complex magnetic fields of u / n are ( i ) probably made primarily by degenerate metallic fluid h ( mfh ) at or near the crossover from the h - he envelopes to ice cores at ~ 100 gpa ( mbar ) pressures and normalized radii of ~ 90 % of the radii of u / n ; ( ii ) because those magnetic fields are made relatively close to the surfaces of u / n, non - dipolar fields can be expected ; ( iii ) the ice cores are most probably a heterogeneous fluid mixture of h, n, o, c, fe / ni and silicate - oxides and their mutual reaction products at high pressures and temperatures, as discussed elsewhere. ironically, there is probably little nebular ice in the ice giant planets.
three major planets, venus, earth, and mercury formed out of the solar nebula. a fourth planetesimal, theia, also formed near earth where it collided in a giant impact, rebounding as the planet mars. during this impact earth lost $ { \ approx } 4 $ \ % of its crust and mantle that is now is found on mars and the moon. at the antipode of the giant impact, $ \ approx $ 60 \ % of earth ' s crust, atmosphere, and a large amount of mantle were ejected into space forming the moon. the lost crust never reformed and became the earth ' s ocean basins. the theia impact site corresponds to indian ocean gravitational anomaly on earth and the hellas basin on mars. the dynamics of the giant impact are consistent with the rotational rates and axial tilts of both earth and mars. the giant impact removed sufficient co $ _ 2 $ from earth ' s atmosphere to avoid a runaway greenhouse effect, initiated plate tectonics, and gave life time to form near geothermal vents at the continental margins. mercury formed near venus where on a close approach it was slingshot into the sun ' s convective zone losing 94 \ % of its mass, much of which remains there today. black carbon, from co $ _ 2 $ decomposed by the intense heat, is still found on the surface of mercury. arriving at 616 km / s, mercury dramatically altered the sun ' s rotational energy, explaining both its anomalously slow rotation rate and axial tilt. these results are quantitatively supported by mass balances, the current locations of the terrestrial planets, and the orientations of their major orbital axes.
light and cold extrasolar planets such as ogle 2005 - blg - 390lb, a 5. 5 earth - mass planet detected via microlensing, could be frequent in the galaxy according to some preliminary results from microlensing experiments. these planets can be frozen rocky - or ocean - planets, situated beyond the snow line and, therefore, beyond the habitable zone of their system. they can nonetheless host a layer of liquid water, heated by radiogenic energy, underneath an ice shell surface for billions of years, before freezing completely. these results suggest that oceans under ice, like those suspected to be present on icy moons in the solar system, could be a common feature of cold low - mass extrasolar planets.
recent surveys have revealed a lack of close - in planets around evolved stars more massive than 1. 2 msun. such planets are common around solar - mass stars. we have calculated the orbital evolution of planets around stars with a range of initial masses, and have shown how planetary orbits are affected by the evolution of the stars all the way to the tip of the red giant branch ( rgb ). we find that tidal interaction can lead to the engulfment of close - in planets by evolved stars. the engulfment is more efficient for more - massive planets and less - massive stars. these results may explain the observed semi - major axis distribution of planets around evolved stars with masses larger than 1. 5 msun. our results also suggest that massive planets may form more efficiently around intermediate - mass stars.
Question: The outer planets are made of hydrogen and helium, so they are termed what?
A) hydrogen giants
B) light giants
C) helium giants
D) gas giants
|
D) gas giants
|
Context:
##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids,
or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for
the recent report on laser cooling of liquid may contradict the law of energy conservation.
; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds
endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer
factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic
a rail gun launching at 9 mj of energy would need roughly 32 mj worth of energy from capacitors. current advances in energy storage allow for energy densities as high as 2. 5 mj / dm3, which means that a battery delivering 32 mj of energy would require a volume of 12. 8 dm3 per shot ; this is not a viable volume for use in a modern main battle tank, especially one designed to be lighter than existing models. there has even been discussion about eliminating the necessity for an outside electrical source in etc ignition by initiating the plasma cartridge through a small explosive force. furthermore, etc technology is not only applicable to solid propellants. to increase muzzle velocity even further electrothermal - chemical ignition can work with liquid propellants, although this would require further research into plasma ignition. etc technology is also compatible with existing projects to reduce the amount of recoil delivered to the vehicle while firing. understandably, recoil of a gun firing a projectile at 17 mj or more will increase directly with the increase in muzzle energy in accordance to newton ' s third law of motion and successful implementation of recoil reduction mechanisms will be vital to the installation of an etc powered gun in an existing vehicle design. for example, oto melara ' s new lightweight 120 mm l / 45 gun has achieved a recoil force of 25 t by using a longer recoil mechanism ( 550 mm ) and a pepperpot muzzle brake. reduction in recoil can also be achieved through mass attenuation of the thermal sleeve. the ability of etc technology to be applied to existing gun designs means that for future gun upgrades there ' s no longer the necessity to redesign the turret to include a larger breech or caliber gun barrel. several countries have already determined that etc technology is viable for the future and have funded indigenous projects considerably. these include the united states, germany and the united kingdom, amongst others. the united states ' xm360, which was planned to equip the future combat systems mounted combat system light tank and may be the m1 abrams ' next gun upgrade, is reportedly based on the xm291 and may include etc technology, or portions of etc technology. tests of this gun have been performed using " precision ignition " technology, which may refer to etc ignition. = = notes = = = = bibliography = = = = external links = = electromagnetic launch symposium http : / / www. powerlabs. org / electrothermal. htm
in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction
in steady state, the fuel cycle of a fusion plasma requires inward particle fluxes of fuel ions. these particle flows are also accompanied by heating. in the case of classical transport in a rotating cylindrical plasma, this heating can proceed through several distinct channels depending on the physical mechanisms involved. some channels directly heat the fuel ions themselves, whereas others heat electrons. which channel dominates depends, in general, on the details of the temperature, density, and rotation profiles of the plasma constituents. however, remarkably, under relatively few assumptions concerning these profiles, if the alpha particles, the byproducts of the fusion reaction, can be removed directly by other means, a hot - ion mode tends to emerge naturally.
possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as
Question: When a liquid is heated, molecules with enough kinetic energy escape the liquid and become what?
A) invisible
B) vapor
C) atoms
D) solid
|
B) vapor
|
Context:
the gravitational poynting vector provides a mechanism for the transfer of gravitational energy to a system of falling objects. in the following we will show that the gravitational poynting vector together with the gravitational larmor theorem also provides a mechanism to explain how massive bodies acquire rotational kinetic energy when external mechanical forces are applied on them.
ring mass density and the corresponding circular velocity in thin disk model are known to be integral transforms of one another. but it may be less familiar that the transforms can be reduced to one - fold integrals with identical weight functions. it may be of practical value that the integral for the surface density does not involve the velocity derivative, unlike the equivalent and widely known toomre ' s formula.
functionalobjects. h allows the c + + programmer performing common mathematical calculations to use a more symbolic syntax rather than an algorithmic syntax. this is not as ambitious as a symbolic manipulation program such as mathematica ; it is more like having the ability to drop a very simple mathematica statement into a c + + program.
no quantitative theory describing all physical phenomena can be made if any arbitrary standard spacetime structure is assumed. this statement is a consequence of transforming the peano arithmetic axioms into sentences with a physical content.
missiles, ships, vehicles, and also to map weather patterns and terrain. a radar set consists of a transmitter and receiver. the transmitter emits a narrow beam of radio waves which is swept around the surrounding space. when the beam strikes a target object, radio waves are reflected back to the receiver. the direction of the beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it
electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, perform tasks that are either too dangerous or too precise for humans to perform them economically, and to ensure better quality. many companies employ assembly lines of robots, especially in automotive industries and some factories are so robotized that they can run by themselves. outside the factory, robots have been employed in bomb disposal, space exploration, and many other fields. robots are also sold for various residential applications, from recreation to domestic applications. = = = structural analysis = = = structural analysis is the branch of mechanical engineering ( and also civil engineering ) devoted to examining why and how objects fail and to fix the objects and their performance. structural failures occur in two general modes : static failure, and fatigue failure. static structural failure occurs when, upon being loaded ( having a force applied ) the object being analyzed either breaks or is deformed plastically, depending on the criterion for failure. fatigue failure occurs when an object fails after a number of repeated loading and unloading cycles. fatigue failure occurs because of imperfections in the object : a microscopic crack on the surface of the object, for instance, will grow slightly with each cycle ( propagation ) until the crack is large enough to cause ultimate failure. failure is not simply defined as when a part breaks, however ; it is defined as when a part does not operate as intended. some systems, such as the perforated top sections of some plastic bags, are designed to break. if these systems do not break, failure analysis might be employed to determine the cause. structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure
affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor,
study of stability of nuclei, flow and multifragmentation in heavy - ion collisions.
one may identify the general properties of the neutrino mass matrix by generating many random mass matrices and testing them against the results of the neutrino experiments.
beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar β an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical
Question: What property of an object is obtained by multiplying its mass and its velocity?
A) movement
B) fluid
C) momentum
D) component
|
C) momentum
|
Context:
end { aligned } } } in summary, a set of the real numbers is an interval, if and only if it is an open interval, a closed interval, or a half - open interval. the only intervals that appear twice in the above classification are β
{ \ displaystyle \ emptyset } and r { \ displaystyle \ mathbb { r } } that are both open and closed. a degenerate interval is any set consisting of a single real number ( i. e., an interval of the form [ a, a ] ). some authors include the empty set in this definition. a real interval that is neither empty nor degenerate is said to be proper, and has infinitely many elements. an interval is said to be left - bounded or right - bounded, if there is some real number that is, respectively, smaller than or larger than all its elements. an interval is said to be bounded, if it is both left - and right - bounded ; and is said to be unbounded otherwise. intervals that are bounded at only one end are said to be half - bounded. the empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. bounded intervals are also commonly known as finite intervals. bounded intervals are bounded sets, in the sense that their diameter ( which is equal to the absolute difference between the endpoints ) is finite. the diameter may be called the length, width, measure, range, or size of the interval. the size of unbounded intervals is usually defined as + β, and the size of the empty interval may be defined as 0 ( or left undefined ). the centre ( midpoint ) of a bounded interval with endpoints a and b is ( a + b ) / 2, and its radius is the half - length | a β b | / 2. these concepts are undefined for empty or unbounded intervals. an interval is said to be left - open if and only if it contains no minimum ( an element that is smaller than all other elements ) ; right - open if it contains no maximum ; and open if it contains neither. the interval [ 0, 1 ) = { x | 0 β€ x < 1 }, for example, is left - closed and right - open. the empty set and the set of all reals are both open and closed intervals, while the set of non - negative reals, is a closed interval that is right - open but not left - open.
of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to
in agrobiotechnology. examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments ( e. g. resistance to a herbicide ), reduction of spoilage, or improving the nutrient profile of the crop. examples in non - food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation. farmers have widely adopted gm technology. between 1996 and 2011, the total surface area of land cultivated with gm crops had increased by a factor of 94, from 17, 000 to 1, 600, 000 square kilometers ( 4, 200, 000 to 395, 400, 000 acres ). 10 % of the world ' s crop lands were planted with gm crops in 2010. as of 2011, 11 different transgenic crops were grown commercially on 395 million acres ( 160 million hectares ) in 29 countries such as the us, brazil, argentina, india, canada, china, paraguay, pakistan, south africa, uruguay, bolivia, australia, philippines, myanmar, burkina faso, mexico and spain. genetically modified foods are foods produced from organisms that have had specific changes introduced into their dna with the methods of genetic engineering. these techniques have allowed for the introduction of new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant
microns to a few nanometers. in a typical electrospinning set - up, the desired scaffold material is dissolved within a solvent and placed within a syringe. this solution is fed through a needle and a high voltage is applied to the tip and to a conductive collection surface. the buildup of electrostatic forces within the solution causes it to eject a thin fibrous stream towards the oppositely charged or grounded collection surface. during this process the solvent evaporates, leaving solid fibers leaving a highly porous network. this technique is highly tunable, with variation to solvent, voltage, working distance ( distance from the needle to collection surface ), flow rate of solution, solute concentration, and collection surface. this allows for precise control of fiber morphology. on a commercial level however, due to scalability reasons, there are 40 or sometimes 96 needles involved operating at once. the bottle - necks in such set - ups are : 1 ) maintaining the aforementioned variables uniformly for all of the needles and 2 ) formation of " beads " in single fibers that we as engineers, want to be of a uniform diameter. by modifying variables such as the distance to collector, magnitude of applied voltage, or solution flow rate β researchers can dramatically change the overall scaffold architecture. historically, research on electrospun fibrous scaffolds dates back to at least the late 1980s when simon showed that electrospinning could be used to produce nano - and submicron - scale fibrous scaffolds from polymer solutions specifically intended for use as in vitro cell and tissue substrates. this early use of electrospun lattices for cell culture and tissue engineering showed that various cell types would adhere to and proliferate upon polycarbonate fibers. it was noted that as opposed to the flattened morphology typically seen in 2d culture, cells grown on the electrospun fibers exhibited a more rounded 3 - dimensional morphology generally observed of tissues in vivo. = = = = cad / cam technologies = = = = because most of the above techniques are limited when it comes to the control of porosity and pore size, computer assisted design and manufacturing techniques have been introduced to tissue engineering. first, a three - dimensional structure is designed using cad software. the porosity can be tailored using algorithms within the software. the scaffold is then realized by using ink - jet printing of polymer powders or through fused deposition modeling of a polymer melt. a 2011 study by el - ayoubi et al. investigated
conjure is an automated modelling tool for constraint programming. in this documentation, you will find the following : a brief introduction to conjure, installation instructions, a description of how to use conjure through its command line user interface, a list of conjure ' s features, a description of conjure ' s input language essence, and a collection of simple demonstrations of conjure ' s use.
displaystyle \ mathbb { r } } that are both open and closed. a degenerate interval is any set consisting of a single real number ( i. e., an interval of the form [ a, a ] ). some authors include the empty set in this definition. a real interval that is neither empty nor degenerate is said to be proper, and has infinitely many elements. an interval is said to be left - bounded or right - bounded, if there is some real number that is, respectively, smaller than or larger than all its elements. an interval is said to be bounded, if it is both left - and right - bounded ; and is said to be unbounded otherwise. intervals that are bounded at only one end are said to be half - bounded. the empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. bounded intervals are also commonly known as finite intervals. bounded intervals are bounded sets, in the sense that their diameter ( which is equal to the absolute difference between the endpoints ) is finite. the diameter may be called the length, width, measure, range, or size of the interval. the size of unbounded intervals is usually defined as + β, and the size of the empty interval may be defined as 0 ( or left undefined ). the centre ( midpoint ) of a bounded interval with endpoints a and b is ( a + b ) / 2, and its radius is the half - length | a β b | / 2. these concepts are undefined for empty or unbounded intervals. an interval is said to be left - open if and only if it contains no minimum ( an element that is smaller than all other elements ) ; right - open if it contains no maximum ; and open if it contains neither. the interval [ 0, 1 ) = { x | 0 β€ x < 1 }, for example, is left - closed and right - open. the empty set and the set of all reals are both open and closed intervals, while the set of non - negative reals, is a closed interval that is right - open but not left - open. the open intervals are open sets of the real line in its standard topology, and form a base of the open sets. an interval is said to be left - closed if it has a minimum element or is left - unbounded, right - closed if it has a maximum or is right unbounded ; it is
its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) β legacy fixed radio beacons used before the vor system that transmit a simple signal in all directions for aircraft or ships to use for radio direction finding. aircraft use automatic direction finder ( adf ) receivers which use a directional antenna to determine the bearing to the beacon. by taking bearings on two beacons they can determine their position. ndbs use frequencies between 190 and 1750 khz in the lf and mf bands which propagate beyond the horizon as ground waves or skywaves much farther than vor beacons. they transmit a callsign consisting of one to 3 morse code letters as an identifier. emergency locator beacon β a portable battery powered radio transmitter used in emergencies to locate airplanes, vessels, and persons in distress and in need of immediate rescue. various types of emergency locator beacons are carried by aircraft, ships, vehicles, hikers and cross - country skiers. in the event of an emergency, such as the aircraft crashing, the ship sinking
airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) β legacy fixed radio beacons used before the vor system that transmit a simple signal in all directions for aircraft or ships to use for radio direction finding. aircraft use automatic direction finder ( adf ) receivers which use a directional antenna to determine the bearing to the beacon. by taking bearings on two beacons they can determine their position. ndbs use frequencies between 190 and 1750 khz in the lf and mf bands which propagate beyond the horizon as ground waves or skywaves much farther than vor beacons. they transmit a callsign consisting of one to 3 morse code letters as an identifier. emergency locator beacon β a portable battery powered radio transmitter used in emergencies to locate airplanes, vessels, and persons in distress and in need of immediate rescue. various types of emergency locator beacons are carried by aircraft, ships, vehicles, hikers and cross - country skiers. in the event of an emergency, such as the aircraft crashing, the ship sinking, or a hiker becoming lost, the transmitter is deployed and begins to transmit a continuous radio signal, which is used by search and rescue teams to quickly find the emergency and render aid. the latest generation emergency position indicating rescue beacons ( epirbs ) contain a gps receiver, and broadcast to rescue teams their exact location within 20 meters. cospas - sarsat β an international humanitarian consortium of governmental and private agencies which acts as a dispatcher for search and rescue operations. it operates a network of about 47 satellites carrying radio receivers, which detect distress signals from emergency locator beacons anywhere on earth transmitting on the international co
is the science of skillful operations with concepts and rules invented just for this purpose. [ this purpose being the skillful operation.... ] eugene wigner mathematics is not a book confined within a cover and bound between brazen clasps, whose contents it needs only patience to ransack ; it is not a mine, whose treasures may take long to reduce into possession, but which fill only a limited number of veins and lodes ; it is not a soil, whose fertility can be exhausted by the yield of successive harvests ; it is not a continent or an ocean, whose area can be mapped out and its contour defined : it is limitless as that space which it finds too narrow for its aspirations ; its possibilities are as infinite as the worlds which are forever crowding in and multiplying upon the astronomer ' s gaze ; it is as incapable of being restricted within assigned boundaries or being reduced to definitions of permanent validity, as the consciousness of life, which seems to slumber in each monad, in every atom of matter, in each leaf and bud cell, and is forever ready to burst forth into new forms of vegetable and animal existence. james joseph sylvester what is mathematics? what is it for? what are mathematicians doing nowadays? wasn ' t it all finished long ago? how many new numbers can you invent anyway? is today ' s mathematics just a matter of huge calculations, with the mathematician as a kind of zookeeper, making sure the precious computers are fed and watered? if it ' s not, what is it other than the incomprehensible outpourings of superpowered brainboxes with their heads in the clouds and their feet dangling from the lofty balconies of their ivory towers? mathematics is all of these, and none. mostly, it ' s just different. it ' s not what you expect it to be, you turn your back for a moment and it ' s changed. it ' s certainly not just a fixed body of knowledge, its growth is not confined to inventing new numbers, and its hidden tendrils pervade every aspect of modern life. ian stewart = = see also = = philosophy of mathematics foundations of mathematics = = references = = = = further reading = = courant, richard ; robbins, herbert ( 1996 ), what is mathematics? ( 2nd ed. ), oxford university press, isbn 978 - 0 - 19 - 510519 - 3 gowers, timothy ; barrow - green, june ; leader, imre, eds
; however, a successful large - scale industrial application of the process was the development of continuous freeze drying of coffee. high - temperature short time processing β these processes, for the most part, are characterized by rapid heating and cooling, holding for a short time at a relatively high temperature and filling aseptically into sterile containers. decaffeination of coffee and tea β decaffeinated coffee and tea was first developed on a commercial basis in europe around 1900. the process is described in u. s. patent 897, 763. green coffee beans are treated with water, heat and solvents to remove the caffeine from the beans. process optimization β food technology now allows production of foods to be more efficient, oil saving technologies are now available on different forms. production methods and methodology have also become increasingly sophisticated. aseptic packaging β the process of filling a commercially sterile product into a sterile container and hermetically sealing the containers so that re - infection is prevented. thus, this results into a shelf stable product at ambient conditions. food irradiation β the process of exposing food and food packaging to ionizing radiation can effectively destroy organisms responsible for spoilage and foodborne illness and inhibit sprouting, extending shelf life. commercial fruit ripening rooms using ethylene as a plant hormone. food delivery β an order is typically made either through a restaurant or grocer ' s website or mobile app, or through a food ordering company. the ordered food is typically delivered in boxes or bags to the customer ' s doorsteps. = = categories = = technology has innovated these categories from the food industry : agricultural technology β or agtech, it is the use of technology in agriculture, horticulture, and aquaculture with the aim of improving yield, efficiency, and profitability. agricultural technology can be products, services or applications derived from agriculture that improve various input / output processes. food science β technology in this sector focuses on the development of new functional ingredients and alternative proteins. foodservice β technology innovated the way establishments prepare, supply, and serve food outside the home. there ' s a tendency to create the conditions for the restaurant of the future with robotics and cloudkitchens. consumer tech β technology allows what we call consumer electronics, which is the equipment of consumers with devices that facilitates the cooking process. food delivery β as the food delivery market is growing, companies and startups are rapidly revolutionizing the communication process between consumers and food establishments, with platform - to - consumer delivery as the
Question: Solutions that are prepared in which a solute concentration exceeds its solubility are called what?
A) solidified
B) mineralized
C) supersaturated
D) instantiated
|
C) supersaturated
|
Context:
##al nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the
by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which
, fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of the major staple foods, such as hemp, teff, maize, rice, wheat and other cereal grasses, pulses, bananas and plantains, as well as hemp, flax and cotton grown for their fibres, are the outcome of prehistoric selection over thousands of years from among wild ancestral plants with the most desirable characteristics. botanists study how plants produce food and how to increase yields, for example through plant breeding, making their work important to humanity ' s ability to feed the world and provide food security for future generations. botanists also study weeds, which are a considerable problem in agriculture, and the biology and control of plant
by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the
, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β of which around 1 million are insects β but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β pieces of dna that can move between cells β while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ",
kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used
this is a popular article about the work of maryna viazovska, 2022 fields medalist.
the word " ceramic " is derived from the greek word ΞΊΞ΅ΟΞ±ΞΌΞΉΞΊΞΏΟ ( keramikos ) meaning pottery. it is related to the older indo - european language root " to burn ". " ceramic " may be used as a noun in the singular to refer to a ceramic material or the product of ceramic manufacture, or as an adjective. ceramics is the making of things out of ceramic materials. ceramic engineering, like many sciences, evolved from a different discipline by today ' s standards. materials science engineering is grouped with ceramics engineering to this day. abraham darby first used coke in 1709 in shropshire, england, to improve the yield of a smelting process. coke is now widely used to produce carbide ceramics. potter josiah wedgwood opened the first modern ceramics factory in stoke - on - trent, england, in 1759. austrian chemist carl josef bayer, working for the textile industry in russia, developed a process to separate alumina from bauxite ore in 1888. the bayer process is still used to purify alumina for the ceramic and aluminium industries. brothers pierre and jacques curie discovered piezoelectricity in rochelle salt c. 1880. piezoelectricity is one of the key properties of electroceramics. e. g. acheson heated a mixture of coke and clay in 1893, and invented carborundum, or synthetic silicon carbide. henri moissan also synthesized sic and tungsten carbide in his electric arc furnace in paris about the same time as acheson. karl schroter used liquid - phase sintering to bond or " cement " moissan ' s tungsten carbide particles with cobalt in 1923 in germany. cemented ( metal - bonded ) carbide edges greatly increase the durability of hardened steel cutting tools. w. h. nernst developed cubic - stabilized zirconia in the 1920s in berlin. this material is used as an oxygen sensor in exhaust systems. the main limitation on the use of ceramics in engineering is brittleness. = = = military = = = the military requirements of world war ii encouraged developments, which created a need for high - performance materials and helped speed the development of ceramic science and engineering. throughout the 1960s and 1970s, new types of ceramics were developed in response to advances in atomic energy, electronics, communications, and space travel. the discovery of ceramic superconductors in 1986 has spurred intense research to develop superconducting ceramic parts for electronic devices,
groups of organisms. divisions related to the broader historical sense of botany include bacteriology, mycology ( or fungology ), and phycology β respectively, the study of bacteria, fungi, and algae β with lichenology as a subfield of mycology. the narrower sense of botany as the study of embryophytes ( land plants ) is called phytology. bryology is the study of mosses ( and in the broader sense also liverworts and hornworts ). pteridology ( or filicology ) is the study of ferns and allied plants. a number of other taxa of ranks varying from family to subgenus have terms for their study, including agrostology ( or graminology ) for the study of grasses, synantherology for the study of composites, and batology for the study of brambles. study can also be divided by guild rather than clade or grade. for example, dendrology is the study of woody plants. many divisions of biology have botanical subfields. these are commonly denoted by prefixing the word plant ( e. g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics ), or prefixing or substituting the prefix phyto - ( e. g. phytochemistry, phytogeography ). the study of fossil plants is called palaeobotany. other fields are denoted by adding or substituting the word botany ( e. g. systematic botany ). phytosociology is a subfield of plant ecology that classifies and studies communities of plants. the intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses. different parts of plants also give rise to their own subfields, including xylology, carpology ( or fructology ), and palynology, these being the study of wood, fruit and pollen / spores respectively. botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical
. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer
Question: The word fungus comes from the latin word for what?
A) spore
B) mushroom
C) mold
D) vegetable
|
B) mushroom
|
Context:
stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is :
from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable
venus flytrap and bladderworts, and the pollinia of orchids. the hypothesis that plant growth and development is coordinated by plant hormones or plant growth regulators first emerged in the late 19th century. darwin experimented on the movements of plant shoots and roots towards light and gravity, and concluded " it is hardly an exaggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission,
elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmos
##aggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated
could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of
pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form
the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that
or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry,
much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost
Question: The part of a plant that is responsible for reproduction is the?
A) flower
B) leaf
C) root
D) stem
|
A) flower
|
Context:
the fundamental constants could not influence different elements uniformly, and a comparison between each of the elements ' resulting unique chronological timescales would then give inconsistent time estimates. in refutation of young earth claims of inconstant decay rates affecting the reliability of radiometric dating, roger c. wiens, a physicist specializing in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionuclides in question need not have been in the rocks initially. thomas a. baillieul, a geologist and retired senior environmental scientist with the united states department of energy, disputed gentry ' s claims in an article entitled, " ' polonium haloes ' refuted : a review of ' radioactive halos in a radio
in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionuclides in question need not have been in the rocks initially. thomas a. baillieul, a geologist and retired senior environmental scientist with the united states department of energy, disputed gentry ' s claims in an article entitled, " ' polonium haloes ' refuted : a review of ' radioactive halos in a radio - chronological and cosmological perspective ' by robert v. gentry. " baillieul noted that gentry was a physicist with no background in geology and given the absence of this background, gentry had misrepresented the geological context from which the specimens were collected. additionally, he noted that gentry relied on research from the
has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named
the decay rate for isotopes subject to extreme pressures, those differences were too small to significantly impact date estimates. the constancy of the decay rates is also governed by first principles in quantum mechanics, wherein any deviation in the rate would require a change in the fundamental constants. according to these principles, a change in the fundamental constants could not influence different elements uniformly, and a comparison between each of the elements ' resulting unique chronological timescales would then give inconsistent time estimates. in refutation of young earth claims of inconstant decay rates affecting the reliability of radiometric dating, roger c. wiens, a physicist specializing in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionucl
strangelets ( stable lumps of quark matter ) can have masses and charges much higher than those of nuclei, but have very low charge - to - mass ratios. this is confirmed in a relativistic thomas - fermi model. the high charge allows astrophysical strangelet acceleration to energies orders of magnitude higher than for protons. in addition, strangelets are much less susceptible to the interactions with the cosmic microwave background that suppress the flux of cosmic ray protons and nuclei above energies of $ 10 ^ { 19 } $ - - $ 10 ^ { 20 } $ ev ( the gzk - cutoff ). this makes strangelets an interesting possibility for explaining ultra - high energy cosmic rays.
it is well known and well established by scientific observation that a free neutron radioactively decays into a proton plus an electron plus an anti - neutrino with a mean life time before decay of about 900 seconds. that established fact conflicts sharply with the hypothesis that the neutron is composed of two down plus one up quark and that the proton is composed of one down plus two up quarks. that conflict throws doubt on the entire quark hypothesis.
on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union
( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non -
it is believed that there may have been a large number of black holes formed in the very early universe. these would have quantised masses. a charged ` ` elementary black hole ' ' ( with the minimum possible mass ) can capture electrons, protons and other charged particles to form a ` ` black hole atom ' '. we find the spectrum of such an object with a view to laboratory and astronomical observation of them, and estimate the lifetime of the bound states. there is no limit to the charge of the black hole, which gives us the possibility of observing z > 137 bound states and transitions at the lower continuum. negatively charged black holes can capture protons. for z > 1, the orbiting protons will coalesce to form a nucleus ( after beta - decay of some protons to neutrons ), with a stability curve different to that of free nuclei. in this system there is also the distinct possibility of single quark capture. this leads to the formation of a coloured black hole that plays the role of an extremely heavy quark interacting strongly with the other two quarks. finally we consider atoms formed with much larger black holes.
g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends
Question: Isotopes have the same number of protons and electrons, but a different number of what?
A) impurities
B) neutrons
C) reactions
D) atoms
|
B) neutrons
|
Context:
##tering - based methods are simple ( " sinter " has roots in the english " cinder " ). the firing is done at a temperature below the melting point of the ceramic. once a roughly - held - together object called a " green body " is made, it is fired in a kiln, where atomic and molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 β 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for
cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra
inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat
high machining costs. there is a possibility for melt casting to be used for many of these approaches. potentially even more desirable is using melt - derived particles. in this method, quenching is done in a solid solution or in a fine eutectic structure, in which the particles are then processed by more typical ceramic powder processing methods into a useful body. there have also been preliminary attempts to use melt spraying as a means of forming composites by introducing the dispersed particulate, whisker, or fiber phase in conjunction with the melt spraying process. other methods besides melt infiltration to manufacture ceramic composites with long fiber reinforcement are chemical vapor infiltration and the infiltration of fiber preforms with organic precursor, which after pyrolysis yield an amorphous ceramic matrix, initially with a low density. with repeated cycles of infiltration and pyrolysis one of those types of ceramic matrix composites is produced. chemical vapor infiltration is used to manufacture carbon / carbon and silicon carbide reinforced with carbon or silicon carbide fibers. besides many process improvements, the first of two major needs for fiber composites is lower fiber costs. the second major need is fiber compositions or coatings, or composite processing, to reduce degradation that results from high - temperature composite exposure under oxidizing conditions. = = applications = = the products of technical ceramics include tiles used in the space shuttle program, gas burner nozzles, ballistic protection, nuclear fuel uranium oxide pellets, bio - medical implants, jet engine turbine blades, and missile nose cones. its products are often made from materials other than clay, chosen for their particular physical properties. these may be classified as follows : oxides : silica, alumina, zirconia non - oxides : carbides, borides, nitrides, silicides composites : particulate or whisker reinforced matrices, combinations of oxides and non - oxides ( e. g. polymers ). ceramics can be used in many technological industries. one application is the ceramic tiles on nasa ' s space shuttle, used to protect it and the future supersonic space planes from the searing heat of re - entry into the earth ' s atmosphere. they are also used widely in electronics and optics. in addition to the applications listed here, ceramics are also used as a coating in various engineering cases. an example would be a ceramic bearing coating over a titanium frame used for an aircraft. recently the field has come to include the studies of single
. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. =
interaction between tannin and bovine serum albumin ( bsa ) was examined by the fluorescent quenching. the process of elimination between bsa and tannin was the one of a stationary state, and the coupling coefficient was one. the working strength between the tannin and the beef serum was hydrophobic one.
this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic
medical purposes. cells are often ' seeded ' into these structures capable of supporting three - dimensional tissue formation. scaffolds mimic the extracellular matrix of the native tissue, recapitulating the in vivo milieu and allowing cells to influence their own microenvironments. they usually serve at least one of the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seeding and diffusion throughout the whole structure of both cells and nutrients. biodegradability is often an essential factor since scaffolds should preferably be absorbed by the surrounding tissues without the necessity of surgical removal. the rate at which degradation occurs has to coincide as much as possible with the rate of tissue formation : this means that while cells are fabricating their own natural matrix structure around themselves, the scaffold is able to provide structural integrity within the body and eventually it will break down leaving the newly formed tissue which will take over the mechanical load. injectability is also important for clinical uses. recent research on organ printing is showing how crucial a good control of the 3d environment is to ensure reproducibility of experiments and offer better results. = = = materials = = = material selection is an essential aspect of producing a scaffold. the materials utilized can be natural or synthetic and can be biodegradable or non - biodegradable. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ),
##logous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source β induced pluripotent stem cells β may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) are subclass of pluripotent stem cells resembling embryonic stem cells ( escs ) that have been derived from adult differentiated cells. ipscs are created by altering the expression of transcriptional factors in adult cells until they become like embryonic stem cells. multipotent stem cells can be differentiated into any cell
10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is
Question: Shivering and adipose tissue called brown fat are used by mammals in particular to produce what?
A) energy
B) blood
C) heat
D) nutrition
|
C) heat
|
Context:
as subjects perceive the sensory world, different stimuli elicit a number of neural representations. here, a subjective distance between stimuli is defined, measuring the degree of similarity between the underlying representations. as an example, the subjective distance between different locations in space is calculated from the activity of rodent hippocampal place cells, and lateral septal cells. such a distance is compared to the real distance, between locations. as the number of sampled neurons increases, the subjective distance shows a tendency to resemble the metrics of real space.
the action potential is widely considered a purely electrical phenomenon. however, one also finds mechanical and thermal changes that can be observed experimentally. in particular, nerve membranes become thicker and axons contract. the spatial length of the action potential can be quite large, ranging from millimeters to many centimeters. this suggests to employ macroscopic thermodynamics methods to understand its properties. the pulse length is several orders of magnitude larger than the synaptic gap, larger than the distance of the nodes of ranvier, and even larger than the size of many neurons such as pyramidal cells or brain stem motor neurons. here, we review the mechanical changes in nerves, theoretical possibilities to explain them, and implications of a mechanical nerve pulse for the neuron and for the brain. in particular, the contraction of nerves gives rise to the possibility of fast mechanical synapses.
the attenuation length and refractive index of liquid xenon for intrinsic scintillation light ( 178nm ) have been measured in a single experiment. the value obtained for attenuation length is 364 + - 18 mm. the refractive index is found to be 1. 69 + - 0. 02. both values were measured at a temperature of 170 + - 1 k.
cortisol, corticosterone and aldosterone activate full - length glucocorticoid receptor ( gr ) from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates. activation by aldosterone a mineralocorticoid, indicates partial divergence of elephant shark gr from the mr. progesterone activates elephant shark mr, but not elephant shark gr. progesterone inhibits steroid binding to elephant shark gr, but not to human gr. deletion of the n - terminal domain ( ntd ) from elephant shark gr ( truncated gr ) reduced the response to corticosteroids, while truncated and full - length elephant shark mr had similar responses to corticosteroids. chimeras of elephant shark gr ntd fused to mr dbd + lbd had increased activation by corticosteroids and progesterone compared to full - length elephant shark mr. elephant shark mr ntd fused to gr dbd + lbd had similar activation as full - length elephant shark mr, indicating that activation of human gr by the ntd evolved early in gr divergence from the mr.
generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygenated blood in a particular region is assumed to correlate with an increase in neural activity in that part of the brain. this allows us to localize particular functions within different brain regions. fmri has moderate spatial and temporal resolution. optical imaging. this technique uses infrared transmitters and receivers to measure the amount of light reflectance by blood near different areas of the brain. since oxygenated and deoxygenated blood reflects light by different amounts, we can study which areas are more active ( i. e., those that have more oxygenated blood ). optical imaging has moderate temporal resolution, but poor spatial resolution. it also has the advantage that it is extremely safe and can be used to study infants ' brains. magnetoencephalography. meg measures magnetic fields resulting from cortical activity. it is similar to eeg, except that it has improved spatial resolution since the magnetic fields it measures are not as blurred or attenuated by the scalp, meninges and so forth as the electrical activity measured in eeg is. meg uses squid sensors to detect tiny magnetic fields. = = = computational modeling = = = computational models require a mathematically and logically formal representation of a problem. computer models are used in the simulation and experimental verification of different specific and general properties of intelligence. computational modeling can help us understand the functional organization of a particular cognitive phenomenon. approaches to cognitive modeling can be categorized as : ( 1 ) symbolic, on abstract mental functions of an intelligent mind by means of symbols ; ( 2 ) subsymbolic, on the neural and associative properties of the human brain ; and ( 3 ) across the symbolic β subsymbolic border, including hybrid. symbolic modeling evolved from the computer science paradigms using the technologies of knowledge - based systems, as well as a philosophical perspective ( e. g. " good old - fashioned artificial intelligence " ( gofai ) ). they were developed by the first cognitive researchers and later used in information engineering for expert systems. since the early 1990s it was generalized in systemics for the investigation of functional human - like intelligence models, such as personoids, and, in parallel, developed as the soar environment. recently, especially in
superdielectric behavior was observed in pastes made of high surface area alumina filled to the level of incipient wetness with water containing dissolved sodium chloride ( table salt ). in some cases the dielectric constants were greater than 10 ^ 10.
parametric excitation of rotons by oscillating electric field exhibits a narrow resonance at the roton minimum frequency. the resonance width is in good agreement with experimental results on the microwave absorption in superfluid helium.
the group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the mediterranean sea at a depth of about 2. 2 km with the antares optical beacon systems. a parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the antares site is in good agreement with these measurements.
we cut the volume of surface code s gates by 25 % by omitting a hadamard gate.
high temperature superconducting ( hts ) tape can be cut and stacked to generate large magnetic fields at cryogenic temperatures after inducing persistent currents in the superconducting layers. a field of 17. 7 t was trapped between two stacks of hts tape at 8 k with no external mechanical reinforcement. 17. 6 t could be sustained when warming the stack up to 14 k. a new type of hybrid stack was used consisting of a 12 mm square insert stack embedded inside a larger 34. 4 mm diameter stack made from different tape. the magnetic field generated is the largest for any trapped field magnet reported and 30 % greater than previously achieved in a stack of hts tapes. such stacks are being considered for superconducting motors as rotor field poles where the cryogenic penalty is justified by the increased power to weight ratio. the sample reported can be considered the strongest permanent magnet ever created.
Question: Where are the somas of sensory neurons located in the spinal cord?
A) frontal root ganglia
B) dorsal root ganglia
C) penetration root ganglia
D) frontal head ganglia
|
B) dorsal root ganglia
|
Context:
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively
the thickness of freshly made soap films is usually in the micron range, and interference colors make thickness fluctuations easily visible. circular patterns of constant thickness are commonly observed, either a thin film disc in a thicker film or the reverse. in this letter, we evidence the line tension at the origin of these circular patterns. using a well controlled soap film preparation, we produce a piece of thin film surrounded by a thicker film. the thickness profile, measured with a spectral camera, leads to a line tension of the order of 0. 1 nn which drives the relaxation of the thin film shape, initially very elongated, toward a circular shape. a balance between line tension and air friction leads to a quantitative prediction of the relaxation process. such a line tension is expected to play a role in the production of marginal regeneration patches, involved in soap film drainage and stability.
cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single
, characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc β 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using
this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic
##ization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process. the disc tube module uses a cross - flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs. = = membrane performance and governing equations = = the selection of synthetic membranes for a targeted separation process is usually based on few requirements. membranes have to provide enough mass transfer area to process large amounts of feed stream. the selected membrane has to have high selectivity ( rejection ) properties for certain particles ; it has to resist fouling and to have high mechanical stability. it also needs to be reproducible and to have low manufacturing costs. the main modeling equation for the dead - end filtration at constant pressure drop is represented by darcy ' s law : d v p d t = q = Ξ΄ p ΞΌ a ( 1 r m + r ) { \ displaystyle { \ frac { dv _
required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the
the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seeding and diffusion throughout the whole structure of both cells and nutrients. biodegradability is often an essential factor since scaffolds should preferably be absorbed by the surrounding tissues without the necessity of surgical removal. the rate at which degradation occurs has to coincide as much as possible with the rate of tissue formation : this means that while cells are fabricating their own natural matrix structure around themselves, the scaffold is able to provide structural integrity within the body and eventually it will break down leaving the newly formed tissue which will take over the mechanical load. injectability is also important for clinical uses. recent research on organ printing is showing how crucial a good control of the 3d environment is to ensure reproducibility of experiments and offer better results. = = = materials = = = material selection is an essential aspect of producing a scaffold. the materials utilized can be natural or synthetic and can be biodegradable or non - biodegradable. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla β polylactic acid. this is a polyester which
cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra
Question: The thick tunica media allows muscular arteries to play a leading role in what?
A) inhibition
B) accumulation
C) vasoconstriction
D) vasodilation
|
C) vasoconstriction
|
Context:
material includes the unit cell, which is the smallest unit of a crystal lattice ( space lattice ) that repeats to make up the macroscopic crystal structure. most common structural materials include parallelpiped and hexagonal lattice types. in single crystals, the effects of the crystalline arrangement of atoms is often easy to see macroscopically, because the natural shapes of crystals reflect the atomic structure. further, physical properties are often controlled by crystalline defects. the understanding of crystal structures is an important prerequisite for understanding crystallographic defects. examples of crystal defects consist of dislocations including edges, screws, vacancies, self inter - stitials, and more that are linear, planar, and three dimensional types of defects. new and advanced materials that are being developed include nanomaterials, biomaterials. mostly, materials do not occur as a single crystal, but in polycrystalline form, as an aggregate of small crystals or grains with different orientations. because of this, the powder diffraction method, which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. most materials have a crystalline structure, but some important materials do not exhibit regular crystal structure. polymers display varying degrees of crystallinity, and many are completely non - crystalline. glass, some ceramics, and many natural materials are amorphous, not possessing any long - range order in their atomic arrangements. the study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic and mechanical descriptions of physical properties. = = = = nanostructure = = = = materials, which atoms and molecules form constituents in the nanoscale ( i. e., they form nanostructures ) are called nanomaterials. nanomaterials are the subject of intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 β 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm
building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another material. cermets are ceramic particles containing some metals. the wear resistance of tools is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties. ceramics can be significantly strengthened for engineering applications using the principle of crack deflection. this process involves the strategic addition of second - phase particles within a ceramic matrix, optimizing their shape, size, and distribution to direct and control crack propagation. this approach enhances fracture toughness, paving the way for the creation of advanced, high - performance ceramics in various industries. = = = composites = = = another application of materials science in industry is making composite materials. these are structured materials composed of two or more macroscopic phases. applications range from structural elements such as steel - reinforced concrete, to the thermal insulating tiles, which play a key and integral role in nasa ' s space shuttle thermal protection system, which is used to protect the surface of the shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap. rcc is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. after curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfuryl alcohol in a
classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used
##tering - based methods are simple ( " sinter " has roots in the english " cinder " ). the firing is done at a temperature below the melting point of the ceramic. once a roughly - held - together object called a " green body " is made, it is fired in a kiln, where atomic and molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 β 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for
which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat treatment the glass partly crystallizes. in many cases, so - called ' nucleation agents ' are added in order to regulate and control the crystallization process. because there is usually no pressing and sintering, glass - ceramics do not contain the volume fraction of porosity typically present in sintered ceramics. the term mainly refers to a mix of lithium and aluminosilicates which yields an array of materials with interesting thermomechanical properties. the most commercially important of these have the distinction of being impervious to thermal shock. thus, glass - ceramics have become extremely useful for countertop cooking. the negative thermal expansion coefficient ( tec ) of the crystalline ceramic phase can be balanced with the positive tec of the glassy phase. at a certain point ( ~ 70 % crystalline ) the glass - ceramic has a net tec near zero. this type of glass - ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β batching β mixing β forming β drying β firing β assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression
is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemical
##ally, because the natural shapes of crystals reflect the atomic structure. further, physical properties are often controlled by crystalline defects. the understanding of crystal structures is an important prerequisite for understanding crystallographic defects. examples of crystal defects consist of dislocations including edges, screws, vacancies, self inter - stitials, and more that are linear, planar, and three dimensional types of defects. new and advanced materials that are being developed include nanomaterials, biomaterials. mostly, materials do not occur as a single crystal, but in polycrystalline form, as an aggregate of small crystals or grains with different orientations. because of this, the powder diffraction method, which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. most materials have a crystalline structure, but some important materials do not exhibit regular crystal structure. polymers display varying degrees of crystallinity, and many are completely non - crystalline. glass, some ceramics, and many natural materials are amorphous, not possessing any long - range order in their atomic arrangements. the study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic and mechanical descriptions of physical properties. = = = = nanostructure = = = = materials, which atoms and molecules form constituents in the nanoscale ( i. e., they form nanostructures ) are called nanomaterials. nanomaterials are the subject of intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 β 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm. nanotubes have two dimensions on the nanoscale, i. e., the diameter of the tube is between 0. 1 and 100 nm ; its length could be much greater. finally, spherical nanoparticles have three dimensions on the nanoscale, i. e., the particle is between
, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest
of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive
casting, also called the lost wax process, die casting, centrifugal casting, both vertical and horizontal, and continuous castings. each of these forms has advantages for certain metals and applications considering factors like magnetism and corrosion. forging β a red - hot billet is hammered into shape. rolling β a billet is passed through successively narrower rollers to create a sheet. extrusion β a hot and malleable metal is forced under pressure through a die, which shapes it before it cools. machining β lathes, milling machines and drills cut the cold metal to shape. sintering β a powdered metal is heated in a non - oxidizing environment after being compressed into a die. fabrication β sheets of metal are cut with guillotines or gas cutters and bent and welded into structural shape. laser cladding β metallic powder is blown through a movable laser beam ( e. g. mounted on a nc 5 - axis machine ). the resulting melted metal reaches a substrate to form a melt pool. by moving the laser head, it is possible to stack the tracks and build up a three - dimensional piece. 3d printing β sintering or melting amorphous powder metal in a 3d space to make any object to shape. cold - working processes, in which the product ' s shape is altered by rolling, fabrication or other processes, while the product is cold, can increase the strength of the product by a process called work hardening. work hardening creates microscopic defects in the metal, which resist further changes of shape. = = = heat treatment = = = metals can be heat - treated to alter the properties of strength, ductility, toughness, hardness and resistance to corrosion. common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering : annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft - edged so that, when the metal is hit or stressed it dents or perhaps bends, rather than breaking ; it is also easier to sand, grind, or cut annealed metal. quenching is the process of cooling metal very quickly after heating, thus " freezing " the metal ' s molecules in the very hard martensite form, which makes the metal harder. tempering relieves stresses in the metal that were caused by the hardening process ; tempering makes the metal less hard while making it better able to sustain
Question: Why do crystals have relatively sharp and well-defined melting points?
A) uniform intermolecular forces
B) angular intermolecular forces
C) variable intermolecular forces
D) particular intermolecular forces
|
A) uniform intermolecular forces
|
Context:
the action potential is widely considered a purely electrical phenomenon. however, one also finds mechanical and thermal changes that can be observed experimentally. in particular, nerve membranes become thicker and axons contract. the spatial length of the action potential can be quite large, ranging from millimeters to many centimeters. this suggests to employ macroscopic thermodynamics methods to understand its properties. the pulse length is several orders of magnitude larger than the synaptic gap, larger than the distance of the nodes of ranvier, and even larger than the size of many neurons such as pyramidal cells or brain stem motor neurons. here, we review the mechanical changes in nerves, theoretical possibilities to explain them, and implications of a mechanical nerve pulse for the neuron and for the brain. in particular, the contraction of nerves gives rise to the possibility of fast mechanical synapses.
are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). "
##hosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " sub - disciplines of hydrology include hydrometeorology, surface water hydrology, hydrogeology, watershed science, forest hydrology, and water chemistry. " glaciology covers the icy parts of the earth ( or cryosphere ). atmospheric sciences cover the gaseous parts of the earth ( or atmosphere
a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth '
ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis
eremets and troyan ( nature mater. 10, 927 - 931 ( 2011 ) ) claim that they produced the conducting liquid hydrogen state at 270 gpa and 295 k. their evidence consists of disappearance of raman signals, visual observations, and measurements of electrical conductivity in diamond anvil cells ( dac ). however, there is no proof that the reported observations are due to transformations in hydrogen.
s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " sub - disciplines of hydrology include hydrometeorology, surface water hydrology, hydrogeology, watershed science, forest hydrology, and water chemistry. " glaciology covers the icy parts of the earth ( or cryosphere ). atmospheric sciences cover the gaseous parts of the earth ( or atmosphere ) between the surface and the exosphere ( about 1000 km ). major subdisciplines include meteorology, climatology, atmospheric chemistry, and atmospheric physics. = = = earth science breakup = = = = = see also = = = = references = = = = = sources = = = = =
depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform
a theory is put forward that the electronic phase transition at 0. 2 k in ni - doped bi $ _ { 2 } $ sr $ _ { 2 } $ cacu $ _ { 2 } $ o $ _ { 8 } $ is result of the formation of a spin density wave in the system of ni impurities. the driving force for the transition is the exchange interaction between the impurity spins and the spins of the conduction electrons. this creates a small gap at two of the four nodes of the superconducting gap. the effect is to reduce the thermal conductivity by a factor of two, as observed.
##morphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to
Question: In which area does conduction mainly happen?
A) thermosphere
B) higher atmosphere
C) mesosphere
D) lower atmosphere
|
D) lower atmosphere
|
Context:
of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent
and myelomas can be made to fuse by chemical protocols, most often using polyethylene glycol. the myeloma cells are selected beforehand to ensure they are not secreting antibody themselves and that they lack the hypoxanthine - guanine phosphoribosyltransferase ( hgprt ) gene, making them sensitive ( or vulnerable ) to the hat medium ( see below ). fused cells are incubated in hat medium ( hypoxanthine - aminopterin - thymidine medium ) for roughly 10 to 14 days. aminopterin blocks the pathway that allows for nucleotide synthesis. hence, unfused myeloma cells die, as they cannot produce nucleotides by the de novo or salvage pathways because they lack hgprt. removal of the unfused myeloma cells is necessary because they have the potential to outgrow other cells, especially weakly established hybridomas. unfused b cells die as they have a short life span. in this way, only the b cell - myeloma hybrids survive, since the hgprt gene coming from the b cells is functional. these cells produce antibodies ( a property of b cells ) and are immortal ( a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectrometry facilitates screening and ranking of clones which bind to the native ( non - denaturated ) forms of antigen proteins. flow cytometry screening has been used for primary screening of a large number ( ~ 1000 ) of hybridoma clones recognizing the native form of the antigen on the cell surface. in the flow
in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid
electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, perform tasks that are either too dangerous or too precise for humans to perform them economically, and to ensure better quality. many companies employ assembly lines of robots, especially in automotive industries and some factories are so robotized that they can run by themselves. outside the factory, robots have been employed in bomb disposal, space exploration, and many other fields. robots are also sold for various residential applications, from recreation to domestic applications. = = = structural analysis = = = structural analysis is the branch of mechanical engineering ( and also civil engineering ) devoted to examining why and how objects fail and to fix the objects and their performance. structural failures occur in two general modes : static failure, and fatigue failure. static structural failure occurs when, upon being loaded ( having a force applied ) the object being analyzed either breaks or is deformed plastically, depending on the criterion for failure. fatigue failure occurs when an object fails after a number of repeated loading and unloading cycles. fatigue failure occurs because of imperfections in the object : a microscopic crack on the surface of the object, for instance, will grow slightly with each cycle ( propagation ) until the crack is large enough to cause ultimate failure. failure is not simply defined as when a part breaks, however ; it is defined as when a part does not operate as intended. some systems, such as the perforated top sections of some plastic bags, are designed to break. if these systems do not break, failure analysis might be employed to determine the cause. structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure
an antibody is to be generated. usually this is done by a series of injections of the antigen in question, over the course of several weeks. these injections are typically followed by the use of in vivo electroporation, which significantly enhances the immune response. once splenocytes are isolated from the mammal ' s spleen, the b cells are fused with immortalised myeloma cells. the fusion of the b cells with myeloma cells can be done using electrofusion. electrofusion causes the b cells and myeloma cells to align and fuse with the application of an electric field. alternatively, the b - cells and myelomas can be made to fuse by chemical protocols, most often using polyethylene glycol. the myeloma cells are selected beforehand to ensure they are not secreting antibody themselves and that they lack the hypoxanthine - guanine phosphoribosyltransferase ( hgprt ) gene, making them sensitive ( or vulnerable ) to the hat medium ( see below ). fused cells are incubated in hat medium ( hypoxanthine - aminopterin - thymidine medium ) for roughly 10 to 14 days. aminopterin blocks the pathway that allows for nucleotide synthesis. hence, unfused myeloma cells die, as they cannot produce nucleotides by the de novo or salvage pathways because they lack hgprt. removal of the unfused myeloma cells is necessary because they have the potential to outgrow other cells, especially weakly established hybridomas. unfused b cells die as they have a short life span. in this way, only the b cell - myeloma hybrids survive, since the hgprt gene coming from the b cells is functional. these cells produce antibodies ( a property of b cells ) and are immortal ( a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then inc
often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like
the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that
of the device. examples of radio remote control : unmanned aerial vehicle ( uav, drone ) β a drone is an aircraft without an onboard pilot, flown by remote control by a pilot in another location, usually in a piloting station on the ground. they are used by the military for reconnaissance and ground attack, and more recently by the civilian world for news reporting and aerial photography. the pilot uses aircraft controls like a joystick or steering wheel, which create control signals which are transmitted to the drone by radio to control the flight surfaces and engine. a telemetry system transmits back a video image from a camera in the drone to allow the pilot to see where the aircraft is going, and data from a gps receiver giving the real - time position of the aircraft. uavs have sophisticated onboard automatic pilot systems that maintain stable flight and only require manual control to change directions. keyless entry system β a short - range handheld battery powered key fob transmitter, included with most modern cars, which can lock and unlock the doors of a vehicle from outside, eliminating the need to use a key. when a button is pressed, the transmitter sends a coded radio signal to a receiver in the vehicle, operating the locks. the fob must be close to the vehicle, typically within 5 to 20 meters. north america and japan use a frequency of 315 mhz, while europe uses 433. 92 and 868 mhz. some models can also remotely start the engine, to warm up the car. a security concern with all keyless entry systems is a replay attack, in which a thief uses a special receiver ( " code grabber " ) to record the radio signal during opening, which can later be replayed to open the door. to prevent this, keyless systems use a rolling code system in which a pseudorandom number generator in the remote control generates a different random key each time it is used. to prevent thieves from simulating the pseudorandom generator to calculate the next key, the radio signal is also encrypted. garage door opener β a short - range handheld transmitter which can open or close a building ' s electrically operated garage door from outside, so the owner can open the door upon arrival, and close it after departure. when a button is pressed the control transmits a coded fsk radio signal to a receiver in the opener, raising or lowering the door. modern openers use 310, 315 or 390 mhz. to prevent a thief using a replay attack, modern openers use a rolling code system. radio - controlled models
cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short
##logous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source β induced pluripotent stem cells β may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) are subclass of pluripotent stem cells resembling embryonic stem cells ( escs ) that have been derived from adult differentiated cells. ipscs are created by altering the expression of transcriptional factors in adult cells until they become like embryonic stem cells. multipotent stem cells can be differentiated into any cell
Question: What is secreted by the cells surrounding spermatogonia to help sperm production?
A) dihydrotestosterone
B) follicle stimulating hormone
C) estrogen
D) testosterone
|
D) testosterone
|
Context:
is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged
analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (
with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of
activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by
in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid
a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water.
other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle
endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer
. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be
reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy
Question: Chemical reactions either require or release what?
A) energy
B) enzymes
C) electricity
D) light
|
A) energy
|
Context:
analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (
is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged
in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid
reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy
activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by
endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer
with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of
liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and
other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle
= = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes
Question: Energy that is released when a chemical reaction takes place is known as what?
A) consequence energy
B) thermal energy
C) liquid energy
D) chemical energy
|
D) chemical energy
|
Context:
the infrared excess around the white dwarf g29 - 38 can be explained by emission from an opaque flat ring of dust with an inner radius 0. 14 of the radius of the sun and an outer radius approximately equal to the sun ' s. this ring lies within the roche region of the white dwarf where an asteroid could have been tidally destroyed, producing a system reminiscent of saturn ' s rings. accretion onto the white dwarf from this circumstellar dust can explain the observed calcium abundance in the atmosphere of g29 - 38. either as a bombardment by a series of asteroids or because of one large disruption, the total amount of matter accreted onto the white dwarf may have been comparable to the total mass of asteroids in the solar system, or, equivalently, about 1 % of the mass in the asteroid belt around the main sequence star zeta lep.
also launched missions to mercury in 2004, with the messenger probe demonstrating as the first use of a solar sail. nasa also launched probes to the outer solar system starting in the 1960s. pioneer 10 was the first probe to the outer planets, flying by jupiter, while pioneer 11 provided the first close up view of the planet. both probes became the first objects to leave the solar system. the voyager program launched in 1977, conducting flybys of jupiter and saturn, neptune, and uranus on a trajectory to leave the solar system. the galileo spacecraft, deployed from the space shuttle flight sts - 34, was the first spacecraft to orbit jupiter, discovering evidence of subsurface oceans on the europa and observed that the moon may hold ice or liquid water. a joint nasa - european space agency - italian space agency mission, cassini β huygens, was sent to saturn ' s moon titan, which, along with mars and europa, are the only celestial bodies in the solar system suspected of being capable of harboring life. cassini discovered three new moons of saturn and the huygens probe entered titan ' s atmosphere. the mission discovered evidence of liquid hydrocarbon lakes on titan and subsurface water oceans on the moon of enceladus, which could harbor life. finally launched in 2006, the new horizons mission was the first spacecraft to visit pluto and the kuiper belt. beyond interplanetary probes, nasa has launched many space telescopes. launched in the 1960s, the orbiting astronomical observatory were nasa ' s first orbital telescopes, providing ultraviolet, gamma - ray, x - ray, and infrared observations. nasa launched the orbiting geophysical observatory in the 1960s and 1970s to look down at earth and observe its interactions with the sun. the uhuru satellite was the first dedicated x - ray telescope, mapping 85 % of the sky and discovering a large number of black holes. launched in the 1990s and early 2000s, the great observatories program are among nasa ' s most powerful telescopes. the hubble space telescope was launched in 1990 on sts - 31 from the discovery and could view galaxies 15 billion light years away. a major defect in the telescope ' s mirror could have crippled the program, had nasa not used computer enhancement to compensate for the imperfection and launched five space shuttle servicing flights to replace the damaged components. the compton gamma ray observatory was launched from the atlantis on sts - 37 in 1991, discovering a possible source of antimatter at the center of the milky way and observing that the majority of gamma - ray bursts
planetary systems can evolve dynamically even after the full growth of the planets themselves. there is actually circumstantial evidence that most planetary systems become unstable after the disappearance of gas from the protoplanetary disk. these instabilities can be due to the original system being too crowded and too closely packed or to external perturbations such as tides, planetesimal scattering, or torques from distant stellar companions. the solar system was not exceptional in this sense. in its inner part, a crowded system of planetary embryos became unstable, leading to a series of mutual impacts that built the terrestrial planets on a timescale of ~ 100 my. in its outer part, the giant planets became temporarily unstable and their orbital configuration expanded under the effect of mutual encounters. a planet might have been ejected in this phase. thus, the orbital distributions of planetary systems that we observe today, both solar and extrasolar ones, can be different from the those emerging from the formation process and it is important to consider possible long - term evolutionary effects to connect the two.
excess lightweight products of slow neutron capture in the photosphere, over the mass range of 25 to 207 amu, confirm the solar mass separation recorded by excess lightweight isotopes in the solar wind, over the mass range of 3 to 136 amu [ solar abundance of the elements, meteoritics, volume 18, 1983, pages 209 to 222 ]. both measurements show that major elements inside the sun are fe, o, ni, si and s, like those in rocky planets.
i give a brief history of astronomical observatories as an institution. this includes : 1 ) observatories in islam ; 2 ) china and india ; 3 ) early european observatories ; 4 ) the rise of national observatories ; 5 ) private ( amateur ) observatories ; 6 ) mountaintop observatories and the modern era. additional references, to material not cited in the version that will be published in the encyclopedia, are also given.
the gas giant planets in the solar system have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. if a jupiter - like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. the hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. at some planet - star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. this runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. however, for icy moons of ganymede ' s size around a sun - like star we found that surface water ( either ice or liquid ) can persist indefinitely outside the runaway greenhouse orbital distance. in contrast, the surface water on smaller moons of europa ' s size will only persist on timescales greater than 1 gyr at distances ranging 1. 49 to 0. 74 au around a sun - like star for bond albedos of 0. 2 and 0. 8, where the lower albedo becomes relevant if ice melts. consequently, small moons can lose their icy shells, which would create a torus of h atoms around their host planet that might be detectable in future observations.
in the year 1598 philipp uffenbach published a printed diptych sundial, which is a forerunner of franz ritters horizantal sundial. uffenbach ' s sundial contains apart from the usual information on a sundial ascending signs of the zodiac, several brigthest stars, an almucantar and most important the oldest gnomonic world map known so far. the sundial is constructed for the polar height of 50 1 / 6 degrees, the height of frankfurt / main the town of his citizenship.
recent surveys have revealed a lack of close - in planets around evolved stars more massive than 1. 2 msun. such planets are common around solar - mass stars. we have calculated the orbital evolution of planets around stars with a range of initial masses, and have shown how planetary orbits are affected by the evolution of the stars all the way to the tip of the red giant branch ( rgb ). we find that tidal interaction can lead to the engulfment of close - in planets by evolved stars. the engulfment is more efficient for more - massive planets and less - massive stars. these results may explain the observed semi - major axis distribution of planets around evolved stars with masses larger than 1. 5 msun. our results also suggest that massive planets may form more efficiently around intermediate - mass stars.
while the modern stellar imf shows a rapid decline with increasing mass, theoretical investigations suggest that very massive stars ( > 100 solar masses ) may have been abundant in the early universe. other calculations also indicate that, lacking metals, these same stars reach their late evolutionary stages without appreciable mass loss. after central helium burning, they encounter the electron - positron pair instability, collapse, and burn oxygen and silicon explosively. if sufficient energy is released by the burning, these stars explode as brilliant supernovae with energies up to 100 times that of an ordinary core collapse supernova. they also eject up to 50 solar masses of radioactive ni56. stars less massive than 140 solar masses or more massive than 260 solar masses should collapse into black holes instead of exploding, thus bounding the pair - creation supernovae with regions of stellar mass that are nucleosynthetically sterile. pair - instability supernovae might be detectable in the near infrared out to redshifts of 20 or more and their ashes should leave a distinctive nucleosynthetic pattern.
so mars below means blood and war ", is a false cause fallacy. : 26 many astrologers claim that astrology is scientific. if one were to attempt to try to explain it scientifically, there are only four fundamental forces ( conventionally ), limiting the choice of possible natural mechanisms. : 65 some astrologers have proposed conventional causal agents such as electromagnetism and gravity. the strength of these forces drops off with distance. : 65 scientists reject these proposed mechanisms as implausible since, for example, the magnetic field, when measured from earth, of a large but distant planet such as jupiter is far smaller than that produced by ordinary household appliances. astronomer phil plait noted that in terms of magnitude, the sun is the only object with an electromagnetic field of note, but astrology isn ' t based just off the sun alone. : 65 while astrologers could try to suggest a fifth force, this is inconsistent with the trends in physics with the unification of electromagnetism and the weak force into the electroweak force. if the astrologer insisted on being inconsistent with the current understanding and evidential basis of physics, that would be an extraordinary claim. : 65 it would also be inconsistent with the other forces which drop off with distance. : 65 if distance is irrelevant, then, logically, all objects in space should be taken into account. : 66 carl jung sought to invoke synchronicity, the claim that two events have some sort of acausal connection, to explain the lack of statistically significant results on astrology from a single study he conducted. however, synchronicity itself is considered neither testable nor falsifiable. the study was subsequently heavily criticised for its non - random sample and its use of statistics and also its lack of consistency with astrology. = = psychology = = psychological studies have not found any robust relationship between astrological signs and life outcomes. for example, a study showed that zodiac signs are no more effective than random numbers in predicting subjective well - being and quality of life. it has also been shown that confirmation bias is a psychological factor that contributes to belief in astrology. : 344 : 180 β 181 : 42 β 48 confirmation bias is a form of cognitive bias. : 553 from the literature, astrology believers often tend to selectively remember those predictions that turned out to be true and do not remember those that turned out false. another, separate, form of confirmation bias also plays a role, where believers often fail to
Question: What is the largest object in the solar system?
A) the sun
B) jupiter
C) the orbit
D) the earth
|
A) the sun
|
Context:
cortisol, corticosterone and aldosterone activate full - length glucocorticoid receptor ( gr ) from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates. activation by aldosterone a mineralocorticoid, indicates partial divergence of elephant shark gr from the mr. progesterone activates elephant shark mr, but not elephant shark gr. progesterone inhibits steroid binding to elephant shark gr, but not to human gr. deletion of the n - terminal domain ( ntd ) from elephant shark gr ( truncated gr ) reduced the response to corticosteroids, while truncated and full - length elephant shark mr had similar responses to corticosteroids. chimeras of elephant shark gr ntd fused to mr dbd + lbd had increased activation by corticosteroids and progesterone compared to full - length elephant shark mr. elephant shark mr ntd fused to gr dbd + lbd had similar activation as full - length elephant shark mr, indicating that activation of human gr by the ntd evolved early in gr divergence from the mr.
onset of electro - chemical corrosion. similar problems are encountered in coastal and offshore structures. = = = anti - fouling = = = anti - fouling is the process of eliminating obstructive organisms from essential components of seawater systems. depending on the nature and location of marine growth, this process is performed in a number of different ways : marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. electro - chlorination involves running high electrical current through sea water, altering the water ' s chemical composition to create sodium hypochlorite, purging any bio - matter. an electrolytic method of anti - fouling involves running electrical current through two anodes ( scardino, 2009 ). these anodes typically consist of copper and aluminum ( or alternatively, iron ). the first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio - matter. the second metal, aluminum, coats the inside of the pipes to prevent corrosion. other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship ' s hull. this growth interferes with the smoothness and uniformity of the ship ' s hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel - efficient. marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms. = = = pollution control = = = = = = = sulfur emission = = = = the burning of marine fuels releases harmful pollutants into the atmosphere. ships burn marine diesel in addition to heavy fuel oil. heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. however, heavy fuel oil may only be burned in international waters due to the pollution created. it is commercially advantageous due to the cost effectiveness compared to other marine fuels. it is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 ( smith, 2018 ). = = = = oil and water discharge = = = = water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm ( parts per million ) of oil to be discharged. water is tested
if a fintie group g acts topologically and faithfully on r ^ 3, then g is a subgroup of o ( 3 )
unitary recordings in freely - moving pulse weakly electric fish suggest spike timing encoding of electrosensory signals
water content and the internal evolution of terrestrial planets and icy bodies are closely linked. the distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. this results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. the internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short - lived 26al decay may govern the amount of hydrous silicates and leftover rock - ice mixtures available in the late stages of their evolution. in turn, water content may affect the early internal evolution of the planetesimals and in particular metal - silicate separation processes. moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of solar system objects. finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.
the dynamic impedance of a sphere oscillating in an elastic medium is considered. oestreicher ' s formula for the impedance of a sphere bonded to the surrounding medium can be expressed simply in terms of three lumped impedances associated with the displaced mass and the longitudinal and transverse waves. if the surface of the sphere slips while the normal velocity remains continuous, the impedance formula is modified by adjusting the definition of the transverse impedance to include the interfacial impedance.
the model of neutrino mass matrix with minimal texture is now tightly constrained by experiment so that it can yield a prediction for the phase of cp violation. this phase is predicted to lie in the range $ \ delta _ { cp } = 0. 77 \ pi - 1. 24 \ pi $. if neutrino oscillation experiment would find the cp violation phase outside this range, this means that the minimal - texture neutrino mass matrix, the element of which is all real, fails and the neutrino mass matrix must be complex, i. e., the phase must be present that is responsible for leptogenesis.
we present the standard model calculation of the optical activity of a neutrino sea
comment on " event excess in the miniboone search for $ \ bar \ nu _ { \ mu } \ rightarrow \ bar \ nu _ e $ oscillations "
an attempt had been made to get algebraic structure of 2d complex harmonic oscillator.
Question: In ovoviviparous fish like shark, what develops inside the motherβs body but without nourishment from the mother?
A) spores
B) molecules
C) eggs
D) genes
|
C) eggs
|
Context:
use less energy than conventional thermal separation processes such as distillation, sublimation or crystallization. the separation process is purely physical and both fractions ( permeate and retentate ) can be obtained as useful products. cold separation using membrane technology is widely used in the food technology, biotechnology and pharmaceutical industries. furthermore, using membranes enables separations to take place that would be impossible using thermal separation methods. for example, it is impossible to separate the constituents of azeotropic liquids or solutes which form isomorphic crystals by distillation or recrystallization but such separations can be achieved using membrane technology. depending on the type of membrane, the selective separation of certain individual substances or substance mixtures is possible. important technical applications include the production of drinking water by reverse osmosis. in waste water treatment, membrane technology is becoming increasingly important. ultra / microfiltration can be very effective in removing colloids and macromolecules from wastewater. this is needed if wastewater is discharged into sensitive waters especially those designated for contact water sports and recreation. about half of the market is in medical applications such as artificial kidneys to remove toxic substances by hemodialysis and as artificial lung for bubble - free supply of oxygen in the blood. the importance of membrane technology is growing in the field of environmental protection ( nano - mem - pro ippc database ). even in modern energy recovery techniques, membranes are increasingly used, for example in fuel cells and in osmotic power plants. = = mass transfer = = two basic models can be distinguished for mass transfer through the membrane : the solution - diffusion model and the hydrodynamic model. in real membranes, these two transport mechanisms certainly occur side by side, especially during ultra - filtration. = = = solution - diffusion model = = = in the solution - diffusion model, transport occurs only by diffusion. the component that needs to be transported must first be dissolved in the membrane. the general approach of the solution - diffusion model is to assume that the chemical potential of the feed and permeate fluids are in equilibrium with the adjacent membrane surfaces such that appropriate expressions for the chemical potential in the fluid and membrane phases can be equated at the solution - membrane interface. this principle is more important for dense membranes without natural pores such as those used for reverse osmosis and in fuel cells. during the filtration process a boundary layer forms on the membrane. this concentration gradient is created by molecules which cannot pass through the membrane. the
a discontinuity of a turbulent ideal fluid is considered. it is supposed to be split and dispersed, or spread in the stochastic environment forming a gas without hydrostatic pressure. two equal - mass fragments of a discontinuity are indistinguishable from each other. a gas, that possesses such properties, must behave itself as the madelung medium.
##g mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal, water, plaster and epoxy β most of which will be eliminated upon firing. a ceramic - filled epoxy, such as martyte, is sometimes used to protect structural steel under conditions of rocket exhaust impingement. these forming techniques are well known for providing tools and other components with dimensional stability, surface quality, high ( near theoretical ) density and microstructural uniformity. the increasing use and diversity of specialty forms of ceramics adds to the diversity of process technologies to be used. thus, reinforcing fibers and filaments are mainly made by polymer, sol - gel, or cvd processes, but melt
the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal,
. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal, water, plaster and epoxy β most of which will be eliminated upon firing. a ceramic - filled epoxy, such as martyte, is sometimes used to protect structural steel under conditions of rocket exhaust impingement. these forming techniques are well known for providing tools and other components with dimensional stability, surface quality
which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing
. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond
generally, dead - end filtration is used for feasibility studies on a laboratory scale. the dead - end membranes are relatively easy to fabricate which reduces the cost of the separation process. the dead - end membrane separation process is easy to implement and the process is usually cheaper than cross - flow membrane filtration. the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process. the disc tube module uses a cross - flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs. = = membrane performance and governing equations = = the selection of synthetic membranes
mixes of multi - track recordings. it is common to record a commercial record at one studio and have it mixed by different engineers in other studios. mastering engineer β the person who masters the final mixed stereo tracks ( or sometimes a series of audio stems, which consists in a mix of the main sections ) that the mix engineer produces. the mastering engineer makes any final adjustments to the overall sound of the record in the final step before commercial duplication. mastering engineers use principles of equalization, compression and limiting to fine - tune the sound timbre and dynamics and to achieve a louder recording. sound designer β broadly an artist who produces soundtracks or sound effects content for media. live sound engineer front of house ( foh ) engineer, or a1. β a person dealing with live sound reinforcement. this usually includes planning and installation of loudspeakers, cabling and equipment and mixing sound during the show. this may or may not include running the foldback sound. a live / sound reinforcement engineer hears source material and tries to correlate that sonic experience with system performance. wireless microphone engineer, or a2. this position is responsible for wireless microphones during a theatre production, a sports event or a corporate event. foldback or monitor engineer β a person running foldback sound during a live event. the term foldback comes from the old practice of folding back audio signals from the front of house ( foh ) mixing console to the stage so musicians can hear themselves while performing. monitor engineers usually have a separate audio system from the foh engineer and manipulate audio signals independently from what the audience hears so they can satisfy the requirements of each performer on stage. in - ear systems, digital and analog mixing consoles, and a variety of speaker enclosures are typically used by monitor engineers. in addition, most monitor engineers must be familiar with wireless or rf ( radio - frequency ) equipment and often must communicate personally with the artist ( s ) during each performance. systems engineer β responsible for the design setup of modern pa systems, which are often very complex. a systems engineer is usually also referred to as a crew chief on tour and is responsible for the performance and day - to - day job requirements of the audio crew as a whole along with the foh audio system. this is a sound - only position concerned with implementation, not to be confused with the interdisciplinary field of system engineering, which typically requires a college degree. re - recording mixer β a person in post - production who mixes audio tracks for feature films or television programs. = = equipment = = an audio engineer is
the surface of the membrane, retentate is removed from the same side further downstream, whereas the permeate flow is tracked on the other side. in dead - end filtration, the direction of the fluid flow is normal to the membrane surface. both flow geometries offer some advantages and disadvantages. generally, dead - end filtration is used for feasibility studies on a laboratory scale. the dead - end membranes are relatively easy to fabricate which reduces the cost of the separation process. the dead - end membrane separation process is easy to implement and the process is usually cheaper than cross - flow membrane filtration. the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within
Question: What is the term for a technique used to separate out homogeneous mixtures in which one or more solids are dissolved in a liquid?
A) evaporation
B) distillation
C) transpiration
D) absorption
|
A) evaporation
|
Context:
often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like
, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from
. species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in
in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid
of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent
inherited traits such as shape in pisum sativum ( peas ). what mendel learned from studying plants has had far - reaching benefits outside of botany. similarly, " jumping genes " were discovered by barbara mcclintock while she was studying maize. nevertheless, there are some distinctive genetic differences between plants and other organisms. species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one
cortisol, corticosterone and aldosterone activate full - length glucocorticoid receptor ( gr ) from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates. activation by aldosterone a mineralocorticoid, indicates partial divergence of elephant shark gr from the mr. progesterone activates elephant shark mr, but not elephant shark gr. progesterone inhibits steroid binding to elephant shark gr, but not to human gr. deletion of the n - terminal domain ( ntd ) from elephant shark gr ( truncated gr ) reduced the response to corticosteroids, while truncated and full - length elephant shark mr had similar responses to corticosteroids. chimeras of elephant shark gr ntd fused to mr dbd + lbd had increased activation by corticosteroids and progesterone compared to full - length elephant shark mr. elephant shark mr ntd fused to gr dbd + lbd had similar activation as full - length elephant shark mr, indicating that activation of human gr by the ntd evolved early in gr divergence from the mr.
inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid
cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short
monoclonal antibodies, antihemophilic factors, vaccines and many other drugs. mouse hybridomas, cells fused together to create monoclonal antibodies, have been adapted through genetic engineering to create human monoclonal antibodies. genetically engineered viruses are being developed that can still confer immunity, but lack the infectious sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of
Question: How do basal mammals like monotreme reproduce?
A) cloning
B) live birth
C) by laying eggs
D) budding
|
C) by laying eggs
|
Context:
becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under
the injuries of the inundations they have been designed to prevent, as the escape of floods from the raised river must occur sooner or later. inadequate planning controls which have permitted development on floodplains have been blamed for the flooding of domestic properties. channelization was done under the auspices or overall direction of engineers employed by the local authority or the national government. one of the most heavily channelized areas in the united states is west tennessee, where every major stream with one exception ( the hatchie river ) has been partially or completely channelized. channelization of a stream may be undertaken for several reasons. one is to make a stream more suitable for navigation or for navigation by larger vessels with deep draughts. another is to restrict water to a certain area of a stream ' s natural bottom lands so that the bulk of such lands can be made available for agriculture. a third reason is flood control, with the idea of giving a stream a sufficiently large and deep channel so that flooding beyond those limits will be minimal or nonexistent, at least on a routine basis. one major reason is to reduce natural erosion ; as a natural waterway curves back and forth, it usually deposits sand and gravel on the inside of the corners where the water flows slowly, and cuts sand, gravel, subsoil, and precious topsoil from the outside corners where it flows rapidly due to a change in direction. unlike sand and gravel, the topsoil that is eroded does not get deposited on the inside of the next corner of the river. it simply washes away. = = loss of wetlands = = channelization has several predictable and negative effects. one of them is loss of wetlands. wetlands are an excellent habitat for multiple forms of wildlife, and additionally serve as a " filter " for much of the world ' s surface fresh water. another is the fact that channelized streams are almost invariably straightened. for example, the channelization of florida ' s kissimmee river has been cited as a cause contributing to the loss of wetlands. this straightening causes the streams to flow more rapidly, which can, in some instances, vastly increase soil erosion. it can also increase flooding downstream from the channelized area, as larger volumes of water traveling more rapidly than normal can reach choke points over a shorter period of time than they otherwise would, with a net effect of flood control in one area coming at the expense of aggravated flooding in another. in addition, studies have shown that stream channelization results in declines of river fish populations. : 3 - 1ff a
also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in
##ta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. hetero
navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea
approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with
equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers β civil works program river morphology and stream restoration references - wildland hydrology at the library of congress web archives ( archived 2002 - 08 - 13 )
weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial
river - beds ), but not for where there may be large obstructions in the ground. an open caisson that is used in soft grounds or high water tables, where open trench excavations are impractical, can also be used to install deep manholes, pump stations and reception / launch pits for microtunnelling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caisson
##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river
Question: Abundant in unpolluted ponds and streams, planarians prey on smaller animals or feed on?
A) fungi
B) unidentified animals
C) dead animals
D) algae
|
C) dead animals
|
Context:
there cannot exist a single parametrization that covers the whole surface. therefore, one often considers surfaces which are parametrized by several parametric equations, whose images cover the surface. this is formalized by the concept of manifold : in the context of manifolds, typically in topology and differential geometry, a surface is a manifold of dimension two ; this means that a surface is a topological space such that every point has a neighborhood which is homeomorphic to an open subset of the euclidean plane ( see surface ( topology ) and surface ( differential geometry ) ). this allows defining surfaces in spaces of dimension higher than three, and even abstract surfaces, which are not contained in any other space. on the other hand, this excludes surfaces that have singularities, such as the vertex of a conical surface or points where a surface crosses itself. in classical geometry, a surface is generally defined as a locus of a point or a line. for example, a sphere is the locus of a point which is at a given distance of a fixed point, called the center ; a conical surface is the locus of a line passing through a fixed point and crossing a curve ; a surface of revolution is the locus of a curve rotating around a line. a ruled surface is the locus of a moving line satisfying some constraints ; in modern terminology, a ruled surface is a surface, which is a union of lines. = = terminology = = there are several kinds of surfaces that are considered in mathematics. an unambiguous terminology is thus necessary to distinguish them when needed. a topological surface is a surface that is a manifold of dimension two ( see Β§ topological surface ). a differentiable surface is a surfaces that is a differentiable manifold ( see Β§ differentiable surface ). every differentiable surface is a topological surface, but the converse is false. a " surface " is often implicitly supposed to be contained in a euclidean space of dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a connected open subset of r2 is a topological surface. if the function is differentiable, the graph is a differentiable surface. a plane is both an algebraic surface and a differentiable surface. it is also a ruled surface and a surface of revolution. a circular cylinder ( that is, the locus of a line crossing
often called physicians. these terms, internist or physician ( in the narrow sense, common outside north america ), generally exclude practitioners of gynecology and obstetrics, pathology, psychiatry, and especially surgery and its subspecialities. because their patients are often seriously ill or require complex investigations, internists do much of their work in hospitals. formerly, many internists were not subspecialized ; such general physicians would see any complex nonsurgical problem ; this style of practice has become much less common. in modern urban practice, most internists are subspecialists : that is, they generally limit their medical practice to problems of one organ system or to one particular area of medical knowledge. for example, gastroenterologists and nephrologists specialize respectively in diseases of the gut and the kidneys. in the commonwealth of nations and some other countries, specialist pediatricians and geriatricians are also described as specialist physicians ( or internists ) who have subspecialized by age of patient rather than by organ system. elsewhere, especially in north america, general pediatrics is often a form of primary care. there are many subspecialities ( or subdisciplines ) of internal medicine : training in internal medicine ( as opposed to surgical training ), varies considerably across the world : see the articles on medical education for more details. in north america, it requires at least three years of residency training after medical school, which can then be followed by a one - to three - year fellowship in the subspecialties listed above. in general, resident work hours in medicine are less than those in surgery, averaging about 60 hours per week in the us. this difference does not apply in the uk where all doctors are now required by law to work less than 48 hours per week on average. = = = = diagnostic specialties = = = = clinical laboratory sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of
, which are not contained in any other space. on the other hand, this excludes surfaces that have singularities, such as the vertex of a conical surface or points where a surface crosses itself. in classical geometry, a surface is generally defined as a locus of a point or a line. for example, a sphere is the locus of a point which is at a given distance of a fixed point, called the center ; a conical surface is the locus of a line passing through a fixed point and crossing a curve ; a surface of revolution is the locus of a curve rotating around a line. a ruled surface is the locus of a moving line satisfying some constraints ; in modern terminology, a ruled surface is a surface, which is a union of lines. = = terminology = = there are several kinds of surfaces that are considered in mathematics. an unambiguous terminology is thus necessary to distinguish them when needed. a topological surface is a surface that is a manifold of dimension two ( see Β§ topological surface ). a differentiable surface is a surfaces that is a differentiable manifold ( see Β§ differentiable surface ). every differentiable surface is a topological surface, but the converse is false. a " surface " is often implicitly supposed to be contained in a euclidean space of dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a connected open subset of r2 is a topological surface. if the function is differentiable, the graph is a differentiable surface. a plane is both an algebraic surface and a differentiable surface. it is also a ruled surface and a surface of revolution. a circular cylinder ( that is, the locus of a line crossing a circle and parallel to a given direction ) is an algebraic surface and a differentiable surface. a circular cone ( locus of a line crossing a circle, and passing through a fixed point, the apex, which is outside the plane of the circle ) is an algebraic surface which is not a differentiable surface. if one removes the apex, the remainder of the cone is the union of two differentiable surfaces. the surface of a polyhedron is a topological surface, which is neither a differentiable surface nor an algebraic surface. a hyperbolic paraboloid ( the graph of the function z = xy ) is a differentiable surface and
, are the image, by the above parametrization, of exactly one pair of euler angles ( modulo 2Ο ). for the remaining two points ( the north and south poles ), one has cos v = 0, and the longitude u may take any values. also, there are surfaces for which there cannot exist a single parametrization that covers the whole surface. therefore, one often considers surfaces which are parametrized by several parametric equations, whose images cover the surface. this is formalized by the concept of manifold : in the context of manifolds, typically in topology and differential geometry, a surface is a manifold of dimension two ; this means that a surface is a topological space such that every point has a neighborhood which is homeomorphic to an open subset of the euclidean plane ( see surface ( topology ) and surface ( differential geometry ) ). this allows defining surfaces in spaces of dimension higher than three, and even abstract surfaces, which are not contained in any other space. on the other hand, this excludes surfaces that have singularities, such as the vertex of a conical surface or points where a surface crosses itself. in classical geometry, a surface is generally defined as a locus of a point or a line. for example, a sphere is the locus of a point which is at a given distance of a fixed point, called the center ; a conical surface is the locus of a line passing through a fixed point and crossing a curve ; a surface of revolution is the locus of a curve rotating around a line. a ruled surface is the locus of a moving line satisfying some constraints ; in modern terminology, a ruled surface is a surface, which is a union of lines. = = terminology = = there are several kinds of surfaces that are considered in mathematics. an unambiguous terminology is thus necessary to distinguish them when needed. a topological surface is a surface that is a manifold of dimension two ( see Β§ topological surface ). a differentiable surface is a surfaces that is a differentiable manifold ( see Β§ differentiable surface ). every differentiable surface is a topological surface, but the converse is false. a " surface " is often implicitly supposed to be contained in a euclidean space of dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a
conjure is an automated modelling tool for constraint programming. in this documentation, you will find the following : a brief introduction to conjure, installation instructions, a description of how to use conjure through its command line user interface, a list of conjure ' s features, a description of conjure ' s input language essence, and a collection of simple demonstrations of conjure ' s use.
in mathematics, a projection is an idempotent mapping of a set ( or other mathematical structure ) into a subset ( or sub - structure ). in this case, idempotent means that projecting twice is the same as projecting once. the restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. an everyday example of a projection is the casting of shadows onto a plane ( sheet of paper ) : the projection of a point is its shadow on the sheet of paper, and the projection ( shadow ) of a point on the sheet of paper is that point itself ( idempotency ). the shadow of a three - dimensional sphere is a disk. originally, the notion of projection was introduced in euclidean geometry to denote the projection of the three - dimensional euclidean space onto a plane in it, like the shadow example. the two main projections of this kind are : the projection from a point onto a plane or central projection : if c is a point, called the center of projection, then the projection of a point p different from c onto a plane that does not contain c is the intersection of the line cp with the plane. the points p such that the line cp is parallel to the plane does not have any image by the projection, but one often says that they project to a point at infinity of the plane ( see projective geometry for a formalization of this terminology ). the projection of the point c itself is not defined. the projection parallel to a direction d, onto a plane or parallel projection : the image of a point p is the intersection of the plane with the line parallel to d passing through p. see affine space Β§ projection for an accurate definition, generalized to any dimension. the concept of projection in mathematics is a very old one, and most likely has its roots in the phenomenon of the shadows cast by real - world objects on the ground. this rudimentary idea was refined and abstracted, first in a geometric context and later in other branches of mathematics. over time different versions of the concept developed, but today, in a sufficiently abstract setting, we can unify these variations. in cartography, a map projection is a map of a part of the surface of the earth onto a plane, which, in some cases, but not always, is the restriction of a projection in the above meaning. the 3d projections are also at the basis of the theory of perspective. the need for unifying the two kinds of projections and of defining the image
much of their work in hospitals. formerly, many internists were not subspecialized ; such general physicians would see any complex nonsurgical problem ; this style of practice has become much less common. in modern urban practice, most internists are subspecialists : that is, they generally limit their medical practice to problems of one organ system or to one particular area of medical knowledge. for example, gastroenterologists and nephrologists specialize respectively in diseases of the gut and the kidneys. in the commonwealth of nations and some other countries, specialist pediatricians and geriatricians are also described as specialist physicians ( or internists ) who have subspecialized by age of patient rather than by organ system. elsewhere, especially in north america, general pediatrics is often a form of primary care. there are many subspecialities ( or subdisciplines ) of internal medicine : training in internal medicine ( as opposed to surgical training ), varies considerably across the world : see the articles on medical education for more details. in north america, it requires at least three years of residency training after medical school, which can then be followed by a one - to three - year fellowship in the subspecialties listed above. in general, resident work hours in medicine are less than those in surgery, averaging about 60 hours per week in the us. this difference does not apply in the uk where all doctors are now required by law to work less than 48 hours per week on average. = = = = diagnostic specialties = = = = clinical laboratory sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes
2. 2. denotes the additive inverse and is read as minus, the negative of, or the opposite of ; for example, β2. 3. also used in place of \ for denoting the set - theoretic complement ; see \ in Β§ set theory. Γ ( multiplication sign ) 1. in elementary arithmetic, denotes multiplication, and is read as times ; for example, 3 Γ 2. 2. in geometry and linear algebra, denotes the cross product. 3. in set theory and category theory, denotes the cartesian product and the direct product. see also Γ in Β§ set theory. Β· ( dot ) 1. denotes multiplication and is read as times ; for example, 3 β
2. 2. in geometry and linear algebra, denotes the dot product. 3. placeholder used for replacing an indeterminate element. for example, saying " the absolute value is denoted by | Β· | " is perhaps clearer than saying that it is denoted as | |. Β± ( plus β minus sign ) 1. denotes either a plus sign or a minus sign. 2. denotes the range of values that a measured quantity may have ; for example, 10 Β± 2 denotes an unknown value that lies between 8 and 12. [UNK] ( minus - plus sign ) used paired with Β±, denotes the opposite sign ; that is, + if Β± is β, and β if Β± is +. Γ· ( division sign ) widely used for denoting division in anglophone countries, it is no longer in common use in mathematics and its use is " not recommended ". in some countries, it can indicate subtraction. : ( colon ) 1. denotes the ratio of two quantities. 2. in some countries, may denote division. 3. in set - builder notation, it is used as a separator meaning " such that " ; see { [UNK] : [UNK] }. / ( slash ) 1. denotes division and is read as divided by or over. often replaced by a horizontal bar. for example, 3 / 2 or 3 2 { \ displaystyle { \ frac { 3 } { 2 } } }. 2. denotes a quotient structure. for example, quotient set, quotient group, quotient category, etc. 3. in number theory and field theory, f / e { \ displaystyle f / e } denotes a field extension, where f is an extension field of the field e. 4. in probability theory, denotes a conditional probability. for example, p ( a / b )
compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar β an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical fan - shaped beam of microwaves around the water surface surrounding the craft out to the horizon. weather radar β a doppler radar which maps weather precipitation intensities and wind speeds with the echoes returned from raindrops and their radial velocity by their doppler shift. phased - array radar β a radar set that uses a phased array, a computer - controlled antenna that can steer the radar beam quickly to point in different directions without moving the antenna. phased - array radars were developed by the military to track fast - moving missiles and aircraft. they are widely used in military equipment and are now spreading to civilian applications. synthetic aperture
dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a connected open subset of r2 is a topological surface. if the function is differentiable, the graph is a differentiable surface. a plane is both an algebraic surface and a differentiable surface. it is also a ruled surface and a surface of revolution. a circular cylinder ( that is, the locus of a line crossing a circle and parallel to a given direction ) is an algebraic surface and a differentiable surface. a circular cone ( locus of a line crossing a circle, and passing through a fixed point, the apex, which is outside the plane of the circle ) is an algebraic surface which is not a differentiable surface. if one removes the apex, the remainder of the cone is the union of two differentiable surfaces. the surface of a polyhedron is a topological surface, which is neither a differentiable surface nor an algebraic surface. a hyperbolic paraboloid ( the graph of the function z = xy ) is a differentiable surface and an algebraic surface. it is also a ruled surface, and, for this reason, is often used in architecture. a two - sheet hyperboloid is an algebraic surface and the union of two non - intersecting differentiable surfaces. = = parametric surface = = a parametric surface is the image of an open subset of the euclidean plane ( typically r 2 { \ displaystyle \ mathbb { r } ^ { 2 } } ) by a continuous function, in a topological space, generally a euclidean space of dimension at least three. usually the function is supposed to be continuously differentiable, and this will be always the case in this article. specifically, a parametric surface in r 3 { \ displaystyle \ mathbb { r } ^ { 3 } } is given by three functions of two variables u and v, called parameters x = f 1 ( u, v ), y = f 2 ( u, v ), z = f 3 ( u, v ). { \ displaystyle { \ begin { aligned } x & = f _ { 1 } ( u, v ), \ \ [ 4pt ] y & = f _ { 2 } ( u, v ), \ \ [ 4pt ] z & = f _ { 3 }
Question: What does parasitic mean?
A) mutual benefit
B) welcome guest
C) symbiotic
D) lives in host
|
D) lives in host
|
Context:
by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the
biotechnology is a multidisciplinary field that involves the integration of natural sciences and engineering sciences in order to achieve the application of organisms and parts thereof for products and services. specialists in the field are known as biotechnologists. the term biotechnology was first used by karoly ereky in 1919 to refer to the production of products from raw materials with the aid of living organisms. the core principle of biotechnology involves harnessing biological systems and organisms, such as bacteria, yeast, and plants, to perform specific tasks or produce valuable substances. biotechnology had a significant impact on many areas of society, from medicine to agriculture to environmental science. one of the key techniques used in biotechnology is genetic engineering, which allows scientists to modify the genetic makeup of organisms to achieve desired outcomes. this can involve inserting genes from one organism into another, and consequently, create new traits or modifying existing ones. other important techniques used in biotechnology include tissue culture, which allows researchers to grow cells and tissues in the lab for research and medical purposes, and fermentation, which is used to produce a wide range of products such as beer, wine, and cheese. the applications of biotechnology are diverse and have led to the development of products like life - saving drugs, biofuels, genetically modified crops, and innovative materials. it has also been used to address environmental challenges, such as developing biodegradable plastics and using microorganisms to clean up contaminated sites. biotechnology is a rapidly evolving field with significant potential to address pressing global challenges and improve the quality of life for people around the world ; however, despite its numerous benefits, it also poses ethical and societal challenges, such as questions around genetic modification and intellectual property rights. as a result, there is ongoing debate and regulation surrounding the use and application of biotechnology in various industries and fields. = = definition = = the concept of biotechnology encompasses a wide range of procedures for modifying living organisms for human purposes, going back to domestication of animals, cultivation of plants, and " improvements " to these through breeding programs that employ artificial selection and hybridization. modern usage also includes genetic engineering, as well as cell and tissue culture technologies. the american chemical society defines biotechnology as the application of biological organisms, systems, or processes by various industries to learning about the science of life and the improvement of the value of materials and organisms, such as pharmaceuticals, crops, and livestock. as per the european federation of biotechnology, biotechnology is the integration of natural science and organisms, cells, parts thereof, and molecular analogues for products and
##yotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life.
by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which
biology is the scientific study of life and living organisms. it is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, origin, evolution, and distribution of life. central to biology are five fundamental themes : the cell as the basic unit of life, genes and heredity as the basis of inheritance, evolution as the driver of biological diversity, energy transformation for sustaining life processes, and the maintenance of internal stability ( homeostasis ). biology examines life across multiple levels of organization, from molecules and cells to organisms, populations, and ecosystems. subdisciplines include molecular biology, physiology, ecology, evolutionary biology, developmental biology, and systematics, among others. each of these fields applies a range of methods to investigate biological phenomena, including observation, experimentation, and mathematical modeling. modern biology is grounded in the theory of evolution by natural selection, first articulated by charles darwin, and in the molecular understanding of genes encoded in dna. the discovery of the structure of dna and advances in molecular genetics have transformed many areas of biology, leading to applications in medicine, agriculture, biotechnology, and environmental science. life on earth is believed to have originated over 3. 7 billion years ago. today, it includes a vast diversity of organisms β from single - celled archaea and bacteria to complex multicellular plants, fungi, and animals. biologists classify organisms based on shared characteristics and evolutionary relationships, using taxonomic and phylogenetic frameworks. these organisms interact with each other and with their environments in ecosystems, where they play roles in energy flow and nutrient cycling. as a constantly evolving field, biology incorporates new discoveries and technologies that enhance the understanding of life and its processes, while contributing to solutions for challenges such as disease, climate change, and biodiversity loss. = = history = = the earliest of roots of science, which included medicine, can be traced to ancient egypt and mesopotamia in around 3000 to 1200 bce. their contributions shaped ancient greek natural philosophy. ancient greek philosophers such as aristotle ( 384 β 322 bce ) contributed extensively to the development of biological knowledge. he explored biological causation and the diversity of life. his successor, theophrastus, began the scientific study of plants. scholars of the medieval islamic world who wrote on biology included al - jahiz ( 781 β 869 ), al - dinawari ( 828 β 896 ), who wrote on botany, and rhazes ( 865 β 925 ) who wrote on anatomy and physiology. medicine was especially well
waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial
##al nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the
kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used
is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants
, dendrology is the study of woody plants. many divisions of biology have botanical subfields. these are commonly denoted by prefixing the word plant ( e. g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics ), or prefixing or substituting the prefix phyto - ( e. g. phytochemistry, phytogeography ). the study of fossil plants is called palaeobotany. other fields are denoted by adding or substituting the word botany ( e. g. systematic botany ). phytosociology is a subfield of plant ecology that classifies and studies communities of plants. the intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses. different parts of plants also give rise to their own subfields, including xylology, carpology ( or fructology ), and palynology, these being the study of wood, fruit and pollen / spores respectively. botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both
Question: What scientist constructed a tree diagram, separating living organisms into three domains?
A) CT Fletcher
B) Mendel
C) carl woese
D) Gibbs
|
C) carl woese
|
Context:
cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing
. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support
##ochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals
likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β of which around 1 million are insects β but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms,
to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing, translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon,
are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its
##tes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna
, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which
to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population, darwin argued that in the natural world, it was nature that played the role of humans in selecting for specific traits. darwin inferred that individuals who possessed heritable traits better adapted to their environments are more likely to survive and produce more offspring than other individuals. he further inferred that this would lead to the
can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population,
Question: Most of the genes in the eukaryotic cell are found where?
A) the cell wall
B) the vacuoles
C) the mitochondria
D) the nucleus
|
D) the nucleus
|
Context:
and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell
, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which
prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as
organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the
three of what is called the six simple machines, from which all machines are based. these machines are the inclined plane, the wedge, and the lever, which allowed the ancient egyptians to move millions of limestone blocks which weighed approximately 3. 5 tons ( 7, 000 lbs. ) each into place to create structures like the great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu
shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration
conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes
include the manufacturing of drugs, creation of model animals that mimic human conditions and gene therapy. one of the earliest uses of genetic engineering was to mass - produce human insulin in bacteria. this application has now been applied to human growth hormones, follicle stimulating hormones ( for treating infertility ), human albumin, monoclonal antibodies, antihemophilic factors, vaccines and many other drugs. mouse hybridomas, cells fused together to create monoclonal antibodies, have been adapted through genetic engineering to create human monoclonal antibodies. genetically engineered viruses are being developed that can still confer immunity, but lack the infectious sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous,
the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a
founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. these concerns have led to the development of a regulatory framework, which started in 1975. it has led to an international treaty, the cartagena protocol on biosafety, that was adopted in 2000. individual countries have developed their own regulatory systems regarding gmos, with the most marked differences occurring between the united states and europe. = = overview = = genetic engineering is a process that alters the genetic structure of an organism by either removing or introducing dna, or modifying existing genetic material in situ. unlike traditional animal and plant breeding, which involves doing multiple crosses and then selecting for the organism with the desired phenotype,
Question: What are known as the building blocks of proteins?
A) amino acids
B) bases
C) organism acids
D) protein acids
|
A) amino acids
|
Context:
tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biological tissues. tissue engineering often involves the use of cells placed on tissue scaffolds in the formation of new viable tissue for a medical purpose, but is not limited to applications involving cells and tissue scaffolds. while it was once categorized as a sub - field of biomaterials, having grown in scope and importance, it can be considered as a field of its own. while most definitions of tissue engineering cover a broad range of applications, in practice, the term is closely associated with applications that repair or replace portions of or whole tissues ( i. e. organs, bone, cartilage, blood vessels, bladder, skin, muscle etc. ). often, the tissues involved require certain mechanical and structural properties for proper functioning. the term has also been applied to efforts to perform specific biochemical functions using cells within an artificially - created support system ( e. g. an artificial pancreas, or a bio artificial liver ). the term regenerative medicine is often used synonymously with tissue engineering, although those involved in regenerative medicine place more emphasis on the use of stem cells or progenitor cells to produce tissues. = = overview = = a commonly applied definition of tissue engineering, as stated by langer and vacanti, is " an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve [ biological tissue ] function or a whole organ ". in addition, langer and vacanti also state that there are three main types of tissue engineering : cells, tissue - inducing substances, and a cells + matrix approach ( often referred to as a scaffold ). tissue engineering has also been defined as " understanding the principles of tissue growth, and applying this to produce functional replacement tissue for clinical use ". a further description goes on to say that an " underlying supposition of tissue engineering is that the employment of natural biology of the system will allow for greater success in developing therapeutic strategies aimed at the replacement, repair, maintenance, or enhancement of tissue function ". developments in the multidisciplinary field of tissue engineering have yielded a novel set of tissue replacement parts and implementation strategies. scientific advances in biomaterials, stem cells, growth and differentiation factors, and biomimetic environments have created unique opportunities to fabric
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra
as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase
cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single
this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic
1975. skin tissue - engineered skin is a type of bioartificial organ that is often used to treat burns, diabetic foot ulcers, or other large wounds that cannot heal well on their own. artificial skin can be made from autografts, allografts, and xenografts. autografted skin comes from a patient ' s own skin, which allows the dermis to have a faster healing rate, and the donor site can be re - harvested a few times. allograft skin often comes from cadaver skin and is mostly used to treat burn victims. lastly, xenografted skin comes from animals and provides a temporary healing structure for the skin. they assist in dermal regeneration, but cannot become part of the host skin. tissue - engineered skin is now available in commercial products. integra, originally used to only treat burns, consists of a collagen matrix and chondroitin sulfate that can be used as a skin replacement. the chondroitin sulfate functions as a component of proteoglycans, which helps to form the extracellular matrix. integra can be repopulated and revascularized while maintaining its dermal collagen architecture, making it a bioartificial organ dermagraft, another commercial - made tissue - engineered skin product, is made out of living fibroblasts. these fibroblasts proliferate and produce growth factors, collagen, and ecm proteins, that help build granulation tissue. = = = = heart = = = = since the number of patients awaiting a heart transplant is continuously increasing over time, and the number of patients on the waiting list surpasses the organ availability, artificial organs used as replacement therapy for terminal heart failure would help alleviate this difficulty. artificial hearts are usually used to bridge the heart transplantation or can be applied as replacement therapy for terminal heart malfunction. the total artificial heart ( tah ), first introduced by dr. vladimir p. demikhov in 1937, emerged as an ideal alternative. since then it has been developed and improved as a mechanical pump that provides long - term circulatory support and replaces diseased or damaged heart ventricles that cannot properly pump the blood, restoring thus the pulmonary and systemic flow. some of the current tahs include abiocor, an fda - approved device that comprises two artificial ventricles and their valves, and does not require subcutaneous connections, and is indicated for
techniques that provide heart and lung support. it is used primarily to support the lungs for a prolonged but still temporary timeframe ( 1 β 30 days ) and allow for recovery from reversible diseases. robert bartlett is known as the father of ecmo and performed the first treatment of a newborn using an ecmo machine in 1975. skin tissue - engineered skin is a type of bioartificial organ that is often used to treat burns, diabetic foot ulcers, or other large wounds that cannot heal well on their own. artificial skin can be made from autografts, allografts, and xenografts. autografted skin comes from a patient ' s own skin, which allows the dermis to have a faster healing rate, and the donor site can be re - harvested a few times. allograft skin often comes from cadaver skin and is mostly used to treat burn victims. lastly, xenografted skin comes from animals and provides a temporary healing structure for the skin. they assist in dermal regeneration, but cannot become part of the host skin. tissue - engineered skin is now available in commercial products. integra, originally used to only treat burns, consists of a collagen matrix and chondroitin sulfate that can be used as a skin replacement. the chondroitin sulfate functions as a component of proteoglycans, which helps to form the extracellular matrix. integra can be repopulated and revascularized while maintaining its dermal collagen architecture, making it a bioartificial organ dermagraft, another commercial - made tissue - engineered skin product, is made out of living fibroblasts. these fibroblasts proliferate and produce growth factors, collagen, and ecm proteins, that help build granulation tissue. = = = = heart = = = = since the number of patients awaiting a heart transplant is continuously increasing over time, and the number of patients on the waiting list surpasses the organ availability, artificial organs used as replacement therapy for terminal heart failure would help alleviate this difficulty. artificial hearts are usually used to bridge the heart transplantation or can be applied as replacement therapy for terminal heart malfunction. the total artificial heart ( tah ), first introduced by dr. vladimir p. demikhov in 1937, emerged as an ideal alternative. since then it has been developed and improved as a mechanical pump that provides long - term circulatory support and
such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively
##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently
Question: What are the three types of muscle tissue in the body?
A) proliferating , cardiac , smooth
B) spongy, cardiac, skeletal
C) skeletal, cardiac, smooth
D) topography , cardiac , smooth
|
C) skeletal, cardiac, smooth
|
Context:
ammonium hydrosulphide has long since been postulated to exist at least in certain layers of the giant planets. its radiation products may be the reason for the red colour seen on jupiter. several ammonium salts, the products of nh3 and an acid, have previously been detected at comet 67p / churyumov - gerasimenko. the acid h2s is the fifth most abundant molecule in the coma of 67p followed by nh3. in order to look for the salt nh4 + sh -, we analysed in situ measurements from the rosetta / rosina double focusing mass spectrometer during the rosetta mission. nh3 and h2s appear to be independent of each other when sublimating directly from the nucleus. however, we observe a strong correlation between the two species during dust impacts, clearly pointing to the salt. we find that nh4 + sh - is by far the most abundant salt, more abundant in the dust impacts than even water. we also find all previously detected ammonium salts and for the first time ammonium fluoride. the amount of ammonia and acids balance each other, confirming that ammonia is mostly in the form of salt embedded into dust grains. allotropes s2 and s3 are strongly enhanced in the impacts, while h2s2 and its fragment hs2 are not detected, which is most probably the result of radiolysis of nh4 + sh -. this makes a prestellar origin of the salt likely. our findings may explain the apparent depletion of nitrogen in comets and maybe help to solve the riddle of the missing sulphur in star forming regions.
and irrigation in the alluvial south, and catchment systems stretching for tens of kilometers in the hilly north. their palaces had sophisticated drainage systems. writing was invented in mesopotamia, using the cuneiform script. many records on clay tablets and stone inscriptions have survived. these civilizations were early adopters of bronze technologies which they used for tools, weapons and monumental statuary. by 1200 bc they could cast objects 5 m long in a single piece. several of the six classic simple machines were invented in mesopotamia. mesopotamians have been credited with the invention of the wheel. the wheel and axle mechanism first appeared with the potter ' s wheel, invented in mesopotamia ( modern iraq ) during the 5th millennium bc. this led to the invention of the wheeled vehicle in mesopotamia during the early 4th millennium bc. depictions of wheeled wagons found on clay tablet pictographs at the eanna district of uruk are dated between 3700 and 3500 bc. the lever was used in the shadoof water - lifting device, the first crane machine, which appeared in mesopotamia circa 3000 bc, and then in ancient egyptian technology circa 2000 bc. the earliest evidence of pulleys date back to mesopotamia in the early 2nd millennium bc. the screw, the last of the simple machines to be invented, first appeared in mesopotamia during the neo - assyrian period ( 911 β 609 ) bc. the assyrian king sennacherib ( 704 β 681 bc ) claims to have invented automatic sluices and to have been the first to use water screw pumps, of up to 30 tons weight, which were cast using two - part clay molds rather than by the ' lost wax ' process. the jerwan aqueduct ( c. 688 bc ) is made with stone arches and lined with waterproof concrete. the babylonian astronomical diaries spanned 800 years. they enabled meticulous astronomers to plot the motions of the planets and to predict eclipses. the earliest evidence of water wheels and watermills date back to the ancient near east in the 4th century bc, specifically in the persian empire before 350 bc, in the regions of mesopotamia ( iraq ) and persia ( iran ). this pioneering use of water power constituted the first human - devised motive force not to rely on muscle power ( besides the sail ). = = = = egypt = = = = the egyptians, known for building pyramids centuries before the creation of modern tools, invented and used many simple machines, such as the ramp to aid construction processes. historians and archaeologists have found evidence that the pyramids were built using
##dians, assyrians and babylonians ) lived in cities from c. 4000 bc, and developed a sophisticated architecture in mud - brick and stone, including the use of the true arch. the walls of babylon were so massive they were quoted as a wonder of the world. they developed extensive water systems ; canals for transport and irrigation in the alluvial south, and catchment systems stretching for tens of kilometers in the hilly north. their palaces had sophisticated drainage systems. writing was invented in mesopotamia, using the cuneiform script. many records on clay tablets and stone inscriptions have survived. these civilizations were early adopters of bronze technologies which they used for tools, weapons and monumental statuary. by 1200 bc they could cast objects 5 m long in a single piece. several of the six classic simple machines were invented in mesopotamia. mesopotamians have been credited with the invention of the wheel. the wheel and axle mechanism first appeared with the potter ' s wheel, invented in mesopotamia ( modern iraq ) during the 5th millennium bc. this led to the invention of the wheeled vehicle in mesopotamia during the early 4th millennium bc. depictions of wheeled wagons found on clay tablet pictographs at the eanna district of uruk are dated between 3700 and 3500 bc. the lever was used in the shadoof water - lifting device, the first crane machine, which appeared in mesopotamia circa 3000 bc, and then in ancient egyptian technology circa 2000 bc. the earliest evidence of pulleys date back to mesopotamia in the early 2nd millennium bc. the screw, the last of the simple machines to be invented, first appeared in mesopotamia during the neo - assyrian period ( 911 β 609 ) bc. the assyrian king sennacherib ( 704 β 681 bc ) claims to have invented automatic sluices and to have been the first to use water screw pumps, of up to 30 tons weight, which were cast using two - part clay molds rather than by the ' lost wax ' process. the jerwan aqueduct ( c. 688 bc ) is made with stone arches and lined with waterproof concrete. the babylonian astronomical diaries spanned 800 years. they enabled meticulous astronomers to plot the motions of the planets and to predict eclipses. the earliest evidence of water wheels and watermills date back to the ancient near east in the 4th century bc, specifically in the persian empire before 350 bc, in the regions of mesopotamia ( iraq ) and persia ( iran ). this pioneering use of water power constituted the first human - devised motive force not to
the transiting dust clouds that orbit the white dwarf j0328 - 1219 are devoid of small particles ( < 0. 1 micron ). observations show that fade amount doesn ' t depend on wavelength. this finding resembles a similar observation for white dwarf wd 1145 + 017, but the explanations for an absence of small particles in the two white dwarf systems may differ due to their different distances from the star.
used for tools, weapons and monumental statuary. by 1200 bc they could cast objects 5 m long in a single piece. several of the six classic simple machines were invented in mesopotamia. mesopotamians have been credited with the invention of the wheel. the wheel and axle mechanism first appeared with the potter ' s wheel, invented in mesopotamia ( modern iraq ) during the 5th millennium bc. this led to the invention of the wheeled vehicle in mesopotamia during the early 4th millennium bc. depictions of wheeled wagons found on clay tablet pictographs at the eanna district of uruk are dated between 3700 and 3500 bc. the lever was used in the shadoof water - lifting device, the first crane machine, which appeared in mesopotamia circa 3000 bc, and then in ancient egyptian technology circa 2000 bc. the earliest evidence of pulleys date back to mesopotamia in the early 2nd millennium bc. the screw, the last of the simple machines to be invented, first appeared in mesopotamia during the neo - assyrian period ( 911 β 609 ) bc. the assyrian king sennacherib ( 704 β 681 bc ) claims to have invented automatic sluices and to have been the first to use water screw pumps, of up to 30 tons weight, which were cast using two - part clay molds rather than by the ' lost wax ' process. the jerwan aqueduct ( c. 688 bc ) is made with stone arches and lined with waterproof concrete. the babylonian astronomical diaries spanned 800 years. they enabled meticulous astronomers to plot the motions of the planets and to predict eclipses. the earliest evidence of water wheels and watermills date back to the ancient near east in the 4th century bc, specifically in the persian empire before 350 bc, in the regions of mesopotamia ( iraq ) and persia ( iran ). this pioneering use of water power constituted the first human - devised motive force not to rely on muscle power ( besides the sail ). = = = = egypt = = = = the egyptians, known for building pyramids centuries before the creation of modern tools, invented and used many simple machines, such as the ramp to aid construction processes. historians and archaeologists have found evidence that the pyramids were built using three of what is called the six simple machines, from which all machines are based. these machines are the inclined plane, the wedge, and the lever, which allowed the ancient egyptians to move millions of limestone blocks which weighed approximately 3. 5 tons ( 7, 000 lbs. ) each into place to create structures like the
##hosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " sub - disciplines of hydrology include hydrometeorology, surface water hydrology, hydrogeology, watershed science, forest hydrology, and water chemistry. " glaciology covers the icy parts of the earth ( or cryosphere ). atmospheric sciences cover the gaseous parts of the earth ( or atmosphere
the influence of a neutrinoless electron to positron conversion on a cooling of strongly magnetized iron white dwarfs is studied.
made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up
a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern
and were considered among the seven wonders of the ancient world. the six classic simple machines were known in the ancient near east. the wedge and the inclined plane ( ramp ) were known since prehistoric times. the wheel, along with the wheel and axle mechanism, was invented in mesopotamia ( modern iraq ) during the 5th millennium bc. the lever mechanism first appeared around 5, 000 years ago in the near east, where it was used in a simple balance scale, and to move large objects in ancient egyptian technology. the lever was also used in the shadoof water - lifting device, the first crane machine, which appeared in mesopotamia c. 3000 bc, and then in ancient egyptian technology c. 2000 bc. the earliest evidence of pulleys date back to mesopotamia in the early 2nd millennium bc, and ancient egypt during the twelfth dynasty ( 1991 β 1802 bc ). the screw, the last of the simple machines to be invented, first appeared in mesopotamia during the neo - assyrian period ( 911 β 609 ) bc. the egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever, to create structures like the great pyramid of giza. the earliest civil engineer known by name is imhotep. as one of the officials of the pharaoh, djoser, he probably designed and supervised the construction of the pyramid of djoser ( the step pyramid ) at saqqara in egypt around 2630 β 2611 bc. the earliest practical water - powered machines, the water wheel and watermill, first appeared in the persian empire, in what are now iraq and iran, by the early 4th century bc. kush developed the sakia during the 4th century bc, which relied on animal power instead of human energy. hafirs were developed as a type of reservoir in kush to store and contain water as well as boost irrigation. sappers were employed to build causeways during military campaigns. kushite ancestors built speos during the bronze age between 3700 and 3250 bc. bloomeries and blast furnaces were also created during the 7th centuries bc in kush. ancient greece developed machines in both civilian and military domains. the antikythera mechanism, an early known mechanical analog computer, and the mechanical inventions of archimedes, are examples of greek mechanical engineering. some of archimedes ' inventions, as well as the antikythera mechanism, required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory
Question: The white mountains in new hampshire are part of what province?
A) appalachian
B) geologic
C) antarctic
D) montreal
|
A) appalachian
|
Context:
or magnitude. magnitudes are always non - negative real numbers, and to any non - zero number there belongs a positive real number, its absolute value. for example, the absolute value of β3 and the absolute value of 3 are both equal to 3. this is written in symbols as | β3 | = 3 and | 3 | = 3. in general, any arbitrary real value can be specified by its magnitude and its sign. using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. this relation can be generalized to define a sign for complex numbers. since the real and complex numbers both form a field and contain the positive reals, they also contain the reciprocals of the magnitudes of all non - zero numbers. this means that any non - zero number may be multiplied with the reciprocal of its magnitude, that is, divided by its magnitude. it is immediate that the quotient of any non - zero real number by its magnitude yields exactly its sign. by analogy, the sign of a complex number z can be defined as the quotient of z and its magnitude | z |. the sign of a complex number is the exponential of the product of its argument with the imaginary unit. represents in some sense its complex argument. this is to be compared to the sign of real numbers, except with e i Ο = β 1. { \ displaystyle e ^ { i \ pi } = - 1. } for the definition of a complex sign - function. see Β§ complex sign function below. = = = sign functions = = = when dealing with numbers, it is often convenient to have their sign available as a number. this is accomplished by functions that extract the sign of any number, and map it to a predefined value before making it available for further calculations. for example, it might be advantageous to formulate an intricate algorithm for positive values only, and take care of the sign only afterwards. = = = = real sign function = = = = the sign function or signum function extracts the sign of a real number, by mapping the set of real numbers to the set of the three reals { β 1, 0, 1 }. { \ displaystyle \ { - 1, \ ; 0, \ ; 1 \ }. } it can be defined as follows : sgn : r β { β 1, 0, 1 } x β¦ sgn ( x ) = { β 1 if x < 0, 0 if x = 0
= = a simple example of invariance is expressed in our ability to count. for a finite set of objects of any kind, there is a number to which we always arrive, regardless of the order in which we count the objects in the set. the quantity β a cardinal number β is associated with the set, and is invariant under the process of counting. an identity is an equation that remains true for all values of its variables. there are also inequalities that remain true when the values of their variables change. the distance between two points on a number line is not changed by adding the same quantity to both numbers. on the other hand, multiplication does not have this same property, as distance is not invariant under multiplication. angles and ratios of distances are invariant under scalings, rotations, translations and reflections. these transformations produce similar shapes, which is the basis of trigonometry. in contrast, angles and ratios are not invariant under non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution
and is invariant under the process of counting. an identity is an equation that remains true for all values of its variables. there are also inequalities that remain true when the values of their variables change. the distance between two points on a number line is not changed by adding the same quantity to both numbers. on the other hand, multiplication does not have this same property, as distance is not invariant under multiplication. angles and ratios of distances are invariant under scalings, rotations, translations and reflections. these transformations produce similar shapes, which is the basis of trigonometry. in contrast, angles and ratios are not invariant under non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example,
or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws
as subjects perceive the sensory world, different stimuli elicit a number of neural representations. here, a subjective distance between stimuli is defined, measuring the degree of similarity between the underlying representations. as an example, the subjective distance between different locations in space is calculated from the activity of rodent hippocampal place cells, and lateral septal cells. such a distance is compared to the real distance, between locations. as the number of sampled neurons increases, the subjective distance shows a tendency to resemble the metrics of real space.
the attenuation length and refractive index of liquid xenon for intrinsic scintillation light ( 178nm ) have been measured in a single experiment. the value obtained for attenuation length is 364 + - 18 mm. the refractive index is found to be 1. 69 + - 0. 02. both values were measured at a temperature of 170 + - 1 k.
the realization of karl popper ' s epr - like experiment by shih and kim ( published 1999 ) produced the result that popper hoped for : no ` ` action at a distance ' ' on one photon of an entangled pair when a measurement is made on the other photon. this experimental result is interpretable in local realistic terms : each photon has a definite position and transverse momentum most of the time ; the position measurement on one photon ( localization within a slit ) disturbs the transverse momentum of that photon in a non - predictable way in accordance with the uncertainty principle ; however, there is no effect on the other photon ( the photon that is not in a slit ) no action at a distance. the position measurement ( localization within a slit ) of the one photon destroys the entanglement between the photons ; i. e. decoherence occurs.
##in, but the set of actual values attained by the operation is its codomain of definition, active codomain, image or range. for example, in the real numbers, the squaring operation only produces non - negative numbers ; the codomain is the set of real numbers, but the range is the non - negative numbers. operations can involve dissimilar objects : a vector can be multiplied by a scalar to form another vector ( an operation known as scalar multiplication ), and the inner product operation on two vectors produces a quantity that is scalar. an operation may or may not have certain properties, for example it may be associative, commutative, anticommutative, idempotent, and so on. the values combined are called operands, arguments, or inputs, and the value produced is called the value, result, or output. operations can have fewer or more than two inputs ( including the case of zero input and infinitely many inputs ). an operator is similar to an operation in that it refers to the symbol or the process used to denote the operation. hence, their point of view is different. for instance, one often speaks of " the operation of addition " or " the addition operation, " when focusing on the operands and result, but one switch to " addition operator " ( rarely " operator of addition " ), when focusing on the process, or from the more symbolic viewpoint, the function + : x Γ x β x ( where x is a set such as the set of real numbers ). = = definition = = an n - ary operation Ο on a set x is a function Ο : xn β x. the set xn is called the domain of the operation, the output set is called the codomain of the operation, and the fixed non - negative integer n ( the number of operands ) is called the arity of the operation. thus a unary operation has arity one, and a binary operation has arity two. an operation of arity zero, called a nullary operation, is simply an element of the codomain y. an n - ary operation can also be viewed as an ( n + 1 ) - ary relation that is total on its n input domains and unique on its output domain. an n - ary partial operation Ο from xn to x is a partial function Ο : xn β x. an n - ary partial operation can also be viewed as an (
may not be defined for every possible value of its domain. for example, in the real numbers one cannot divide by zero or take square roots of negative numbers. the values for which an operation is defined form a set called its domain of definition or active domain. the set which contains the values produced is called the codomain, but the set of actual values attained by the operation is its codomain of definition, active codomain, image or range. for example, in the real numbers, the squaring operation only produces non - negative numbers ; the codomain is the set of real numbers, but the range is the non - negative numbers. operations can involve dissimilar objects : a vector can be multiplied by a scalar to form another vector ( an operation known as scalar multiplication ), and the inner product operation on two vectors produces a quantity that is scalar. an operation may or may not have certain properties, for example it may be associative, commutative, anticommutative, idempotent, and so on. the values combined are called operands, arguments, or inputs, and the value produced is called the value, result, or output. operations can have fewer or more than two inputs ( including the case of zero input and infinitely many inputs ). an operator is similar to an operation in that it refers to the symbol or the process used to denote the operation. hence, their point of view is different. for instance, one often speaks of " the operation of addition " or " the addition operation, " when focusing on the operands and result, but one switch to " addition operator " ( rarely " operator of addition " ), when focusing on the process, or from the more symbolic viewpoint, the function + : x Γ x β x ( where x is a set such as the set of real numbers ). = = definition = = an n - ary operation Ο on a set x is a function Ο : xn β x. the set xn is called the domain of the operation, the output set is called the codomain of the operation, and the fixed non - negative integer n ( the number of operands ) is called the arity of the operation. thus a unary operation has arity one, and a binary operation has arity two. an operation of arity zero, called a nullary operation, is simply an element of the codomain y. an n - ary operation can also be viewed
a pomeron phenomenon remains a mystery. a short review of the experimental situation in diffractive physics and an account of some spectacular manifestations of the pomeron are given.
Question: What is the ratio of the uncertainty to the measured value, multiplied by one-hundred called?
A) variable uncertainty
B) percent uncertainty
C) amount uncertainty
D) percent inconsistency
|
B) percent uncertainty
|
Context:
an antibody is to be generated. usually this is done by a series of injections of the antigen in question, over the course of several weeks. these injections are typically followed by the use of in vivo electroporation, which significantly enhances the immune response. once splenocytes are isolated from the mammal ' s spleen, the b cells are fused with immortalised myeloma cells. the fusion of the b cells with myeloma cells can be done using electrofusion. electrofusion causes the b cells and myeloma cells to align and fuse with the application of an electric field. alternatively, the b - cells and myelomas can be made to fuse by chemical protocols, most often using polyethylene glycol. the myeloma cells are selected beforehand to ensure they are not secreting antibody themselves and that they lack the hypoxanthine - guanine phosphoribosyltransferase ( hgprt ) gene, making them sensitive ( or vulnerable ) to the hat medium ( see below ). fused cells are incubated in hat medium ( hypoxanthine - aminopterin - thymidine medium ) for roughly 10 to 14 days. aminopterin blocks the pathway that allows for nucleotide synthesis. hence, unfused myeloma cells die, as they cannot produce nucleotides by the de novo or salvage pathways because they lack hgprt. removal of the unfused myeloma cells is necessary because they have the potential to outgrow other cells, especially weakly established hybridomas. unfused b cells die as they have a short life span. in this way, only the b cell - myeloma hybrids survive, since the hgprt gene coming from the b cells is functional. these cells produce antibodies ( a property of b cells ) and are immortal ( a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then inc
the creation of your own reality and your own world. the metaphor i used was humans being like magic markers. for so long, they painted black and white pictures in their life because that ' s all they thought they could do. but they can paint with a different color and make a very vibrant and beautiful picture if they take control. on the single " new skin ", he further elaborated : in " new skin ", i attribute a scab to the present state of society. the way the scab looks in its worst state is gross and chaotic and horrible, that ' s now, but when it breaks away, there ' s a brand new piece of skin that ' s stronger than before. it ' s like creation out of chaos. the song " favorite things ", according to boyd, related to the topic of religion : " my favorite things " is my personal beliefs about religion and how it oppresses the things i enjoy the most. unfortunately, the simplest things, such as thinking for myself, creating my own reality and being whatever the hell i want to be each day of my life, are a sin. to be a good christian basically means to give up the reigns of your life and let some unseen force do it for you. " favorite things " also includes a sample of the 1959 track " flamenco fantasy ", by easy listening group the 101 strings orchestra. the song has a similar title to " my favorite things ", from the mary poppins musical and film, with both songs repeatedly mentioning their titles in the lyrics. however, it does not musically reference " my favorite things ". the single " a certain shade of green " has been described as being a song about procrastination. the line " are you gonna stand around till 2012 a. d.? " is a reference to an interpretation of the mayan calendar which dictated that the world would end on december 21, 2012. boyd did not believe this to be true, but it was on his mind as his mother was researching it for a book called maya memory : the glory that was palenque. while recording " nebula ", boyd said in 1997, " we found out what it ' s like to actually plug a phaser pedal into the wall while it ' s on. it sounds like a laser gun, and that ' s the first sound you hear in ' nebula '. " he added that for the song, " we used these walkie - talkies for children that have this slinky - like coil between them. when
used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception
safety security assurance framework applied to two standards iec 61508 and common criteria - iso 15408
s spleen, the b cells are fused with immortalised myeloma cells. the fusion of the b cells with myeloma cells can be done using electrofusion. electrofusion causes the b cells and myeloma cells to align and fuse with the application of an electric field. alternatively, the b - cells and myelomas can be made to fuse by chemical protocols, most often using polyethylene glycol. the myeloma cells are selected beforehand to ensure they are not secreting antibody themselves and that they lack the hypoxanthine - guanine phosphoribosyltransferase ( hgprt ) gene, making them sensitive ( or vulnerable ) to the hat medium ( see below ). fused cells are incubated in hat medium ( hypoxanthine - aminopterin - thymidine medium ) for roughly 10 to 14 days. aminopterin blocks the pathway that allows for nucleotide synthesis. hence, unfused myeloma cells die, as they cannot produce nucleotides by the de novo or salvage pathways because they lack hgprt. removal of the unfused myeloma cells is necessary because they have the potential to outgrow other cells, especially weakly established hybridomas. unfused b cells die as they have a short life span. in this way, only the b cell - myeloma hybrids survive, since the hgprt gene coming from the b cells is functional. these cells produce antibodies ( a property of b cells ) and are immortal ( a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectromet
to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiot
a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment,
the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. these concerns have led to the development of a regulatory framework, which started in 1975. it has led to an international treaty, the cartagena protocol on biosafety, that was adopted in 2000. individual countries have developed their own regulatory systems regarding gmos, with the most marked differences occurring between the
process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states supreme court ruled that a genetically modified microorganism could be patented in the case of diamond v. chakrabarty. indian - born ananda chakrabarty, working for general electric, had modified a bacterium ( of the genus pseudomonas ) capable of breaking down crude oil, which he proposed to
his sickle to one location. ( he realized it was a sickle by testing various blades on an animal carcass and comparing the wounds. ) flies, attracted by the smell of blood, eventually gathered on a single sickle. in light of this, the owner of that sickle confessed to the murder. the book also described how to distinguish between a drowning ( water in the lungs ) and strangulation ( broken neck cartilage ), and described evidence from examining corpses to determine if a death was caused by murder, suicide or accident. methods from around the world involved saliva and examination of the mouth and tongue to determine innocence or guilt, as a precursor to the polygraph test. in ancient india, some suspects were made to fill their mouths with dried rice and spit it back out. similarly, in ancient china, those accused of a crime would have rice powder placed in their mouths. in ancient middle - eastern cultures, the accused were made to lick hot metal rods briefly. it is thought that these tests had some validity since a guilty person would produce less saliva and thus have a drier mouth ; the accused would be considered guilty if rice was sticking to their mouths in abundance or if their tongues were severely burned due to lack of shielding from saliva. = = education and training = = initial glance, forensic intelligence may appear as a nascent facet of forensic science facilitated by advancements in information technologies such as computers, databases, and data - flow management software. however, a more profound examination reveals that forensic intelligence represents a genuine and emerging inclination among forensic practitioners to actively participate in investigative and policing strategies. in doing so, it elucidates existing practices within scientific literature, advocating for a paradigm shift from the prevailing conception of forensic science as a conglomerate of disciplines merely aiding the criminal justice system. instead, it urges a perspective that views forensic science as a discipline studying the informative potential of traces β remnants of criminal activity. embracing this transformative shift poses a significant challenge for education, necessitating a shift in learners ' mindset to accept concepts and methodologies in forensic intelligence. recent calls advocating for the integration of forensic scientists into the criminal justice system, as well as policing and intelligence missions, underscore the necessity for the establishment of educational and training initiatives in the field of forensic intelligence. this article contends that a discernible gap exists between the perceived and actual comprehension of forensic intelligence among law enforcement and forensic science managers, positing that this asymmetry can be rectified only through educational interventions.
Question: What is produced by the sebaceous glands?
A) sperm
B) pheromone
C) sebum
D) progesterone
|
C) sebum
|
Context:
oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and
within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with
shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration
the surface of the membrane, retentate is removed from the same side further downstream, whereas the permeate flow is tracked on the other side. in dead - end filtration, the direction of the fluid flow is normal to the membrane surface. both flow geometries offer some advantages and disadvantages. generally, dead - end filtration is used for feasibility studies on a laboratory scale. the dead - end membranes are relatively easy to fabricate which reduces the cost of the separation process. the dead - end membrane separation process is easy to implement and the process is usually cheaper than cross - flow membrane filtration. the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within
. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support
classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation ). ideally, even racemics can be enriched with a suitable membrane. when choosing membranes selectivity has priority over a high permeability, as low flows can easily be offset by increasing the filter surface with a modular structure. in gas phase filtration different deposition mechanisms are operative, so that particles having sizes below the pore size of the membrane can be retained as well. = = membrane classification = = bio - membrane is classified in two categories, synthetic membrane and natural membrane. synthetic membranes further classified in organic and inorganic membranes. organic membrane sub classified polymeric membranes and inorganic membrane sub classified ceramic polymers. = = synthesis of biomass membrane
generally, dead - end filtration is used for feasibility studies on a laboratory scale. the dead - end membranes are relatively easy to fabricate which reduces the cost of the separation process. the dead - end membrane separation process is easy to implement and the process is usually cheaper than cross - flow membrane filtration. the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process. the disc tube module uses a cross - flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs. = = membrane performance and governing equations = = the selection of synthetic membranes
, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which
are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its
is a verma module transformed into another verma module by a selfequivalence? the answer is affirmative and the proof suggests a notion of standard object in the category of harish - chandra modules that coincides often, but not always, with the usual one.
Question: What do you call vesicle transport into the cell?
A) dialysis
B) endocytosis
C) passive transport
D) metastasis
|
B) endocytosis
|
Context:
earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on earth, though it does include human effects on the environment. = = methodology = = methodologies vary depending on the nature of the subjects being studied. studies typically fall into one of three categories : observational, experimental, or theoretical. earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena (
##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river
the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o β h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a
the group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the mediterranean sea at a depth of about 2. 2 km with the antares optical beacon systems. a parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the antares site is in good agreement with these measurements.
current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers β civil works program river morphology and stream restoration references
equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers β civil works program river morphology and stream restoration references - wildland hydrology at the library of congress web archives ( archived 2002 - 08 - 13 )
onset of electro - chemical corrosion. similar problems are encountered in coastal and offshore structures. = = = anti - fouling = = = anti - fouling is the process of eliminating obstructive organisms from essential components of seawater systems. depending on the nature and location of marine growth, this process is performed in a number of different ways : marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. electro - chlorination involves running high electrical current through sea water, altering the water ' s chemical composition to create sodium hypochlorite, purging any bio - matter. an electrolytic method of anti - fouling involves running electrical current through two anodes ( scardino, 2009 ). these anodes typically consist of copper and aluminum ( or alternatively, iron ). the first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio - matter. the second metal, aluminum, coats the inside of the pipes to prevent corrosion. other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship ' s hull. this growth interferes with the smoothness and uniformity of the ship ' s hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel - efficient. marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms. = = = pollution control = = = = = = = sulfur emission = = = = the burning of marine fuels releases harmful pollutants into the atmosphere. ships burn marine diesel in addition to heavy fuel oil. heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. however, heavy fuel oil may only be burned in international waters due to the pollution created. it is commercially advantageous due to the cost effectiveness compared to other marine fuels. it is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 ( smith, 2018 ). = = = = oil and water discharge = = = = water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm ( parts per million ) of oil to be discharged. water is tested
for inland navigation in the lower portion of their course, as, for instance, the rhine, the danube and the mississippi. river engineering works are only required to prevent changes in the course of the stream, to regulate its depth, and especially to fix the low - water channel and concentrate the flow in it, so as to increase as far as practicable the navigable depth at the lowest stage of the water level. engineering works to increase the navigability of rivers can only be advantageously undertaken in large rivers with a moderate fall and a fair discharge at their lowest stage, for with a large fall the current presents a great impediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is
, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the widespread application of the factory system. this was followed a century later by the second industrial revolution which led to rapid scientific discovery, standardization, and mass production. new technologies were developed, including sewage systems, electricity, light bulbs, electric motors, railroads, automobiles, and airplanes. these technological advances led to significant developments in medicine
to increase as far as practicable the navigable depth at the lowest stage of the water level. engineering works to increase the navigability of rivers can only be advantageously undertaken in large rivers with a moderate fall and a fair discharge at their lowest stage, for with a large fall the current presents a great impediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the
Question: What are daily changes in the level of ocean water called?
A) currents
B) tides
C) floods
D) waves
|
B) tides
|
Context:
a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern
often called physicians. these terms, internist or physician ( in the narrow sense, common outside north america ), generally exclude practitioners of gynecology and obstetrics, pathology, psychiatry, and especially surgery and its subspecialities. because their patients are often seriously ill or require complex investigations, internists do much of their work in hospitals. formerly, many internists were not subspecialized ; such general physicians would see any complex nonsurgical problem ; this style of practice has become much less common. in modern urban practice, most internists are subspecialists : that is, they generally limit their medical practice to problems of one organ system or to one particular area of medical knowledge. for example, gastroenterologists and nephrologists specialize respectively in diseases of the gut and the kidneys. in the commonwealth of nations and some other countries, specialist pediatricians and geriatricians are also described as specialist physicians ( or internists ) who have subspecialized by age of patient rather than by organ system. elsewhere, especially in north america, general pediatrics is often a form of primary care. there are many subspecialities ( or subdisciplines ) of internal medicine : training in internal medicine ( as opposed to surgical training ), varies considerably across the world : see the articles on medical education for more details. in north america, it requires at least three years of residency training after medical school, which can then be followed by a one - to three - year fellowship in the subspecialties listed above. in general, resident work hours in medicine are less than those in surgery, averaging about 60 hours per week in the us. this difference does not apply in the uk where all doctors are now required by law to work less than 48 hours per week on average. = = = = diagnostic specialties = = = = clinical laboratory sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of
also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in
above any tidal limit and their average freshwater discharge are proportionate to the extent of their basins and the amount of rain which, after falling over these basins, reaches the river channels in the bottom of the valleys, by which it is conveyed to the sea. the drainage basin of a river is the expanse of country bounded by a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer
the cross section of elastic electron - proton scattering taking place in an electron gas is calculated within the closed time path method. it is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. the other term is due to the scattering particles - electron gas entanglement. this term dominates the usual one when the exchange energy is in the vicinity of the fermi energy. furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime.
depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform
effective and rapid detection of lesions in the gastrointestinal tract is critical to gastroenterologist ' s response to some life - threatening diseases. wireless capsule endoscopy ( wce ) has revolutionized traditional endoscopy procedure by allowing gastroenterologists visualize the entire gi tract non - invasively. once the tiny capsule is swallowed, it sequentially capture images of the gi tract at about 2 to 6 frames per second ( fps ). a single video can last up to 8 hours producing between 30, 000 to 100, 000 images. automating the detection of frames containing specific lesion in wce video would relieve gastroenterologists the arduous task of reviewing the entire video before making diagnosis. while the wce produces large volume of images, only about 5 \ % of the frames contain lesions that aid the diagnosis process. convolutional neural network ( cnn ) based models have been very successful in various image classification tasks. however, they suffer excessive parameters, are sample inefficient and rely on very large amount of training data. deploying a cnn classifier for lesion detection task will require time - to - time fine - tuning to generalize to any unforeseen category. in this paper, we propose a metric - based learning framework followed by a few - shot lesion recognition in wce data. metric - based learning is a meta - learning framework designed to establish similarity or dissimilarity between concepts while few - shot learning ( fsl ) aims to identify new concepts from only a small number of examples. we train a feature extractor to learn a representation for different small bowel lesions using metric - based learning. at the testing stage, the category of an unseen sample is predicted from only a few support examples, thereby allowing the model to generalize to a new category that has never been seen before. we demonstrated the efficacy of this method on real patient capsule endoscopy data.
from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their
known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders.
##al radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the
Question: What is the name of the narrow tube that begins at the stomach and ends at the large intestine?
A) pancreas
B) small intestine
C) small stomach
D) small tissues
|
B) small intestine
|
Context:
as subjects perceive the sensory world, different stimuli elicit a number of neural representations. here, a subjective distance between stimuli is defined, measuring the degree of similarity between the underlying representations. as an example, the subjective distance between different locations in space is calculated from the activity of rodent hippocampal place cells, and lateral septal cells. such a distance is compared to the real distance, between locations. as the number of sampled neurons increases, the subjective distance shows a tendency to resemble the metrics of real space.
displaystyle \ mathbb { r } } that are both open and closed. a degenerate interval is any set consisting of a single real number ( i. e., an interval of the form [ a, a ] ). some authors include the empty set in this definition. a real interval that is neither empty nor degenerate is said to be proper, and has infinitely many elements. an interval is said to be left - bounded or right - bounded, if there is some real number that is, respectively, smaller than or larger than all its elements. an interval is said to be bounded, if it is both left - and right - bounded ; and is said to be unbounded otherwise. intervals that are bounded at only one end are said to be half - bounded. the empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. bounded intervals are also commonly known as finite intervals. bounded intervals are bounded sets, in the sense that their diameter ( which is equal to the absolute difference between the endpoints ) is finite. the diameter may be called the length, width, measure, range, or size of the interval. the size of unbounded intervals is usually defined as + β, and the size of the empty interval may be defined as 0 ( or left undefined ). the centre ( midpoint ) of a bounded interval with endpoints a and b is ( a + b ) / 2, and its radius is the half - length | a β b | / 2. these concepts are undefined for empty or unbounded intervals. an interval is said to be left - open if and only if it contains no minimum ( an element that is smaller than all other elements ) ; right - open if it contains no maximum ; and open if it contains neither. the interval [ 0, 1 ) = { x | 0 β€ x < 1 }, for example, is left - closed and right - open. the empty set and the set of all reals are both open and closed intervals, while the set of non - negative reals, is a closed interval that is right - open but not left - open. the open intervals are open sets of the real line in its standard topology, and form a base of the open sets. an interval is said to be left - closed if it has a minimum element or is left - unbounded, right - closed if it has a maximum or is right unbounded ; it is
or magnitude. magnitudes are always non - negative real numbers, and to any non - zero number there belongs a positive real number, its absolute value. for example, the absolute value of β3 and the absolute value of 3 are both equal to 3. this is written in symbols as | β3 | = 3 and | 3 | = 3. in general, any arbitrary real value can be specified by its magnitude and its sign. using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. this relation can be generalized to define a sign for complex numbers. since the real and complex numbers both form a field and contain the positive reals, they also contain the reciprocals of the magnitudes of all non - zero numbers. this means that any non - zero number may be multiplied with the reciprocal of its magnitude, that is, divided by its magnitude. it is immediate that the quotient of any non - zero real number by its magnitude yields exactly its sign. by analogy, the sign of a complex number z can be defined as the quotient of z and its magnitude | z |. the sign of a complex number is the exponential of the product of its argument with the imaginary unit. represents in some sense its complex argument. this is to be compared to the sign of real numbers, except with e i Ο = β 1. { \ displaystyle e ^ { i \ pi } = - 1. } for the definition of a complex sign - function. see Β§ complex sign function below. = = = sign functions = = = when dealing with numbers, it is often convenient to have their sign available as a number. this is accomplished by functions that extract the sign of any number, and map it to a predefined value before making it available for further calculations. for example, it might be advantageous to formulate an intricate algorithm for positive values only, and take care of the sign only afterwards. = = = = real sign function = = = = the sign function or signum function extracts the sign of a real number, by mapping the set of real numbers to the set of the three reals { β 1, 0, 1 }. { \ displaystyle \ { - 1, \ ; 0, \ ; 1 \ }. } it can be defined as follows : sgn : r β { β 1, 0, 1 } x β¦ sgn ( x ) = { β 1 if x < 0, 0 if x = 0
empty nor degenerate is said to be proper, and has infinitely many elements. an interval is said to be left - bounded or right - bounded, if there is some real number that is, respectively, smaller than or larger than all its elements. an interval is said to be bounded, if it is both left - and right - bounded ; and is said to be unbounded otherwise. intervals that are bounded at only one end are said to be half - bounded. the empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. bounded intervals are also commonly known as finite intervals. bounded intervals are bounded sets, in the sense that their diameter ( which is equal to the absolute difference between the endpoints ) is finite. the diameter may be called the length, width, measure, range, or size of the interval. the size of unbounded intervals is usually defined as + β, and the size of the empty interval may be defined as 0 ( or left undefined ). the centre ( midpoint ) of a bounded interval with endpoints a and b is ( a + b ) / 2, and its radius is the half - length | a β b | / 2. these concepts are undefined for empty or unbounded intervals. an interval is said to be left - open if and only if it contains no minimum ( an element that is smaller than all other elements ) ; right - open if it contains no maximum ; and open if it contains neither. the interval [ 0, 1 ) = { x | 0 β€ x < 1 }, for example, is left - closed and right - open. the empty set and the set of all reals are both open and closed intervals, while the set of non - negative reals, is a closed interval that is right - open but not left - open. the open intervals are open sets of the real line in its standard topology, and form a base of the open sets. an interval is said to be left - closed if it has a minimum element or is left - unbounded, right - closed if it has a maximum or is right unbounded ; it is simply closed if it is both left - closed and right closed. so, the closed intervals coincide with the closed sets in that topology. the interior of an interval i is the largest open interval that is contained in i ; it is also the set of points in i which are not endpoints of i. the closure of
in gravitational lensing, the concept of optical depth assumes the lens is dark. several microlensing detections have now been made where the lens may be bright. relations are developed between apparent and absolute optical depth in the regime of the apparent and absolute brightness of the lens. an apparent optical depth through bright lenses is always less than the true, absolute optical depth. the greater the intrinsic brightness of the lens, the more likely it will be found nearer the source.
- and right - bounded ; and is said to be unbounded otherwise. intervals that are bounded at only one end are said to be half - bounded. the empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. bounded intervals are also commonly known as finite intervals. bounded intervals are bounded sets, in the sense that their diameter ( which is equal to the absolute difference between the endpoints ) is finite. the diameter may be called the length, width, measure, range, or size of the interval. the size of unbounded intervals is usually defined as + β, and the size of the empty interval may be defined as 0 ( or left undefined ). the centre ( midpoint ) of a bounded interval with endpoints a and b is ( a + b ) / 2, and its radius is the half - length | a β b | / 2. these concepts are undefined for empty or unbounded intervals. an interval is said to be left - open if and only if it contains no minimum ( an element that is smaller than all other elements ) ; right - open if it contains no maximum ; and open if it contains neither. the interval [ 0, 1 ) = { x | 0 β€ x < 1 }, for example, is left - closed and right - open. the empty set and the set of all reals are both open and closed intervals, while the set of non - negative reals, is a closed interval that is right - open but not left - open. the open intervals are open sets of the real line in its standard topology, and form a base of the open sets. an interval is said to be left - closed if it has a minimum element or is left - unbounded, right - closed if it has a maximum or is right unbounded ; it is simply closed if it is both left - closed and right closed. so, the closed intervals coincide with the closed sets in that topology. the interior of an interval i is the largest open interval that is contained in i ; it is also the set of points in i which are not endpoints of i. the closure of i is the smallest closed interval that contains i ; which is also the set i augmented with its finite endpoints. for any set x of real numbers, the interval enclosure or interval span of x is the unique interval that contains x, and does not properly contain any other interval that also contains x. an interval i is
= = when 0 is said to be neither positive nor negative, the following phrases may refer to the sign of a number : a number is positive if it is greater than zero. a number is negative if it is less than zero. a number is non - negative if it is greater than or equal to zero. a number is non - positive if it is less than or equal to zero. when 0 is said to be both positive and negative, modified phrases are used to refer to the sign of a number : a number is strictly positive if it is greater than zero. a number is strictly negative if it is less than zero. a number is positive if it is greater than or equal to zero. a number is negative if it is less than or equal to zero. for example, the absolute value of a real number is always " non - negative ", but is not necessarily " positive " in the first interpretation, whereas in the second interpretation, it is called " positive " β though not necessarily " strictly positive ". the same terminology is sometimes used for functions that yield real or other signed values. for example, a function would be called a positive function if its values are positive for all arguments of its domain, or a non - negative function if all of its values are non - negative. = = = complex numbers = = = complex numbers are impossible to order, so they cannot carry the structure of an ordered ring, and, accordingly, cannot be partitioned into positive and negative complex numbers. they do, however, share an attribute with the reals, which is called absolute value or magnitude. magnitudes are always non - negative real numbers, and to any non - zero number there belongs a positive real number, its absolute value. for example, the absolute value of β3 and the absolute value of 3 are both equal to 3. this is written in symbols as | β3 | = 3 and | 3 | = 3. in general, any arbitrary real value can be specified by its magnitude and its sign. using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. this relation can be generalized to define a sign for complex numbers. since the real and complex numbers both form a field and contain the positive reals, they also contain the reciprocals of the magnitudes of all non - zero numbers. this means that any non - zero number may be multiplied with the reciprocal of its magnitude, that is, divided by its magnitude. it is immediate that the quotient
classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation ). ideally, even racemics can be enriched with a suitable membrane. when choosing membranes selectivity has priority over a high permeability, as low flows can easily be offset by increasing the filter surface with a modular structure. in gas phase filtration different deposition mechanisms are operative, so that particles having sizes below the pore size of the membrane can be retained as well. = = membrane classification = = bio - membrane is classified in two categories, synthetic membrane and natural membrane. synthetic membranes further classified in organic and inorganic membranes. organic membrane sub classified polymeric membranes and inorganic membrane sub classified ceramic polymers. = = synthesis of biomass membrane
the relation between tempered distributions and measures is analysed and clarified. while this is straightforward for positive measures, it is surprisingly subtle for signed or complex measures.
= = a simple example of invariance is expressed in our ability to count. for a finite set of objects of any kind, there is a number to which we always arrive, regardless of the order in which we count the objects in the set. the quantity β a cardinal number β is associated with the set, and is invariant under the process of counting. an identity is an equation that remains true for all values of its variables. there are also inequalities that remain true when the values of their variables change. the distance between two points on a number line is not changed by adding the same quantity to both numbers. on the other hand, multiplication does not have this same property, as distance is not invariant under multiplication. angles and ratios of distances are invariant under scalings, rotations, translations and reflections. these transformations produce similar shapes, which is the basis of trigonometry. in contrast, angles and ratios are not invariant under non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution
Question: What is the term for how close a measurement is to the true value?
A) correctness
B) accuracy
C) validity
D) frequency
|
B) accuracy
|
Context:
the richness of the universe teaches us modesty and guides us to search for both primitive and intelligent forms of life elsewhere without prejudice.
the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron β carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle
while the modern stellar imf shows a rapid decline with increasing mass, theoretical investigations suggest that very massive stars ( > 100 solar masses ) may have been abundant in the early universe. other calculations also indicate that, lacking metals, these same stars reach their late evolutionary stages without appreciable mass loss. after central helium burning, they encounter the electron - positron pair instability, collapse, and burn oxygen and silicon explosively. if sufficient energy is released by the burning, these stars explode as brilliant supernovae with energies up to 100 times that of an ordinary core collapse supernova. they also eject up to 50 solar masses of radioactive ni56. stars less massive than 140 solar masses or more massive than 260 solar masses should collapse into black holes instead of exploding, thus bounding the pair - creation supernovae with regions of stellar mass that are nucleosynthetically sterile. pair - instability supernovae might be detectable in the near infrared out to redshifts of 20 or more and their ashes should leave a distinctive nucleosynthetic pattern.
is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron β carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales
one of the greatest discoveries of modern times is that of the expanding universe, almost invariably attributed to hubble ( 1929 ). what is not widely known is that the original treatise by lemaitre ( 1927 ) contained a rich fusion of both theory and of observation. stiglers law of eponymy is yet again affirmed : no scientific discovery is named after its original discoverer ( merton, 1957 ). an appeal is made for a lemaitre telescope, to honour the discoverer of the expanding universe.
we have combined measurements of the kinematics, morphology, and oxygen abundance of the ionized gas in \ izw18, one of the most metal - poor galaxies known, to examine the star formation history and chemical mixing processes.
it seems natural to ask why the universe exists at all. modern physics suggests that the universe can exist all by itself as a self - contained system, without anything external to create or sustain it. but there might not be an absolute answer to why it exists. i argue that any attempt to account for the existence of something rather than nothing must ultimately bottom out in a set of brute facts ; the universe simply is, without ultimate cause or explanation.
it was the best of times ; it was the worst of times is the way dickens begins the tale of two cities. the line is appropriate to our time in particle physics. it is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. it is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. my task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. it is a time when we cannot afford the merely good, but must give first priority to the really important.
electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase
the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o β h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such
Question: What are the two most abundant elements in the universe?
A) oxygen and carbon
B) nitrogen and carbon
C) hydrogen and oxygen
D) hydrogen and helium
|
D) hydrogen and helium
|
Context:
species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos
is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants
short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithosphere, atmosphere, and hydrosphere ) compartments of earth. there are biogeochemical cycles for nitrogen, carbon, and water. = = = conservation = = = conservation biology is the study of the conservation of earth ' s biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates
ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an o
kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used
( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants than animals. genetic evidence suggests that the true evolutionary relationship of multicelled organisms is as shown in the cladogram below β fungi are more closely related to animals than to plants. in 1998, the angiosperm phylogeny group published a phylogeny for flowering plants based on an analysis of
and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying
. species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in
often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like
- people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table
Question: What is the term for a close relationship between two species in which at least one species benefits.
A) candiasis
B) extosis
C) endosymbiosis
D) symbiosis
|
D) symbiosis
|
Context:
the connection between the quantum frequency of radiation by the transition of the electron from orbit n to orbit k and frequencies of circling of electron in these orbits for the atom of hydrogen is determined.
a rydberg gas of no entrained in a supersonic molecular beam releases electrons as it evolves to form an ultracold plasma. the size of this signal, compared with that extracted by the subsequent application of a pulsed electric field, determines the absolute magnitude of the plasma charge. this information, combined with the number density of ions, supports a simple thermochemical model that explains the evolution of the plasma to an ultracold electron temperature.
is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside
substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the
if stimulated emission could be turned off then only uncorrelated photons would be emitted from black bodies and the photon counting statistics would be poissonian. through the process of stimulated emission, some fraction of the photons emitted from a black body are correlated and thus emitted in clusters. this photon clustering can be calculated by semi - classical means. the corresponding results are in agreement with quantum theory.
vehicle crashes. fuel economy / emissions : fuel economy is the measured fuel efficiency of the vehicle in miles per gallon or kilometers per liter. emissions - testing covers the measurement of vehicle emissions, including hydrocarbons, nitrogen oxides ( nox ), carbon monoxide ( co ), carbon dioxide ( co2 ), and evaporative emissions. nvh engineering ( noise, vibration, and harshness ) : nvh involves customer feedback ( both tactile [ felt ] and audible [ heard ] ) concerning a vehicle. while sound can be interpreted as a rattle, squeal, or hot, a tactile response can be seat vibration or a buzz in the steering wheel. this feedback is generated by components either rubbing, vibrating, or rotating. nvh response can be classified in various ways : powertrain nvh, road noise, wind noise, component noise, and squeak and rattle. note, there are both good and bad nvh qualities. the nvh engineer works to either eliminate bad nvh or change the " bad nvh " to good ( i. e., exhaust tones ). vehicle electronics : automotive electronics is an increasingly important aspect of automotive engineering. modern vehicles employ dozens of electronic systems. these systems are responsible for operational controls such as the throttle, brake and steering controls ; as well as many comfort - and - convenience systems such as the hvac, infotainment, and lighting systems. it would not be possible for automobiles to meet modern safety and fuel - economy requirements without electronic controls. performance : performance is a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 β 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and power
##ent governmental regulations. some of these requirements include : seat belt and air bag functionality testing, front and side - impact testing, and tests of rollover resistance. assessments are done with various methods and tools, including computer crash simulation ( typically finite element analysis ), crash - test dummy, and partial system sled and full vehicle crashes. fuel economy / emissions : fuel economy is the measured fuel efficiency of the vehicle in miles per gallon or kilometers per liter. emissions - testing covers the measurement of vehicle emissions, including hydrocarbons, nitrogen oxides ( nox ), carbon monoxide ( co ), carbon dioxide ( co2 ), and evaporative emissions. nvh engineering ( noise, vibration, and harshness ) : nvh involves customer feedback ( both tactile [ felt ] and audible [ heard ] ) concerning a vehicle. while sound can be interpreted as a rattle, squeal, or hot, a tactile response can be seat vibration or a buzz in the steering wheel. this feedback is generated by components either rubbing, vibrating, or rotating. nvh response can be classified in various ways : powertrain nvh, road noise, wind noise, component noise, and squeak and rattle. note, there are both good and bad nvh qualities. the nvh engineer works to either eliminate bad nvh or change the " bad nvh " to good ( i. e., exhaust tones ). vehicle electronics : automotive electronics is an increasingly important aspect of automotive engineering. modern vehicles employ dozens of electronic systems. these systems are responsible for operational controls such as the throttle, brake and steering controls ; as well as many comfort - and - convenience systems such as the hvac, infotainment, and lighting systems. it would not be possible for automobiles to meet modern safety and fuel - economy requirements without electronic controls. performance : performance is a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 β 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the
. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of
regge - pole calculated low - energy electron elastic total cross sections ( tcss ) for complex heavy atoms and fullerene molecules are characterized generally by ground, metastable, and excited negative - ion formation, shape resonances and ramsauer - townsend minima. here the extracted anionic binding energies ( bes ) from the tcss of various atoms and fullerenes are used to highlight the ambiguous meaning of some current electron affinities ( eas ) of heavy complex atomic systems. the crucial question is : does the ea correspond to the be of the attached electron in the ground or excited state of the formed anion during the collision?
factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic
Question: Atomic emission spectra are produced when excited electrons return to what state?
A) work state
B) ground state
C) orbital state
D) side state
|
B) ground state
|
Context:
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
plasma etching should not be conflated with the use of the same term when referring to orientation - dependent etching. the source gas for the plasma usually contains small molecules rich in chlorine or fluorine. for instance, carbon tetrachloride ( ccl4 ) etches silicon and aluminium, and trifluoromethane etches silicon dioxide and silicon nitride. a plasma containing oxygen is used to oxidize ( " ash " ) photoresist and facilitate its removal. ion milling, or sputter etching, uses lower pressures, often as low as 10β4 torr ( 10 mpa ). it bombards the wafer with energetic ions of noble gases, often ar +, which knock atoms from the substrate by transferring momentum. because the etching is performed by ions, which approach the wafer approximately from one direction, this process is highly anisotropic. on the other hand, it tends to display poor selectivity. reactive - ion etching ( rie ) operates under conditions intermediate between sputter and plasma etching ( between 10β3 and 10β1 torr ). deep reactive - ion etching ( drie ) modifies the rie technique to produce deep, narrow features. in reactive - ion etching ( rie ), the substrate is placed inside a reactor, and several gases are introduced. a plasma is struck in the gas mixture using an rf power source, which breaks the gas molecules into ions. the ions accelerate towards, and react with, the surface of the material being etched, forming another gaseous material. this is known as the chemical part of reactive ion etching. there is also a physical part, which is similar to the sputtering deposition process. if the ions have high enough energy, they can knock atoms out of the material to be etched without a chemical reaction. it is a very complex task to develop dry etch processes that balance chemical and physical etching, since there are many parameters to adjust. by changing the balance it is possible to influence the anisotropy of the etching, since the chemical part is isotropic and the physical part highly anisotropic the combination can form sidewalls that have shapes from rounded to vertical. deep reactive ion etching ( drie ) is a special subclass of rie that is growing in popularity. in this process, etch depths of hundreds of micrometers are achieved with almost vertical sidewalls. the primary technology is based on the
the clinical symptoms of pulmonary embolism ( pe ) are very diverse and non - specific, which makes it difficult to diagnose. in addition, pulmonary embolism has multiple triggers and is one of the major causes of vascular death. therefore, if it can be detected and treated quickly, it can significantly reduce the risk of death in hospitalized patients. in the detection process, the cost of computed tomography pulmonary angiography ( ctpa ) is high, and angiography requires the injection of contrast agents, which increase the risk of damage to the patient. therefore, this study will use a deep learning approach to detect pulmonary embolism in all patients who take a ct image of the chest using a convolutional neural network. with the proposed pulmonary embolism detection system, we can detect the possibility of pulmonary embolism at the same time as the patient ' s first ct image, and schedule the ctpa test immediately, saving more than a week of ct image screening time and providing timely diagnosis and treatment to the patient.
required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the
in this article i explain in detail a method for making small amounts of liquid oxygen in the classroom if there is no access to a cylinder of compressed oxygen gas. i also discuss two methods for identifying the fact that it is liquid oxygen as opposed to liquid nitrogen.
development and interaction of starting vortices initiated by dielectric barrier discharge ( dbd ) plasma actuators in quiescent air are illustrated in the attached fluid dynamics videos. these include a series of smoke flow visualisations, showing the starting vortices moving parallel or normal to the wall at several different actuator configurations.
oxygen ion migration in li2mno3 was systematically studied by first - principles calculations. hole polaron is found effective to lower the migration barrier of oxygen ion.
the purpose of the given work is detailed research of toroidal shock wave movement process to the center of symmetry in air by normal atmosphere pressure. the wave is generated by plazma which is generated by a ring discharger.
ambient air ( see lockheed f - 117 nighthawk, rectangular nozzles on the lockheed martin f - 22 raptor, and serrated nozzle flaps on the lockheed martin f - 35 lightning ). often, cool air is deliberately injected into the exhaust flow to boost this process ( see ryan aqm - 91 firefly and northrop b - 2 spirit ). the stefan β boltzmann law shows how this results in less energy ( thermal radiation in infrared spectrum ) being released and thus reduces the heat signature. in some aircraft, the jet exhaust is vented above the wing surface to shield it from observers below, as in the lockheed f - 117 nighthawk, and the unstealthy fairchild republic a - 10 thunderbolt ii. to achieve infrared stealth, the exhaust gas is cooled to the temperatures where the brightest wavelengths it radiates are absorbed by atmospheric carbon dioxide and water vapor, greatly reducing the infrared visibility of the exhaust plume. another way to reduce the exhaust temperature is to circulate coolant fluids such as fuel inside the exhaust pipe, where the fuel tanks serve as heat sinks cooled by the flow of air along the wings. ground combat includes the use of both active and passive infrared sensors. thus, the united states marine corps ( usmc ) ground combat uniform requirements document specifies infrared reflective quality standards. = = reducing radio frequency ( rf ) emissions = = in addition to reducing infrared and acoustic emissions, a stealth vehicle must avoid radiating any other detectable energy, such as from onboard radars, communications systems, or rf leakage from electronics enclosures. the f - 117 uses passive infrared and low light level television sensor systems to aim its weapons and the f - 22 raptor has an advanced lpi radar which can illuminate enemy aircraft without triggering a radar warning receiver response. = = measuring = = the size of a target ' s image on radar is measured by the rcs, often represented by the symbol Ο and expressed in square meters. this does not equal geometric area. a perfectly conducting sphere of projected cross sectional area 1 m2 ( i. e. a diameter of 1. 13 m ) will have an rcs of 1 m2. note that for radar wavelengths much less than the diameter of the sphere, rcs is independent of frequency. conversely, a square flat plate of area 1 m2 will have an rcs of Ο = 4Ο a2 / Ξ»2 ( where a = area, Ξ» = wavelength ), or 13, 982 m2 at 10 ghz if the radar is perpendicular to the flat
gas load and pumping determine the quality of vacuum systems. in particle accelerators, once leaks are excluded, outgassing of materials is an important source of gas together with degassing induced by particle beams. understanding, predicting, and measuring gas release from materials in vacuum are among the fundamental tasks of ultrahigh - vacuum experts. the knowledge of outgassing phenomena is essential for the choice of materials and their treatments so that the required gas density is achieved in such demanding and expensive scientific instruments. this note provides the background to understand outgassing in vacuum and gives references for further study.
Question: The lungs perform gas exchange using air and what fluid, which is coming and going from the heart?
A) blood
B) water
C) saliva
D) mucus
|
A) blood
|
Context:
. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes a process of fermentation. the pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. this serves the purpose of oxidizing the electron carriers so that they can perform glycol
= = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes
slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes a process of fermentation. the pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. this serves the purpose of oxidizing the electron carriers so that they can perform glycolysis again and removing the excess pyruvate. fermentation oxidizes nadh to nad + so it can be re - used in glycolysis. in the absence of oxygen, fermentation prevents the buildup of nadh in the cytoplasm and provides nad + for gly
reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy
liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and
##ysis again and removing the excess pyruvate. fermentation oxidizes nadh to nad + so it can be re - used in glycolysis. in the absence of oxygen, fermentation prevents the buildup of nadh in the cytoplasm and provides nad + for glycolysis. this waste product varies depending on the organism. in skeletal muscles, the waste product is lactic acid. this type of fermentation is called lactic acid fermentation. in strenuous exercise, when energy demands exceed energy supply, the respiratory chain cannot process all of the hydrogen atoms joined by nadh. during anaerobic glycolysis, nad + regenerates when pairs of hydrogen combine with pyruvate to form lactate. lactate formation is catalyzed by lactate dehydrogenase in a reversible reaction. lactate can also be used as an indirect precursor for liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a
from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes a process of fermentation. the pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. this serves the purpose of oxidizing the electron carriers so that they can perform glycolysis again and removing the excess pyruvate. fermentation oxidizes nadh to nad + so it can be re - used in glycolysis. in the absence of oxygen, fermentation prevents the buildup of nadh in the cytoplasm and provides nad + for glycolysis. this waste product varies depending on the organism. in skeletal muscles, the waste product is lactic acid. this type of fermentation is called lactic acid fermentation. in strenuous exercise, when energy demands exceed energy supply, the respiratory chain cannot process all of the hydrogen atoms joined by nadh. during anaerobic glycolysis, nad + regenerates when pairs of hydrogen combine with pyruvate to form lactate. lactate formation is catalyzed by lactate dehydrogenase in a reversible reaction. lactate can also be used as an indirect precursor for liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of
the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the
energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photos
by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods.
Question: In addition to glucose, what gas is used during cellular respiration?
A) nitrogen
B) oxygen
C) hydrogen
D) methane
|
B) oxygen
|
Context:
and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool for natural scientists, with the creation of transgenic organisms one of the most important tools for analysis of gene function. genes and other genetic information from a wide range of organisms can be inserted into bacteria for storage and modification, creating genetically modified bacteria in the process. bacteria are cheap, easy to grow, clonal, multiply quickly, relatively easy to transform and can be stored at - 80 Β°c almost indefinitely. once a gene is isolated it can be stored inside the bacteria providing an unlimited supply for research. organisms are genetically engineered to discover the functions of certain genes. this could be the effect on the phenotype of the organism, where the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy
##logous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source β induced pluripotent stem cells β may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) are subclass of pluripotent stem cells resembling embryonic stem cells ( escs ) that have been derived from adult differentiated cells. ipscs are created by altering the expression of transcriptional factors in adult cells until they become like embryonic stem cells. multipotent stem cells can be differentiated into any cell
their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can
this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic
include the manufacturing of drugs, creation of model animals that mimic human conditions and gene therapy. one of the earliest uses of genetic engineering was to mass - produce human insulin in bacteria. this application has now been applied to human growth hormones, follicle stimulating hormones ( for treating infertility ), human albumin, monoclonal antibodies, antihemophilic factors, vaccines and many other drugs. mouse hybridomas, cells fused together to create monoclonal antibodies, have been adapted through genetic engineering to create human monoclonal antibodies. genetically engineered viruses are being developed that can still confer immunity, but lack the infectious sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous,
. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations at endogenous genes that generate a gene knockout. = = applications = = genetic engineering has applications in medicine, research, industry and agriculture and can be used on a wide range of plants, animals and microorganisms. bacteria, the first organisms to be genetically modified, can have plasmid dna inserted
##ilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with
cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra
creation of the first bioprinter in 2003 by the university of missouri when they printed spheroids without the need of scaffolds, 3 - d bioprinting became more conventionally used in medical field than ever before. so far, scientists have been able to print mini organoids and organs - on - chips that have rendered practical insights into the functions of a human body. pharmaceutical companies are using these models to test drugs before moving on to animal studies. however, a fully functional and structurally similar organ has not been printed yet. a team at university of utah has reportedly printed ears and successfully transplanted those onto children born with defects that left their ears partially developed. today hydrogels are considered the preferred choice of bio - inks for 3 - d bioprinting since they mimic cells ' natural ecm while also containing strong mechanical properties capable of sustaining 3 - d structures. furthermore, hydrogels in conjunction with 3 - d bioprinting allow researchers to produce different scaffolds which can be used to form new tissues or organs. 3 - d printed tissues still face many challenges such as adding vasculature. meanwhile, 3 - d printing parts of tissues definitely will improve our understanding of the human body, thus accelerating both basic and clinical research. = = examples = = as defined by langer and vacanti, examples of tissue engineering fall into one or more of three categories : " just cells, " " cells and scaffold, " or " tissue - inducing factors. " in vitro meat : edible artificial animal muscle tissue cultured in vitro. bioartificial liver device, " temporary liver ", extracorporeal liver assist device ( elad ) : the human hepatocyte cell line ( c3a line ) in a hollow fiber bioreactor can mimic the hepatic function of the liver for acute instances of liver failure. a fully capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold,
induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source β induced pluripotent stem cells β may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) are subclass of pluripotent stem cells resembling embryonic stem cells ( escs ) that have been derived from adult differentiated cells. ipscs are created by altering the expression of transcriptional factors in adult cells until they become like embryonic stem cells. multipotent stem cells can be differentiated into any cell within the same class, such as blood or bone. a common example of multipotent cells is mesenchymal stem cells ( mscs ). = = scaffolds = = scaffolds are materials that have been engineered to cause desirable cellular interactions to contribute to the formation of new functional tissues for medical purposes. cells are often ' seeded ' into these structures capable of supporting three - dimensional tissue formation. scaffolds mimic the extracellular matrix of the native tissue, recapitulating the in vivo milieu and allowing cells to influence their own microenvironments. they usually serve at least one of the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seed
Question: Which germ layers are essential for animal embryos to grow and develop into a body?
A) histone and melatonin
B) keratinocytes , ectoderm , mesoderm
C) endoderm, ectoderm, mesoderm
D) cytoplasm and chloroplasm
|
C) endoderm, ectoderm, mesoderm
|
Context:
technology developed, medicine became more reliant upon medications. throughout history and in europe right until the late 18th century, not only plant products were used as medicine, but also animal ( including human ) body parts and fluids. pharmacology developed in part from herbalism and some drugs are still derived from plants ( atropine, ephedrine, warfarin, aspirin, digoxin, vinca alkaloids, taxol, hyoscine, etc. ). vaccines were discovered by edward jenner and louis pasteur. the first antibiotic was arsphenamine ( salvarsan ) discovered by paul ehrlich in 1908 after he observed that bacteria took up toxic dyes that human cells did not. the first major class of antibiotics was the sulfa drugs, derived by german chemists originally from azo dyes. pharmacology has become increasingly sophisticated ; modern biotechnology allows drugs targeted towards specific physiological processes to be developed, sometimes designed for compatibility with the body to reduce side - effects. genomics and knowledge of human genetics and human evolution is having increasingly significant influence on medicine, as the causative genes of most monogenic genetic disorders have now been identified, and the development of techniques in molecular biology, evolution, and genetics are influencing medical technology, practice and decision - making. evidence - based medicine is a contemporary movement to establish the most effective algorithms of practice ( ways of doing things ) through the use of systematic reviews and meta - analysis. the movement is facilitated by modern global information science, which allows as much of the available evidence as possible to be collected and analyzed according to standard protocols that are then disseminated to healthcare providers. the cochrane collaboration leads this movement. a 2001 review of 160 cochrane systematic reviews revealed that, according to two readers, 21. 3 % of the reviews concluded insufficient evidence, 20 % concluded evidence of no effect, and 22. 5 % concluded positive effect. = = quality, efficiency, and access = = evidence - based medicine, prevention of medical error ( and other " iatrogenesis " ), and avoidance of unnecessary health care are a priority in modern medical systems. these topics generate significant political and public policy attention, particularly in the united states where healthcare is regarded as excessively costly but population health metrics lag similar nations. globally, many developing countries lack access to care and access to medicines. as of 2015, most wealthy developed countries provide health care to all citizens, with a few exceptions such as the united states where lack of health insurance
##drate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of
industrial applications. this branch of biotechnology is the most used for the industries of refining and combustion principally on the production of bio - oils with photosynthetic micro - algae. green biotechnology is biotechnology applied to agricultural processes. an example would be the selection and domestication of plants via micropropagation. another example is the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of poll
used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception
the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants. brown biotechnology is related to the management of arid lands and deserts. one application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources. violet biotechnology is related to law, ethical and philosophical issues around biotechnology. micro
a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment,
. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world
sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool
##nts from the air to reduce the potential adverse effects on humans and the environment. the process of air purification may be performed using methods such as mechanical filtration, ionization, activated carbon adsorption, photocatalytic oxidation, and ultraviolet light germicidal irradiation. = = = sewage treatment = = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the
product of ceramic manufacture, or as an adjective. ceramics is the making of things out of ceramic materials. ceramic engineering, like many sciences, evolved from a different discipline by today ' s standards. materials science engineering is grouped with ceramics engineering to this day. abraham darby first used coke in 1709 in shropshire, england, to improve the yield of a smelting process. coke is now widely used to produce carbide ceramics. potter josiah wedgwood opened the first modern ceramics factory in stoke - on - trent, england, in 1759. austrian chemist carl josef bayer, working for the textile industry in russia, developed a process to separate alumina from bauxite ore in 1888. the bayer process is still used to purify alumina for the ceramic and aluminium industries. brothers pierre and jacques curie discovered piezoelectricity in rochelle salt c. 1880. piezoelectricity is one of the key properties of electroceramics. e. g. acheson heated a mixture of coke and clay in 1893, and invented carborundum, or synthetic silicon carbide. henri moissan also synthesized sic and tungsten carbide in his electric arc furnace in paris about the same time as acheson. karl schroter used liquid - phase sintering to bond or " cement " moissan ' s tungsten carbide particles with cobalt in 1923 in germany. cemented ( metal - bonded ) carbide edges greatly increase the durability of hardened steel cutting tools. w. h. nernst developed cubic - stabilized zirconia in the 1920s in berlin. this material is used as an oxygen sensor in exhaust systems. the main limitation on the use of ceramics in engineering is brittleness. = = = military = = = the military requirements of world war ii encouraged developments, which created a need for high - performance materials and helped speed the development of ceramic science and engineering. throughout the 1960s and 1970s, new types of ceramics were developed in response to advances in atomic energy, electronics, communications, and space travel. the discovery of ceramic superconductors in 1986 has spurred intense research to develop superconducting ceramic parts for electronic devices, electric motors, and transportation equipment. there is an increasing need in the military sector for high - strength, robust materials which have the capability to transmit light around the visible ( 0. 4 β 0. 7 micrometers ) and mid - infrared ( 1 β 5 micrometers ) regions of the spectrum. these materials
Question: Scrubbers and catalytic converters are examples of technologies that change what into harmless compounds?
A) toxins
B) mutations
C) pollutants
D) contaminants
|
C) pollutants
|
Context:
. nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality ( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or
a detailed analysis of primordial nucleosynthesis predictions for light element abundances is performed. contents : 1. the standard cosmology : an overview. 2. primordial nucleosynthesis. 3. the born rates for n < - > p reactions. 4. finite nucleon mass corrections. 5. qed thermal radiative corrections. 6. calculations of big bang nucleosynthesis. results.
( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non -
excess lightweight products of slow neutron capture in the photosphere, over the mass range of 25 to 207 amu, confirm the solar mass separation recorded by excess lightweight isotopes in the solar wind, over the mass range of 3 to 136 amu [ solar abundance of the elements, meteoritics, volume 18, 1983, pages 209 to 222 ]. both measurements show that major elements inside the sun are fe, o, ni, si and s, like those in rocky planets.
the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron β carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle
this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleosynthesis, the light elements ( lithium to calcium ) as well as some of the heavy elements ( beyond iron and nickel, via the s - process ). the remaining abundance of heavy elements, from nickel to uranium and beyond, is due to supernova nucleosynthesis, the r - process. of course, these natural processes of astrophysics are not examples of nuclear " technology ". because of the very strong repulsion of nuclei, fusion is difficult to achieve in a controlled fashion. hydrogen bombs, formally known as thermonuclear weapons, obtain their enormous destructive power from fusion, but their energy cannot be controlled. controlled fusion is achieved in particle accelerators ; this is how many synthetic elements are produced. a fusor can also produce controlled fusion and is a useful neutron source. however, both of these devices operate at a net energy loss. controlled, viable fusion power has proven elusive, despite the occasional hoax. technical and theoretical difficulties have hindered the development of working civilian fusion technology, though research continues to this day around the world. nuclear fusion was initially pursued only in theoretical stages during world war ii, when scientists on the manhattan project ( led by edward teller ) investigated it as a method to build a bomb. the project abandoned fusion after concluding that it would require a fission reaction to detonate. it took until 1952 for the first full hydrogen bomb to be detonated, so - called because it used reactions between deuterium and tritium. fusion reactions are much more energetic per unit mass of fuel than fission reactions, but starting the fusion chain reaction is much more difficult. = = nuclear weapons = = a nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion. both reactions release vast quantities of energy from relatively small amounts of matter. even small nuclear devices can devastate a city by blast, fire and radiation. nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality
##ting the principle of conservation of mass and developing a new system of chemical nomenclature used to this day. english scientist john dalton proposed the modern theory of atoms ; that all substances are composed of indivisible ' atoms ' of matter and that different atoms have varying atomic weights. the development of the electrochemical theory of chemical combinations occurred in the early 19th century as the result of the work of two scientists in particular, jons jacob berzelius and humphry davy, made possible by the prior invention of the voltaic pile by alessandro volta. davy discovered nine new elements including the alkali metals by extracting them from their oxides with electric current. british william prout first proposed ordering all the elements by their atomic weight as all atoms had a weight that was an exact multiple of the atomic weight of hydrogen. j. a. r. newlands devised an early table of elements, which was then developed into the modern periodic table of elements in the 1860s by dmitri mendeleev and independently by several other scientists including julius lothar meyer. the inert gases, later called the noble gases were discovered by william ramsay in collaboration with lord rayleigh at the end of the century, thereby filling in the basic structure of the table. organic chemistry was developed by justus von liebig and others, following friedrich wohler ' s synthesis of urea. other crucial 19th century advances were ; an understanding of valence bonding ( edward frankland in 1852 ) and the application of thermodynamics to chemistry ( j. w. gibbs and svante arrhenius in the 1870s ). at the turn of the twentieth century the theoretical underpinnings of chemistry were finally understood due to a series of remarkable discoveries that succeeded in probing and discovering the very nature of the internal structure of atoms. in 1897, j. j. thomson of the university of cambridge discovered the electron and soon after the french scientist becquerel as well as the couple pierre and marie curie investigated the phenomenon of radioactivity. in a series of pioneering scattering experiments ernest rutherford at the university of manchester discovered the internal structure of the atom and the existence of the proton, classified and explained the different types of radioactivity and successfully transmuted the first element by bombarding nitrogen with alpha particles. his work on atomic structure was improved on by his students, the danish physicist niels bohr, the englishman henry moseley and the german otto hahn, who went on to father the emerging nuclear chemistry and discovered nuclear fission. the electronic theory
to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei
iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment processes such as quenching and tempering can significantly change these properties, however. in contrast, certain metal alloys exhibit unique properties where their size and density remain unchanged across a range of temperatures. cast iron is defined as an iron β carbon alloy with more than 2. 00 %, but less than 6. 67 % carbon. stainless steel is defined as a regular steel alloy with greater than 10 % by weight alloying content of chromium. nickel and molybdenum are typically also added in stainless steels. other significant metallic alloys are those of aluminium, titanium, copper and magnesium. copper alloys have been known for a long time ( since the bronze age ), while the alloys of the other three metals have been relatively recently developed. due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. the alloys of aluminium, titanium and magnesium are also known and valued for their high strength to weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. these materials are ideal for situations where high strength to weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering applications. = = = semiconductors = = = a semiconductor is a material that has a resistivity between a conductor and insulator. modern day electronics run on semiconductors, and the industry had an estimated us $ 530 billion market in 2021. its electronic properties can be greatly altered through intentionally introducing impurities in a process referred to as doping. semiconductor materials are used to build diodes, transistors, light - emitting diodes ( leds ), and analog and digital electric circuits, among their many uses. semiconductor devices have replaced thermionic devices like vacuum tubes in most applications. semiconductor devices are manufactured both as single discrete devices and as integrated circuits ( ics ), which consist of a number β from a few to millions β of devices manufactured and interconnected on a single semiconductor substrate. of all the semiconductors in use today, silicon makes up the largest portion both by quantity and commercial value. monocrystalline silicon is used to produce wafers used in the semiconductor and electronics industry. gallium arsenide (
has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named
Question: What is the weighted average of the masses of all isotopes of an element called?
A) atomic mass
B) cell mass
C) light mass
D) weight mass
|
A) atomic mass
|
Context:
for inland navigation in the lower portion of their course, as, for instance, the rhine, the danube and the mississippi. river engineering works are only required to prevent changes in the course of the stream, to regulate its depth, and especially to fix the low - water channel and concentrate the flow in it, so as to increase as far as practicable the navigable depth at the lowest stage of the water level. engineering works to increase the navigability of rivers can only be advantageously undertaken in large rivers with a moderate fall and a fair discharge at their lowest stage, for with a large fall the current presents a great impediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is
equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers β civil works program river morphology and stream restoration references - wildland hydrology at the library of congress web archives ( archived 2002 - 08 - 13 )
##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river
, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six
depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform
navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea
approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with
##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids,
to increase as far as practicable the navigable depth at the lowest stage of the water level. engineering works to increase the navigability of rivers can only be advantageously undertaken in large rivers with a moderate fall and a fair discharge at their lowest stage, for with a large fall the current presents a great impediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the
becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under
Question: The ability of a water spider to walk across a body of water is an example of what?
A) magnetism
B) low gravity
C) surface tension
D) high density
|
C) surface tension
|
Context:
= = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids
, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase
single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division
not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic (
the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales
it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes
index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry
##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids,
. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world
or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales of us $ 980. 5 billion with a profit margin of 10. 3 %. = = = professional societies = = = = = see also = = = = references = = = = bibliography = = = = further reading = = popular reading atkins, p. w. galileo ' s finger ( oxford university press )
Question: What are compounds with the same molecular formula but different structures and properties called?
A) substrates
B) polymers
C) monomers
D) isomers
|
D) isomers
|
Context:
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic
##ilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with
cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra
the heart beat data recorded from samples before and during meditation are analyzed using two different scaling analysis methods. these analyses revealed that mediation severely affects the long range correlation of heart beat of a normal heart. moreover, it is found that meditation induces periodic behavior in the heart beat. the complexity of the heart rate variability is quantified using multiscale entropy analysis and recurrence analysis. the complexity of the heart beat during mediation is found to be more.
required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the
anemia is a major health burden worldwide. examining the hemoglobin level of blood is an important way to achieve the diagnosis of anemia, but it requires blood drawing and a blood test. in this work we propose a non - invasive, fast, and cost - effective screening test for iron - deficiency anemia in peruvian young children. our initial results show promising evidence for detecting conjunctival pallor anemia and artificial intelligence techniques with photos taken with a popular smartphone.
, characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc β 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using
numerical model of the peripheral circulation and dynamical model of the large vessels and the heart are discussed in this paper. they combined together into the global model of blood circulation. some results of numerical simulations concerning matter transport through the human organism and heart diseases are represented in the end.
the clinical symptoms of pulmonary embolism ( pe ) are very diverse and non - specific, which makes it difficult to diagnose. in addition, pulmonary embolism has multiple triggers and is one of the major causes of vascular death. therefore, if it can be detected and treated quickly, it can significantly reduce the risk of death in hospitalized patients. in the detection process, the cost of computed tomography pulmonary angiography ( ctpa ) is high, and angiography requires the injection of contrast agents, which increase the risk of damage to the patient. therefore, this study will use a deep learning approach to detect pulmonary embolism in all patients who take a ct image of the chest using a convolutional neural network. with the proposed pulmonary embolism detection system, we can detect the possibility of pulmonary embolism at the same time as the patient ' s first ct image, and schedule the ctpa test immediately, saving more than a week of ct image screening time and providing timely diagnosis and treatment to the patient.
Question: What happens when the blood cannot reach the heart because a blood vessel is blocked?
A) heart attack
B) fast heart beat
C) heart burn
D) pass out
|
A) heart attack
|
Context:
classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used
, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase
material includes the unit cell, which is the smallest unit of a crystal lattice ( space lattice ) that repeats to make up the macroscopic crystal structure. most common structural materials include parallelpiped and hexagonal lattice types. in single crystals, the effects of the crystalline arrangement of atoms is often easy to see macroscopically, because the natural shapes of crystals reflect the atomic structure. further, physical properties are often controlled by crystalline defects. the understanding of crystal structures is an important prerequisite for understanding crystallographic defects. examples of crystal defects consist of dislocations including edges, screws, vacancies, self inter - stitials, and more that are linear, planar, and three dimensional types of defects. new and advanced materials that are being developed include nanomaterials, biomaterials. mostly, materials do not occur as a single crystal, but in polycrystalline form, as an aggregate of small crystals or grains with different orientations. because of this, the powder diffraction method, which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. most materials have a crystalline structure, but some important materials do not exhibit regular crystal structure. polymers display varying degrees of crystallinity, and many are completely non - crystalline. glass, some ceramics, and many natural materials are amorphous, not possessing any long - range order in their atomic arrangements. the study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic and mechanical descriptions of physical properties. = = = = nanostructure = = = = materials, which atoms and molecules form constituents in the nanoscale ( i. e., they form nanostructures ) are called nanomaterials. nanomaterials are the subject of intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 β 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm
. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond
##ally, because the natural shapes of crystals reflect the atomic structure. further, physical properties are often controlled by crystalline defects. the understanding of crystal structures is an important prerequisite for understanding crystallographic defects. examples of crystal defects consist of dislocations including edges, screws, vacancies, self inter - stitials, and more that are linear, planar, and three dimensional types of defects. new and advanced materials that are being developed include nanomaterials, biomaterials. mostly, materials do not occur as a single crystal, but in polycrystalline form, as an aggregate of small crystals or grains with different orientations. because of this, the powder diffraction method, which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. most materials have a crystalline structure, but some important materials do not exhibit regular crystal structure. polymers display varying degrees of crystallinity, and many are completely non - crystalline. glass, some ceramics, and many natural materials are amorphous, not possessing any long - range order in their atomic arrangements. the study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic and mechanical descriptions of physical properties. = = = = nanostructure = = = = materials, which atoms and molecules form constituents in the nanoscale ( i. e., they form nanostructures ) are called nanomaterials. nanomaterials are the subject of intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 β 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm. nanotubes have two dimensions on the nanoscale, i. e., the diameter of the tube is between 0. 1 and 100 nm ; its length could be much greater. finally, spherical nanoparticles have three dimensions on the nanoscale, i. e., the particle is between
and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has
, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest
0. 1 and 100 nm in each spatial dimension. the terms nanoparticles and ultrafine particles ( ufp ) often are used synonymously although ufp can reach into the micrometre range. the term ' nanostructure ' is often used, when referring to magnetic technology. nanoscale structure in biology is often called ultrastructure. = = = = microstructure = = = = microstructure is defined as the structure of a prepared surface or thin foil of material as revealed by a microscope above 25Γ magnification. it deals with objects from 100 nm to a few cm. the microstructure of a material ( which can be broadly classified into metallic, polymeric, ceramic and composite ) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high / low temperature behavior, wear resistance, and so on. most of the traditional materials ( such as metals and ceramics ) are microstructured. the manufacture of a perfect crystal of a material is physically impossible. for example, any crystalline material will contain defects such as precipitates, grain boundaries ( hall β petch relationship ), vacancies, interstitial atoms or substitutional atoms. the microstructure of materials reveals these larger defects and advances in simulation have allowed an increased understanding of how defects can be used to enhance material properties. = = = = macrostructure = = = = macrostructure is the appearance of a material in the scale millimeters to meters, it is the structure of the material as seen with the naked eye. = = = properties = = = materials exhibit myriad properties, including the following. mechanical properties, see strength of materials chemical properties, see chemistry electrical properties, see electricity thermal properties, see thermodynamics optical properties, see optics and photonics magnetic properties, see magnetism the properties of a material determine its usability and hence its engineering application. = = = processing = = = synthesis and processing involves the creation of a material with the desired micro - nanostructure. a material cannot be used in industry if no economically viable production method for it has been developed. therefore, developing processing methods for materials that are reasonably effective and cost - efficient is vital to the field of materials science. different materials require different processing or synthesis methods. for example, the processing of metals has historically defined eras such as the bronze age and iron age and is studied under the branch of materials science named physical metallurgy.
intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 β 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm. nanotubes have two dimensions on the nanoscale, i. e., the diameter of the tube is between 0. 1 and 100 nm ; its length could be much greater. finally, spherical nanoparticles have three dimensions on the nanoscale, i. e., the particle is between 0. 1 and 100 nm in each spatial dimension. the terms nanoparticles and ultrafine particles ( ufp ) often are used synonymously although ufp can reach into the micrometre range. the term ' nanostructure ' is often used, when referring to magnetic technology. nanoscale structure in biology is often called ultrastructure. = = = = microstructure = = = = microstructure is defined as the structure of a prepared surface or thin foil of material as revealed by a microscope above 25Γ magnification. it deals with objects from 100 nm to a few cm. the microstructure of a material ( which can be broadly classified into metallic, polymeric, ceramic and composite ) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high / low temperature behavior, wear resistance, and so on. most of the traditional materials ( such as metals and ceramics ) are microstructured. the manufacture of a perfect crystal of a material is physically impossible. for example, any crystalline material will contain defects such as precipitates, grain boundaries ( hall β petch relationship ), vacancies, interstitial atoms or substitutional atoms. the microstructure of materials reveals these larger defects and advances in simulation have allowed an increased understanding of how defects can be used to enhance material properties. = = = = macrostructure = = = = macrostructure is the appearance of a material in the scale millimeters to meters, it is the structure of
or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has no adverse effect on pilot vision. = = = = ships = = = = ships have also adopted similar methods. though the earlier american arleigh burke - class destroyers incorporated some signature - reduction features. the norwegian skjold - class corvettes was the first coastal defence and the french la fayette - class frigates the
Question: What kind of solid is characterized by an unorganized and unpredictable structure?
A) magnetic
B) amorphous
C) aqueous
D) porous
|
B) amorphous
|
Context:
is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemical
10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is
assuming only statistical mechanics and general relativity, we calculate the maximal temperature of gas of particles placed in ads space - time. if two particles with a given center of mass energy come close enough, according to classical gravity they will form a black hole. we focus only on the black holes with hawking temperature lower than the environment, because they do not disappear. the number density of such black holes grows with the temperature in the system. at a certain finite temperature, the thermodynamical system will be dominated by black holes. this critical temperature is lower than the planck temperature for the values of the ads vacuum energy density below the planck density. this result might be interesting from the ads / cft correspondence point of view, since it is different from the hawking - page phase transition, and it is not immediately clear what effect dynamically limits the maximal temperature of the thermal state on the cft side of the correspondence.
a rail gun launching at 9 mj of energy would need roughly 32 mj worth of energy from capacitors. current advances in energy storage allow for energy densities as high as 2. 5 mj / dm3, which means that a battery delivering 32 mj of energy would require a volume of 12. 8 dm3 per shot ; this is not a viable volume for use in a modern main battle tank, especially one designed to be lighter than existing models. there has even been discussion about eliminating the necessity for an outside electrical source in etc ignition by initiating the plasma cartridge through a small explosive force. furthermore, etc technology is not only applicable to solid propellants. to increase muzzle velocity even further electrothermal - chemical ignition can work with liquid propellants, although this would require further research into plasma ignition. etc technology is also compatible with existing projects to reduce the amount of recoil delivered to the vehicle while firing. understandably, recoil of a gun firing a projectile at 17 mj or more will increase directly with the increase in muzzle energy in accordance to newton ' s third law of motion and successful implementation of recoil reduction mechanisms will be vital to the installation of an etc powered gun in an existing vehicle design. for example, oto melara ' s new lightweight 120 mm l / 45 gun has achieved a recoil force of 25 t by using a longer recoil mechanism ( 550 mm ) and a pepperpot muzzle brake. reduction in recoil can also be achieved through mass attenuation of the thermal sleeve. the ability of etc technology to be applied to existing gun designs means that for future gun upgrades there ' s no longer the necessity to redesign the turret to include a larger breech or caliber gun barrel. several countries have already determined that etc technology is viable for the future and have funded indigenous projects considerably. these include the united states, germany and the united kingdom, amongst others. the united states ' xm360, which was planned to equip the future combat systems mounted combat system light tank and may be the m1 abrams ' next gun upgrade, is reportedly based on the xm291 and may include etc technology, or portions of etc technology. tests of this gun have been performed using " precision ignition " technology, which may refer to etc ignition. = = notes = = = = bibliography = = = = external links = = electromagnetic launch symposium http : / / www. powerlabs. org / electrothermal. htm
. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of
railgun currently cannot achieve a higher muzzle velocity than the amount of energy input. even at 50 % efficiency a rail gun launching a projectile with a kinetic energy of 20 mj would require an energy input into the rails of 40 mj, and 50 % efficiency has not yet been achieved. to put this into perspective, a rail gun launching at 9 mj of energy would need roughly 32 mj worth of energy from capacitors. current advances in energy storage allow for energy densities as high as 2. 5 mj / dm3, which means that a battery delivering 32 mj of energy would require a volume of 12. 8 dm3 per shot ; this is not a viable volume for use in a modern main battle tank, especially one designed to be lighter than existing models. there has even been discussion about eliminating the necessity for an outside electrical source in etc ignition by initiating the plasma cartridge through a small explosive force. furthermore, etc technology is not only applicable to solid propellants. to increase muzzle velocity even further electrothermal - chemical ignition can work with liquid propellants, although this would require further research into plasma ignition. etc technology is also compatible with existing projects to reduce the amount of recoil delivered to the vehicle while firing. understandably, recoil of a gun firing a projectile at 17 mj or more will increase directly with the increase in muzzle energy in accordance to newton ' s third law of motion and successful implementation of recoil reduction mechanisms will be vital to the installation of an etc powered gun in an existing vehicle design. for example, oto melara ' s new lightweight 120 mm l / 45 gun has achieved a recoil force of 25 t by using a longer recoil mechanism ( 550 mm ) and a pepperpot muzzle brake. reduction in recoil can also be achieved through mass attenuation of the thermal sleeve. the ability of etc technology to be applied to existing gun designs means that for future gun upgrades there ' s no longer the necessity to redesign the turret to include a larger breech or caliber gun barrel. several countries have already determined that etc technology is viable for the future and have funded indigenous projects considerably. these include the united states, germany and the united kingdom, amongst others. the united states ' xm360, which was planned to equip the future combat systems mounted combat system light tank and may be the m1 abrams ' next gun upgrade, is reportedly based on the xm291 and may include etc technology, or portions of etc technology. tests of this gun have been performed using "
not only is the bekenstein expression for the entropy of a black hole a convex function of the energy, rather than being a concave function as it must be, it predicts a final equilibrium temperature given by the harmonic mean. this violates the third law, and the principle of maximum work. the property that means are monotonically increasing functions of their argument underscores the error of transferring from temperature means to means in the internal energy when the energy is not a monotonically increasing function of temperature. whereas the former leads to an increase in entropy, the latter lead to a decrease in entropy thereby violating the second law. the internal energy cannot increase at a slower rate than the temperature itself.
may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha
, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive
the dual - caliber approach. it uses a breech that is large enough to accept 140 mm ammunition and be mounted with both a 120 mm barrel and a 135 mm or 140 mm barrel. the xm291 also mounts a larger gun tube and a larger ignition chamber than the existing m256 l / 44 main gun. through the application of electrothermal - chemical technology the xm291 has been able to achieve muzzle energy outputs that equate that to a low - level 140 mm gun, while achieving muzzle velocities greater than those of the larger 140 mm gun. although the xm291 does not mean that etc technology is viable it does offer an example that it is possible. etc requires much less energy input from outside sources, like a battery, than a railgun or a coilgun would. tests have shown that energy output by the propellant is higher than energy input from outside sources on etc guns. in comparison, a railgun currently cannot achieve a higher muzzle velocity than the amount of energy input. even at 50 % efficiency a rail gun launching a projectile with a kinetic energy of 20 mj would require an energy input into the rails of 40 mj, and 50 % efficiency has not yet been achieved. to put this into perspective, a rail gun launching at 9 mj of energy would need roughly 32 mj worth of energy from capacitors. current advances in energy storage allow for energy densities as high as 2. 5 mj / dm3, which means that a battery delivering 32 mj of energy would require a volume of 12. 8 dm3 per shot ; this is not a viable volume for use in a modern main battle tank, especially one designed to be lighter than existing models. there has even been discussion about eliminating the necessity for an outside electrical source in etc ignition by initiating the plasma cartridge through a small explosive force. furthermore, etc technology is not only applicable to solid propellants. to increase muzzle velocity even further electrothermal - chemical ignition can work with liquid propellants, although this would require further research into plasma ignition. etc technology is also compatible with existing projects to reduce the amount of recoil delivered to the vehicle while firing. understandably, recoil of a gun firing a projectile at 17 mj or more will increase directly with the increase in muzzle energy in accordance to newton ' s third law of motion and successful implementation of recoil reduction mechanisms will be vital to the installation of an etc powered gun in an existing vehicle design. for example, oto melara '
Question: An object with more mass has greater thermal energy than an object with less mass because it has more what?
A) ions
B) gravity
C) atoms
D) molecules
|
C) atoms
|
Context:
= = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids
not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic (
##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids,
single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division
possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as
it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes
another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o β h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen
##als force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants
set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature.
or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for
Question: Ether molecules have an oxygen atom and can engage in hydrogen bonding with which other molecules?
A) water
B) lipids
C) proteins
D) carbon dioxides
|
A) water
|
Context:
listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to
an attempt had been made to get algebraic structure of 2d complex harmonic oscillator.
results of an experiment are presented whose aim is to explore the relationship between respiration and cerebral oxygenation. measurements of end tidal co2 ( etco2 ) were taken simultaneously with cerebral oxygen saturation ( rso2 ) using the invos cerebral oximeter of somanetics. due to the device limitations we could explore only subjects who could perform with a breathing rate of around 2 / min or less. six subjects were used who were experienced in yoga breathing techniques. they performed an identical periodic breathing exercise including periodicity of about 2 / min. the results of all six subjects clearly show a periodic change of cerebral oxygenation with the same period as the breathing exercises. similar periodic changes in blood volume index were observed as well.
pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to guarantee care for all through a single - payer health care system or compulsory private or cooperative health insurance. this is intended to ensure that the entire population has access to medical care on the basis of need rather than ability to pay. delivery may be via private medical practices, state - owned hospitals and clinics, or charities,
we reply to the comment arxiv : quant - ph / 0702060 on our letter arxiv : quant - ph / 0603120 [ phys. rev. lett. 96, 100402 ( 2006 ) ]
the current status of the determinations of the ckm elements vub and vcb is reviewed and future prospects are discussed.
porosimetry are utilized. = = introduction = = membrane technology covers all engineering approaches for the transport of substances between two fractions with the help of semi - permeable membranes. in general, mechanical separation processes for separating gaseous or liquid streams use membrane technology. in recent years, different methods have been used to remove environmental pollutants, like adsorption, oxidation, and membrane separation. different pollution occurs in the environment like air pollution, waste water pollution etc. as per industry requirement to prevent industrial pollution because more than 70 % of environmental pollution occurs due to industries. it is their responsibility to follow government rules of the air pollution control & prevention act 1981 to maintain and prevent the harmful chemical release into the environment. make sure to do prevention & safety processes after that industries are able to release their waste in the environment. biomass - based membrane technology is one of the most promising technologies for use as a pollutants removal weapon because it has low cost, more efficiency, & lack of secondary pollutants. typically polysulfone, polyvinylidene fluoride, and polypropylene are used in the membrane preparation process. these membrane materials are non - renewable and non - biodegradable which create harmful environmental pollution. researchers are trying to find a solution to synthesize an eco - friendly membrane which avoids environmental pollution. synthesis of biodegradable material with the help of naturally available material such as biomass - based membrane synthesis can be used to remove pollutants. = = = membrane overview = = = membrane separation processes operate without heating and therefore use less energy than conventional thermal separation processes such as distillation, sublimation or crystallization. the separation process is purely physical and both fractions ( permeate and retentate ) can be obtained as useful products. cold separation using membrane technology is widely used in the food technology, biotechnology and pharmaceutical industries. furthermore, using membranes enables separations to take place that would be impossible using thermal separation methods. for example, it is impossible to separate the constituents of azeotropic liquids or solutes which form isomorphic crystals by distillation or recrystallization but such separations can be achieved using membrane technology. depending on the type of membrane, the selective separation of certain individual substances or substance mixtures is possible. important technical applications include the production of drinking water by reverse osmosis. in waste water treatment, membrane technology is becoming increasingly important. ultra / microfiltration can be very effective in removing colloids and macro
required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the
##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently
the muck tube. the pressurized air flow must be constant to ensure regular air changes for the workers and prevent excessive inflow of mud or water at the base of the caisson. when the caisson hits bedrock, the sandhogs exit through the airlock and fill the box with concrete, forming a solid foundation pier. a pneumatic ( compressed - air ) caisson has the advantage of providing dry working conditions, which is better for placing concrete. it is also well suited for foundations for which other methods might cause settlement of adjacent structures. construction workers who leave the pressurized environment of the caisson must decompress at a rate that allows symptom - free release of inert gases dissolved in the body tissues if they are to avoid decompression sickness, a condition first identified in caisson workers, and originally named " caisson disease " in recognition of the occupational hazard. construction of the brooklyn bridge, which was built with the help of pressurised caissons, resulted in numerous workers being either killed or permanently injured by caisson disease during its construction. barotrauma of the ears, sinus cavities and lungs and dysbaric osteonecrosis are other risks. = = other uses = = caissons have also been used in the installation of hydraulic elevators where a single - stage ram is installed below the ground level. caissons, codenamed phoenix, were an integral part of the mulberry harbours used during the world war ii allied invasion of normandy. = = other meanings = = boat lift caissons : the word caisson is also used as a synonym for the moving trough part of caisson locks, canal lifts and inclines in which boats and ships rest while being lifted from one canal elevation to another ; the water is retained on the inside of the caisson, or excluded from the caisson, according to the respective operating principle. structural caissons : caisson is also sometimes used as a colloquial term for a reinforced concrete structure formed by pouring into a hollow cylindrical form, typically by placing a caisson form below grade in an open excavation and pouring once backfill is complete, or by drilling at grade, although this can be problematic with deep caissons, as unsupported excavations can collapse before the caisson form can be inserted. in this manner, the earth placed around the empty caisson form provides stability and strength, allowing concrete to be poured with fewer complications and with less risk of a
Question: What basic structures of the nervous system innervate the muscles of the respiratory system and are responsible for controlling and regulating pulmonary ventilation?
A) enzymes
B) toxins
C) neurons
D) ions
|
C) neurons
|
Context:
= = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling
remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling and the risks of creating more pollution. = = = e - waste recycling = = = the recycling of electronic waste ( e - waste ) has seen significant technological advancements due to increasing environmental concerns and the growing volume of electronic product disposals. traditional e - waste recycling methods, which often involve manual disassemb
##nts from the air to reduce the potential adverse effects on humans and the environment. the process of air purification may be performed using methods such as mechanical filtration, ionization, activated carbon adsorption, photocatalytic oxidation, and ultraviolet light germicidal irradiation. = = = sewage treatment = = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the
porosimetry are utilized. = = introduction = = membrane technology covers all engineering approaches for the transport of substances between two fractions with the help of semi - permeable membranes. in general, mechanical separation processes for separating gaseous or liquid streams use membrane technology. in recent years, different methods have been used to remove environmental pollutants, like adsorption, oxidation, and membrane separation. different pollution occurs in the environment like air pollution, waste water pollution etc. as per industry requirement to prevent industrial pollution because more than 70 % of environmental pollution occurs due to industries. it is their responsibility to follow government rules of the air pollution control & prevention act 1981 to maintain and prevent the harmful chemical release into the environment. make sure to do prevention & safety processes after that industries are able to release their waste in the environment. biomass - based membrane technology is one of the most promising technologies for use as a pollutants removal weapon because it has low cost, more efficiency, & lack of secondary pollutants. typically polysulfone, polyvinylidene fluoride, and polypropylene are used in the membrane preparation process. these membrane materials are non - renewable and non - biodegradable which create harmful environmental pollution. researchers are trying to find a solution to synthesize an eco - friendly membrane which avoids environmental pollution. synthesis of biodegradable material with the help of naturally available material such as biomass - based membrane synthesis can be used to remove pollutants. = = = membrane overview = = = membrane separation processes operate without heating and therefore use less energy than conventional thermal separation processes such as distillation, sublimation or crystallization. the separation process is purely physical and both fractions ( permeate and retentate ) can be obtained as useful products. cold separation using membrane technology is widely used in the food technology, biotechnology and pharmaceutical industries. furthermore, using membranes enables separations to take place that would be impossible using thermal separation methods. for example, it is impossible to separate the constituents of azeotropic liquids or solutes which form isomorphic crystals by distillation or recrystallization but such separations can be achieved using membrane technology. depending on the type of membrane, the selective separation of certain individual substances or substance mixtures is possible. important technical applications include the production of drinking water by reverse osmosis. in waste water treatment, membrane technology is becoming increasingly important. ultra / microfiltration can be very effective in removing colloids and macro
onset of electro - chemical corrosion. similar problems are encountered in coastal and offshore structures. = = = anti - fouling = = = anti - fouling is the process of eliminating obstructive organisms from essential components of seawater systems. depending on the nature and location of marine growth, this process is performed in a number of different ways : marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. electro - chlorination involves running high electrical current through sea water, altering the water ' s chemical composition to create sodium hypochlorite, purging any bio - matter. an electrolytic method of anti - fouling involves running electrical current through two anodes ( scardino, 2009 ). these anodes typically consist of copper and aluminum ( or alternatively, iron ). the first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio - matter. the second metal, aluminum, coats the inside of the pipes to prevent corrosion. other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship ' s hull. this growth interferes with the smoothness and uniformity of the ship ' s hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel - efficient. marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms. = = = pollution control = = = = = = = sulfur emission = = = = the burning of marine fuels releases harmful pollutants into the atmosphere. ships burn marine diesel in addition to heavy fuel oil. heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. however, heavy fuel oil may only be burned in international waters due to the pollution created. it is commercially advantageous due to the cost effectiveness compared to other marine fuels. it is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 ( smith, 2018 ). = = = = oil and water discharge = = = = water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm ( parts per million ) of oil to be discharged. water is tested
the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process. the disc tube module uses a cross - flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs. = = membrane performance and governing equations = = the selection of synthetic membranes for a targeted separation process is usually based on few requirements. membranes have to provide enough mass transfer area to process large amounts of feed stream. the selected membrane has to have high selectivity ( rejection ) properties for certain particles ; it has to resist fouling and to have high mechanical stability. it also needs to be rep
s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on
earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on earth, though it does include human effects on the environment. = = methodology = = methodologies vary depending on the nature of the subjects being studied. studies typically fall into one of three categories : observational, experimental, or theoretical. earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena (
types may be unsigned ( capable of representing only non - negative integers ) or signed ( capable of representing negative integers as well ). an integer value is typically specified in the source code of a program as a sequence of digits optionally prefixed with + or β. some programming languages allow other notations, such as hexadecimal ( base 16 ) or octal ( base 8 ). some programming languages also permit digit group separators. the internal representation of this datum is the way the value is stored in the computer ' s memory. unlike mathematical integers, a typical datum in a computer has some minimal and maximum possible value. the most common representation of a positive integer is a string of bits, using the binary numeral system. the order of the memory bytes storing the bits varies ; see endianness. the width, precision, or bitness of an integral type is the number of bits in its representation. an integral type with n bits can encode 2n numbers ; for example an unsigned type typically represents the non - negative values 0 through 2n β 1. other encodings of integer values to bit patterns are sometimes used, for example binary - coded decimal or gray code, or as printed character codes such as ascii. there are four well - known ways to represent signed numbers in a binary computing system. the most common is two ' s complement, which allows a signed integral type with n bits to represent numbers from β2 ( nβ1 ) through 2 ( nβ1 ) β 1. two ' s complement arithmetic is convenient because there is a perfect one - to - one correspondence between representations and values ( in particular, no separate + 0 and β0 ), and because addition, subtraction and multiplication do not need to distinguish between signed and unsigned types. other possibilities include offset binary, sign - magnitude, and ones ' complement. some computer languages define integer sizes in a machine - independent way ; others have varying definitions depending on the underlying processor word size. not all language implementations define variables of all integer sizes, and defined sizes may not even be distinct in a particular implementation. an integer in one programming language may be a different size in a different language, on a different processor, or in an execution context of different bitness ; see Β§ words. some older computer architectures used decimal representations of integers, stored in binary - coded decimal ( bcd ) or other format. these values generally require data sizes of 4 bits per decimal digit ( sometimes called a nibble ), usually with additional bits
line satisfying some constraints ; in modern terminology, a ruled surface is a surface, which is a union of lines. = = terminology = = there are several kinds of surfaces that are considered in mathematics. an unambiguous terminology is thus necessary to distinguish them when needed. a topological surface is a surface that is a manifold of dimension two ( see Β§ topological surface ). a differentiable surface is a surfaces that is a differentiable manifold ( see Β§ differentiable surface ). every differentiable surface is a topological surface, but the converse is false. a " surface " is often implicitly supposed to be contained in a euclidean space of dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a connected open subset of r2 is a topological surface. if the function is differentiable, the graph is a differentiable surface. a plane is both an algebraic surface and a differentiable surface. it is also a ruled surface and a surface of revolution. a circular cylinder ( that is, the locus of a line crossing a circle and parallel to a given direction ) is an algebraic surface and a differentiable surface. a circular cone ( locus of a line crossing a circle, and passing through a fixed point, the apex, which is outside the plane of the circle ) is an algebraic surface which is not a differentiable surface. if one removes the apex, the remainder of the cone is the union of two differentiable surfaces. the surface of a polyhedron is a topological surface, which is neither a differentiable surface nor an algebraic surface. a hyperbolic paraboloid ( the graph of the function z = xy ) is a differentiable surface and an algebraic surface. it is also a ruled surface, and, for this reason, is often used in architecture. a two - sheet hyperboloid is an algebraic surface and the union of two non - intersecting differentiable surfaces. = = parametric surface = = a parametric surface is the image of an open subset of the euclidean plane ( typically r 2 { \ displaystyle \ mathbb { r } ^ { 2 } } ) by a continuous function, in a topological space, generally a euclidean space of dimension at least three. usually the function is supposed to be continuously differentiable, and this will be always the case in this
Question: Pollutants in surface water can filter into the ground and enter a what?
A) combustion aquifer
B) turbine
C) groundwater aquifer
D) hydro plant
|
C) groundwater aquifer
|
Context:
there are a few different mechanisms that can cause white dwarf stars to vary in brightness, providing opportunities to probe the physics, structures, and formation of these compact stellar remnants. the observational characteristics of the three most common types of white dwarf variability are summarized : stellar pulsations, rotation, and ellipsoidal variations from tidal distortion in binary systems. stellar pulsations are emphasized as the most complex type of variability, which also has the greatest potential to reveal the conditions of white dwarf interiors.
the infrared excess around the white dwarf g29 - 38 can be explained by emission from an opaque flat ring of dust with an inner radius 0. 14 of the radius of the sun and an outer radius approximately equal to the sun ' s. this ring lies within the roche region of the white dwarf where an asteroid could have been tidally destroyed, producing a system reminiscent of saturn ' s rings. accretion onto the white dwarf from this circumstellar dust can explain the observed calcium abundance in the atmosphere of g29 - 38. either as a bombardment by a series of asteroids or because of one large disruption, the total amount of matter accreted onto the white dwarf may have been comparable to the total mass of asteroids in the solar system, or, equivalently, about 1 % of the mass in the asteroid belt around the main sequence star zeta lep.
two planetary nebulae are shown to belong to the sagittarius dwarf galaxy, on the basis of their radial velocities. this is only the second dwarf spheroidal galaxy, after fornax, found to contain planetary nebulae. their existence confirms that this galaxy is at least as massive as the fornax dwarf spheroidal which has a single planetary nebula, and suggests a mass of a few times 10 * * 7 solar masses. the two planetary nebulae are located along the major axis of the galaxy, near the base of the tidal tail. there is a further candidate, situated at a very large distance along the direction of the tidal tail, for which no velocity measurement is available. the location of the planetary nebulae and globular clusters of the sagittarius dwarf galaxy suggests that a significant fraction of its mass is contained within the tidal tail.
one of the greatest discoveries of modern times is that of the expanding universe, almost invariably attributed to hubble ( 1929 ). what is not widely known is that the original treatise by lemaitre ( 1927 ) contained a rich fusion of both theory and of observation. stiglers law of eponymy is yet again affirmed : no scientific discovery is named after its original discoverer ( merton, 1957 ). an appeal is made for a lemaitre telescope, to honour the discoverer of the expanding universe.
while the modern stellar imf shows a rapid decline with increasing mass, theoretical investigations suggest that very massive stars ( > 100 solar masses ) may have been abundant in the early universe. other calculations also indicate that, lacking metals, these same stars reach their late evolutionary stages without appreciable mass loss. after central helium burning, they encounter the electron - positron pair instability, collapse, and burn oxygen and silicon explosively. if sufficient energy is released by the burning, these stars explode as brilliant supernovae with energies up to 100 times that of an ordinary core collapse supernova. they also eject up to 50 solar masses of radioactive ni56. stars less massive than 140 solar masses or more massive than 260 solar masses should collapse into black holes instead of exploding, thus bounding the pair - creation supernovae with regions of stellar mass that are nucleosynthetically sterile. pair - instability supernovae might be detectable in the near infrared out to redshifts of 20 or more and their ashes should leave a distinctive nucleosynthetic pattern.
two types of stars are known to have strong, large scale magnetic fields : the main sequence ap stars and the magnetic white dwarfs. this suggest that the former might be the progenitors of the latter. in order to test this idea, i have carried out a search for large scale magnetic fields in stars with evolutionary states which are intermediate, i. e. in horizontal branch stars and in hot subdwarfs.
early data taken during commissioning of the sdss have resulted in the discovery of a very cool white dwarf. it appears to have stronger collision induced absorption from molecular hydrogen than any other known white dwarf, suggesting it has a cooler temperature than any other. while its distance is presently unknown, it has a surprisingly small proper motion, making it unlikely to be a halo star. an analysis of white dwarf cooling times suggests that this object may be a low - mass star with a helium core. the sdss imaging and spectroscopy also recovered lhs 3250, the coolest previously known white dwarf, indicating that the sdss will be an effective tool for identifying these extreme objects.
the transiting dust clouds that orbit the white dwarf j0328 - 1219 are devoid of small particles ( < 0. 1 micron ). observations show that fade amount doesn ' t depend on wavelength. this finding resembles a similar observation for white dwarf wd 1145 + 017, but the explanations for an absence of small particles in the two white dwarf systems may differ due to their different distances from the star.
so mars below means blood and war ", is a false cause fallacy. : 26 many astrologers claim that astrology is scientific. if one were to attempt to try to explain it scientifically, there are only four fundamental forces ( conventionally ), limiting the choice of possible natural mechanisms. : 65 some astrologers have proposed conventional causal agents such as electromagnetism and gravity. the strength of these forces drops off with distance. : 65 scientists reject these proposed mechanisms as implausible since, for example, the magnetic field, when measured from earth, of a large but distant planet such as jupiter is far smaller than that produced by ordinary household appliances. astronomer phil plait noted that in terms of magnitude, the sun is the only object with an electromagnetic field of note, but astrology isn ' t based just off the sun alone. : 65 while astrologers could try to suggest a fifth force, this is inconsistent with the trends in physics with the unification of electromagnetism and the weak force into the electroweak force. if the astrologer insisted on being inconsistent with the current understanding and evidential basis of physics, that would be an extraordinary claim. : 65 it would also be inconsistent with the other forces which drop off with distance. : 65 if distance is irrelevant, then, logically, all objects in space should be taken into account. : 66 carl jung sought to invoke synchronicity, the claim that two events have some sort of acausal connection, to explain the lack of statistically significant results on astrology from a single study he conducted. however, synchronicity itself is considered neither testable nor falsifiable. the study was subsequently heavily criticised for its non - random sample and its use of statistics and also its lack of consistency with astrology. = = psychology = = psychological studies have not found any robust relationship between astrological signs and life outcomes. for example, a study showed that zodiac signs are no more effective than random numbers in predicting subjective well - being and quality of life. it has also been shown that confirmation bias is a psychological factor that contributes to belief in astrology. : 344 : 180 β 181 : 42 β 48 confirmation bias is a form of cognitive bias. : 553 from the literature, astrology believers often tend to selectively remember those predictions that turned out to be true and do not remember those that turned out false. another, separate, form of confirmation bias also plays a role, where believers often fail to
( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non -
Question: What is the most common cause of dwarfism?
A) retinopathy
B) hypothyroidism
C) achondroplasia
D) deformity
|
C) achondroplasia
|
Context:
has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named
as subjects perceive the sensory world, different stimuli elicit a number of neural representations. here, a subjective distance between stimuli is defined, measuring the degree of similarity between the underlying representations. as an example, the subjective distance between different locations in space is calculated from the activity of rodent hippocampal place cells, and lateral septal cells. such a distance is compared to the real distance, between locations. as the number of sampled neurons increases, the subjective distance shows a tendency to resemble the metrics of real space.
the belief that three dimensional space is infinite and flat in the absence of matter is a canon of physics that has been in place since the time of newton. the assumption that space is flat at infinity has guided several modern physical theories. but what do we actually know to support this belief? a simple argument, called the " telescope principle ", asserts that all that we can know about space is bounded by observations. physical theories are best when they can be verified by observations, and that should also apply to the geometry of space. the telescope principle is simple to state, but it leads to very interesting insights into relativity and yang - mills theory via projective equivalences of their respective spaces.
the ratio of the self - gravitational energy density of the scattering particles in the universe to the energy density of the scattered photons in the cosmic microwave background ( cmb ) is the same in any volume of space. these two energy densities are equal at a radiation temperature on the order of the present cmb temperature.
the manufacturer. one common distinction is by nominal pore size. it describes the maximum pore size distribution and gives only vague information about the retention capacity of a membrane. the exclusion limit or " cut - off " of the membrane is usually specified in the form of nmwc ( nominal molecular weight cut - off, or mwco, molecular weight cut off, with units in dalton ). it is defined as the minimum molecular weight of a globular molecule that is retained to 90 % by the membrane. the cut - off, depending on the method, can by converted to so - called d90, which is then expressed in a metric unit. in practice the mwco of the membrane should be at least 20 % lower than the molecular weight of the molecule that is to be separated. using track etched mica membranes beck and schultz demonstrated that hindered diffusion of molecules in pores can be described by the rankin equation. filter membranes are divided into four classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filt
g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends
quantum mechanics is interpreted by the adjacent vacuum that behaves as a virtual particle to be absorbed and emitted by its matter. as described in the vacuum universe model, the adjacent vacuum is derived from the pre - inflationary universe in which the pre - adjacent vacuum is absorbed by the pre - matter. this absorbed pre - adjacent vacuum is emitted to become the added space for the inflation in the inflationary universe whose space - time is separated from the pre - inflationary universe. this added space is the adjacent vacuum. the absorption of the adjacent vacuum as the added space results in the adjacent zero space ( no space ), quantum mechanics is the interaction between matter and the three different types of vacuum : the adjacent vacuum, the adjacent zero space, and the empty space. the absorption of the adjacent vacuum results in the empty space superimposed with the adjacent zero space, confining the matter in the form of particle. when the absorbed vacuum is emitted, the adjacent vacuum can be anywhere instantly in the empty space superimposed with the adjacent zero space where any point can be the starting point ( zero point ) of space - time. consequently, the matter that expands into the adjacent vacuum has the probability to be anywhere instantly in the form of wavefunction. in the vacuum universe model, the universe not only gains its existence from the vacuum but also fattens itself with the vacuum. during the inflation, the adjacent vacuum also generates the periodic table of elementary particles to account for all elementary particles and their masses in a good agreement with the observed values.
of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive
the thickness and the density of the material to be measured. the method is used for containers of liquids or of grainy substances thickness gauges : if the material is of constant density, the signal measured by the radiation detector depends on the thickness of the material. this is useful for continuous production, like of paper, rubber, etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison, the other is open to ambient air ; it has a gridded electrode. when smoke enters the open chamber, the current is disrupted as the smoke particles attach to the charged ions and restore them to a neutral electrical state. this reduces the current in the open chamber. when the current drops below a certain threshold, the
is called its bandwidth ( bw ). for any given signal - to - noise ratio, a given bandwidth can carry the same amount of information regardless of where in the radio frequency spectrum it is located ; bandwidth is a measure of information - carrying capacity. the bandwidth required by a radio transmission depends on the data rate of the information being sent, and the spectral efficiency of the modulation method used ; how much data it can transmit in each unit of bandwidth. different types of information signals carried by radio have different data rates. for example, a television signal has a greater data rate than an audio signal. the radio spectrum, the total range of radio frequencies that can be used for communication in a given area, is a limited resource. each radio transmission occupies a portion of the total bandwidth available. radio bandwidth is regarded as an economic good which has a monetary cost and is in increasing demand. in some parts of the radio spectrum, the right to use a frequency band or even a single radio channel is bought and sold for millions of dollars. so there is an incentive to employ technology to minimize the bandwidth used by radio services. a slow transition from analog to digital radio transmission technologies began in the late 1990s. part of the reason for this is that digital modulation can often transmit more information ( a greater data rate ) in a given bandwidth than analog modulation, by using data compression algorithms, which reduce redundancy in the data to be sent, and more efficient modulation. other reasons for the transition is that digital modulation has greater noise immunity than analog, digital signal processing chips have more power and flexibility than analog circuits, and a wide variety of types of information can be transmitted using the same digital modulation. because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to use it more effectively is driving many additional radio innovations such as trunked radio systems, spread spectrum ( ultra - wideband ) transmission, frequency reuse, dynamic spectrum management, frequency pooling, and cognitive radio. = = = itu frequency bands = = = the itu arbitrarily divides the radio spectrum into 12 bands, each beginning at a wavelength which is a power of ten ( 10n ) metres, with corresponding frequency of 3 times a power of ten, and each covering a decade of frequency or wavelength. each of these bands has a traditional name : it can be seen that the bandwidth, the range of frequencies, contained in each band is not equal but increases exponentially as the
Question: What describes how much matter is in a certain amount of space?
A) volume
B) density
C) mass
D) viscosity
|
B) density
|
Context:
as subjects perceive the sensory world, different stimuli elicit a number of neural representations. here, a subjective distance between stimuli is defined, measuring the degree of similarity between the underlying representations. as an example, the subjective distance between different locations in space is calculated from the activity of rodent hippocampal place cells, and lateral septal cells. such a distance is compared to the real distance, between locations. as the number of sampled neurons increases, the subjective distance shows a tendency to resemble the metrics of real space.
river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu shastra ', suggests a thorough understanding of materials engineering, hydrology, and sanitation. = = = = china = = = = the chinese made many first - known discoveries and developments. major technological contributions from china include the earliest known form of the binary code and epigenetic sequencing, early seismological detectors, matches, paper, helicopter rotor, raised - relief map, the double - action piston pump, cast iron, water powered blast furnace bellows, the iron plough, the multi - tube seed drill, the wheelbarrow, the parachute, the compass, the rudder, the crossbow, the south pointing chariot and gunpowder
three of what is called the six simple machines, from which all machines are based. these machines are the inclined plane, the wedge, and the lever, which allowed the ancient egyptians to move millions of limestone blocks which weighed approximately 3. 5 tons ( 7, 000 lbs. ) each into place to create structures like the great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu
great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu shastra ', suggests a thorough understanding of materials engineering, hydrology, and sanitation. = = = = china = = = = the chinese made many first - known discoveries and developments. major technological contributions from china include the earliest known form of the binary code and epigenetic sequencing, early seismological detectors,
the action potential is widely considered a purely electrical phenomenon. however, one also finds mechanical and thermal changes that can be observed experimentally. in particular, nerve membranes become thicker and axons contract. the spatial length of the action potential can be quite large, ranging from millimeters to many centimeters. this suggests to employ macroscopic thermodynamics methods to understand its properties. the pulse length is several orders of magnitude larger than the synaptic gap, larger than the distance of the nodes of ranvier, and even larger than the size of many neurons such as pyramidal cells or brain stem motor neurons. here, we review the mechanical changes in nerves, theoretical possibilities to explain them, and implications of a mechanical nerve pulse for the neuron and for the brain. in particular, the contraction of nerves gives rise to the possibility of fast mechanical synapses.
oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and
, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the widespread application of the factory system. this was followed a century later by the second industrial revolution which led to rapid scientific discovery, standardization, and mass production. new technologies were developed, including sewage systems, electricity, light bulbs, electric motors, railroads, automobiles, and airplanes. these technological advances led to significant developments in medicine
octet hyperon charge radii are calculated in a chiral constituent quark model including electromagnetic exchange currents between quarks. in impulse approximation one observes a decrease of the hyperon charge radii with increasing strangeness. this effect is reduced by exchange currents. due to exchange currents, the charge radius of the negatively charged hyperons are close to the proton charge radius.
earliest record of a ship under sail is that of a nile boat dating to around 7, 000 bce. from prehistoric times, egyptians likely used the power of the annual flooding of the nile to irrigate their lands, gradually learning to regulate much of it through purposely built irrigation channels and " catch " basins. the ancient sumerians in mesopotamia used a complex system of canals and levees to divert water from the tigris and euphrates rivers for irrigation. archaeologists estimate that the wheel was invented independently and concurrently in mesopotamia ( in present - day iraq ), the northern caucasus ( maykop culture ), and central europe. time estimates range from 5, 500 to 3, 000 bce with most experts putting it closer to 4, 000 bce. the oldest artifacts with drawings depicting wheeled carts date from about 3, 500 bce. more recently, the oldest - known wooden wheel in the world as of 2024 was found in the ljubljana marsh of slovenia ; austrian experts have established that the wheel is between 5, 100 and 5, 350 years old. the invention of the wheel revolutionized trade and war. it did not take long to discover that wheeled wagons could be used to carry heavy loads. the ancient sumerians used a potter ' s wheel and may have invented it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains,
ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis
Question: Axons pass what on to other cells?
A) myelin impulses
B) synthesis impulses
C) calcium impulses
D) nerve impulses
|
D) nerve impulses
|
Context:
of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles
( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by
the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted β the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilis
protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = mei
it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ft
activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a
cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing
, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in
to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population, darwin argued that in the natural world, it was nature that played the role of humans in selecting for specific traits. darwin inferred that individuals who possessed heritable traits better adapted to their environments are more likely to survive and produce more offspring than other individuals. he further inferred that this would lead to the
for nucleotide synthesis. hence, unfused myeloma cells die, as they cannot produce nucleotides by the de novo or salvage pathways because they lack hgprt. removal of the unfused myeloma cells is necessary because they have the potential to outgrow other cells, especially weakly established hybridomas. unfused b cells die as they have a short life span. in this way, only the b cell - myeloma hybrids survive, since the hgprt gene coming from the b cells is functional. these cells produce antibodies ( a property of b cells ) and are immortal ( a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectrometry facilitates screening and ranking of clones which bind to the native ( non - denaturated ) forms of antigen proteins. flow cytometry screening has been used for primary screening of a large number ( ~ 1000 ) of hybridoma clones recognizing the native form of the antigen on the cell surface. in the flow cytometry - based screening, a mixture of antigen - negative cells and antigen - positive cells is used as the antigen to be tested for each hybridoma supernatant sample. the b cell that produces the desired antibodies can be cloned to produce many identical daughter clones. supplemental media containing interleukin - 6 ( such as briclone ) are essential for this step. once a hybridoma colony is established, it will continually grow in culture medium like rpmi - 1640 ( with antibiotics and fetal bovine serum ) and produce antibodies. multiwell plates are used initially to grow the hybridomas, and after selection,
Question: Sister chromatids separate and move to opposite poles of the cell in the third phase of what process?
A) mitosis
B) cytokinesis
C) meiosis
D) epistasis
|
A) mitosis
|
Context:
an important question of theoretical physics is whether sound is able to propagate in vacuums at all and if this is the case, then it must lead to the reinterpretation of one zero - restmass particle which corresponds to vacuum - sound waves. taking the electron - neutrino as the corresponding particle, its observed non - vanishing rest - energy may only appear for neutrino - propagation inside material media. the idea may also influence the physics of dense matter, restricting the maximum speed of sound, both in vacuums and in matter to the speed of light.
as subjects perceive the sensory world, different stimuli elicit a number of neural representations. here, a subjective distance between stimuli is defined, measuring the degree of similarity between the underlying representations. as an example, the subjective distance between different locations in space is calculated from the activity of rodent hippocampal place cells, and lateral septal cells. such a distance is compared to the real distance, between locations. as the number of sampled neurons increases, the subjective distance shows a tendency to resemble the metrics of real space.
missiles, ships, vehicles, and also to map weather patterns and terrain. a radar set consists of a transmitter and receiver. the transmitter emits a narrow beam of radio waves which is swept around the surrounding space. when the beam strikes a target object, radio waves are reflected back to the receiver. the direction of the beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it
earth. each satellite has an onboard atomic clock and transmits a continuous radio signal containing a precise time signal as well as its current position. two frequencies are used, 1. 2276 and 1. 57542 ghz. since the velocity of radio waves is virtually constant, the delay of the radio signal from a satellite is proportional to the distance of the receiver from the satellite. by receiving the signals from at least four satellites a gps receiver can calculate its position on earth by comparing the arrival time of the radio signals. since each satellite ' s position is known precisely at any given time, from the delay the position of the receiver can be calculated by a microprocessor in the receiver. the position can be displayed as latitude and longitude, or as a marker on an electronic map. gps receivers are incorporated in almost all cellphones and in vehicles such as automobiles, aircraft, and ships, and are used to guide drones, missiles, cruise missiles, and even artillery shells to their target, and handheld gps receivers are produced for hikers and the military. radio beacon β a fixed location terrestrial radio transmitter which transmits a continuous radio signal used by aircraft and ships for navigation. the locations of beacons are plotted on navigational maps used by aircraft and ships. vhf omnidirectional range ( vor ) β a worldwide aircraft radio navigation system consisting of fixed ground radio beacons transmitting between 108. 00 and 117. 95 mhz in the very high frequency ( vhf ) band. an automated navigational instrument on the aircraft displays a bearing to a nearby vor transmitter. a vor beacon transmits two signals simultaneously on different frequencies. a directional antenna transmits a beam of radio waves that rotates like a lighthouse at a fixed rate, 30 times per second. when the directional beam is facing north, an omnidirectional antenna transmits a pulse. by measuring the difference in phase of these two signals, an aircraft can determine its bearing ( or " radial " ) from the station accurately. by taking a bearing on two vor beacons an aircraft can determine its position ( called a " fix " ) to an accuracy of about 90 metres ( 300 ft ). most vor beacons also have a distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate
beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar β an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical
the higher microwave band 3 β 6 ghz, and millimeter wave band, around 28 and 39 ghz. since these frequencies have a shorter range than previous cellphone bands, the cells will be smaller than the cells in previous cellular networks which could be many miles across. millimeter - wave cells will only be a few blocks long, and instead of a cell base station and antenna tower, they will have many small antennas attached to utility poles and buildings. satellite phone ( satphone ) β a portable wireless telephone similar to a cell phone, connected to the telephone network through a radio link to an orbiting communications satellite instead of through cell towers. they are more expensive than cell phones ; but their advantage is that, unlike a cell phone which is limited to areas covered by cell towers, satphones can be used over most or all of the geographical area of the earth. in order for the phone to communicate with a satellite using a small omnidirectional antenna, first - generation systems use satellites in low earth orbit, about 400 β 700 miles ( 640 β 1, 100 km ) above the surface. with an orbital period of about 100 minutes, a satellite can only be in view of a phone for about 4 β 15 minutes, so the call is " handed off " to another satellite when one passes beyond the local horizon. therefore, large numbers of satellites, about 40 to 70, are required to ensure that at least one satellite is in view continuously from each point on earth. other satphone systems use satellites in geostationary orbit in which only a few satellites are needed, but these cannot be used at high latitudes because of terrestrial interference. cordless phone β a landline telephone in which the handset is portable and communicates with the rest of the phone by a short - range full duplex radio link, instead of being attached by a cord. both the handset and the base station have low - power radio transceivers that handle the short - range bidirectional radio link. as of 2022, cordless phones in most nations use the dect transmission standard. land mobile radio system β short - range mobile or portable half - duplex radio transceivers operating in the vhf or uhf band that can be used without a license. they are often installed in vehicles, with the mobile units communicating with a dispatcher at a fixed base station. special systems with reserved frequencies are used by first responder services ; police, fire, ambulance, and emergency services, and other government services. other systems are made for
beacon transmits two signals simultaneously on different frequencies. a directional antenna transmits a beam of radio waves that rotates like a lighthouse at a fixed rate, 30 times per second. when the directional beam is facing north, an omnidirectional antenna transmits a pulse. by measuring the difference in phase of these two signals, an aircraft can determine its bearing ( or " radial " ) from the station accurately. by taking a bearing on two vor beacons an aircraft can determine its position ( called a " fix " ) to an accuracy of about 90 metres ( 300 ft ). most vor beacons also have a distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) β legacy fixed radio beacons used before the vo
the extremely small probability of tunneling through an almost classical potential barrier may become not small under the action of the specially adapted non - stationary signal which selects the certain particle energy e _ r. for particle energies close to this value, the tunneling rate is not small during a finite interval of time and has a very sharp peak at the energy e _ r. after entering inside the barrier, the particle emits electromagnetic quanta and exits the barrier with a lower energy. the signal amplitude can be much less compared to the field of the static barrier. this phenomenon can be called the euclidean resonance since the under - barrier motion occurs in imaginary time. the resonance may stimulate chemical and biochemical reactions in a selective way by adapting the signal to a certain particular chemical bond. the resonance may be used in search of the soft alpha - decay for which a conventional observation is impossible due to an extremely small decay rate.
distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) β legacy fixed radio beacons used before the vor system that transmit a simple signal in all directions for aircraft or ships to use for radio direction finding. aircraft use automatic direction finder ( adf ) receivers which use a directional antenna to determine the bearing to the beacon. by taking bearings on two beacons they can determine their position. ndbs use frequencies between 190 and 1750 khz in the lf and mf bands which propagate beyond the horizon as ground waves or skywaves much farther than vor beacons. they transmit a callsign consisting of one to 3 morse code letters as an identifier. emergency locator beacon β a portable battery powered radio
metres ) by small portable navigation instruments, by timing the arrival of radio signals from the satellites. these are the most widely used navigation systems today. the main satellite navigation systems are the us global positioning system ( gps ), russia ' s glonass, china ' s beidou navigation satellite system ( bds ) and the european union ' s galileo. global positioning system ( gps ) β the most widely used satellite navigation system, maintained by the us air force, which uses a constellation of 31 satellites in low earth orbit. the orbits of the satellites are distributed so at any time at least four satellites are above the horizon over each point on earth. each satellite has an onboard atomic clock and transmits a continuous radio signal containing a precise time signal as well as its current position. two frequencies are used, 1. 2276 and 1. 57542 ghz. since the velocity of radio waves is virtually constant, the delay of the radio signal from a satellite is proportional to the distance of the receiver from the satellite. by receiving the signals from at least four satellites a gps receiver can calculate its position on earth by comparing the arrival time of the radio signals. since each satellite ' s position is known precisely at any given time, from the delay the position of the receiver can be calculated by a microprocessor in the receiver. the position can be displayed as latitude and longitude, or as a marker on an electronic map. gps receivers are incorporated in almost all cellphones and in vehicles such as automobiles, aircraft, and ships, and are used to guide drones, missiles, cruise missiles, and even artillery shells to their target, and handheld gps receivers are produced for hikers and the military. radio beacon β a fixed location terrestrial radio transmitter which transmits a continuous radio signal used by aircraft and ships for navigation. the locations of beacons are plotted on navigational maps used by aircraft and ships. vhf omnidirectional range ( vor ) β a worldwide aircraft radio navigation system consisting of fixed ground radio beacons transmitting between 108. 00 and 117. 95 mhz in the very high frequency ( vhf ) band. an automated navigational instrument on the aircraft displays a bearing to a nearby vor transmitter. a vor beacon transmits two signals simultaneously on different frequencies. a directional antenna transmits a beam of radio waves that rotates like a lighthouse at a fixed rate, 30 times per second. when the directional beam is facing north, an omnidirectional antenna transmits a pulse. by measuring the difference in phase of
Question: What is the distance that sound waves travel in a given amount of time called?
A) force of sound
B) speed of sound
C) velocity of sound
D) momentum of sound
|
B) speed of sound
|
Context:
species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos
waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial
##yotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life.
short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithosphere, atmosphere, and hydrosphere ) compartments of earth. there are biogeochemical cycles for nitrogen, carbon, and water. = = = conservation = = = conservation biology is the study of the conservation of earth ' s biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates
- people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table
the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection
fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants. brown biotechnology is related to the management of arid lands and deserts. one application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources. violet biotechnology is related to law, ethical and philosophical issues around biotechnology. microbial biotechnology has been proposed for the rapidly emerging area of biotechnology applications in space and microgravity ( space bioeconomy ) dark biotechnology is the color associated with bioterrorism or biological weapons and biowarfare which uses microorganisms, and toxins to cause diseases and death in humans, livestock and crops. = = = medicine = = = in medicine, modern biotechnology has many applications in areas such as pharmaceutical drug discoveries and production, pharmacogenomics, and genetic testing ( or genetic screening ). in 2021, nearly 40 % of the total company value of pharmaceutical biotech companies worldwide were active in oncology
pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant β people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to star
( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants than animals. genetic evidence suggests that the true evolutionary relationship of multicelled organisms is as shown in the cladogram below β fungi are more closely related to animals than to plants. in 1998, the angiosperm phylogeny group published a phylogeny for flowering plants based on an analysis of
urinary tract infection ( utis ) is referred as one of the most common infection in medical sectors worldwide and antimicrobial resistance ( amr ) is also a global threat to human that is related with many diseases. as antibiotics used for the treatment of infectious diseases, the rate of resistance is increasing day by day. gram positive pathogens are commonly found in urine sample collected from different age groups of people, associated with uti. the study was conducted in a diagnostic center in dhaka, bangladesh with total 1308 urine samples from november 2021 to april 2022. gram positive pathogens were isolated and antimicrobial susceptibility tests were done. from total 121 samples of gram positive bacteria the highest prevalence rate of utis was found in age group of 21 - 30 year. mostly enterococcus spp. ( 33. 05 % ) staphylococcus aureus ( 27. 27 % ), streptococcus spp. ( 20. 66 % ), beta - hemolytic streptococci ( 19. 00 % ) were found as causative agents of uti compared to others. the majority of isolates have been detected as multi - drug resistant ( mdr ). the higher percentage of antibiotic resistance were found against azithromycin ( 75 % ), and cefixime ( 64. 46 % ). this research focused on the regular basis of surveillance for the gram - positive bacteria antibiotic susceptibility to increase awareness about the use of proper antibiotic thus minimize the drug resistance.
Question: What would you call a relationship where the bacteria benefit and and the other organism is harmed?
A) parasitism
B) pathology
C) fungi
D) symbiotic
|
A) parasitism
|
Context:
the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form
on a large scale provided protection from insect pests or tolerance to herbicides. fungal and virus resistant crops have also been developed or are in development. this makes the insect and weed management of crops easier and can indirectly increase crop yield. gm crops that directly improve yield by accelerating growth or making the plant more hardy ( by improving salt, cold or drought tolerance ) are also under development. in 2016 salmon have been genetically modified with growth hormones to reach normal adult size much faster. gmos have been developed that modify the quality of produce by increasing the nutritional value or providing more industrially useful qualities or quantities. the amflora potato produces a more industrially useful blend of starches. soybeans and canola have been genetically modified to produce more healthy oils. the first commercialised gm food was a tomato that had delayed ripening, increasing its shelf life. plants and animals have been engineered to produce materials they do not normally make. pharming uses crops and animals as bioreactors to produce vaccines, drug intermediates, or the drugs themselves ; the useful product is purified from the harvest and then used in the standard pharmaceutical production process. cows and goats have been engineered to express drugs and other proteins in their milk, and in 2009 the fda approved a drug produced in goat milk. = = = other applications = = = genetic engineering has potential applications in conservation and natural area management. gene transfer through viral vectors has been proposed as a means of controlling invasive species as well as vaccinating threatened fauna from disease. transgenic trees have been suggested as a way to confer resistance to pathogens in wild populations. with the increasing risks of maladaptation in organisms as a result of climate change and other perturbations, facilitated adaptation through gene tweaking could be one solution to reducing extinction risks. applications of genetic engineering in conservation are thus far mostly theoretical and have yet to be put into practice. genetic engineering is also being used to create microbial art. some bacteria have been genetically engineered to create black and white photographs. novelty items such as lavender - colored carnations, blue roses, and glowing fish, have also been produced through genetic engineering. = = regulation = = the regulation of genetic engineering concerns the approaches taken by governments to assess and manage the risks associated with the development and release of gmos. the development of a regulatory framework began in 1975, at asilomar, california. the asilomar meeting recommended a set of voluntary guidelines regarding the use of recombinant technology. as the technology improved
best - known and controversial applications of genetic engineering is the creation and use of genetically modified crops or genetically modified livestock to produce genetically modified food. crops have been developed to increase production, increase tolerance to abiotic stresses, alter the composition of the food, or to produce novel products. the first crops to be released commercially on a large scale provided protection from insect pests or tolerance to herbicides. fungal and virus resistant crops have also been developed or are in development. this makes the insect and weed management of crops easier and can indirectly increase crop yield. gm crops that directly improve yield by accelerating growth or making the plant more hardy ( by improving salt, cold or drought tolerance ) are also under development. in 2016 salmon have been genetically modified with growth hormones to reach normal adult size much faster. gmos have been developed that modify the quality of produce by increasing the nutritional value or providing more industrially useful qualities or quantities. the amflora potato produces a more industrially useful blend of starches. soybeans and canola have been genetically modified to produce more healthy oils. the first commercialised gm food was a tomato that had delayed ripening, increasing its shelf life. plants and animals have been engineered to produce materials they do not normally make. pharming uses crops and animals as bioreactors to produce vaccines, drug intermediates, or the drugs themselves ; the useful product is purified from the harvest and then used in the standard pharmaceutical production process. cows and goats have been engineered to express drugs and other proteins in their milk, and in 2009 the fda approved a drug produced in goat milk. = = = other applications = = = genetic engineering has potential applications in conservation and natural area management. gene transfer through viral vectors has been proposed as a means of controlling invasive species as well as vaccinating threatened fauna from disease. transgenic trees have been suggested as a way to confer resistance to pathogens in wild populations. with the increasing risks of maladaptation in organisms as a result of climate change and other perturbations, facilitated adaptation through gene tweaking could be one solution to reducing extinction risks. applications of genetic engineering in conservation are thus far mostly theoretical and have yet to be put into practice. genetic engineering is also being used to create microbial art. some bacteria have been genetically engineered to create black and white photographs. novelty items such as lavender - colored carnations, blue roses, and glowing fish, have also been produced through genetic engineering. = = regulation = = the regulation of genetic engineering
the broad definition of " utilizing a biotechnological system to make products ". indeed, the cultivation of plants may be viewed as the earliest biotechnological enterprise. agriculture has been theorized to have become the dominant way of producing food since the neolithic revolution. through early biotechnology, the earliest farmers selected and bred the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united
##aggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated
the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants. brown biotechnology is related to the management of arid lands and deserts. one application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources. violet biotechnology is related to law, ethical and philosophical issues around biotechnology. micro
frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how
kilometers ( 4, 200, 000 to 395, 400, 000 acres ). 10 % of the world ' s crop lands were planted with gm crops in 2010. as of 2011, 11 different transgenic crops were grown commercially on 395 million acres ( 160 million hectares ) in 29 countries such as the us, brazil, argentina, india, canada, china, paraguay, pakistan, south africa, uruguay, bolivia, australia, philippines, myanmar, burkina faso, mexico and spain. genetically modified foods are foods produced from organisms that have had specific changes introduced into their dna with the methods of genetic engineering. these techniques have allowed for the introduction of new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in
industrial applications. this branch of biotechnology is the most used for the industries of refining and combustion principally on the production of bio - oils with photosynthetic micro - algae. green biotechnology is biotechnology applied to agricultural processes. an example would be the selection and domestication of plants via micropropagation. another example is the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of poll
. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer
Question: What is the supply of water to land or crops to help growth called?
A) drainage
B) irrigation
C) absorbtion
D) precipitation
|
B) irrigation
|
Context:
has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named
casting, also called the lost wax process, die casting, centrifugal casting, both vertical and horizontal, and continuous castings. each of these forms has advantages for certain metals and applications considering factors like magnetism and corrosion. forging β a red - hot billet is hammered into shape. rolling β a billet is passed through successively narrower rollers to create a sheet. extrusion β a hot and malleable metal is forced under pressure through a die, which shapes it before it cools. machining β lathes, milling machines and drills cut the cold metal to shape. sintering β a powdered metal is heated in a non - oxidizing environment after being compressed into a die. fabrication β sheets of metal are cut with guillotines or gas cutters and bent and welded into structural shape. laser cladding β metallic powder is blown through a movable laser beam ( e. g. mounted on a nc 5 - axis machine ). the resulting melted metal reaches a substrate to form a melt pool. by moving the laser head, it is possible to stack the tracks and build up a three - dimensional piece. 3d printing β sintering or melting amorphous powder metal in a 3d space to make any object to shape. cold - working processes, in which the product ' s shape is altered by rolling, fabrication or other processes, while the product is cold, can increase the strength of the product by a process called work hardening. work hardening creates microscopic defects in the metal, which resist further changes of shape. = = = heat treatment = = = metals can be heat - treated to alter the properties of strength, ductility, toughness, hardness and resistance to corrosion. common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering : annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft - edged so that, when the metal is hit or stressed it dents or perhaps bends, rather than breaking ; it is also easier to sand, grind, or cut annealed metal. quenching is the process of cooling metal very quickly after heating, thus " freezing " the metal ' s molecules in the very hard martensite form, which makes the metal harder. tempering relieves stresses in the metal that were caused by the hardening process ; tempering makes the metal less hard while making it better able to sustain
are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). "
consisting of several distinct layers, often referred to as spheres : the lithosphere, the hydrosphere, the atmosphere, and the biosphere, this concept of spheres is a useful tool for understanding the earth ' s surface and its various processes these correspond to rocks, water, air and life. also included by some are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth
intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 β 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm. nanotubes have two dimensions on the nanoscale, i. e., the diameter of the tube is between 0. 1 and 100 nm ; its length could be much greater. finally, spherical nanoparticles have three dimensions on the nanoscale, i. e., the particle is between 0. 1 and 100 nm in each spatial dimension. the terms nanoparticles and ultrafine particles ( ufp ) often are used synonymously although ufp can reach into the micrometre range. the term ' nanostructure ' is often used, when referring to magnetic technology. nanoscale structure in biology is often called ultrastructure. = = = = microstructure = = = = microstructure is defined as the structure of a prepared surface or thin foil of material as revealed by a microscope above 25Γ magnification. it deals with objects from 100 nm to a few cm. the microstructure of a material ( which can be broadly classified into metallic, polymeric, ceramic and composite ) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high / low temperature behavior, wear resistance, and so on. most of the traditional materials ( such as metals and ceramics ) are microstructured. the manufacture of a perfect crystal of a material is physically impossible. for example, any crystalline material will contain defects such as precipitates, grain boundaries ( hall β petch relationship ), vacancies, interstitial atoms or substitutional atoms. the microstructure of materials reveals these larger defects and advances in simulation have allowed an increased understanding of how defects can be used to enhance material properties. = = = = macrostructure = = = = macrostructure is the appearance of a material in the scale millimeters to meters, it is the structure of
the origin of the arc - shaped stellar complexes in the lmc4 region is still unknown. these perfect arcs could not have been formed by o - stars and sne in their centers ; the strong arguments exist also against the possibility of their formation from infalling gas clouds. the origin from microquasars / grb jets is not excluded, because there is the strong concentration of x - ray binaries in the same region and the massive old cluster ngc 1978, probable site of formation of binaries with compact components, is there also. the last possibility is that the source of energy for formation of the stellar arcs and the lmc4 supershell might be the the giant jet from the nucleus of the milky way, which might be active a dozen myr ago.
brane - universe model embedded in 6 - dimensional space - time with the signature ( 2 + 4 ) is considered. a matter is gravitationally trapped in three space dimensions, but both time - like directions are open. choosing of the dimension and the signature of the model is initiated with the conformal symmetry for massless particles and any point in our world can be ( 1 + 1 ) string - like object.
these lectures describe how to study the geometry of some black holes without the use of coordinates.
billet is passed through successively narrower rollers to create a sheet. extrusion β a hot and malleable metal is forced under pressure through a die, which shapes it before it cools. machining β lathes, milling machines and drills cut the cold metal to shape. sintering β a powdered metal is heated in a non - oxidizing environment after being compressed into a die. fabrication β sheets of metal are cut with guillotines or gas cutters and bent and welded into structural shape. laser cladding β metallic powder is blown through a movable laser beam ( e. g. mounted on a nc 5 - axis machine ). the resulting melted metal reaches a substrate to form a melt pool. by moving the laser head, it is possible to stack the tracks and build up a three - dimensional piece. 3d printing β sintering or melting amorphous powder metal in a 3d space to make any object to shape. cold - working processes, in which the product ' s shape is altered by rolling, fabrication or other processes, while the product is cold, can increase the strength of the product by a process called work hardening. work hardening creates microscopic defects in the metal, which resist further changes of shape. = = = heat treatment = = = metals can be heat - treated to alter the properties of strength, ductility, toughness, hardness and resistance to corrosion. common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering : annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft - edged so that, when the metal is hit or stressed it dents or perhaps bends, rather than breaking ; it is also easier to sand, grind, or cut annealed metal. quenching is the process of cooling metal very quickly after heating, thus " freezing " the metal ' s molecules in the very hard martensite form, which makes the metal harder. tempering relieves stresses in the metal that were caused by the hardening process ; tempering makes the metal less hard while making it better able to sustain impacts without breaking. often, mechanical and thermal treatments are combined in what are known as thermo - mechanical treatments for better properties and more efficient processing of materials. these processes are common to high - alloy special steels, superalloys and titanium alloys. = = = plating = = = electroplating is
or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has no adverse effect on pilot vision. = = = = ships = = = = ships have also adopted similar methods. though the earlier american arleigh burke - class destroyers incorporated some signature - reduction features. the norwegian skjold - class corvettes was the first coastal defence and the french la fayette - class frigates the
Question: What form of matter has neither a definite shape nor a definite volume?
A) gas
B) liquid
C) solid
D) plasma
|
A) gas
|
Context:
the hun tian theory ), or as being without substance while the heavenly bodies float freely ( the hsuan yeh theory ), the earth was at all times flat, although perhaps bulging up slightly. the model of an egg was often used by chinese astronomers such as zhang heng ( 78 β 139 ad ) to describe the heavens as spherical : the heavens are like a hen ' s egg and as round as a crossbow bullet ; the earth is like the yolk of the egg, and lies in the centre. this analogy with a curved egg led some modern historians, notably joseph needham, to conjecture that chinese astronomers were, after all, aware of the earth ' s sphericity. the egg reference, however, was rather meant to clarify the relative position of the flat earth to the heavens : in a passage of zhang heng ' s cosmogony not translated by needham, zhang himself says : " heaven takes its body from the yang, so it is round and in motion. earth takes its body from the yin, so it is flat and quiescent ". the point of the egg analogy is simply to stress that the earth is completely enclosed by heaven, rather than merely covered from above as the kai tian describes. chinese astronomers, many of them brilliant men by any standards, continued to think in flat - earth terms until the seventeenth century ; this surprising fact might be the starting - point for a re - examination of the apparent facility with which the idea of a spherical earth found acceptance in fifth - century bc greece. further examples cited by needham supposed to demonstrate dissenting voices from the ancient chinese consensus actually refer without exception to the earth being square, not to it being flat. accordingly, the 13th - century scholar li ye, who argued that the movements of the round heaven would be hindered by a square earth, did not advocate a spherical earth, but rather that its edge should be rounded off so as to be circular. however, needham disagrees, affirming that li ye believed the earth to be spherical, similar in shape to the heavens but much smaller. this was preconceived by the 4th - century scholar yu xi, who argued for the infinity of outer space surrounding the earth and that the latter could be either square or round, in accordance to the shape of the heavens. when chinese geographers of the 17th century, influenced by european cartography and astronomy, showed the earth as a sphere that could be circumnavigated by sailing around the globe, they
selected carefully. wet etching can be performed using either isotropic wet etchants or anisotropic wet etchants. isotropic wet etchant etch in all directions of the crystalline silicon at approximately equal rates. anisotropic wet etchants preferably etch along certain crystal planes at faster rates than other planes, thereby allowing more complicated 3 - d microstructures to be implemented. wet anisotropic etchants are often used in conjunction with boron etch stops wherein the surface of the silicon is heavily doped with boron resulting in a silicon material layer that is resistant to the wet etchants. this has been used in mews pressure sensor manufacturing for example. etching progresses at the same speed in all directions. long and narrow holes in a mask will produce v - shaped grooves in the silicon. the surface of these grooves can be atomically smooth if the etch is carried out correctly, with dimensions and angles being extremely accurate. some single crystal materials, such as silicon, will have different etching rates depending on the crystallographic orientation of the substrate. this is known as anisotropic etching and one of the most common examples is the etching of silicon in koh ( potassium hydroxide ), where si < 111 > planes etch approximately 100 times slower than other planes ( crystallographic orientations ). therefore, etching a rectangular hole in a ( 100 ) - si wafer results in a pyramid shaped etch pit with 54. 7Β° walls, instead of a hole with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p β n diode junction is required, and either type of dopant can be the etch
##wi, turkana, dating from 3. 3 million years ago. stone tools diversified through the pleistocene period, which ended ~ 12, 000 years ago. the earliest evidence of warfare between two groups is recorded at the site of nataruk in turkana, kenya, where human skeletons with major traumatic injuries to the head, neck, ribs, knees and hands, including an embedded obsidian bladelet on a skull, are evidence of inter - group conflict between groups of nomadic hunter - gatherers 10, 000 years ago. humans entered the bronze age as they learned to smelt copper into an alloy with tin to make weapons. in asia where copper - tin ores are rare, this development was delayed until trading in bronze began in the third millennium bce. in the middle east and southern european regions, the bronze age follows the neolithic period, but in other parts of the world, the copper age is a transition from neolithic to the bronze age. although the iron age generally follows the bronze age, in some areas the iron age intrudes directly on the neolithic from outside the region, with the exception of sub - saharan africa where it was developed independently. the first large - scale use of iron weapons began in asia minor around the 14th century bce and in central europe around the 11th century bce followed by the middle east ( about 1000 bce ) and india and china. the assyrians are credited with the introduction of horse cavalry in warfare and the extensive use of iron weapons by 1100 bce. assyrians were also the first to use iron - tipped arrows. = = = post - classical technology = = = the wujing zongyao ( essentials of the military arts ), written by zeng gongliang, ding du, and others at the order of emperor renzong around 1043 during the song dynasty illustrate the eras focus on advancing intellectual issues and military technology due to the significance of warfare between the song and the liao, jin, and yuan to their north. the book covers topics of military strategy, training, and the production and employment of advanced weaponry. advances in military technology aided the song dynasty in its defense against hostile neighbors to the north. the flamethrower found its origins in byzantine - era greece, employing greek fire ( a chemically complex, highly flammable petrol fluid ) in a device with a siphon hose by the 7th century. : 77 the earliest reference to greek fire in china was made in 917, written by wu renchen in his spring and autumn annals of the ten kingdoms. : 80 in 91
unitary recordings in freely - moving pulse weakly electric fish suggest spike timing encoding of electrosensory signals
of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles
##ian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in
this is an experimentalist ' s list of questions concerning the physics of the charmed baryon sector which have no satisfactory answer.
carried out correctly, with dimensions and angles being extremely accurate. some single crystal materials, such as silicon, will have different etching rates depending on the crystallographic orientation of the substrate. this is known as anisotropic etching and one of the most common examples is the etching of silicon in koh ( potassium hydroxide ), where si < 111 > planes etch approximately 100 times slower than other planes ( crystallographic orientations ). therefore, etching a rectangular hole in a ( 100 ) - si wafer results in a pyramid shaped etch pit with 54. 7Β° walls, instead of a hole with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p β n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for mems in 1995 at university of california, los angeles. primarily used for releasing metal and dielectric structures by undercutting silicon, xef2 has the advantage of a stiction - free release unlike wet etchants. its etch selectivity to silicon is very high, allowing it to work with photores
years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and the study of mummies. scientists and historians have been able to form significant inferences about the lifestyle and culture of various prehistoric peoples, and especially their technology. = = = ancient = = = = = = = copper and bronze ages = = = = metallic copper occurs on the surface of weathered copper ore deposits and copper was used before copper smelting was known. copper smelting is believed to have originated when the technology of pottery kilns allowed sufficiently high temperatures. the concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently
an essay on horndeski gravity, how it was formulated in the early 1970s and how it was ' re - discovered ' and widely adopted by cosmologists more than thirty years later.
Question: Which stage has already been completed by the time sea urchin eggs are released from the female?
A) fetus
B) secondary
C) meiosis
D) mitoses
|
C) meiosis
|
Context:
, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase
electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase
that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is
= = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems,
. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal, water, plaster and epoxy β most of which will be eliminated upon firing. a ceramic - filled epoxy, such as martyte, is sometimes used to protect structural steel under conditions of rocket exhaust impingement. these forming techniques are well known for providing tools and other components with dimensional stability, surface quality
of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive
other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit
set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature.
index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry
to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiot
Question: Unlike pure substances, mixtures have a what?
A) unique composition
B) variable composition
C) efficient composition
D) complex composition
|
B) variable composition
|
Context:
, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest
##ctonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s
##morphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to
was used before copper smelting was known. copper smelting is believed to have originated when the technology of pottery kilns allowed sufficiently high temperatures. the concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently work hardened to be suitable for making tools. bronze is an alloy of copper with tin ; the latter being found in relatively few deposits globally caused a long time to elapse before true tin bronze became widespread. ( see : tin sources and trade in ancient times ) bronze was a major advancement over stone as a material for making tools, both because of its mechanical properties like strength and ductility and because it could be cast in molds to make intricately shaped objects. bronze significantly advanced shipbuilding technology with better tools and bronze nails. bronze nails replaced the old method of attaching boards of the hull with cord woven through drilled holes. better ships enabled long - distance trade and the advance of civilization. this technological trend apparently began in the fertile crescent and spread outward over time. these developments were not, and still are not, universal. the three - age system does not accurately describe the technology history of groups outside of eurasia, and does not apply at all in the case of some isolated populations, such as the spinifex people, the sentinelese, and various amazonian tribes, which still make use of stone age technology, and have not developed agricultural or metal technology. these villages preserve traditional customs in the face of global modernity, exhibiting a remarkable resistance to the rapid advancement of technology. = = = = iron age = = = = before iron smelting was developed the only iron was obtained from meteorites and is usually identified by having nickel content. meteoric iron was rare and valuable, but was sometimes used to make tools and other implements, such as fish hooks. the iron age involved the adoption of iron smelting technology. it generally replaced bronze and made it possible to produce tools which were stronger, lighter and cheaper to make than bronze equivalents. the raw materials to make iron, such as ore and limestone, are far more abundant than copper and especially tin ores. consequently, iron was produced in many areas. it was not possible to mass manufacture steel or pure iron because of the high temperatures required. furnaces could reach melting temperature but the crucibles and molds needed for melting and casting had not been developed. steel could be produced by forging bloomery iron to reduce the carbon content in a
building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another material. cermets are ceramic particles containing some metals. the wear resistance of tools is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties. ceramics can be significantly strengthened for engineering applications using the principle of crack deflection. this process involves the strategic addition of second - phase particles within a ceramic matrix, optimizing their shape, size, and distribution to direct and control crack propagation. this approach enhances fracture toughness, paving the way for the creation of advanced, high - performance ceramics in various industries. = = = composites = = = another application of materials science in industry is making composite materials. these are structured materials composed of two or more macroscopic phases. applications range from structural elements such as steel - reinforced concrete, to the thermal insulating tiles, which play a key and integral role in nasa ' s space shuttle thermal protection system, which is used to protect the surface of the shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap. rcc is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. after curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfuryl alcohol in a
##thic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures
##ning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and
##sphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as
how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light
##tering - based methods are simple ( " sinter " has roots in the english " cinder " ). the firing is done at a temperature below the melting point of the ceramic. once a roughly - held - together object called a " green body " is made, it is fired in a kiln, where atomic and molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 β 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for
Question: What process does not cause a rock to melt completely, instead causing the minerals to change by heat or pressure?
A) metamorphism
B) oxidation
C) sedimentation
D) igneous extrusion
|
A) metamorphism
|
Context:
3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway
and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states
by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods.
the formation of supermassive black holes ( smbh ) is intimately related to galaxy formation, although precisely how remains a mystery. i speculate that formation of, and feedback from, smbh may alleviate problems that have arisen in our understanding of the cores of dark halos of galaxies.
##ysis again and removing the excess pyruvate. fermentation oxidizes nadh to nad + so it can be re - used in glycolysis. in the absence of oxygen, fermentation prevents the buildup of nadh in the cytoplasm and provides nad + for glycolysis. this waste product varies depending on the organism. in skeletal muscles, the waste product is lactic acid. this type of fermentation is called lactic acid fermentation. in strenuous exercise, when energy demands exceed energy supply, the respiratory chain cannot process all of the hydrogen atoms joined by nadh. during anaerobic glycolysis, nad + regenerates when pairs of hydrogen combine with pyruvate to form lactate. lactate formation is catalyzed by lactate dehydrogenase in a reversible reaction. lactate can also be used as an indirect precursor for liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a
liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and
##logous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source β induced pluripotent stem cells β may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells are stem cells which can divide into further stem cells or differentiate into any cell type in the body, including extra - embryonic tissue. pluripotent cells are stem cells which can differentiate into any cell type in the body except extra - embryonic tissue. induced pluripotent stem cells ( ipscs ) are subclass of pluripotent stem cells resembling embryonic stem cells ( escs ) that have been derived from adult differentiated cells. ipscs are created by altering the expression of transcriptional factors in adult cells until they become like embryonic stem cells. multipotent stem cells can be differentiated into any cell
nadh. during anaerobic glycolysis, nad + regenerates when pairs of hydrogen combine with pyruvate to form lactate. lactate formation is catalyzed by lactate dehydrogenase in a reversible reaction. lactate can also be used as an indirect precursor for liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of
. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer
used to manufacture existing medicines relatively easily and cheaply. the first genetically engineered products were medicines designed to treat human diseases. to cite one example, in 1978 genentech developed synthetic humanized insulin by joining its gene with a plasmid vector inserted into the bacterium escherichia coli. insulin, widely used for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals ( cattle or pigs ). the genetically engineered bacteria are able to produce large quantities of synthetic human insulin at relatively low cost. biotechnology has also enabled emerging therapeutics like gene therapy. the application of biotechnology to basic science ( for example through the human genome project ) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well. genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child ' s parentage ( genetic mother and father ) or in general a person ' s ancestry. in addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. genetic testing identifies changes in chromosomes, genes, or proteins. most of the time, testing is used to find changes that are associated with inherited disorders. the results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person ' s chance of developing or passing on a genetic disorder. as of 2011 several hundred genetic tests were in use. since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling. = = = agriculture = = = genetically modified crops ( " gm crops ", or " biotech crops " ) are plants used in agriculture, the dna of which has been modified with genetic engineering techniques. in most cases, the main aim is to introduce a new trait that does not occur naturally in the species. biotechnology firms can contribute to future food security by improving the nutrition and viability of urban agriculture. furthermore, the protection of intellectual property rights encourages private sector investment in agrobiotechnology. examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments ( e. g. resistance to a herbicide ), reduction of spoilage, or improving the nutrient profile of the crop. examples in non - food crops include production of
Question: A disaccharide is a pair of monosaccharides. disaccharides are formed via dehydration synthesis, and the bond linking them is referred to as a glycosidic bond (glyco- = βsugarβ). three disaccharides (shown in figure 2.19) are important to humans. these are sucrose, commonly referred to as table sugar; lactose, or milk sugar; and maltose, or this?
A) sucralose
B) fruit sugar
C) malt sugar
D) saccharin
|
C) malt sugar
|
Context:
##wi, turkana, dating from 3. 3 million years ago. stone tools diversified through the pleistocene period, which ended ~ 12, 000 years ago. the earliest evidence of warfare between two groups is recorded at the site of nataruk in turkana, kenya, where human skeletons with major traumatic injuries to the head, neck, ribs, knees and hands, including an embedded obsidian bladelet on a skull, are evidence of inter - group conflict between groups of nomadic hunter - gatherers 10, 000 years ago. humans entered the bronze age as they learned to smelt copper into an alloy with tin to make weapons. in asia where copper - tin ores are rare, this development was delayed until trading in bronze began in the third millennium bce. in the middle east and southern european regions, the bronze age follows the neolithic period, but in other parts of the world, the copper age is a transition from neolithic to the bronze age. although the iron age generally follows the bronze age, in some areas the iron age intrudes directly on the neolithic from outside the region, with the exception of sub - saharan africa where it was developed independently. the first large - scale use of iron weapons began in asia minor around the 14th century bce and in central europe around the 11th century bce followed by the middle east ( about 1000 bce ) and india and china. the assyrians are credited with the introduction of horse cavalry in warfare and the extensive use of iron weapons by 1100 bce. assyrians were also the first to use iron - tipped arrows. = = = post - classical technology = = = the wujing zongyao ( essentials of the military arts ), written by zeng gongliang, ding du, and others at the order of emperor renzong around 1043 during the song dynasty illustrate the eras focus on advancing intellectual issues and military technology due to the significance of warfare between the song and the liao, jin, and yuan to their north. the book covers topics of military strategy, training, and the production and employment of advanced weaponry. advances in military technology aided the song dynasty in its defense against hostile neighbors to the north. the flamethrower found its origins in byzantine - era greece, employing greek fire ( a chemically complex, highly flammable petrol fluid ) in a device with a siphon hose by the 7th century. : 77 the earliest reference to greek fire in china was made in 917, written by wu renchen in his spring and autumn annals of the ten kingdoms. : 80 in 91
##ning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and
##thic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures
which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures
into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches
have evolved from the earliest emergence of life to present day. earth formed about 4. 5 billion years ago and all life on earth, both living and extinct, descended from a last universal common ancestor that lived about 3. 5 billion years ago. geologists have developed a geologic time scale that divides the history of the earth into major divisions, starting with four eons ( hadean, archean, proterozoic, and phanerozoic ), the first three of which are collectively known as the precambrian, which lasted approximately 4 billion years. each eon can be divided into eras, with the phanerozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became
. the first major technologies were tied to survival, hunting, and food preparation. stone tools and weapons, fire, and clothing were technological developments of major importance during this period. human ancestors have been using stone and other tools since long before the emergence of homo sapiens approximately 300, 000 years ago. the earliest direct evidence of tool usage was found in ethiopia within the great rift valley, dating back to 2. 5 million years ago. the earliest methods of stone tool making, known as the oldowan " industry ", date back to at least 2. 3 million years ago. this era of stone tool use is called the paleolithic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period,
of tool usage was found in ethiopia within the great rift valley, dating back to 2. 5 million years ago. the earliest methods of stone tool making, known as the oldowan " industry ", date back to at least 2. 3 million years ago. this era of stone tool use is called the paleolithic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop
they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea
hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and the study of mummies. scientists and historians have been able to form significant inferences about the lifestyle and culture of various prehistoric peoples, and especially their technology. = = = ancient = = = = = = = copper and bronze ages = = = = metallic copper occurs on the surface of weathered copper ore deposits and copper
Question: At what age is skeletal maturity reached by humans?
A) 15
B) 20
C) 30
D) 40
|
B) 20
|
Context:
there cannot exist a single parametrization that covers the whole surface. therefore, one often considers surfaces which are parametrized by several parametric equations, whose images cover the surface. this is formalized by the concept of manifold : in the context of manifolds, typically in topology and differential geometry, a surface is a manifold of dimension two ; this means that a surface is a topological space such that every point has a neighborhood which is homeomorphic to an open subset of the euclidean plane ( see surface ( topology ) and surface ( differential geometry ) ). this allows defining surfaces in spaces of dimension higher than three, and even abstract surfaces, which are not contained in any other space. on the other hand, this excludes surfaces that have singularities, such as the vertex of a conical surface or points where a surface crosses itself. in classical geometry, a surface is generally defined as a locus of a point or a line. for example, a sphere is the locus of a point which is at a given distance of a fixed point, called the center ; a conical surface is the locus of a line passing through a fixed point and crossing a curve ; a surface of revolution is the locus of a curve rotating around a line. a ruled surface is the locus of a moving line satisfying some constraints ; in modern terminology, a ruled surface is a surface, which is a union of lines. = = terminology = = there are several kinds of surfaces that are considered in mathematics. an unambiguous terminology is thus necessary to distinguish them when needed. a topological surface is a surface that is a manifold of dimension two ( see Β§ topological surface ). a differentiable surface is a surfaces that is a differentiable manifold ( see Β§ differentiable surface ). every differentiable surface is a topological surface, but the converse is false. a " surface " is often implicitly supposed to be contained in a euclidean space of dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a connected open subset of r2 is a topological surface. if the function is differentiable, the graph is a differentiable surface. a plane is both an algebraic surface and a differentiable surface. it is also a ruled surface and a surface of revolution. a circular cylinder ( that is, the locus of a line crossing
enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the
##sphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as
earth science or geoscience includes all fields of natural science related to the planet earth. this is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of earth ' s four spheres : the biosphere, hydrosphere / cryosphere, atmosphere, and geosphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and
consisting of several distinct layers, often referred to as spheres : the lithosphere, the hydrosphere, the atmosphere, and the biosphere, this concept of spheres is a useful tool for understanding the earth ' s surface and its various processes these correspond to rocks, water, air and life. also included by some are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth
are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). "
all christian authors held that the earth was round. athenagoras, an eastern christian writing around the year 175 ad, said that the earth was spherical. methodius ( c. 290 ad ), an eastern christian writing against " the theory of the chaldeans and the egyptians " said : " let us first lay bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture
are more expensive than cell phones ; but their advantage is that, unlike a cell phone which is limited to areas covered by cell towers, satphones can be used over most or all of the geographical area of the earth. in order for the phone to communicate with a satellite using a small omnidirectional antenna, first - generation systems use satellites in low earth orbit, about 400 β 700 miles ( 640 β 1, 100 km ) above the surface. with an orbital period of about 100 minutes, a satellite can only be in view of a phone for about 4 β 15 minutes, so the call is " handed off " to another satellite when one passes beyond the local horizon. therefore, large numbers of satellites, about 40 to 70, are required to ensure that at least one satellite is in view continuously from each point on earth. other satphone systems use satellites in geostationary orbit in which only a few satellites are needed, but these cannot be used at high latitudes because of terrestrial interference. cordless phone β a landline telephone in which the handset is portable and communicates with the rest of the phone by a short - range full duplex radio link, instead of being attached by a cord. both the handset and the base station have low - power radio transceivers that handle the short - range bidirectional radio link. as of 2022, cordless phones in most nations use the dect transmission standard. land mobile radio system β short - range mobile or portable half - duplex radio transceivers operating in the vhf or uhf band that can be used without a license. they are often installed in vehicles, with the mobile units communicating with a dispatcher at a fixed base station. special systems with reserved frequencies are used by first responder services ; police, fire, ambulance, and emergency services, and other government services. other systems are made for use by commercial firms such as taxi and delivery services. vhf systems use channels in the range 30 β 50 mhz and 150 β 172 mhz. uhf systems use the 450 β 470 mhz band and in some areas the 470 β 512 mhz range. in general, vhf systems have a longer range than uhf but require longer antennas. am or fm modulation is mainly used, but digital systems such as dmr are being introduced. the radiated power is typically limited to 4 watts. these systems have a fairly limited range, usually 3 to 20 miles ( 4. 8 to 32 km ) depending on terrain. repeaters installed on tall buildings, hills,
variation in total solar irradiance is thought to have little effect on the earth ' s surface temperature because of the thermal time constant - - the characteristic response time of the earth ' s global surface temperature to changes in forcing. this time constant is large enough to smooth annual variations but not necessarily variations having a longer period such as those due to solar inertial motion ; the magnitude of these surface temperature variations is estimated.
higher concentrations of atmospheric nitrous oxide ( n2o ) are expected to slightly warm earth ' s surface because of increases in radiative forcing. radiative forcing is the difference in the net upward thermal radiation flux from the earth through a transparent atmosphere and radiation through an otherwise identical atmosphere with greenhouse gases. radiative forcing, normally measured in w / m ^ 2, depends on latitude, longitude and altitude, but it is often quoted for the tropopause, about 11 km of altitude for temperate latitudes, or for the top of the atmosphere at around 90 km. for current concentrations of greenhouse gases, the radiative forcing per added n2o molecule is about 230 times larger than the forcing per added carbon dioxide ( co2 ) molecule. this is due to the heavy saturation of the absorption band of the relatively abundant greenhouse gas, co2, compared to the much smaller saturation of the absorption bands of the trace greenhouse gas n2o. but the rate of increase of co2 molecules, about 2. 5 ppm / year ( ppm = part per million by mole ), is about 3000 times larger than the rate of increase of n2o molecules, which has held steady at around 0. 00085 ppm / year since 1985. so, the contribution of nitrous oxide to the annual increase in forcing is 230 / 3000 or about 1 / 13 that of co2. if the main greenhouse gases, co2, ch4 and n2o have contributed about 0. 1 c / decade of the warming observed over the past few decades, this would correspond to about 0. 00064 k per year or 0. 064 k per century of warming from n2o. proposals to place harsh restrictions on nitrous oxide emissions because of warming fears are not justified by these facts. restrictions would cause serious harm ; for example, by jeopardizing world food supplies.
Question: What is most of earth's surface covered with?
A) water
B) silicon
C) insects
D) sand
|
A) water
|
Context:
##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently
defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently specialized for specific settings such as in a classroom or nursing home. positioning is often important in seating arrangements to ensure that user ' s body pressure is distributed equally without inhibiting movement in a desired way. positioning devices have been developed to aid in allowing people to stand and bear weight on their legs without risk of a fall.
grasping an object is a matter of first moving a prehensile organ at some position in the world, and then managing the contact relationship between the prehensile organ and the object. once the contact relationship has been established and made stable, the object is part of the body and it can move in the world. as any action, the action of grasping is ontologically anchored in the physical space while the correlative movement originates in the space of the body. evolution has found amazing solutions that allow organisms to rapidly and efficiently manage the relationship between their body and the world. it is then natural that roboticists consider taking inspiration of these natural solutions, while contributing to better understand their origin.
methods may be used in all subdisciplines of chemistry, excluding purely theoretical chemistry. biochemistry is the study of the chemicals, chemical reactions and interactions that take place at a molecular level in living organisms. biochemistry is highly interdisciplinary, covering medicinal chemistry, neurochemistry, molecular biology, forensics, plant science and genetics. inorganic chemistry is the study of the properties and reactions of inorganic compounds, such as metals and minerals. the distinction between organic and inorganic disciplines is not absolute and there is much overlap, most importantly in the sub - discipline of organometallic chemistry. materials chemistry is the preparation, characterization, and understanding of solid state components or devices with a useful current or future function. the field is a new breadth of study in graduate programs, and it integrates elements from all classical areas of chemistry like organic chemistry, inorganic chemistry, and crystallography with a focus on fundamental issues that are unique to materials. primary systems of study include the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but
and genetics. inorganic chemistry is the study of the properties and reactions of inorganic compounds, such as metals and minerals. the distinction between organic and inorganic disciplines is not absolute and there is much overlap, most importantly in the sub - discipline of organometallic chemistry. materials chemistry is the preparation, characterization, and understanding of solid state components or devices with a useful current or future function. the field is a new breadth of study in graduate programs, and it integrates elements from all classical areas of chemistry like organic chemistry, inorganic chemistry, and crystallography with a focus on fundamental issues that are unique to materials. primary systems of study include the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
medicine are : basic sciences of medicine ; this is what every physician is educated in, and some return to in biomedical research. interdisciplinary fields, where different medical specialties are mixed to function in certain occasions. medical specialties = = = basic sciences = = = anatomy is the study of the physical structure of organisms. in contrast to macroscopic or gross anatomy, cytology and histology are concerned with microscopic structures. biochemistry is the study of the chemistry taking place in living organisms, especially the structure and function of their chemical components. biomechanics is the study of the structure and function of biological systems by means of the methods of mechanics. biophysics is an interdisciplinary science that uses the methods of physics and physical chemistry to study biological systems. biostatistics is the application of statistics to biological fields in the broadest sense. a knowledge of biostatistics is essential in the planning, evaluation, and interpretation of medical research. it is also fundamental to epidemiology and evidence - based medicine. cytology is the microscopic study of individual cells. embryology is the study of the early development of organisms. endocrinology is the study of hormones and their effect throughout the body of animals. epidemiology is the study of the demographics of disease processes, and includes, but is not limited to, the study of epidemics. genetics is the study of genes, and their role in biological inheritance. gynecology is the study of female reproductive system. histology is the study of the structures of biological tissues by light microscopy, electron microscopy and immunohistochemistry. immunology is the study of the immune system, which includes the innate and adaptive immune system in humans, for example. lifestyle medicine is the study of the chronic conditions, and how to prevent, treat and reverse them. medical physics is the study of the applications of physics principles in medicine. microbiology is the study of microorganisms, including protozoa, bacteria, fungi, and viruses. molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. neuroscience includes those disciplines of science that are related to the study of the nervous system. a main focus of neuroscience is the biology and physiology of the human brain and spinal cord. some related clinical specialties include neurology, neurosurgery and psychiatry. nutrition science ( theoretical focus ) and dietetics ( practical focus ) is the study of the relationship of food and drink to health and disease, especially
the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then
tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biological tissues. tissue engineering often involves the use of cells placed on tissue scaffolds in the formation of new viable tissue for a medical purpose, but is not limited to applications involving cells and tissue scaffolds. while it was once categorized as a sub - field of biomaterials, having grown in scope and importance, it can be considered as a field of its own. while most definitions of tissue engineering cover a broad range of applications, in practice, the term is closely associated with applications that repair or replace portions of or whole tissues ( i. e. organs, bone, cartilage, blood vessels, bladder, skin, muscle etc. ). often, the tissues involved require certain mechanical and structural properties for proper functioning. the term has also been applied to efforts to perform specific biochemical functions using cells within an artificially - created support system ( e. g. an artificial pancreas, or a bio artificial liver ). the term regenerative medicine is often used synonymously with tissue engineering, although those involved in regenerative medicine place more emphasis on the use of stem cells or progenitor cells to produce tissues. = = overview = = a commonly applied definition of tissue engineering, as stated by langer and vacanti, is " an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve [ biological tissue ] function or a whole organ ". in addition, langer and vacanti also state that there are three main types of tissue engineering : cells, tissue - inducing substances, and a cells + matrix approach ( often referred to as a scaffold ). tissue engineering has also been defined as " understanding the principles of tissue growth, and applying this to produce functional replacement tissue for clinical use ". a further description goes on to say that an " underlying supposition of tissue engineering is that the employment of natural biology of the system will allow for greater success in developing therapeutic strategies aimed at the replacement, repair, maintenance, or enhancement of tissue function ". developments in the multidisciplinary field of tissue engineering have yielded a novel set of tissue replacement parts and implementation strategies. scientific advances in biomaterials, stem cells, growth and differentiation factors, and biomimetic environments have created unique opportunities to fabric
the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales
Question: What is the sac-like organ of the body that is important for both mechanical and chemical digestion?
A) gall bladder
B) stomach
C) spleen
D) kidney
|
B) stomach
|
Context:
is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged
with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of
activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by
other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle
a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water.
. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be
analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (
are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom
current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the
endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer
Question: All chemical reactions require what to get started?
A) conductivity energy
B) spiked energy
C) activation energy
D) primary energy
|
C) activation energy
|
Context:
protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = mei
it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ft
( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by
of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles
the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted β the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilis
activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a
cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing
could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of
. species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in
, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union in 1990, the united kingdom in 1991, and both france and china continued testing until 1996. after signing the comprehensive test ban treaty in 1996 ( which had as of 2011 not entered into force ), all of these states have pledged to discontinue all nuclear testing. non - signatories india and pakistan last tested nuclear weapons in 1998. nuclear weapons are the most destructive weapons known - the archetypal weapons of mass destruction. throughout the cold war, the opposing powers had huge nuclear arsenals, sufficient to kill hundreds of millions of people. generations of people grew up under the shadow of nuclear devastation, portrayed in films such as dr. strangelove and the atomic cafe. however, the tremendous energy release in the detonation of a nuclear weapon also suggested the possibility of a new energy source. = = civilian uses = = = = = nuclear power = = = nuclear power is a type of nuclear technology involving the controlled use of nuclear fission to release energy for work including propulsion, heat, and the generation of electricity. nuclear energy is produced by a controlled nuclear chain reaction which creates heat β and which is used to boil water, produce steam, and drive a steam turbine. the turbine is used to generate electricity and / or to do mechanical work. currently nuclear
Question: Mitosis is nuclear division during which duplicated chromosomes are segregated and distributed into what?
A) woman nuclei
B) long nuclei
C) father nuclei
D) daughter nuclei
|
D) daughter nuclei
|
Context:
made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up
##lling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called
river - beds ), but not for where there may be large obstructions in the ground. an open caisson that is used in soft grounds or high water tables, where open trench excavations are impractical, can also be used to install deep manholes, pump stations and reception / launch pits for microtunnelling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caisson
cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up the muck tube. the pressurized air flow must be constant to ensure regular air changes for the workers and prevent excessive inflow of mud or water at the base of the caisson. when the caisson hits bedrock, the sandhogs exit through the airlock and fill the box with concrete, forming a solid foundation pier. a pneumatic ( compressed - air ) caisson has the advantage of providing dry working conditions, which is better for placing concrete. it is also well suited for foundations for which other methods might cause settlement of adjacent structures. construction workers who leave the pressurized environment of the caisson must decompress at a rate that allows symptom - free release of inert gases dissolved in the body tissues if they are to avoid decompression sickness, a condition first identified in caisson workers, and originally named " caisson disease " in recognition of the occupational hazard. construction of the brooklyn bridge, which was built with the help of pressurised caissons, resulted in numerous workers being either killed or permanently injured by caisson disease during its construction. barotrauma of the ears, sinus cavities and lungs and dysbaric osteonecrosis are other risks. = = other uses = = caissons have also been used in the installation of hydraulic elevators where a single - stage ram is installed below the ground level. caissons, codenamed phoenix, were an integral part of the mulberry harbours used during the world war ii allied invasion of normandy. = = other meanings = = boat lift caissons : the word caisson is also used as a synonym for the moving trough part of caisson locks, canal lifts and inclines in which boats and ships rest while being lifted from one canal elevation to another ; the water is retained on the inside of the caisson, or excluded from the caisson, according to the respective operating principle. structural caissons : caisson is also sometimes used as a colloquial term for a reinforced concrete structure formed by pouring into a hollow cylindrical form, typically by placing a caisson form below grade in an open excavation and pouring once backfill is complete, or by
earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on earth, though it does include human effects on the environment. = = methodology = = methodologies vary depending on the nature of the subjects being studied. studies typically fall into one of three categories : observational, experimental, or theoretical. earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena (
such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively
the graphane with chemically bonded alkali metals ( li, na, k ) was considered as potential material for hydrogen storage. the ab initio calculations show that such material can adsorb as many as 4 hydrogen molecules per li, na and k metal atoms. these values correspond to 12. 20 wt %, 10. 33 wt % and 8. 56 wt % of hydrogen, respectively and exceed the doe requirements. the thermodynamic analysis shows that li - graphane complex is the most promising for hydrogen storage with ability to adsorb 3 hydrogen molecules per metal atom at 300 k and pressure in the range from 5 to 250 atm.
the motion of celestial bodies through a higher power such as god. aristotle did not have the technological advancements that would have explained the motion of celestial bodies. in addition, aristotle had many views on the elements. he believed that everything was derived of the elements earth, water, air, fire, and lastly the aether. the aether was a celestial element, and therefore made up the matter of the celestial bodies. the elements of earth, water, air and fire were derived of a combination of two of the characteristics of hot, wet, cold, and dry, and all had their inevitable place and motion. the motion of these elements begins with earth being the closest to " the earth, " then water, air, fire, and finally aether. in addition to the makeup of all things, aristotle came up with theories as to why things did not return to their natural motion. he understood that water sits above earth, air above water, and fire above air in their natural state. he explained that although all elements must return to their natural state, the human body and other living things have a constraint on the elements β thus not allowing the elements making one who they are to return to their natural state. the important legacy of this period included substantial advances in factual knowledge, especially in anatomy, zoology, botany, mineralogy, geography, mathematics and astronomy ; an awareness of the importance of certain scientific problems, especially those related to the problem of change and its causes ; and a recognition of the methodological importance of applying mathematics to natural phenomena and of undertaking empirical research. in the hellenistic age scholars frequently employed the principles developed in earlier greek thought : the application of mathematics and deliberate empirical research, in their scientific investigations. thus, clear unbroken lines of influence lead from ancient greek and hellenistic philosophers, to medieval muslim philosophers and scientists, to the european renaissance and enlightenment, to the secular sciences of the modern day. neither reason nor inquiry began with the ancient greeks, but the socratic method did, along with the idea of forms, give great advances in geometry, logic, and the natural sciences. according to benjamin farrington, former professor of classics at swansea university : " men were weighing for thousands of years before archimedes worked out the laws of equilibrium ; they must have had practical and intuitional knowledge of the principals involved. what archimedes did was to sort out the theoretical implications of this practical knowledge and present the resulting body of knowledge as a logically coherent system. " and again : " with astonishment we find ourselves on the threshold of modern science
Question: Movement of water and minerals in the xylem solutes, pressure, gravity, and matric potential are all important for what?
A) increase water transport
B) produce water transport
C) plant water transport
D) Moving Water Transport
|
C) plant water transport
|
Context:
a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 β 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 β 2 ), or a downshift maneuver in passing ( 4 β 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new part in the design must support the development and manufacturing schedule of the model. design for manufacturability ( dfm ) : dfm refers to designing vehicular components in such a way that they are not only feasible to manufacture, but also such that they are cost - efficient to produce while resulting in acceptable
material. silicon nitride parts are used in ceramic ball bearings. their higher hardness means that they are much less susceptible to wear and can offer more than triple lifetimes. they also deform less under load meaning they have less contact with the bearing retainer walls and can roll faster. in very high speed applications, heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are
variation in total solar irradiance is thought to have little effect on the earth ' s surface temperature because of the thermal time constant - - the characteristic response time of the earth ' s global surface temperature to changes in forcing. this time constant is large enough to smooth annual variations but not necessarily variations having a longer period such as those due to solar inertial motion ; the magnitude of these surface temperature variations is estimated.
systems are responsible for operational controls such as the throttle, brake and steering controls ; as well as many comfort - and - convenience systems such as the hvac, infotainment, and lighting systems. it would not be possible for automobiles to meet modern safety and fuel - economy requirements without electronic controls. performance : performance is a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 β 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 β 2 ), or a downshift maneuver in passing ( 4 β 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new
is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemical
electromagnetic induction. the transmission speed ranges from 2 mbit / s to 10 gbit / s. twisted pair cabling comes in two forms : unshielded twisted pair ( utp ) and shielded twisted - pair ( stp ). each form comes in several category ratings, designed for use in various scenarios. an optical fiber is a glass fiber. it carries pulses of light that represent data via lasers and optical amplifiers. some advantages of optical fibers over metal wires are very low transmission loss and immunity to electrical interference. using dense wave division multiplexing, optical fibers can simultaneously carry multiple streams of data on different wavelengths of light, which greatly increases the rate that data can be sent to up to trillions of bits per second. optic fibers can be used for long runs of cable carrying very high data rates, and are used for undersea communications cables to interconnect continents. there are two basic types of fiber optics, single - mode optical fiber ( smf ) and multi - mode optical fiber ( mmf ). single - mode fiber has the advantage of being able to sustain a coherent signal for dozens or even a hundred kilometers. multimode fiber is cheaper to terminate but is limited to a few hundred or even only a few dozens of meters, depending on the data rate and cable grade. = = = wireless = = = network connections can be established wirelessly using radio or other electromagnetic means of communication. terrestrial microwave β terrestrial microwave communication uses earth - based transmitters and receivers resembling satellite dishes. terrestrial microwaves are in the low gigahertz range, which limits all communications to line - of - sight. relay stations are spaced approximately 40 miles ( 64 km ) apart. communications satellites β satellites also communicate via microwave. the satellites are stationed in space, typically in geosynchronous orbit 35, 400 km ( 22, 000 mi ) above the equator. these earth - orbiting systems are capable of receiving and relaying voice, data, and tv signals. cellular networks use several radio communications technologies. the systems divide the region covered into multiple geographic areas. each area is served by a low - power transceiver. radio and spread spectrum technologies β wireless lans use a high - frequency radio technology similar to digital cellular. wireless lans use spread spectrum technology to enable communication between multiple devices in a limited area. ieee 802. 11 defines a common flavor of open - standards wireless radio - wave technology known as wi - fi. free - space optical communication uses visible or invisible light for communications. in most cases, line - of
high temperature superconducting ( hts ) tape can be cut and stacked to generate large magnetic fields at cryogenic temperatures after inducing persistent currents in the superconducting layers. a field of 17. 7 t was trapped between two stacks of hts tape at 8 k with no external mechanical reinforcement. 17. 6 t could be sustained when warming the stack up to 14 k. a new type of hybrid stack was used consisting of a 12 mm square insert stack embedded inside a larger 34. 4 mm diameter stack made from different tape. the magnetic field generated is the largest for any trapped field magnet reported and 30 % greater than previously achieved in a stack of hts tapes. such stacks are being considered for superconducting motors as rotor field poles where the cryogenic penalty is justified by the increased power to weight ratio. the sample reported can be considered the strongest permanent magnet ever created.
resistant to the wet etchants. this has been used in mews pressure sensor manufacturing for example. etching progresses at the same speed in all directions. long and narrow holes in a mask will produce v - shaped grooves in the silicon. the surface of these grooves can be atomically smooth if the etch is carried out correctly, with dimensions and angles being extremely accurate. some single crystal materials, such as silicon, will have different etching rates depending on the crystallographic orientation of the substrate. this is known as anisotropic etching and one of the most common examples is the etching of silicon in koh ( potassium hydroxide ), where si < 111 > planes etch approximately 100 times slower than other planes ( crystallographic orientations ). therefore, etching a rectangular hole in a ( 100 ) - si wafer results in a pyramid shaped etch pit with 54. 7Β° walls, instead of a hole with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p β n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for me
2h nmr spin - lattice relaxation and line - shape analyses are performed to study the temperature - dependent dynamics of water in the hydration shells of myoglobin, elastin, and collagen.
, heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials
Question: The temperature of the box is related to the average speed of what?
A) earth
B) air
C) molecules
D) light
|
C) molecules
|
Context:
participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithosphere, atmosphere, and hydrosphere ) compartments of earth. there are biogeochemical cycles for nitrogen, carbon, and water. = = = conservation = = = conservation biology is the study of the conservation of earth ' s biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. it is concerned with factors that influence the maintenance, loss, and restoration of biodiversity and the science of sustaining evolutionary processes that engender genetic, population, species, and ecosystem diversity. the concern stems from estimates suggesting that up to 50 % of all species on the planet
species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos
short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithosphere, atmosphere, and hydrosphere ) compartments of earth. there are biogeochemical cycles for nitrogen, carbon, and water. = = = conservation = = = conservation biology is the study of the conservation of earth ' s biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates
eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of the major staple foods, such as hemp, teff, maize, rice, wheat and other cereal grasses, pulses, bananas and plantains, as well as hemp, flax and cotton grown for their fibres, are the outcome of prehistoric selection over thousands of years from among wild ancestral plants with the most desirable characteristics. botanists study how plants produce food and how to increase yields, for example through plant breeding, making their work important to humanity ' s ability to feed the world and provide food security for future generations. botanists also study weeds, which are a considerable problem in agriculture, and the biology and control of plant pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant β people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour
aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β of which around 1 million are insects β but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β pieces of dna that can move between cells β while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e.
in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and biofuels. in the current decades, significant progress has been done in creating genetically modified organisms ( gmos ) that enhance the diversity of applications and economical viability of industrial biotechnology. by using renewable raw materials to produce a variety of chemicals and fuels, industrial biotechnology is actively advancing towards lowering greenhouse gas emissions and moving away from a petrochemical - based economy. synthetic biology is considered one of the essential cornerstones in industrial biotechnology due to its financial and sustainable contribution to the manufacturing sector. jointly biotechnology and synthetic biology play a crucial role in generating cost - effective products with nature - friendly features by using bio - based
. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support
new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper
small category. any ordinal number can be seen as a category when viewed as an ordered set. any monoid ( any algebraic structure with a single associative binary operation and an identity element ) forms a small category with a single object x. ( here, x is any fixed set. ) the morphisms from x to x are precisely the elements of the monoid, the identity morphism of x is the identity of the monoid, and the categorical composition of morphisms is given by the monoid operation. several definitions and theorems about monoids may be generalized for categories. similarly any group can be seen as a category with a single object in which every morphism is invertible, that is, for every morphism f there is a morphism g that is both left and right inverse to f under composition. a morphism that is invertible in this sense is called an isomorphism. a groupoid is a category in which every morphism is an isomorphism. groupoids are generalizations of groups, group actions and equivalence relations. actually, in the view of category the only difference between groupoid and group is that a groupoid may have more than one object but the group must have only one. consider a topological space x and fix a base point x 0 { \ displaystyle x _ { 0 } } of x, then Ο 1 ( x, x 0 ) { \ displaystyle \ pi _ { 1 } ( x, x _ { 0 } ) } is the fundamental group of the topological space x and the base point x 0 { \ displaystyle x _ { 0 } }, and as a set it has the structure of group ; if then let the base point x 0 { \ displaystyle x _ { 0 } } runs over all points of x, and take the union of all Ο 1 ( x, x 0 ) { \ displaystyle \ pi _ { 1 } ( x, x _ { 0 } ) }, then the set we get has only the structure of groupoid ( which is called as the fundamental groupoid of x ) : two loops ( under equivalence relation of homotopy ) may not have the same base point so they cannot multiply with each other. in the language of category, this means here two morphisms may not have the same source object ( or target object, because in this case for any morphism the source object and the target object are same : the base point ) so
this paper deals with a problem in which two players share a previously sliced pizza and try to eat as much amount of pizza as they can. it takes time to eat each piece of pizza and both players eat pizza at the same rate. one is allowed to take a next piece only after the person has finished eating the piece on hand. also, after the first piece is taken, one can only take a piece which is adjacent to already - taken piece. this paper shows that, in this real time setting, the starting player can always eat at least two - fifth of the total size of the pizza. however, this may not be the best possible amount the starting player can eat. it is a modified problem from an original one where two players takes piece alternatively instead.
Question: What are organisms that eat just one type of food?
A) specialists
B) hedonists
C) devotees
D) gluttons
|
A) specialists
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.