input
stringlengths
2.6k
28.8k
output
stringlengths
4
150
Context: a rydberg gas of no entrained in a supersonic molecular beam releases electrons as it evolves to form an ultracold plasma. the size of this signal, compared with that extracted by the subsequent application of a pulsed electric field, determines the absolute magnitude of the plasma charge. this information, combined with the number density of ions, supports a simple thermochemical model that explains the evolution of the plasma to an ultracold electron temperature. using only lidar or radar an accurate cloud boundary height estimate is often not possible. the combination of lidar and radar can give a reliable cloud boundary estimate in a much broader range of cases. however, also this combination with standard methods still can not measure the cloud boundaries in all cases. this will be illustrated with data from the clouds and radiation measurement campaigns, clara. rain is a problem : the radar has problems to measure the small cloud droplets in the presence of raindrops. similarly, few large particles below cloud base can obscure the cloud base in radar measurements. and the radar reflectivity can be very low at the cloud base of water clouds or in large regions of ice clouds, due to small particles. multiple cloud layers and clouds with specular reflections can pose problems for lidar. more advanced measurement techniques are suggested to solve these problems. an angle scanning lidar can, for example, detect specular reflections, while using information from the radars doppler velocity spectrum may help to detect clouds during rain. the connection between the quantum frequency of radiation by the transition of the electron from orbit n to orbit k and frequencies of circling of electron in these orbits for the atom of hydrogen is determined. the cross section of elastic electron - proton scattering taking place in an electron gas is calculated within the closed time path method. it is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. the other term is due to the scattering particles - electron gas entanglement. this term dominates the usual one when the exchange energy is in the vicinity of the fermi energy. furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime. al - kimia is derived from the ancient greek χημια, which is in turn derived from the word kemet, which is the ancient name of egypt in the egyptian language. alternately, al - kimia may derive from χημΡια ' cast together '. = = modern principles = = the current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the mechanism leading to an auger transition is based on the residual coulomb interaction between the valence electron and the core electrons. on the assumption that the wave field is switched on adiabatically, the probability of the auger effect of the inner electrons of the atom is determined. or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has no adverse effect on pilot vision. = = = = ships = = = = ships have also adopted similar methods. though the earlier american arleigh burke - class destroyers incorporated some signature - reduction features. the norwegian skjold - class corvettes was the first coastal defence and the french la fayette - class frigates the various charge pairings in strongly correlated electron systems are interpreted as quantum entanglement of a composite system. particles in the intermediate phase have a tendency to form the coherent superposition state of the localized state and the itinerant state, which induces the entanglement of both particles in the bipartite subsystems for increasing the entropy of the system. the correction to the entropic coulomb force becomes an immediate cause of charge pairing. beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar – in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 – 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar – aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) – military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar – an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical the motion and photon emission of electrons in a superlattice may be described as in an undulator. therefore, there is a close analogy between ballistic electrons in a superlattice and electrons in a free electron laser ( fel ). touching upon this analogy the intensity of photon emission in the ir region and the gain are calculated. it is shown that the amplification can be significant, reaching tens of percent. Question: As the atoms approach one another, their electron clouds gradually begin to do what? A) disappear B) magnetize C) overlap D) shrink
C) overlap
Context: star clusters can be found in galaxy mergers, not only in central regions, but also in the tidal debris. in both the eastern and western tidal tails of ngc 3256 there are dozens of young star clusters, confirmed by their blue colors and larger concentration index as compared to sources off of the tail. tidal tails of other galaxy pairs do not have such widespread cluster formation, indicating environmental influences on the process of star formation or the packaging of the stars. the dark matter in the halos of galaxies may well be baryonic, and much of the mass within them could be in the form of clusters of substellar objects within which are embedded cold gas globules. such halos might play an active role in galaxy formation and evolution. i will discuss the presence of massive star clusters in starburst galaxies with an emphasis on low mass galaxies outside the local group. i will show that such galaxies, with respect to their mass and luminosity, may be very rich in young luminous clusters. galactic nuclei are unique laboratories for the study of processes connected with the accretion of gas onto supermassive black holes. at the same time, they represent challenging environments from the point of view of stellar dynamics due to their extreme densities and masses involved. there is a growing evidence about the importance of the mutual interaction of stars with gas in galactic nuclei. gas rich environment may lead to stellar formation which, on the other hand, may regulate accretion onto the central mass. gas in the form of massive torus or accretion disc further influences stellar dynamics in the central parsec either via gravitational or hydrodynamical interaction. eccentricity oscillations on one hand and energy dissipation on the other hand lead to increased rate of infall of stars into the supermassive black hole. last, but not least, processes related to the stellar dynamics may be detectable with forthcoming gravitational waves detectors. two planetary nebulae are shown to belong to the sagittarius dwarf galaxy, on the basis of their radial velocities. this is only the second dwarf spheroidal galaxy, after fornax, found to contain planetary nebulae. their existence confirms that this galaxy is at least as massive as the fornax dwarf spheroidal which has a single planetary nebula, and suggests a mass of a few times 10 * * 7 solar masses. the two planetary nebulae are located along the major axis of the galaxy, near the base of the tidal tail. there is a further candidate, situated at a very large distance along the direction of the tidal tail, for which no velocity measurement is available. the location of the planetary nebulae and globular clusters of the sagittarius dwarf galaxy suggests that a significant fraction of its mass is contained within the tidal tail. the mechanism of stabilization of neutron - excess nuclei in stars is considered. this mechanism must produce the neutronisation process in hot stars in the same way as it occurs in the dwarfs. two types of stars are known to have strong, large scale magnetic fields : the main sequence ap stars and the magnetic white dwarfs. this suggest that the former might be the progenitors of the latter. in order to test this idea, i have carried out a search for large scale magnetic fields in stars with evolutionary states which are intermediate, i. e. in horizontal branch stars and in hot subdwarfs. planetary nebulae retain the signature of the nucleosynthesis and mixing events that occurred during the previous agb phase. observational signatures complement observations of agb and post - agb stars and their binary companions. the abundances of the elements heavier than iron such as kr and xe in planetary nebulae can be used to complement abundances of sr / y / zr and ba / la / ce in agb stars, respectively, to determine the operation of the slow neutron - capture process ( the s process ) in agb stars. additionally, observations of the rb abundance in type i planetary nebulae may allow us to infer the initial mass of the central star. several noble gas components present in meteoritic stardust silicon carbide ( sic ) grains are associated with implantation into the dust grains in the high - energy environment connected to the fast winds from the central stars during the planetary nebulae phase. in the present - day universe, it appears that most, and perhaps all, massive stars are born in star clusters. it also appears that all star clusters contain stars drawn from an approximately universal initial mass function, so that almost all rich young star clusters contain massive stars. in this review i discuss the physical processes associated with both massive star formation and with star cluster formation. first i summarize the observed properties of star - forming gas clumps, then address the following questions. how do these clumps emerge from giant molecular clouds? in these clustered environments, how do individual stars form and gain mass? can a forming star cluster be treated as an equilibrium system or is this process too rapid for equilibrium to be established? how does feedback affect the formation process? while the modern stellar imf shows a rapid decline with increasing mass, theoretical investigations suggest that very massive stars ( > 100 solar masses ) may have been abundant in the early universe. other calculations also indicate that, lacking metals, these same stars reach their late evolutionary stages without appreciable mass loss. after central helium burning, they encounter the electron - positron pair instability, collapse, and burn oxygen and silicon explosively. if sufficient energy is released by the burning, these stars explode as brilliant supernovae with energies up to 100 times that of an ordinary core collapse supernova. they also eject up to 50 solar masses of radioactive ni56. stars less massive than 140 solar masses or more massive than 260 solar masses should collapse into black holes instead of exploding, thus bounding the pair - creation supernovae with regions of stellar mass that are nucleosynthetically sterile. pair - instability supernovae might be detectable in the near infrared out to redshifts of 20 or more and their ashes should leave a distinctive nucleosynthetic pattern. Question: What force holds together both types of star clusters? A) magnetism B) inertia C) weight D) gravity
D) gravity
Context: organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy , there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which an alternative explanation of 1 / f - noise in manganites is suggested and discussed of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles material includes the unit cell, which is the smallest unit of a crystal lattice ( space lattice ) that repeats to make up the macroscopic crystal structure. most common structural materials include parallelpiped and hexagonal lattice types. in single crystals, the effects of the crystalline arrangement of atoms is often easy to see macroscopically, because the natural shapes of crystals reflect the atomic structure. further, physical properties are often controlled by crystalline defects. the understanding of crystal structures is an important prerequisite for understanding crystallographic defects. examples of crystal defects consist of dislocations including edges, screws, vacancies, self inter - stitials, and more that are linear, planar, and three dimensional types of defects. new and advanced materials that are being developed include nanomaterials, biomaterials. mostly, materials do not occur as a single crystal, but in polycrystalline form, as an aggregate of small crystals or grains with different orientations. because of this, the powder diffraction method, which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. most materials have a crystalline structure, but some important materials do not exhibit regular crystal structure. polymers display varying degrees of crystallinity, and many are completely non - crystalline. glass, some ceramics, and many natural materials are amorphous, not possessing any long - range order in their atomic arrangements. the study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic and mechanical descriptions of physical properties. = = = = nanostructure = = = = materials, which atoms and molecules form constituents in the nanoscale ( i. e., they form nanostructures ) are called nanomaterials. nanomaterials are the subject of intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 – 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ft protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = mei ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by Question: What are the rod-like structures made of short microtubules that play an important part in cellular division? A) centrioles B) mitochondria C) cilia D) fibrils
A) centrioles
Context: they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian – triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous – paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' , behind which are structures termed reentrant triangles. radar waves penetrating the skin get trapped in these structures, reflecting off the internal faces and losing energy. this method was first used on the blackbird series : a - 12, yf - 12a, lockheed sr - 71 blackbird. the most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth air as a traditional tool of external assistance, crutches play an important role in society. they have a wide range of applications to help either the elderly and disabled to walk or to treat certain illnesses or for post - operative rehabilitation. but there are many different types of crutches, including shoulder crutches and elbow crutches. how to choose has become an issue that deserves to be debated. because while crutches help people walk, they also have an impact on the body. inappropriate choice of crutches or long - term misuse can lead to problems such as scoliosis. previous studies were mainly experimental measurements or the construction of dynamic models to calculate the load on joints with crutches. these studies focus only on the level of the joints, ignoring the role that muscles play in this process. although some also take into account the degree of muscle activation, there is still a lack of quantitative analysis. the traditional dynamic model can be used to calculate the load on each joint. however, due to the activation of the muscle, this situation only causes part of the load transmitted to the joint, and the work of the chair will compensate the other part of the load. analysis at the muscle level allows a better understanding of the impact of crutches on the body. by comparing the levels of activation of the trunk muscles, it was found that the use of crutches for walking, especially a single crutch, can cause a large difference in the activation of the back muscles on the left and right sides, and this difference will cause muscle degeneration for a long time, leading to scoliosis. in this article taking scoliosis as an example, by analyzing the muscles around the spine, we can better understand the pathology and can better prevent diseases. the objective of this article is to analyze normal walking compared to walking with one or two crutches using opensim software to obtain the degree of activation of different muscles in order to analyze the impact of crutches on the body. , characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc – 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using a brief description of some salient aspects of four - dimensional supersymmetry : early history, supermanifolds, the mssm, cold dark matter, the cosmological constant and the string landscape. . additionally, there are more sophisticated vr systems being developed which allow the user to use their entire body in their recovery. it also has sophisticated sensors that would allow medical professionals to collect data on muscle engagement and tension. it uses electrical impedance tomography, a form of noninvasive imaging to view muscle usage. another concern is the lack of major funding by big companies and the government into the field. many of these vr sets are off the shelf items, and not properly made for medical use. external add - ones are usually 3d printed or made from spare parts from other electronics. this lack of support means that patients who want to try this method have to be technically savvy, which is unlikely as many ailments only appear later in life. additionally, certain parts of vr like haptic feedback and tracking are still not advanced enough to be used reliably in a medical setting. another issue is the amount of vr devices that are available for purchase. while this does increase the options available, the differences between vr systems could impact patient recovery. the vast number of vr devices also makes it difficult for medical professionals to give and interpret information, as they might not have had practice with the specific model, which could lead to faulty advice being given out. = = = applications = = = currently other applications within healthcare are being explored, such as : applications for monitoring of glucose, alcohol, and lactate or blood oxygen, breath monitoring, heartbeat, heart rate and its variability, electromyography ( emg ), electrocardiogram ( ecg ) and electroencephalogram ( eeg ), body temperature, pressure ( e. g. in shoes ), sweat rate or sweat loss, levels of uric acid and ions – e. g. for preventing fatigue or injuries or for optimizing training patterns, including via " human - integrated electronics " forecasting changes in mood, stress, and health measuring blood alcohol content measuring athletic performance monitoring how sick the user is detecting early signs of infection long - term monitoring of patients with heart and circulatory problems that records an electrocardiogram and is self - moistening health risk assessment applications, including measures of frailty and risks of age - dependent diseases automatic documentation of care activities days - long continuous imaging of diverse organs via a wearable bioadhesive stretchable high - resolution ultrasound imaging patch or e. g. a wearable continuous heart ultrasound imager. ( potential novel diagnostic and monitoring tools ) sleep tracking cortisol monitoring for measuring stress measuring relaxation or alert symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that ##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb – usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently unitary recordings in freely - moving pulse weakly electric fish suggest spike timing encoding of electrosensory signals Question: Vertebrates with four limbs are also called what? A) tetrapods B) Amphibians C) Mammals D) Birds
A) tetrapods
Context: blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of managing blood lipid levels is important for the treatment and prevention of diabetes, cardiovascular disease, and obesity. an easy - to - use, portable lipid blood test will accelerate more frequent testing by patients and at - risk populations. we used smartphone systems that are already familiar to many people. because smartphone systems can be carried around everywhere, blood can be measured easily and frequently. we compared the results of lipid tests with those of existing clinical diagnostic laboratory methods. we found that smartphone - based point - of - care lipid blood tests are as accurate as hospital - grade laboratory tests. our system will be useful for those who need to manage blood lipid levels to motivate them to track and control their behavior. , characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc – 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci – fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci – fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the by means of atomistic molecular dynamics simulations, we study cholesterol - dppc ( dipalmitoyl phosphatidylcholine ) bilayers of different composition, from pure dppc bilayers to a 1 : 1 mixture of dppc and cholesterol. the lateral - pressure profiles through the bilayers are computed and separated into contributions from the different components. we find that the pressure inside the bilayer changes qualitatively for cholesterol concentrations of about 20 % or higher. the pressure profile then turns from a rather flat shape into an alternating sequence of regions with large positive and negative lateral pressure. the changes in the lateral - pressure profile are so characteristic that specific interaction between cholesterol and molecules such as membrane proteins mediated solely via the lateral - pressure profile might become possible. within or outside of the cell wall of an organism, and specific biochemical reactions for mineral deposition exist that include lipids, proteins and carbohydrates. most natural ( or biological ) materials are complex composites whose mechanical properties are often outstanding, considering the weak constituents from which they are assembled. these complex structures, which have risen from hundreds of million years of evolution, are inspiring the design of novel materials with exceptional physical properties for high performance in adverse conditions. their defining characteristics such as hierarchy, multifunctionality, and the capacity for self - healing, are currently being investigated. the basic building blocks begin with the 20 amino acids and proceed to polypeptides, polysaccharides, and polypeptides – saccharides. these, in turn, compose the basic proteins, which are the primary constituents of the ' soft tissues ' common to most biominerals. with well over 1000 proteins possible, current research emphasizes the use of collagen, chitin, keratin, and elastin. the ' hard ' phases are often strengthened by crystalline minerals, which nucleate and grow in a bio - mediated environment that determines the size, shape and distribution of individual crystals. the most important mineral phases have been identified as hydroxyapatite, silica, and aragonite. using the classification of wegst and ashby, the principal mechanical characteristics and structures of biological ceramics, polymer composites, elastomers, and cellular materials have been presented. selected systems in each class are being investigated with emphasis on the relationship between their microstructure over a range of length scales and their mechanical response. thus, the crystallization of inorganic materials in nature generally occurs at ambient temperature and pressure. yet the vital organisms through which these minerals form are capable of consistently producing extremely precise and complex structures. understanding the processes in which living organisms control the growth of crystalline minerals such as silica could lead to significant advances in the field of materials science, and open the door to novel synthesis techniques for nanoscale composite materials, or nanocomposites. high - resolution scanning electron microscope ( sem ) observations were performed of the microstructure of the mother - of - pearl ( or nacre ) portion of the abalone shell. those shells exhibit the highest mechanical strength and fracture toughness of any non - metallic substance known. the nacre from the shell of the abalone has become one of the more intensively studied biological structures in materials science. clearly visible in these images are carried out correctly, with dimensions and angles being extremely accurate. some single crystal materials, such as silicon, will have different etching rates depending on the crystallographic orientation of the substrate. this is known as anisotropic etching and one of the most common examples is the etching of silicon in koh ( potassium hydroxide ), where si < 111 > planes etch approximately 100 times slower than other planes ( crystallographic orientations ). therefore, etching a rectangular hole in a ( 100 ) - si wafer results in a pyramid shaped etch pit with 54. 7Β° walls, instead of a hole with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p – n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for mems in 1995 at university of california, los angeles. primarily used for releasing metal and dielectric structures by undercutting silicon, xef2 has the advantage of a stiction - free release unlike wet etchants. its etch selectivity to silicon is very high, allowing it to work with photores metal hydrides have earlier been suggested for utilization in solar cells. with this as a motivation we have prepared thin films of yttrium hydride by reactive magnetron sputter deposition. the resulting films are metallic for low partial pressure of hydrogen during the deposition, and black or yellow - transparent for higher partial pressure of hydrogen. both metallic and semiconducting transparent yhx films have been prepared directly in - situ without the need of capping layers and post - deposition hydrogenation. optically the films are similar to what is found for yhx films prepared by other techniques, but the crystal structure of the transparent films differ from the well - known yh3 phase, as they have an fcc lattice instead of hcp. Question: What is the name of the disorder of the arteries in which cholesterol and other materials are deposited on the interior of the arterial wall? A) anemia B) atherosclerosis C) paralysis D) arthritis
B) atherosclerosis
Context: species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer – resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna that can move between cells β€” while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e. short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer – resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithosphere, atmosphere, and hydrosphere ) compartments of earth. there are biogeochemical cycles for nitrogen, carbon, and water. = = = conservation = = = conservation biology is the study of the conservation of earth ' s biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants than animals. genetic evidence suggests that the true evolutionary relationship of multicelled organisms is as shown in the cladogram below – fungi are more closely related to animals than to plants. in 1998, the angiosperm phylogeny group published a phylogeny for flowering plants based on an analysis of ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an o - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table Question: What is defined as a close relationship between organisms of different species in which at least one of the organisms benefits? A) symbiosis B) parasitic C) co-operative D) endosymbiosis
A) symbiosis
Context: the united rest mass and charge of a particle correspond to the two forms of the same regularity of the unified nature of its ultimate structure. each of them contains the electric, weak, strong and the gravitational contributions. as a consequence, the force of an attraction among the two neutrinos and force of their repulsion must be defined from the point of view of any of the existing types of the actions. therefore, to understand the nature of the micro world interaction at the fundamental level, one must use the fact that each of the four types of well known forces includes both a kind of the newton and a kind of the coulomb components. the opinion has been spoken that the existence of the gravitational parts of the united rest mass and charge would imply the availability of such a fifth force which come forwards in the system as a unified whole. so mars below means blood and war ", is a false cause fallacy. : 26 many astrologers claim that astrology is scientific. if one were to attempt to try to explain it scientifically, there are only four fundamental forces ( conventionally ), limiting the choice of possible natural mechanisms. : 65 some astrologers have proposed conventional causal agents such as electromagnetism and gravity. the strength of these forces drops off with distance. : 65 scientists reject these proposed mechanisms as implausible since, for example, the magnetic field, when measured from earth, of a large but distant planet such as jupiter is far smaller than that produced by ordinary household appliances. astronomer phil plait noted that in terms of magnitude, the sun is the only object with an electromagnetic field of note, but astrology isn ' t based just off the sun alone. : 65 while astrologers could try to suggest a fifth force, this is inconsistent with the trends in physics with the unification of electromagnetism and the weak force into the electroweak force. if the astrologer insisted on being inconsistent with the current understanding and evidential basis of physics, that would be an extraordinary claim. : 65 it would also be inconsistent with the other forces which drop off with distance. : 65 if distance is irrelevant, then, logically, all objects in space should be taken into account. : 66 carl jung sought to invoke synchronicity, the claim that two events have some sort of acausal connection, to explain the lack of statistically significant results on astrology from a single study he conducted. however, synchronicity itself is considered neither testable nor falsifiable. the study was subsequently heavily criticised for its non - random sample and its use of statistics and also its lack of consistency with astrology. = = psychology = = psychological studies have not found any robust relationship between astrological signs and life outcomes. for example, a study showed that zodiac signs are no more effective than random numbers in predicting subjective well - being and quality of life. it has also been shown that confirmation bias is a psychological factor that contributes to belief in astrology. : 344 : 180 – 181 : 42 – 48 confirmation bias is a form of cognitive bias. : 553 from the literature, astrology believers often tend to selectively remember those predictions that turned out to be true and do not remember those that turned out false. another, separate, form of confirmation bias also plays a role, where believers often fail to in a voltaic cell, positive ( negative ) ions flow from the low ( high ) potential electrode to the high ( low ) potential electrode, driven by an ` electromotive force ' which points in opposite direction and overcomes the electric force. similarly in a superconductor charge flows in direction opposite to that dictated by the faraday electric field as the magnetic field is expelled in the meissner effect. the puzzle is the same in both cases : what drives electric charges against electromagnetic forces? i propose that the answer is also the same in both cases : kinetic energy lowering, or ` quantum pressure '. ultramagnetized neutron stars or magnetars are magnetically powered neutron stars. their strong magnetic fields dominate the physical processes in their crusts and their surroundings. the past few years have seen several advances in our theoretical and observational understanding of these objects. in spite of a surfeit of observations, their spectra are still poorly understood. i will discuss the emission from strongly magnetized condensed matter surfaces of neutron stars, recent advances in our expectations of the surface composition of magnetars and a model for the non - thermal emission from these objects. . this, he argued, would have been more persuasive and would have produced less controversy. the use of poetic imagery based on the concepts of the macrocosm and microcosm, " as above so below " to decide meaning such as edward w. james ' example of " mars above is red, so mars below means blood and war ", is a false cause fallacy. : 26 many astrologers claim that astrology is scientific. if one were to attempt to try to explain it scientifically, there are only four fundamental forces ( conventionally ), limiting the choice of possible natural mechanisms. : 65 some astrologers have proposed conventional causal agents such as electromagnetism and gravity. the strength of these forces drops off with distance. : 65 scientists reject these proposed mechanisms as implausible since, for example, the magnetic field, when measured from earth, of a large but distant planet such as jupiter is far smaller than that produced by ordinary household appliances. astronomer phil plait noted that in terms of magnitude, the sun is the only object with an electromagnetic field of note, but astrology isn ' t based just off the sun alone. : 65 while astrologers could try to suggest a fifth force, this is inconsistent with the trends in physics with the unification of electromagnetism and the weak force into the electroweak force. if the astrologer insisted on being inconsistent with the current understanding and evidential basis of physics, that would be an extraordinary claim. : 65 it would also be inconsistent with the other forces which drop off with distance. : 65 if distance is irrelevant, then, logically, all objects in space should be taken into account. : 66 carl jung sought to invoke synchronicity, the claim that two events have some sort of acausal connection, to explain the lack of statistically significant results on astrology from a single study he conducted. however, synchronicity itself is considered neither testable nor falsifiable. the study was subsequently heavily criticised for its non - random sample and its use of statistics and also its lack of consistency with astrology. = = psychology = = psychological studies have not found any robust relationship between astrological signs and life outcomes. for example, a study showed that zodiac signs are no more effective than random numbers in predicting subjective well - being and quality of life. it has also been shown that confirmation bias is a psychological factor that contributes to belief in astrology. : 344 : 180 – 181 : the influence of a neutrinoless electron to positron conversion on a cooling of strongly magnetized iron white dwarfs is studied. antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture, on the ground that the earth is suspended within the concavity of the sky, and that it has as much room on the one side of it as on the other : hence they say that the part that is beneath must also be inhabited. but they do not remark that, although it be supposed or scientifically demonstrated that the world is of a round and spherical form, yet it does not follow that the other side of the earth is bare of water ; nor even, though it be bare, does it immediately follow that it is peopled. for scripture, which proves the truth of its historical statements by the accomplishment of its prophecies, gives no false information ; and it is too absurd to say, that some men might have taken ship and traversed the whole wide ocean, and crossed from this side of the world to the other, and that thus even the inhabitants of that distant region are descended from that one first man. some historians do not view augustine ' s scriptural commentaries as endorsing any particular cosmological model, endorsing instead the view that augustine shared the common view of his contemporaries that the earth is spherical, in line with his endorsement of science in de genesi ad litteram. c. p. e. nothaft, responding to writers like leo ferrari who described augustine as endorsing a flat earth, says that "... other recent writers on the subject treat augustine ' s acceptance of the earth ' s spherical shape as a well - established fact ". while it always remained a minority view, from the mid - fourth to the seventh centuries ad, the flat - earth view experienced a revival, around the time when diodorus of tarsus founded the exegetical school known as the school of antioch, which sought to counter what he saw as the pagan cosmology of the greeks with a return to the traditional cosmology. the writings of diodorus did not survive, but are reconstructed from later criticism. this revival primarily took place in the east syriac world ( with little influence on the latin west ) where it gained proponents such as ephrem the syrian and in the popular hexaemeral homilies of jacob of serugh. chrys two types of stars are known to have strong, large scale magnetic fields : the main sequence ap stars and the magnetic white dwarfs. this suggest that the former might be the progenitors of the latter. in order to test this idea, i have carried out a search for large scale magnetic fields in stars with evolutionary states which are intermediate, i. e. in horizontal branch stars and in hot subdwarfs. an alternative explanation of 1 / f - noise in manganites is suggested and discussed the magnetic fields of the ice giant planets uranus and neptune ( u / n ) are unique in the solar system. based on a substantial database measured on earth for representative planetary fluids at representative dynamic pressures up to 200 gpa ( 2 mbar ) and a few 1000 k, the complex magnetic fields of u / n are ( i ) probably made primarily by degenerate metallic fluid h ( mfh ) at or near the crossover from the h - he envelopes to ice cores at ~ 100 gpa ( mbar ) pressures and normalized radii of ~ 90 % of the radii of u / n ; ( ii ) because those magnetic fields are made relatively close to the surfaces of u / n, non - dipolar fields can be expected ; ( iii ) the ice cores are most probably a heterogeneous fluid mixture of h, n, o, c, fe / ni and silicate - oxides and their mutual reaction products at high pressures and temperatures, as discussed elsewhere. ironically, there is probably little nebular ice in the ice giant planets. Question: What do you call the force identified by a north and south pole? A) magnetism B) normal force C) buoyancy D) gravity
A) magnetism
Context: in a voltaic cell, positive ( negative ) ions flow from the low ( high ) potential electrode to the high ( low ) potential electrode, driven by an ` electromotive force ' which points in opposite direction and overcomes the electric force. similarly in a superconductor charge flows in direction opposite to that dictated by the faraday electric field as the magnetic field is expelled in the meissner effect. the puzzle is the same in both cases : what drives electric charges against electromagnetic forces? i propose that the answer is also the same in both cases : kinetic energy lowering, or ` quantum pressure '. equivalent of us $ 790 million in state subsidies. the same year, catl introduced its m3p battery, offering a 15 % increase in energy density, reaching 210 wh / kg. the battery replaces the iron in the lithium iron phosphate battery with a combination of magnesium, zinc, and aluminum. later that year, the company announced its shenxing lfp battery. the cathode of shenxing lfp is fully nano - crystallized, which accelerates ion movement and the response to charging signals. the anode ' s second - generation fast ion ring technology increases intercalation channels and shortens intercalation distance. its superconducting electrolyte formula reduces viscosity and improves conductivity. a new separator film reduces resistance. at room temperature, shenxing can charge from 0 to 80 % in 10 minutes and in just 30 minutes at - 10 Β°c, maintains 0 - 100 kph performance at low temperatures. safety is enhanced by using a safe coating for the electrolyte and the separator. a real - time fault testing system allows safe and fast refueling. ford announced a 2, 500 worker battery plant in marshall, michigan using catl technology. the facility would be a ford subsidiary. making the batteries domestically would enable ford customers to access federal subsidies. the project was paused after lawmakers questioned the tax subsidies. in november 2023, catl and stellantis announced that they are considering the possibility of a joint investment in the form of a joint venture with equivalent contributions. on 7 december 2023, catl and hong kong science and technology parks corporation ( hkstp ) signed a memorandum of understanding to establish a catl research center at the hkstp with investment of over hkd 1. 2 billion. in 2023, the world intellectual property organization ( wipo ) ’ s annual pct review ranked catl ' s number of patent applications published under the pct system as 8th in the world, with 1, 799 patent applications being published during 2023. in april 2024, catl announced tener, a large scale stationary energy storage system. it is claimed to feature all - round safety, zero degradation over five - years and 6. 25 mwh capacity per unit. it incorporates biomimetic sei ( solid electrolyte interphase ) and self - assembled electrolyte technologies. in august 2024, american legislators marco rubio and john moolenaar asked defense secretary lloyd austin to add catl to a list of companies prohibited eremets and troyan ( nature mater. 10, 927 - 931 ( 2011 ) ) claim that they produced the conducting liquid hydrogen state at 270 gpa and 295 k. their evidence consists of disappearance of raman signals, visual observations, and measurements of electrical conductivity in diamond anvil cells ( dac ). however, there is no proof that the reported observations are due to transformations in hydrogen. . this, he argued, would have been more persuasive and would have produced less controversy. the use of poetic imagery based on the concepts of the macrocosm and microcosm, " as above so below " to decide meaning such as edward w. james ' example of " mars above is red, so mars below means blood and war ", is a false cause fallacy. : 26 many astrologers claim that astrology is scientific. if one were to attempt to try to explain it scientifically, there are only four fundamental forces ( conventionally ), limiting the choice of possible natural mechanisms. : 65 some astrologers have proposed conventional causal agents such as electromagnetism and gravity. the strength of these forces drops off with distance. : 65 scientists reject these proposed mechanisms as implausible since, for example, the magnetic field, when measured from earth, of a large but distant planet such as jupiter is far smaller than that produced by ordinary household appliances. astronomer phil plait noted that in terms of magnitude, the sun is the only object with an electromagnetic field of note, but astrology isn ' t based just off the sun alone. : 65 while astrologers could try to suggest a fifth force, this is inconsistent with the trends in physics with the unification of electromagnetism and the weak force into the electroweak force. if the astrologer insisted on being inconsistent with the current understanding and evidential basis of physics, that would be an extraordinary claim. : 65 it would also be inconsistent with the other forces which drop off with distance. : 65 if distance is irrelevant, then, logically, all objects in space should be taken into account. : 66 carl jung sought to invoke synchronicity, the claim that two events have some sort of acausal connection, to explain the lack of statistically significant results on astrology from a single study he conducted. however, synchronicity itself is considered neither testable nor falsifiable. the study was subsequently heavily criticised for its non - random sample and its use of statistics and also its lack of consistency with astrology. = = psychology = = psychological studies have not found any robust relationship between astrological signs and life outcomes. for example, a study showed that zodiac signs are no more effective than random numbers in predicting subjective well - being and quality of life. it has also been shown that confirmation bias is a psychological factor that contributes to belief in astrology. : 344 : 180 – 181 : scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β€” the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws, which have become fundamental concepts in chemistry. some of them are : = = history = = the history of chemistry spans a period from the ancient past to the present. since several millennia bc, civilizations were using technologies that would eventually form the basis of the various branches of chemistry. examples include extracting metals from ores young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations this extra strength allows some structural components to fail without bridge collapse. the extra strength used in the design is called the margin of safety. eyes and ears provide working examples of passive redundancy. vision loss in one eye does not cause blindness but depth perception is impaired. hearing loss in one ear does not cause deafness but directionality is lost. performance decline is commonly associated with passive redundancy when a limited number of failures occur. active redundancy eliminates performance declines by monitoring the performance of individual devices, and this monitoring is used in voting logic. the voting logic is linked to switching that automatically reconfigures the components. error detection and correction and the global positioning system ( gps ) are two examples of active redundancy. electrical power distribution provides an example of active redundancy. several power lines connect each generation facility with customers. each power line includes monitors that detect overload. each power line also includes circuit breakers. the combination of power lines provides excess capacity. circuit breakers disconnect a power line when monitors detect an overload. power is redistributed across the remaining lines. at the toronto airport, there are 4 redundant electrical lines. each of the 4 lines supply enough power for the entire airport. a spot network substation uses reverse current relays to open breakers to lines that fail, but lets power continue to flow the airport. electrical power systems use power scheduling to reconfigure active redundancy. computing systems adjust the production output of each generating facility when other generating facilities are suddenly lost. this prevents blackout conditions during major events such as an earthquake. = = disadvantages = = charles perrow, author of normal accidents, has said that sometimes redundancies backfire and produce less, not more reliability. this may happen in three ways : first, redundant safety devices result in a more complex system, more prone to errors and accidents. second, redundancy may lead to shirking of responsibility among workers. third, redundancy may lead to increased production pressures, resulting in a system that operates at higher speeds, but less safely. = = voting logic = = voting logic uses performance monitoring to determine how to reconfigure individual components so that operation continues without violating specification limitations of the overall system. voting logic often involves computers, but systems composed of items other than computers may be reconfigured using voting logic. circuit breakers are an example of a form of non - computer voting logic. the simplest voting logic in computing systems involves two components : the graphane with chemically bonded alkali metals ( li, na, k ) was considered as potential material for hydrogen storage. the ab initio calculations show that such material can adsorb as many as 4 hydrogen molecules per li, na and k metal atoms. these values correspond to 12. 20 wt %, 10. 33 wt % and 8. 56 wt % of hydrogen, respectively and exceed the doe requirements. the thermodynamic analysis shows that li - graphane complex is the most promising for hydrogen storage with ability to adsorb 3 hydrogen molecules per metal atom at 300 k and pressure in the range from 5 to 250 atm. ##idermal electronics mirror those of skin to allow them to perform in this same way. like skin, epidermal electronics are ultrathin ( h < 100 ΞΌm ), low - modulus ( e β‰ˆ70 kpa ), and lightweight ( < 10 mg / cm2 ), enabling them to conform to the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the smart shoe. in 2019 german footwear company puma was recognized as one of the " 100 best inventions of 2019 " by time for its fi laceless shoe that uses micro - motors to adjust the fit from an iphone. nike also introduced a smart shoe in 2019 known as adapt bb. the shoe featured buttons on the the rapidly developing research field of organic analogue sensors aims to replace traditional semiconductors with naturally occurring materials. photosensors, or photodetectors, change their electrical properties in response to the light levels they are exposed to. organic photosensors can be functionalised to respond to specific wavelengths, from ultra - violet to red light. performing cyclic voltammetry on fungal mycelium and fruiting bodies under different lighting conditions shows no appreciable response to changes in lighting condition. however, functionalising the specimen using pedot : pss yields in a photosensor that produces large, instantaneous current spikes when the light conditions change. future works would look at interfacing this organic photosensor with an appropriate digital back - end for interpreting and processing the response. Question: The voltage of a voltaic cell can be determined by the reduction potentials of what? A) full reactions B) half reactions C) old reactions D) thermal reactions
B) half reactions
Context: single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabino are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, under this elastic region is known as resilience. note that not all elastic materials undergo linear elastic deformation ; some, such as concrete, gray cast iron, and many polymers, respond in a nonlinear fashion. for these materials hooke ' s law is inapplicable. = = = plastic deformation = = = this type of deformation is not undone simply by removing the applied force. an object in the plastic deformation range, however, will first have undergone elastic deformation, which is undone simply by removing the applied force, so the object will return part way to its original shape. soft thermoplastics have a rather large plastic deformation range as do ductile metals such as copper, silver, and gold. steel does, too, but not cast iron. hard thermosetting plastics, rubber, crystals, and ceramics have minimal plastic deformation ranges. an example of a material with a large plastic deformation range is wet chewing gum, which can be stretched to dozens of times its original length. under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture ( also called rupture ). during strain hardening the material becomes stronger through the movement of atomic dislocations. the necking phase is indicated by a reduction in cross - sectional area of the specimen. necking begins after the ultimate strength is reached. during necking, the material can no longer withstand the maximum stress and the strain in the specimen rapidly increases. plastic deformation ends with the fracture of the material. = = failure = = = = = compressive failure = = = usually, compressive stress applied to bars, columns, etc. leads to shortening. loading a structural element or specimen will increase the compressive stress until it reaches its compressive strength. according to the properties of the material, failure modes are yielding for materials with ductile behavior ( most metals, some soils and plastics ) or rupturing for brittle behavior ( geomaterials, cast iron, glass, etc. ). in long, slender structural elements β€” such as columns or truss bars β€” an increase of compressive force f leads to structural failure due to buckling at lower stress than the compressive strength. = = = fracture = = = a break occurs after the material has reached the end of the elastic, and then plastic, deformation ranges. at this point forces accumulate until they are sufficient to cause a fracture. all materials will eventually fracture, if sufficient forces are applied. = = types of stress and strain = cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla – polylactic acid. this is a polyester which degrades within the human body to form lactic acid, a naturally occurring chemical which is easily removed from the body. similar materials are polyglycolic acid ( pga ) and polycaprolactone ( pcl ) : their degradation mechanism is similar to that of pla, but pcl degrades slower and pga degrades faster. pla is commonly combined with pga to create poly - lactic - co - glycolic acid ( plga ). this is especially useful because the degradation of plga can be tailored by altering the weight percentages of pla and pga : more pla – slower degradation, more pga – faster degradation. this tunability, along with its biocompatibility, makes it an extremely useful material for scaffold creation. scaffolds may also be constructed from natural materials : in particular different derivatives of the extracellular matrix have been studied to evaluate their ability to support cell growth. protein based materials – such as collagen, or fibrin, and polysaccharidic materials - like chitosan or glycosaminoglycans ( gags ), have all proved suitable in terms of cell compatibility. among gags, hyaluronic acid, possibly in combination with cross linking agents ( e. g. glutaraldehyde, water - soluble carbodiimide, etc. ), is one of the possible choices as scaffold material. due to the covalent attachment of thiol groups to these polymers, they can crosslink via disulfide bond formation. the use of thiolated polymers ( thiomers ) as scaffold material for tissue engineering was initially introduced at the 4th central european symposium on pharmaceutical technology in vienna 2001. as thiomers are biocompatible, exhibit cellular mimicking properties and efficiently support proliferation and differentiation of various cell types, ##simal cube of material relative to a reference configuration. mechanical strains are caused by mechanical stress, see stress - strain curve. the relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic. elasticity in materials occurs when applied stress does not surpass the energy required to break molecular bonds, allowing the material to deform reversibly and return to its original shape once the stress is removed. the linear relationship for a material is known as young ' s modulus. above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation. the determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis. in the above figure, it can be seen that the compressive loading ( indicated by the arrow ) has caused deformation in the cylinder so that the original shape ( dashed lines ) has changed ( deformed ) into one with bulging sides. the sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change. as a result, the material is forced out laterally. internal forces ( in this case at right angles to the deformation ) resist the applied load. = = types of deformation = = depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. the image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel. different deformation modes may occur under different conditions, as can be depicted using a deformation mechanism map. permanent deformation is irreversible ; the deformation stays even after removal of the applied forces, while the temporary deformation is recoverable as it disappears after the removal of applied forces. temporary deformation is also called elastic deformation, while the permanent deformation is called plastic deformation. = = = elastic deformation = = = the study of temporary or elastic deformation in the case of engineering strain is applied to materials used in mechanical and structural engineering, such as concrete and steel, which are subjected to very small deformations. engineering strain is modeled by infinitesimal strain theory, also called small strain theory, small deformation theory, small displacement theory, or small displacement - gradient theory where strains and rotations are both small. for some materials, e. g. elastomers and polymers, subjected to large deformations, the engineering definition of strain is not applicable, e. g. typical engineering strains and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell carried out correctly, with dimensions and angles being extremely accurate. some single crystal materials, such as silicon, will have different etching rates depending on the crystallographic orientation of the substrate. this is known as anisotropic etching and one of the most common examples is the etching of silicon in koh ( potassium hydroxide ), where si < 111 > planes etch approximately 100 times slower than other planes ( crystallographic orientations ). therefore, etching a rectangular hole in a ( 100 ) - si wafer results in a pyramid shaped etch pit with 54. 7Β° walls, instead of a hole with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p – n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for mems in 1995 at university of california, los angeles. primarily used for releasing metal and dielectric structures by undercutting silicon, xef2 has the advantage of a stiction - free release unlike wet etchants. its etch selectivity to silicon is very high, allowing it to work with photores with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p – n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for mems in 1995 at university of california, los angeles. primarily used for releasing metal and dielectric structures by undercutting silicon, xef2 has the advantage of a stiction - free release unlike wet etchants. its etch selectivity to silicon is very high, allowing it to work with photoresist, sio2, silicon nitride, and various metals for masking. its reaction to silicon is " plasmaless ", is purely chemical and spontaneous and is often operated in pulsed mode. models of the etching action are available, and university laboratories and various commercial tools offer solutions using this approach. modern vlsi processes avoid wet etching, and use plasma etching instead. plasma etchers can operate in several modes by adjusting the parameters of the plasma. ordinary plasma etching operates between 0. 1 and 5 torr. ( this unit of pressure, commonly used in vacuum engineering, equals approximately 133. 3 pascal prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as Question: What type of fatty acids have bent chains? A) saturated fatty acids B) unsaturated fatty acids C) lipids D) cholesterol
B) unsaturated fatty acids
Context: ##ta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. hetero stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomi the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. ##ses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosyn , the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohy Question: All seed plants and a few seedless vascular plants are what? A) heterosporous B) homosporous C) protozoans D) zygotes
A) heterosporous
Context: defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb – usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently specialized for specific settings such as in a classroom or nursing home. positioning is often important in seating arrangements to ensure that user ' s body pressure is distributed equally without inhibiting movement in a desired way. positioning devices have been developed to aid in allowing people to stand and bear weight on their legs without risk of a fall. are continuous lines used to depict edges directly visible from a particular angle. hidden – are short - dashed lines that may be used to represent edges that are not directly visible. center – are alternately long - and short - dashed lines that may be used to represent the axes of circular features. cutting plane – are thin, medium - dashed lines, or thick alternately long - and double short - dashed that may be used to define sections for section views. section – are thin lines in a pattern ( pattern determined by the material being " cut " or " sectioned " ) used to indicate surfaces in section views resulting from " cutting ". section lines are commonly referred to as " cross - hatching ". phantom – ( not shown ) are alternately long - and double short - dashed thin lines used to represent a feature or component that is not part of the specified part or assembly. e. g. billet ends that may be used for testing, or the machined product that is the focus of a tooling drawing. lines can also be classified by a letter classification in which each line is given a letter. type a lines show the outline of the feature of an object. they are the thickest lines on a drawing and done with a pencil softer than hb. type b lines are dimension lines and are used for dimensioning, projecting, extending, or leaders. a harder pencil should be used, such as a 2h pencil. type c lines are used for breaks when the whole object is not shown. these are freehand drawn and only for short breaks. 2h pencil type d lines are similar to type c, except these are zigzagged and only for longer breaks. 2h pencil type e lines indicate hidden outlines of internal features of an object. these are dotted lines. 2h pencil type f lines are type e lines, except these are used for drawings in electrotechnology. 2h pencil type g lines are used for centre lines. these are dotted lines, but a long line of 10 – 20 mm, then a 1 mm gap, then a small line of 2 mm. 2h pencil type h lines are the same as type g, except that every second long line is thicker. these indicate the cutting plane of an object. 2h pencil type k lines indicate the alternate positions of an object and the line taken by that object. these are drawn with a long line of 10 – 20 mm, then a small gap, then a small line of 2 mm, then a gap, then another small line. 2h also called projection lines ) differs, as explained below. in first - angle projection, the parallel projectors originate as if radiated from behind the viewer and pass through the 3d object to project a 2d image onto the orthogonal plane behind it. the 3d object is projected into 2d " paper " space as if you were looking at a radiograph of the object : the top view is under the front view, the right view is at the left of the front view. first - angle projection is the iso standard and is primarily used in europe. in third - angle projection, the parallel projectors originate as if radiated from the far side of the object and pass through the 3d object to project a 2d image onto the orthogonal plane in front of it. the views of the 3d object are like the panels of a box that envelopes the object, and the panels pivot as they open up flat into the plane of the drawing. thus the left view is placed on the left and the top view on the top ; and the features closest to the front of the 3d object will appear closest to the front view in the drawing. third - angle projection is primarily used in the united states and canada, where it is the default projection system according to asme standard asme y14. 3m. until the late 19th century, first - angle projection was the norm in north america as well as europe ; but circa the 1890s, third - angle projection spread throughout the north american engineering and manufacturing communities to the point of becoming a widely followed convention, and it was an asa standard by the 1950s. circa world war i, british practice was frequently mixing the use of both projection methods. as shown above, the determination of what surface constitutes the front, back, top, and bottom varies depending on the projection method used. not all views are necessarily used. generally only as many views are used as are necessary to convey all needed information clearly and economically. the front, top, and right - side views are commonly considered the core group of views included by default, but any combination of views may be used depending on the needs of the particular design. in addition to the six principal views ( front, back, top, bottom, right side, left side ), any auxiliary views or sections may be included as serve the purposes of part definition and its communication. view lines or section lines ( lines with arrows marked " a - a ", " b - b ", etc. ) define the direction and location of viewing or sectioning. sometimes a note tells the reader in which zone that shows the object as it looks from the front, right, left, top, bottom, or back ( e. g. the primary views ), and is typically positioned relative to each other according to the rules of either first - angle or third - angle projection. the origin and vector direction of the projectors ( also called projection lines ) differs, as explained below. in first - angle projection, the parallel projectors originate as if radiated from behind the viewer and pass through the 3d object to project a 2d image onto the orthogonal plane behind it. the 3d object is projected into 2d " paper " space as if you were looking at a radiograph of the object : the top view is under the front view, the right view is at the left of the front view. first - angle projection is the iso standard and is primarily used in europe. in third - angle projection, the parallel projectors originate as if radiated from the far side of the object and pass through the 3d object to project a 2d image onto the orthogonal plane in front of it. the views of the 3d object are like the panels of a box that envelopes the object, and the panels pivot as they open up flat into the plane of the drawing. thus the left view is placed on the left and the top view on the top ; and the features closest to the front of the 3d object will appear closest to the front view in the drawing. third - angle projection is primarily used in the united states and canada, where it is the default projection system according to asme standard asme y14. 3m. until the late 19th century, first - angle projection was the norm in north america as well as europe ; but circa the 1890s, third - angle projection spread throughout the north american engineering and manufacturing communities to the point of becoming a widely followed convention, and it was an asa standard by the 1950s. circa world war i, british practice was frequently mixing the use of both projection methods. as shown above, the determination of what surface constitutes the front, back, top, and bottom varies depending on the projection method used. not all views are necessarily used. generally only as many views are used as are necessary to convey all needed information clearly and economically. the front, top, and right - side views are commonly considered the core group of views included by default, but any combination of views may be used depending on the needs of the particular design. in addition to the six principal views ( front, back, top, bottom, right side, left side ), symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, perform tasks that are either too dangerous or too precise for humans to perform them economically, and to ensure better quality. many companies employ assembly lines of robots, especially in automotive industries and some factories are so robotized that they can run by themselves. outside the factory, robots have been employed in bomb disposal, space exploration, and many other fields. robots are also sold for various residential applications, from recreation to domestic applications. = = = structural analysis = = = structural analysis is the branch of mechanical engineering ( and also civil engineering ) devoted to examining why and how objects fail and to fix the objects and their performance. structural failures occur in two general modes : static failure, and fatigue failure. static structural failure occurs when, upon being loaded ( having a force applied ) the object being analyzed either breaks or is deformed plastically, depending on the criterion for failure. fatigue failure occurs when an object fails after a number of repeated loading and unloading cycles. fatigue failure occurs because of imperfections in the object : a microscopic crack on the surface of the object, for instance, will grow slightly with each cycle ( propagation ) until the crack is large enough to cause ultimate failure. failure is not simply defined as when a part breaks, however ; it is defined as when a part does not operate as intended. some systems, such as the perforated top sections of some plastic bags, are designed to break. if these systems do not break, failure analysis might be employed to determine the cause. structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure into major divisions, starting with four eons ( hadean, archean, proterozoic, and phanerozoic ), the first three of which are collectively known as the precambrian, which lasted approximately 4 billion years. each eon can be divided into eras, with the phanerozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian – triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous – paleogene extinction event 66 million years ago killed off affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, billet is passed through successively narrower rollers to create a sheet. extrusion – a hot and malleable metal is forced under pressure through a die, which shapes it before it cools. machining – lathes, milling machines and drills cut the cold metal to shape. sintering – a powdered metal is heated in a non - oxidizing environment after being compressed into a die. fabrication – sheets of metal are cut with guillotines or gas cutters and bent and welded into structural shape. laser cladding – metallic powder is blown through a movable laser beam ( e. g. mounted on a nc 5 - axis machine ). the resulting melted metal reaches a substrate to form a melt pool. by moving the laser head, it is possible to stack the tracks and build up a three - dimensional piece. 3d printing – sintering or melting amorphous powder metal in a 3d space to make any object to shape. cold - working processes, in which the product ' s shape is altered by rolling, fabrication or other processes, while the product is cold, can increase the strength of the product by a process called work hardening. work hardening creates microscopic defects in the metal, which resist further changes of shape. = = = heat treatment = = = metals can be heat - treated to alter the properties of strength, ductility, toughness, hardness and resistance to corrosion. common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering : annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft - edged so that, when the metal is hit or stressed it dents or perhaps bends, rather than breaking ; it is also easier to sand, grind, or cut annealed metal. quenching is the process of cooling metal very quickly after heating, thus " freezing " the metal ' s molecules in the very hard martensite form, which makes the metal harder. tempering relieves stresses in the metal that were caused by the hardening process ; tempering makes the metal less hard while making it better able to sustain impacts without breaking. often, mechanical and thermal treatments are combined in what are known as thermo - mechanical treatments for better properties and more efficient processing of materials. these processes are common to high - alloy special steels, superalloys and titanium alloys. = = = plating = = = electroplating is forces and their effect upon matter. typically, engineering mechanics is used to analyze and predict the acceleration and deformation ( both elastic and plastic ) of objects under known forces ( also called loads ) or stresses. subdisciplines of mechanics include statics, the study of non - moving bodies under known loads, how forces affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are Question: The three segments of arthropods are the head, thorax and what? A) appendages B) antennae C) abdomen D) chest
C) abdomen
Context: this article has been withdrown by the author. torsion oscillations of the neutron star crust are landau damped by the alfven continuum in the bulk. for strong magnetic fields ( in magnetars ), undamped alfven eigenmodes appear. yes and no. the size of the largest neighbourhood in a barabasi - albert scale - free entwork has string fluctuations of the order of the average value. the number of sites having exactly ten neighbours increases linearly in the network size while its relative fluctuations decrease towards zero if the number of sites in the network increases from 1000 to ten million. the boron buckyball avoids the high symmetry icosahedral cage structure. the previously reported ih symmetric structure is not an energy minimum in the potential energy surface and exhibits a spontaneous symmetry breaking to yield a puckered cage with a rare th symmetry. the homo - lumo gap is twice as large as the reported value and amounts to 1. 94 ev at b3lyp / 6 - 31g ( d ) level. the valence orbital structure of boron buckyball is identical to the one in the carbon analogue. this is an experimentalist ' s list of questions concerning the physics of the charmed baryon sector which have no satisfactory answer. is a verma module transformed into another verma module by a selfequivalence? the answer is affirmative and the proof suggests a notion of standard object in the category of harish - chandra modules that coincides often, but not always, with the usual one. static black holes in two - dimensional string theory can carry tachyon hair. configurations which are non - singular at the event horizon have non - vanishing asymptotic energy density. such solutions can be smoothly extended through the event horizon and have non - vanishing energy flux emerging from the past singularity. dynamical processes will not change the amount of tachyon hair on a black hole. in particular, there will be no tachyon hair on a black hole formed in gravitational collapse if the initial geometry is the linear dilaton vacuum. there also exist static solutions with finite total energy, which have singular event horizons. simple dynamical arguments suggest that black holes formed in gravitational collapse will not have tachyon hair of this type. these lectures describe how to study the geometry of some black holes without the use of coordinates. basics of neutrino oscillations is discussed. importance of time - energy uncertainty relation is stressed. neutrino oscillations in the leading approximation and evidence for neutrino oscillations are briefly summarized. the dynamic impedance of a sphere oscillating in an elastic medium is considered. oestreicher ' s formula for the impedance of a sphere bonded to the surrounding medium can be expressed simply in terms of three lumped impedances associated with the displaced mass and the longitudinal and transverse waves. if the surface of the sphere slips while the normal velocity remains continuous, the impedance formula is modified by adjusting the definition of the transverse impedance to include the interfacial impedance. Question: A notochord has in common with what vertbrate structure? A) trichord B) rip chord C) spinal cord D) rib cage
C) spinal cord
Context: cortisol, corticosterone and aldosterone activate full - length glucocorticoid receptor ( gr ) from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates. activation by aldosterone a mineralocorticoid, indicates partial divergence of elephant shark gr from the mr. progesterone activates elephant shark mr, but not elephant shark gr. progesterone inhibits steroid binding to elephant shark gr, but not to human gr. deletion of the n - terminal domain ( ntd ) from elephant shark gr ( truncated gr ) reduced the response to corticosteroids, while truncated and full - length elephant shark mr had similar responses to corticosteroids. chimeras of elephant shark gr ntd fused to mr dbd + lbd had increased activation by corticosteroids and progesterone compared to full - length elephant shark mr. elephant shark mr ntd fused to gr dbd + lbd had similar activation as full - length elephant shark mr, indicating that activation of human gr by the ntd evolved early in gr divergence from the mr. be at most one morphism between any two objects. the existence of identity morphisms and the composability of the morphisms are guaranteed by the reflexivity and the transitivity of the preorder. by the same argument, any partially ordered set and any equivalence relation can be seen as a small category. any ordinal number can be seen as a category when viewed as an ordered set. any monoid ( any algebraic structure with a single associative binary operation and an identity element ) forms a small category with a single object x. ( here, x is any fixed set. ) the morphisms from x to x are precisely the elements of the monoid, the identity morphism of x is the identity of the monoid, and the categorical composition of morphisms is given by the monoid operation. several definitions and theorems about monoids may be generalized for categories. similarly any group can be seen as a category with a single object in which every morphism is invertible, that is, for every morphism f there is a morphism g that is both left and right inverse to f under composition. a morphism that is invertible in this sense is called an isomorphism. a groupoid is a category in which every morphism is an isomorphism. groupoids are generalizations of groups, group actions and equivalence relations. actually, in the view of category the only difference between groupoid and group is that a groupoid may have more than one object but the group must have only one. consider a topological space x and fix a base point x 0 { \ displaystyle x _ { 0 } } of x, then Ο€ 1 ( x, x 0 ) { \ displaystyle \ pi _ { 1 } ( x, x _ { 0 } ) } is the fundamental group of the topological space x and the base point x 0 { \ displaystyle x _ { 0 } }, and as a set it has the structure of group ; if then let the base point x 0 { \ displaystyle x _ { 0 } } runs over all points of x, and take the union of all Ο€ 1 ( x, x 0 ) { \ displaystyle \ pi _ { 1 } ( x, x _ { 0 } ) }, then the set we get has only the structure of groupoid ( which is called as the fundamental groupoid of x ) : two loops ( under equivalence relation of homotopy ) may in the year 1598 philipp uffenbach published a printed diptych sundial, which is a forerunner of franz ritters horizantal sundial. uffenbach ' s sundial contains apart from the usual information on a sundial ascending signs of the zodiac, several brigthest stars, an almucantar and most important the oldest gnomonic world map known so far. the sundial is constructed for the polar height of 50 1 / 6 degrees, the height of frankfurt / main the town of his citizenship. the group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the mediterranean sea at a depth of about 2. 2 km with the antares optical beacon systems. a parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the antares site is in good agreement with these measurements. 28 size spectra of extensive air showers from 7 different experiments are analysed consistently. they are fitted by adjusting either 4 or 5 parameters : knee position, power law exponents above and below the knee, overall intensity and, in addition, a parameter describing the smoothness of the bend. the residuals are then normalized to the same knee position and averaged. when 5 parameters are employed no systematic deviation from a single smooth knee is apparent at the 1 % level up to a factor of 4 above the knee. at larger shower sizes a moderately significant deviation can be seen whose shape and position are compatible with a second knee caused by iron group nuclei. venus flytrap and bladderworts, and the pollinia of orchids. the hypothesis that plant growth and development is coordinated by plant hormones or plant growth regulators first emerged in the late 19th century. darwin experimented on the movements of plant shoots and roots towards light and gravity, and concluded " it is hardly an exaggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, little information is known about the polarization of gluons inside a longitudinally polarized proton. i report on the sensitivity of photoproduction experiments to it. both jet and heavy quark production are considered. ##aggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. ceramic constituents, the greatest attention is on composites in which all constituents are ceramic. these typically comprise two ceramic constituents : a continuous matrix, and a dispersed phase of ceramic particles, whiskers, or short ( chopped ) or continuous ceramic fibers. the challenge, as in wet chemical processing, is to obtain a uniform or homogeneous distribution of the dispersed particle or fiber phase. consider first the processing of particulate composites. the particulate phase of greatest interest is tetragonal zirconia because of the toughening that can be achieved from the phase transformation from the metastable tetragonal to the monoclinic crystalline phase, aka transformation toughening. there is also substantial interest in dispersion of hard, non - oxide phases such as sic, tib, tic, boron, carbon and especially oxide matrices like alumina and mullite. there is also interest too incorporating other ceramic particulates, especially those of highly anisotropic thermal expansion. examples include al2o3, tio2, graphite, and boron nitride. in processing particulate composites, the issue is not only homogeneity of the size and spatial distribution of the dispersed and matrix phases, but also control of the matrix grain size. however, there is some built - in self - control due to inhibition of matrix grain growth by the dispersed phase. particulate composites, though generally offer increased resistance to damage, failure, or both, are still quite sensitive to inhomogeneities of composition as well as other processing defects such as pores. thus they need good processing to be effective. particulate composites have been made on a commercial basis by simply mixing powders of the two constituents. although this approach is inherently limited in the homogeneity that can be achieved, it is the most readily adaptable for existing ceramic production technology. however, other approaches are of interest. from the technological standpoint, a particularly desirable approach to fabricating particulate composites is to coat the matrix or its precursor onto fine particles of the dispersed phase with good control of the starting dispersed particle size and the resultant matrix coating thickness. one should in principle be able to achieve the ultimate in homogeneity of distribution and thereby optimize composite performance. this can also have other ramifications, such as allowing more useful composite performance to be achieved in a body having porosity, which might be desired for other factors, such as limiting thermal conductivity. there are also some opportunities to Question: Most members of what mammalian order possess opposable thumbs? A) amphibians B) marsupials C) rodents D) primates
D) primates
Context: species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer – resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna that can move between cells β€” while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e. prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants than animals. genetic evidence suggests that the true evolutionary relationship of multicelled organisms is as shown in the cladogram below – fungi are more closely related to animals than to plants. in 1998, the angiosperm phylogeny group published a phylogeny for flowering plants based on an analysis of Question: What refers to a group of individual organisms of the same species that live closely together? A) a enviroment B) a colony C) a habitat D) a flock
B) a colony
Context: higher concentrations of atmospheric nitrous oxide ( n2o ) are expected to slightly warm earth ' s surface because of increases in radiative forcing. radiative forcing is the difference in the net upward thermal radiation flux from the earth through a transparent atmosphere and radiation through an otherwise identical atmosphere with greenhouse gases. radiative forcing, normally measured in w / m ^ 2, depends on latitude, longitude and altitude, but it is often quoted for the tropopause, about 11 km of altitude for temperate latitudes, or for the top of the atmosphere at around 90 km. for current concentrations of greenhouse gases, the radiative forcing per added n2o molecule is about 230 times larger than the forcing per added carbon dioxide ( co2 ) molecule. this is due to the heavy saturation of the absorption band of the relatively abundant greenhouse gas, co2, compared to the much smaller saturation of the absorption bands of the trace greenhouse gas n2o. but the rate of increase of co2 molecules, about 2. 5 ppm / year ( ppm = part per million by mole ), is about 3000 times larger than the rate of increase of n2o molecules, which has held steady at around 0. 00085 ppm / year since 1985. so, the contribution of nitrous oxide to the annual increase in forcing is 230 / 3000 or about 1 / 13 that of co2. if the main greenhouse gases, co2, ch4 and n2o have contributed about 0. 1 c / decade of the warming observed over the past few decades, this would correspond to about 0. 00064 k per year or 0. 064 k per century of warming from n2o. proposals to place harsh restrictions on nitrous oxide emissions because of warming fears are not justified by these facts. restrictions would cause serious harm ; for example, by jeopardizing world food supplies. enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the the transition of our energy system to renewable energies is necessary in order not to heat up the climate any further and to achieve climate neutrality. the use of wind energy plays an important role in this transition in germany. but how much wind energy can be used and what are the possible consequences for the atmosphere if more and more wind energy is used? variation in total solar irradiance is thought to have little effect on the earth ' s surface temperature because of the thermal time constant - - the characteristic response time of the earth ' s global surface temperature to changes in forcing. this time constant is large enough to smooth annual variations but not necessarily variations having a longer period such as those due to solar inertial motion ; the magnitude of these surface temperature variations is estimated. cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make ##imatology is one of the most known topics. since the 2000s, environmental scientists have focused on modeling the effects of climate change and encouraging global cooperation to minimize potential damages. in 2002, the society for the environment as well as the institute of air quality management were founded to share knowledge and develop solutions around the world. later, in 2008, the united kingdom became the first country to pass legislation ( the climate change act ) that aims to reduce carbon dioxide output to a specified threshold. in 2016 the kyoto protocol became the paris agreement, which sets concrete goals to reduce greenhouse gas emissions and restricts earth ' s rise in temperature to a 2 degrees celsius maximum. the agreement is one of the most expansive international efforts to limit the effects of global warming to date. most environmental disasters in this time period involve crude oil pollution or the effects of rising temperatures. in 2010, bp was responsible for the largest american oil spill in the gulf of mexico, known as the deepwater horizon spill, which killed a number of the company ' s workers and released large amounts of crude oil into the water. furthermore, throughout this century, much of the world has been ravaged by widespread wildfires and water scarcity, prompting regulations on the sustainable use of natural resources as determined by environmental scientists. the 21st century is marked by significant technological advancements. new technology in environmental science has transformed how researchers gather information about various topics in the field. research in engines, fuel efficiency, and decreasing emissions from vehicles since the times of the industrial revolution has reduced the amount of carbon and other pollutants into the atmosphere. furthermore, investment in researching and developing clean energy ( i. e. wind, solar, hydroelectric, and geothermal power ) has significantly increased in recent years, indicating the beginnings of the divestment from fossil fuel use. geographic information systems ( gis ) are used to observe sources of air or water pollution through satellites and digital imagery analysis. this technology allows for advanced farming techniques like precision agriculture as well as monitoring water usage in order to set market prices. in the field of water quality, developed strains of natural and manmade bacteria contribute to bioremediation, the treatment of wastewaters for future use. this method is more eco - friendly and cheaper than manual cleanup or treatment of wastewaters. most notably, the expansion of computer technology has allowed for large data collection, advanced analysis, historical archives, public awareness of environmental issues, and international scientific communication. the ability to crowdsource on the internet, for example, represents the process of collectivizing knowledge a minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0. 1 bar in the atmospheres of earth, titan, jupiter, saturn, uranus and neptune, despite great differences in atmospheric composition, gravity, internal heat and sunlight. in all these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of shortwave solar radiation, from a region below characterised by convection, weather, and clouds. however, it is not obvious why the tropopause occurs at the specific pressure near 0. 1 bar. here we use a physically - based model to demonstrate that, at atmospheric pressures lower than 0. 1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. at higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. a common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets the 0. 1 bar tropopause. we hypothesize that a tropopause at a pressure of approximately 0. 1 bar is characteristic of many thick atmospheres, including exoplanets and exomoons in our galaxy and beyond. judicious use of this rule could help constrain the atmospheric structure, and thus the surface environments and habitability, of exoplanets. and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying ambient air ( see lockheed f - 117 nighthawk, rectangular nozzles on the lockheed martin f - 22 raptor, and serrated nozzle flaps on the lockheed martin f - 35 lightning ). often, cool air is deliberately injected into the exhaust flow to boost this process ( see ryan aqm - 91 firefly and northrop b - 2 spirit ). the stefan – boltzmann law shows how this results in less energy ( thermal radiation in infrared spectrum ) being released and thus reduces the heat signature. in some aircraft, the jet exhaust is vented above the wing surface to shield it from observers below, as in the lockheed f - 117 nighthawk, and the unstealthy fairchild republic a - 10 thunderbolt ii. to achieve infrared stealth, the exhaust gas is cooled to the temperatures where the brightest wavelengths it radiates are absorbed by atmospheric carbon dioxide and water vapor, greatly reducing the infrared visibility of the exhaust plume. another way to reduce the exhaust temperature is to circulate coolant fluids such as fuel inside the exhaust pipe, where the fuel tanks serve as heat sinks cooled by the flow of air along the wings. ground combat includes the use of both active and passive infrared sensors. thus, the united states marine corps ( usmc ) ground combat uniform requirements document specifies infrared reflective quality standards. = = reducing radio frequency ( rf ) emissions = = in addition to reducing infrared and acoustic emissions, a stealth vehicle must avoid radiating any other detectable energy, such as from onboard radars, communications systems, or rf leakage from electronics enclosures. the f - 117 uses passive infrared and low light level television sensor systems to aim its weapons and the f - 22 raptor has an advanced lpi radar which can illuminate enemy aircraft without triggering a radar warning receiver response. = = measuring = = the size of a target ' s image on radar is measured by the rcs, often represented by the symbol Οƒ and expressed in square meters. this does not equal geometric area. a perfectly conducting sphere of projected cross sectional area 1 m2 ( i. e. a diameter of 1. 13 m ) will have an rcs of 1 m2. note that for radar wavelengths much less than the diameter of the sphere, rcs is independent of frequency. conversely, a square flat plate of area 1 m2 will have an rcs of Οƒ = 4Ο€ a2 / Ξ»2 ( where a = area, Ξ» = wavelength ), or 13, 982 m2 at 10 ghz if the radar is perpendicular to the flat all christian authors held that the earth was round. athenagoras, an eastern christian writing around the year 175 ad, said that the earth was spherical. methodius ( c. 290 ad ), an eastern christian writing against " the theory of the chaldeans and the egyptians " said : " let us first lay bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture Question: The rise in greenhouse gases has what effect on the temperature of earth? A) it increases B) it drops C) no effect D) more moderate
A) it increases
Context: it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes ##als force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose – einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen Question: What two types of atoms bond to form sulfate minerals? A) oxygen and calcium B) oxygen and carbon C) oxygen and sulfur D) carbon and sulfur
C) oxygen and sulfur
Context: earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on earth, though it does include human effects on the environment. = = methodology = = methodologies vary depending on the nature of the subjects being studied. studies typically fall into one of three categories : observational, experimental, or theoretical. earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena ( river - beds ), but not for where there may be large obstructions in the ground. an open caisson that is used in soft grounds or high water tables, where open trench excavations are impractical, can also be used to install deep manholes, pump stations and reception / launch pits for microtunnelling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caisson a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling and the risks of creating more pollution. = = = e - waste recycling = = = the recycling of electronic waste ( e - waste ) has seen significant technological advancements due to increasing environmental concerns and the growing volume of electronic product disposals. traditional e - waste recycling methods, which often involve manual disassemb from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform ##lling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up Question: Where does groundwater primarily come from? A) evaporation B) erosion C) precipitation D) sediment
C) precipitation
Context: cortisol, corticosterone and aldosterone activate full - length glucocorticoid receptor ( gr ) from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates. activation by aldosterone a mineralocorticoid, indicates partial divergence of elephant shark gr from the mr. progesterone activates elephant shark mr, but not elephant shark gr. progesterone inhibits steroid binding to elephant shark gr, but not to human gr. deletion of the n - terminal domain ( ntd ) from elephant shark gr ( truncated gr ) reduced the response to corticosteroids, while truncated and full - length elephant shark mr had similar responses to corticosteroids. chimeras of elephant shark gr ntd fused to mr dbd + lbd had increased activation by corticosteroids and progesterone compared to full - length elephant shark mr. elephant shark mr ntd fused to gr dbd + lbd had similar activation as full - length elephant shark mr, indicating that activation of human gr by the ntd evolved early in gr divergence from the mr. is the scientific study of inheritance. mendelian inheritance, specifically, is the process by which genes and traits are passed on from parents to offspring. it has several principles. the first is that genetic characteristics, alleles, are discrete and have alternate forms ( e. g., purple vs. white or tall vs. dwarf ), each inherited from one of two parents. based on the law of dominance and uniformity, which states that some alleles are dominant while others are recessive ; an organism with at least one dominant allele will display the phenotype of that dominant allele. during gamete formation, the alleles for each gene segregate, so that each gamete carries only one allele for each gene. heterozygotic individuals produce gametes with an equal frequency of two alleles. finally, the law of independent assortment, states that genes of different traits can segregate independently during the formation of gametes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can ##tes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent the prevalence of sexual reproduction ( " sex " ) in eukaryotes is an enigma of evolutionary biology. sex increases genetic variation only tells its long - term superiority in essence. the accumulation of harmful mutations causes an immediate and ubiquitous pressure for organisms. contrary to the common sense, our theoretical model suggests that reproductive rate can influence initiatively the accumulation of harmful mutations. the interaction of reproductive rate and the integrated harm of mutations causes a critical reproductive rate r *. a population will become irreversibly extinct once the reproductive rate reduces to lower than r *. a sexual population has a r * lower than 1 and an asexual population has a r * higher than 1. the mean reproductive rate of a population reached to the carrying capacity has to reduce to 1. that explains the widespread sex as well as the persistence of facultative and asexual organisms. computer simulations support significantly our conclusion. soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the a suitable choice of the four components of the metric tensor which are at our discretion allows to represent geodesically also the non - gravitational motions. . in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations at endogenous genes that generate a gene knockout. = = applications = = genetic engineering has applications in medicine, research, industry and agriculture and can be used on a wide range of plants, animals and microorganisms. bacteria, the first organisms to be genetically modified, can have plasmid dna inserted the most puzzling issue in the foundations of quantum mechanics is perhaps that of the status of the wave function of a system in a quantum universe. is the wave function objective or subjective? does it represent the physical state of the system or merely our information about the system? and if the former, does it provide a complete description of the system or only a partial description? we shall address these questions here mainly from a bohmian perspective, and shall argue that part of the difficulty in ascertaining the status of the wave function in quantum mechanics arises from the fact that there are two different sorts of wave functions involved. the most fundamental wave function is that of the universe. from it, together with the configuration of the universe, one can define the wave function of a subsystem. we argue that the fundamental wave function, the wave function of the universe, has a law - like character. in this talk a number of broad issues are raised about the origins of cp violation and how to test the ideas. Question: What determines sex in animals? A) cell density B) cell structure C) ribosomes D) sex chromosomes
D) sex chromosomes
Context: , and carpentry. the trade of the ship - wright. the trade of the wheel - wright. the trade of the wainwright : making wagons. ( the latin word for a two - wheeled wagon is carpentum, the maker of which was a carpenter. ) ( wright is the agent form of the word wrought, which itself is the original past passive participle of the word work, now superseded by the weak verb forms worker and worked respectively. ) blacksmithing and the various related smithing and metal - crafts. folk music played on acoustic instruments. mathematics ( particularly, pure mathematics ) organic farming and animal husbandry ( i. e. ; agriculture as practiced by all american farmers prior to world war ii ). milling in the sense of operating hand - constructed equipment with the intent to either grind grain, or the reduction of timber to lumber as practiced in a saw - mill. fulling, felting, drop spindle spinning, hand knitting, crochet, & similar textile preparation. the production of charcoal by the collier, for use in home heating, foundry operations, smelting, the various smithing trades, and for brushing ones teeth as in colonial america. glass - blowing. various subskills of food preservation : smoking salting pickling drying note : home canning is a counter example of a low technology since some of the supplies needed to pursue this skill rely on a global trade network and an existing manufacturing infrastructure. the production of various alcoholic beverages : wine : poorly preserved fruit juice. beer : a way to preserve the calories of grain products from decay. whiskey : an improved ( distilled ) form of beer. flint - knapping masonry as used in castles, cathedrals, and root cellars. = = = domestic or consumer = = = ( non exhaustive ) list of low - tech in a westerner ' s everyday life : getting around by bike, and repairing it with second - hand materials using a cargo bike to carry loads ( rather than a gasoline vehicle ) drying clothes on a clothesline or on a drying rack washing clothes by hand, or in a human - powered washing machine cooling one ' s home with a fan or an air expander ( rather than electrical appliances such as air conditioners ) using a bell as door bell a cellar, " desert fridge ", or icebox ( rather than a fridge or freezer ) long - distance travel by sailing boat ( rather than by plane ) a wicker bag or a tote bag ( rather than a plastic bag ) to joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment processes such as quenching and tempering can significantly change these properties, however. in contrast, certain metal alloys exhibit unique properties where their size and density remain unchanged across a range of temperatures. cast iron is defined as an iron – carbon alloy with more than 2. 00 %, but less than 6. 67 % carbon. stainless steel is defined as a regular steel alloy with greater than 10 % by weight alloying content of chromium. nickel and molybdenum are typically also added in stainless steels. other significant metallic alloys are those of aluminium, titanium, copper and magnesium. copper alloys have been known for a long time ( since the bronze age ), while the alloys of the other three metals have been relatively recently developed. due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. the alloys of aluminium, titanium and magnesium are also known and valued for their high strength to weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. these materials are ideal for situations where high strength to weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering applications. = = = semiconductors = = = a semiconductor is a material that has a resistivity between a conductor and insulator. modern day electronics run on semiconductors, and the industry had an estimated us $ 530 billion market in 2021. its electronic properties can be greatly altered through intentionally introducing impurities in a process referred to as doping. semiconductor materials are used to build diodes, transistors, light - emitting diodes ( leds ), and analog and digital electric circuits, among their many uses. semiconductor devices have replaced thermionic devices like vacuum tubes in most applications. semiconductor devices are manufactured both as single discrete devices and as integrated circuits ( ics ), which consist of a number β€” from a as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat as a traditional tool of external assistance, crutches play an important role in society. they have a wide range of applications to help either the elderly and disabled to walk or to treat certain illnesses or for post - operative rehabilitation. but there are many different types of crutches, including shoulder crutches and elbow crutches. how to choose has become an issue that deserves to be debated. because while crutches help people walk, they also have an impact on the body. inappropriate choice of crutches or long - term misuse can lead to problems such as scoliosis. previous studies were mainly experimental measurements or the construction of dynamic models to calculate the load on joints with crutches. these studies focus only on the level of the joints, ignoring the role that muscles play in this process. although some also take into account the degree of muscle activation, there is still a lack of quantitative analysis. the traditional dynamic model can be used to calculate the load on each joint. however, due to the activation of the muscle, this situation only causes part of the load transmitted to the joint, and the work of the chair will compensate the other part of the load. analysis at the muscle level allows a better understanding of the impact of crutches on the body. by comparing the levels of activation of the trunk muscles, it was found that the use of crutches for walking, especially a single crutch, can cause a large difference in the activation of the back muscles on the left and right sides, and this difference will cause muscle degeneration for a long time, leading to scoliosis. in this article taking scoliosis as an example, by analyzing the muscles around the spine, we can better understand the pathology and can better prevent diseases. the objective of this article is to analyze normal walking compared to walking with one or two crutches using opensim software to obtain the degree of activation of different muscles in order to analyze the impact of crutches on the body. . currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = i state some open problems coming from joint work with paul erd \ h { o } s world made wide use of hydropower, along with early uses of tidal power, wind power, fossil fuels such as petroleum, and large factory complexes ( tiraz in arabic ). a variety of industrial mills were employed in the islamic world, including fulling mills, gristmills, hullers, sawmills, ship mills, stamp mills, steel mills, and tide mills. by the 11th century, every province throughout the islamic world had these industrial mills in operation. muslim engineers also employed water turbines and gears in mills and water - raising machines, and pioneered the use of dams as a source of water power, used to provide additional power to watermills and water - raising machines. many of these technologies were transferred to medieval europe. wind - powered machines used to grind grain and pump water, the windmill and wind pump, first appeared in what are now iran, afghanistan and pakistan by the 9th century. they were used to grind grains and draw up water, and used in the gristmilling and sugarcane industries. sugar mills first appeared in the medieval islamic world. they were first driven by watermills, and then windmills from the 9th and 10th centuries in what are today afghanistan, pakistan and iran. crops such as almonds and citrus fruit were brought to europe through al - andalus, and sugar cultivation was gradually adopted across europe. arab merchants dominated trade in the indian ocean until the arrival of the portuguese in the 16th century. the muslim world adopted papermaking from china. the earliest paper mills appeared in abbasid - era baghdad during 794 – 795. the knowledge of gunpowder was also transmitted from china via predominantly islamic countries, where formulas for pure potassium nitrate were developed. the spinning wheel was invented in the islamic world by the early 11th century. it was later widely adopted in europe, where it was adapted into the spinning jenny, a key device during the industrial revolution. the crankshaft was invented by al - jazari in 1206, and is central to modern machinery such as the steam engine, internal combustion engine and automatic controls. the camshaft was also first described by al - jazari in 1206. early programmable machines were also invented in the muslim world. the first music sequencer, a programmable musical instrument, was an automated flute player invented by the banu musa brothers, described in their book of ingenious devices, in the 9th century. in 1206, al - jazari invented programmable automata / robots. he described four automaton musicians, including two wrought, which itself is the original past passive participle of the word work, now superseded by the weak verb forms worker and worked respectively. ) blacksmithing and the various related smithing and metal - crafts. folk music played on acoustic instruments. mathematics ( particularly, pure mathematics ) organic farming and animal husbandry ( i. e. ; agriculture as practiced by all american farmers prior to world war ii ). milling in the sense of operating hand - constructed equipment with the intent to either grind grain, or the reduction of timber to lumber as practiced in a saw - mill. fulling, felting, drop spindle spinning, hand knitting, crochet, & similar textile preparation. the production of charcoal by the collier, for use in home heating, foundry operations, smelting, the various smithing trades, and for brushing ones teeth as in colonial america. glass - blowing. various subskills of food preservation : smoking salting pickling drying note : home canning is a counter example of a low technology since some of the supplies needed to pursue this skill rely on a global trade network and an existing manufacturing infrastructure. the production of various alcoholic beverages : wine : poorly preserved fruit juice. beer : a way to preserve the calories of grain products from decay. whiskey : an improved ( distilled ) form of beer. flint - knapping masonry as used in castles, cathedrals, and root cellars. = = = domestic or consumer = = = ( non exhaustive ) list of low - tech in a westerner ' s everyday life : getting around by bike, and repairing it with second - hand materials using a cargo bike to carry loads ( rather than a gasoline vehicle ) drying clothes on a clothesline or on a drying rack washing clothes by hand, or in a human - powered washing machine cooling one ' s home with a fan or an air expander ( rather than electrical appliances such as air conditioners ) using a bell as door bell a cellar, " desert fridge ", or icebox ( rather than a fridge or freezer ) long - distance travel by sailing boat ( rather than by plane ) a wicker bag or a tote bag ( rather than a plastic bag ) to carry things swedish lighter ( rather than disposable lighter or matches ) a hand drill, instead of an electric one lighting with sunlight or candles hemp textiles to water plants with drip irrigation paper sheets for note - taking to clean with a broom ( rather than a vacuum cleaner ) to find one ' s way with map earliest record of a ship under sail is that of a nile boat dating to around 7, 000 bce. from prehistoric times, egyptians likely used the power of the annual flooding of the nile to irrigate their lands, gradually learning to regulate much of it through purposely built irrigation channels and " catch " basins. the ancient sumerians in mesopotamia used a complex system of canals and levees to divert water from the tigris and euphrates rivers for irrigation. archaeologists estimate that the wheel was invented independently and concurrently in mesopotamia ( in present - day iraq ), the northern caucasus ( maykop culture ), and central europe. time estimates range from 5, 500 to 3, 000 bce with most experts putting it closer to 4, 000 bce. the oldest artifacts with drawings depicting wheeled carts date from about 3, 500 bce. more recently, the oldest - known wooden wheel in the world as of 2024 was found in the ljubljana marsh of slovenia ; austrian experts have established that the wheel is between 5, 100 and 5, 350 years old. the invention of the wheel revolutionized trade and war. it did not take long to discover that wheeled wagons could be used to carry heavy loads. the ancient sumerians used a potter ' s wheel and may have invented it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, Question: The joints of the carpal bones in the wrist are examples of what type of joints? A) filter joints B) planar joints C) isojoints D) digit joints
B) planar joints
Context: ##al nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which in the old age, few people need special care if they are suffering from specific diseases as they can get stroke while they are in normal life routine. also patients of any age, who are not able to walk, need to be taken care of personally but for this, either they have to be in hospital or someone like nurse should be with them for better care. this is costly in terms of money and man power. a person is needed for 24x7 care of these people. to help in this aspect we purposes a vision based system which will take input from the patient and will provide information to the specified person, who is currently may not in the patient room. this will reduce the need of man power, also a continuous monitoring would not be needed. the system is using ms kinect for gesture detection for better accuracy and this system can be installed at home or hospital easily. the system provides gui for simple usage and gives visual and audio feedback to user. this system work on natural hand interaction and need no training before using and also no need to wear any glove or color strip. is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used about conway ' s surreal numbers : a letter to a friend ( written in french ). in memoriam john horton conway. i give a brief history of astronomical observatories as an institution. this includes : 1 ) observatories in islam ; 2 ) china and india ; 3 ) early european observatories ; 4 ) the rise of national observatories ; 5 ) private ( amateur ) observatories ; 6 ) mountaintop observatories and the modern era. additional references, to material not cited in the version that will be published in the encyclopedia, are also given. the magellanic clouds were known before magellan ' s voyage exactly 500 years ago, and were not given that name by magellan himself or his chronicler antonio pigafetta. they were, of course, already known by local populations in south america, such as the mapuche and tupi - guaranis. the portuguese called them clouds of the cape, and scientific circles had long used the name of nubecula minor and major. we trace how and when the name magellanic clouds came into common usage by following the history of exploration of the southern hemisphere and the southern sky by european explorers. while the name of magellan was quickly associated to the strait he discovered ( within about 20 years only ), the clouds got their final scientific name only at the end of the 19th century, when scientists finally abandoned latin as their communication language. are the : dr. sc. agr. : doctor scientiarum agrariarum, doctor of agricultural science dr. sc. hum. : doctor scientiarum humanarum, doctor of humanistic sciences dr. sc. inf. : doctor scientiarum informaticarum, doctor of science in informatics dr. sc. inf. med. : doctor scientiarum informaticarum medicΓ¦, doctor of science in medical informatics dr. sc. inf. biomed. : doctor scientiarum informaticarum biomedicΓ¦, doctor of science in biomedical informatics dr. sc. math. : doctor scientiarum mathematicarum, doctor of mathematics dr. scient. med. : doctor scientiΓ¦ medicΓ¦, doctor of medical sciences dr. sc. mus. : doctor scientiae musicae, doctor of musicology dr. sc. oec. : doctor scientiarum oeconomicarum, doctor of economics dr. sc. pol. : doctor scientiarum politicarum, doctor of political sciences dr. rer. pol. : doctor rerum politicarum, doctor of economics, business administration, or political science dr. sc. soc. : doctor scientiae socialis, doctor of social sciences all of these doctoral degrees are equivalent to the phd or scd of the american system. until german reunification, universities in east germany also awarded the dr sc. however, the east german dr sc was not equivalent to the phd since it was adopted to replace the german habilitation and therefore was equivalent to this higher - level qualification. after reunification the habilitation was reintroduced at universities in eastern germany. the procedure of habilitation is normally required to receive officially the " venia docendi ", which entitles the candidate to lecture at universities ( privatdozent, for men, or privatdozentin, for women ). the academic degree after the successful habilitation is e. g. dr. rer. nat. habil., by adding the suffix " habil. " to the earlier received doctors degree. in switzerland, the dr sc. is a doctoral degree awarded only by the two swiss federal institutes of technology ( epfl and ethz ), the university of fribourg and the department of informatics of the university of zurich. the swiss dr sc., like the dsc in the us honorable rector, honorable professors, and students of this university : in these times of political and economic struggle and nationalistic fragmentation, it is a particular joy for me to see people assembling here to give their attention exclusively to the highest values that are common to us all. i am glad to be in this blessed land before a small circle of people who are interested in topics of science to speak on those issues that, in essence, are the subject of my own meditations.. [ abridged ]. Question: If a unit is named after a person it needs to be? A) capitalized B) short C) squandered D) forgotten
A) capitalized
Context: practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation and management. diving medicine ( or hyperbaric medicine ) is the prevention and treatment of diving - related problems. evolutionary medicine is a perspective on medicine derived through applying evolutionary theory. forensic medicine deals with medical questions in legal context, such as determination of the time and cause of death, type of weapon used to inflict often called physicians. these terms, internist or physician ( in the narrow sense, common outside north america ), generally exclude practitioners of gynecology and obstetrics, pathology, psychiatry, and especially surgery and its subspecialities. because their patients are often seriously ill or require complex investigations, internists do much of their work in hospitals. formerly, many internists were not subspecialized ; such general physicians would see any complex nonsurgical problem ; this style of practice has become much less common. in modern urban practice, most internists are subspecialists : that is, they generally limit their medical practice to problems of one organ system or to one particular area of medical knowledge. for example, gastroenterologists and nephrologists specialize respectively in diseases of the gut and the kidneys. in the commonwealth of nations and some other countries, specialist pediatricians and geriatricians are also described as specialist physicians ( or internists ) who have subspecialized by age of patient rather than by organ system. elsewhere, especially in north america, general pediatrics is often a form of primary care. there are many subspecialities ( or subdisciplines ) of internal medicine : training in internal medicine ( as opposed to surgical training ), varies considerably across the world : see the articles on medical education for more details. in north america, it requires at least three years of residency training after medical school, which can then be followed by a one - to three - year fellowship in the subspecialties listed above. in general, resident work hours in medicine are less than those in surgery, averaging about 60 hours per week in the us. this difference does not apply in the uk where all doctors are now required by law to work less than 48 hours per week on average. = = = = diagnostic specialties = = = = clinical laboratory sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation and management. diving medicine ( or hyperbaric medicine ) is the prevention and treatment of diving - related problems. evolutionary medicine is a perspective on medicine derived through applying evolutionary theory. forensic medicine deals with medical questions in legal context, such as determination of the time and cause of death, type of weapon used to inflict trauma, reconstruction of the facial features using remains of deceased ( skull ) thus aiding identification. gender - based medicine studies the biological and physiological differences between the human sexes and how that affects differences in disease. health informatics is a relatively recent field that deal with the application of computers and information technology to medicine. hospice and pal known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. the thickness of freshly made soap films is usually in the micron range, and interference colors make thickness fluctuations easily visible. circular patterns of constant thickness are commonly observed, either a thin film disc in a thicker film or the reverse. in this letter, we evidence the line tension at the origin of these circular patterns. using a well controlled soap film preparation, we produce a piece of thin film surrounded by a thicker film. the thickness profile, measured with a spectral camera, leads to a line tension of the order of 0. 1 nn which drives the relaxation of the thin film shape, initially very elongated, toward a circular shape. a balance between line tension and air friction leads to a quantitative prediction of the relaxation process. such a line tension is expected to play a role in the production of marginal regeneration patches, involved in soap film drainage and stability. the purpose of this article is to view the penrose kite from the perspective of symplectic geometry. much of their work in hospitals. formerly, many internists were not subspecialized ; such general physicians would see any complex nonsurgical problem ; this style of practice has become much less common. in modern urban practice, most internists are subspecialists : that is, they generally limit their medical practice to problems of one organ system or to one particular area of medical knowledge. for example, gastroenterologists and nephrologists specialize respectively in diseases of the gut and the kidneys. in the commonwealth of nations and some other countries, specialist pediatricians and geriatricians are also described as specialist physicians ( or internists ) who have subspecialized by age of patient rather than by organ system. elsewhere, especially in north america, general pediatrics is often a form of primary care. there are many subspecialities ( or subdisciplines ) of internal medicine : training in internal medicine ( as opposed to surgical training ), varies considerably across the world : see the articles on medical education for more details. in north america, it requires at least three years of residency training after medical school, which can then be followed by a one - to three - year fellowship in the subspecialties listed above. in general, resident work hours in medicine are less than those in surgery, averaging about 60 hours per week in the us. this difference does not apply in the uk where all doctors are now required by law to work less than 48 hours per week on average. = = = = diagnostic specialties = = = = clinical laboratory sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes of the 21st century. characteristics of speculative fiction have been recognized in older works whose authors ' intentions are now known, or in the social contexts of the stories they tell. an example is the ancient greek dramatist, euripides ( c. 480 – c. 406 bce ), whose play medea seems to have offended athenian audiences ; in this play, he speculated that the titular sorceress medea killed her own children, as opposed to their being killed by other corinthians after her departure. in historiography, what is now called speculative fiction has previously been termed historical invention, historical fiction, and similar names. these terms have been extensively applied in literary criticism to the works of william shakespeare. for example, in a midsummer night ' s dream, he places several characters from different locations and times into the fairyland of the fictional merovingian germanic sovereign oberon ; these characters include the athenian duke theseus, the amazonian queen hippolyta, the english fairy puck, and the roman god cupid. in mythography, the concept of speculative fiction has been termed mythopoesis or mythopoeia. this process involves the creative design and development of lore and mythology for works of fiction. the term ' s definition comes from use by j. r. r. tolkien ; his series of novels, the lord of the rings, shows an application of the process. themes common in mythopoeia, such as the supernatural, alternate history, and sexuality, continue to be explored in works produced in modern speculative fiction. speculative fiction in the general sense of hypothetical history, explanation, or ahistorical storytelling has been attributed to authors in ostensibly non - fiction modes since herodotus of halicarnassus ( fl. 5th century bce ) with his histories ; it was already both created and edited out by early encyclopedic writers such sima qian ( c. 145 or 135 bce – 86 bce ), author of shiji. these examples highlight a caveat β€” many works that are now viewed as speculative fiction long predated the labelling of the genre. in the broadest sense, the genre ' s concept does two things : it captures both conscious and unconscious aspects of human psychology in making sense of the world, and it responds to the world by creating imaginative, inventive, and artistic expressions. such expressions can contribute to practical societal progress through interpersonal influences ; social and cultural movements ; scientific research and advances ; and the philosophy of science. in english - language Question: What is the name for the inner lining of the uterus? A) the uterine shell B) the epidermis C) the endometrium D) cuticle
C) the endometrium
Context: in a voltaic cell, positive ( negative ) ions flow from the low ( high ) potential electrode to the high ( low ) potential electrode, driven by an ` electromotive force ' which points in opposite direction and overcomes the electric force. similarly in a superconductor charge flows in direction opposite to that dictated by the faraday electric field as the magnetic field is expelled in the meissner effect. the puzzle is the same in both cases : what drives electric charges against electromagnetic forces? i propose that the answer is also the same in both cases : kinetic energy lowering, or ` quantum pressure '. current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers – civil works program river morphology and stream restoration references ##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the anomalous term $ \ sim \ mathbf { eb } $ in the balance of the chiral density can be rewritten as quantum current in the classical balance of density. therefore it does not violate classical conservation laws as it is claimed to be caused by quantum fluctuations. reversing the flow of time between casimir plates raises the question of whether or not a recently deceased, intact organism could be brought back to life. the odds are not good. the paper erroneously assumed that the normal carriers giving rise to the backflow could be either electrons or holes. becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under in steady state, the fuel cycle of a fusion plasma requires inward particle fluxes of fuel ions. these particle flows are also accompanied by heating. in the case of classical transport in a rotating cylindrical plasma, this heating can proceed through several distinct channels depending on the physical mechanisms involved. some channels directly heat the fuel ions themselves, whereas others heat electrons. which channel dominates depends, in general, on the details of the temperature, density, and rotation profiles of the plasma constituents. however, remarkably, under relatively few assumptions concerning these profiles, if the alpha particles, the byproducts of the fusion reaction, can be removed directly by other means, a hot - ion mode tends to emerge naturally. Question: What is it called when currents keep reversing direction? A) stream current B) circle current C) alternating current D) emitting current
C) alternating current
Context: has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named the belief that three dimensional space is infinite and flat in the absence of matter is a canon of physics that has been in place since the time of newton. the assumption that space is flat at infinity has guided several modern physical theories. but what do we actually know to support this belief? a simple argument, called the " telescope principle ", asserts that all that we can know about space is bounded by observations. physical theories are best when they can be verified by observations, and that should also apply to the geometry of space. the telescope principle is simple to state, but it leads to very interesting insights into relativity and yang - mills theory via projective equivalences of their respective spaces. we bring you, as usual, the sun and moon and stars, plus some galaxies and a new section on astrobiology. some highlights are short ( the newly identified class of gamma - ray bursts, and the deep impact on comet 9p / tempel 1 ), some long ( the age of the universe, which will be found to have the earth at its center ), and a few metonymic, for instance the term " down - sizing " to describe the evolution of star formation rates with redshift. quantum mechanics is interpreted by the adjacent vacuum that behaves as a virtual particle to be absorbed and emitted by its matter. as described in the vacuum universe model, the adjacent vacuum is derived from the pre - inflationary universe in which the pre - adjacent vacuum is absorbed by the pre - matter. this absorbed pre - adjacent vacuum is emitted to become the added space for the inflation in the inflationary universe whose space - time is separated from the pre - inflationary universe. this added space is the adjacent vacuum. the absorption of the adjacent vacuum as the added space results in the adjacent zero space ( no space ), quantum mechanics is the interaction between matter and the three different types of vacuum : the adjacent vacuum, the adjacent zero space, and the empty space. the absorption of the adjacent vacuum results in the empty space superimposed with the adjacent zero space, confining the matter in the form of particle. when the absorbed vacuum is emitted, the adjacent vacuum can be anywhere instantly in the empty space superimposed with the adjacent zero space where any point can be the starting point ( zero point ) of space - time. consequently, the matter that expands into the adjacent vacuum has the probability to be anywhere instantly in the form of wavefunction. in the vacuum universe model, the universe not only gains its existence from the vacuum but also fattens itself with the vacuum. during the inflation, the adjacent vacuum also generates the periodic table of elementary particles to account for all elementary particles and their masses in a good agreement with the observed values. brane - universe model embedded in 6 - dimensional space - time with the signature ( 2 + 4 ) is considered. a matter is gravitationally trapped in three space dimensions, but both time - like directions are open. choosing of the dimension and the signature of the model is initiated with the conformal symmetry for massless particles and any point in our world can be ( 1 + 1 ) string - like object. the dark matter in the halos of galaxies may well be baryonic, and much of the mass within them could be in the form of clusters of substellar objects within which are embedded cold gas globules. such halos might play an active role in galaxy formation and evolution. is it possible to define what we could mean by chaos in a space - time metric ( even in the simplest toy - model studies )? is it of importance for phenomena we may search for in nature? it seems natural to ask why the universe exists at all. modern physics suggests that the universe can exist all by itself as a self - contained system, without anything external to create or sustain it. but there might not be an absolute answer to why it exists. i argue that any attempt to account for the existence of something rather than nothing must ultimately bottom out in a set of brute facts ; the universe simply is, without ultimate cause or explanation. the crystals of potassium hydrogen carbonate ( khco3 ) and the kdco3 analogue are isomorphous. they are composed of hydrogen or deuterium bonded centrosymmetric dimers ( hco3 - ) ( 2 ) or ( dco3 - ) ( 2 ). the space group symmetry of khpd1 - pco3 ( p approximate to 0. 75 ) determined with neutron diffraction is identical to those of khco3 and kdco3. this is at variance with a random distribution of h and d nuclei. these crystals are macroscopic quantum systems in which protons or / and deuterons merge into macroscopic states. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends Question: What is the name given to anything that has mass and takes up space? A) molecule B) matter C) vacuum D) organism
B) matter
Context: are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " consisting of several distinct layers, often referred to as spheres : the lithosphere, the hydrosphere, the atmosphere, and the biosphere, this concept of spheres is a useful tool for understanding the earth ' s surface and its various processes these correspond to rocks, water, air and life. also included by some are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth ##ctonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the have evolved from the earliest emergence of life to present day. earth formed about 4. 5 billion years ago and all life on earth, both living and extinct, descended from a last universal common ancestor that lived about 3. 5 billion years ago. geologists have developed a geologic time scale that divides the history of the earth into major divisions, starting with four eons ( hadean, archean, proterozoic, and phanerozoic ), the first three of which are collectively known as the precambrian, which lasted approximately 4 billion years. each eon can be divided into eras, with the phanerozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make ##sphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as ##hosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " sub - disciplines of hydrology include hydrometeorology, surface water hydrology, hydrogeology, watershed science, forest hydrology, and water chemistry. " glaciology covers the icy parts of the earth ( or cryosphere ). atmospheric sciences cover the gaseous parts of the earth ( or atmosphere earth science or geoscience includes all fields of natural science related to the planet earth. this is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of earth ' s four spheres : the biosphere, hydrosphere / cryosphere, atmosphere, and geosphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " sub - disciplines of hydrology include hydrometeorology, surface water hydrology, hydrogeology, watershed science, forest hydrology, and water chemistry. " glaciology covers the icy parts of the earth ( or cryosphere ). atmospheric sciences cover the gaseous parts of the earth ( or atmosphere ) between the surface and the exosphere ( about 1000 km ). major subdisciplines include meteorology, climatology, atmospheric chemistry, and atmospheric physics. = = = earth science breakup = = = = = see also = = = = references = = = = = sources = = = = = Question: What is the upper most level of earth's layers called? A) volcanic B) crust C) mantle D) surface
B) crust
Context: in 2013, using a 3 - d scaffolding of matrigel in various configurations, substantial pancreatic organoids was produced in vitro. clusters of small numbers of cells proliferated into 40, 000 cells within one week. the clusters transform into cells that make either digestive enzymes or hormones like insulin, self - organizing into branched pancreatic organoids that resemble the pancreas. the cells are sensitive to the environment, such as gel stiffness and contact with other cells. individual cells do not thrive ; a minimum of four proximate cells was required for subsequent organoid development. modifications to the medium composition produced either hollow spheres mainly composed of pancreatic progenitors, or complex organoids that spontaneously undergo pancreatic morphogenesis and differentiation. maintenance and expansion of pancreatic progenitors require active notch and fgf signaling, recapitulating in vivo niche signaling interactions. the organoids were seen as potentially offering mini - organs for drug testing and for spare insulin - producing cells. aside from matrigel 3 - d scaffolds, other collagen gel systems have been developed. collagen / hyaluronic acid scaffolds have been used for modeling the mammary gland in vitro while co - coculturing epithelial and adipocyte cells. the hystem kit is another 3 - d platform containing ecm components and hyaluronic acid that has been used for cancer research. additionally, hydrogel constituents can be chemically modified to assist in crosslinking and enhance their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes ##al radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the self - organizing into branched pancreatic organoids that resemble the pancreas. the cells are sensitive to the environment, such as gel stiffness and contact with other cells. individual cells do not thrive ; a minimum of four proximate cells was required for subsequent organoid development. modifications to the medium composition produced either hollow spheres mainly composed of pancreatic progenitors, or complex organoids that spontaneously undergo pancreatic morphogenesis and differentiation. maintenance and expansion of pancreatic progenitors require active notch and fgf signaling, recapitulating in vivo niche signaling interactions. the organoids were seen as potentially offering mini - organs for drug testing and for spare insulin - producing cells. aside from matrigel 3 - d scaffolds, other collagen gel systems have been developed. collagen / hyaluronic acid scaffolds have been used for modeling the mammary gland in vitro while co - coculturing epithelial and adipocyte cells. the hystem kit is another 3 - d platform containing ecm components and hyaluronic acid that has been used for cancer research. additionally, hydrogel constituents can be chemically modified to assist in crosslinking and enhance their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. these concerns have led to the development of a regulatory framework, which started in 1975. it has led to an international treaty, the cartagena protocol on biosafety, that was adopted in 2000. individual countries have developed their own regulatory systems regarding gmos, with the most marked differences occurring between the united states and europe. = = overview = = genetic engineering is a process that alters the genetic structure of an organism by either removing or introducing dna, or modifying existing genetic material in situ. unlike traditional animal and plant breeding, which involves doing multiple crosses and then selecting for the organism with the desired phenotype, often called physicians. these terms, internist or physician ( in the narrow sense, common outside north america ), generally exclude practitioners of gynecology and obstetrics, pathology, psychiatry, and especially surgery and its subspecialities. because their patients are often seriously ill or require complex investigations, internists do much of their work in hospitals. formerly, many internists were not subspecialized ; such general physicians would see any complex nonsurgical problem ; this style of practice has become much less common. in modern urban practice, most internists are subspecialists : that is, they generally limit their medical practice to problems of one organ system or to one particular area of medical knowledge. for example, gastroenterologists and nephrologists specialize respectively in diseases of the gut and the kidneys. in the commonwealth of nations and some other countries, specialist pediatricians and geriatricians are also described as specialist physicians ( or internists ) who have subspecialized by age of patient rather than by organ system. elsewhere, especially in north america, general pediatrics is often a form of primary care. there are many subspecialities ( or subdisciplines ) of internal medicine : training in internal medicine ( as opposed to surgical training ), varies considerably across the world : see the articles on medical education for more details. in north america, it requires at least three years of residency training after medical school, which can then be followed by a one - to three - year fellowship in the subspecialties listed above. in general, resident work hours in medicine are less than those in surgery, averaging about 60 hours per week in the us. this difference does not apply in the uk where all doctors are now required by law to work less than 48 hours per week on average. = = = = diagnostic specialties = = = = clinical laboratory sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function ##artificial liver device, " temporary liver ", extracorporeal liver assist device ( elad ) : the human hepatocyte cell line ( c3a line ) in a hollow fiber bioreactor can mimic the hepatic function of the liver for acute instances of liver failure. a fully capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to Question: What are secreted into the gi tract by organs of the gi tract or from a nearby gland named the pancreas? A) stomach acid B) bile C) insulin and pepsin D) digestive enzymes
D) digestive enzymes
Context: some references for the breaking strength of fused silica fibers compiled in 1999. and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell ##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as what kind of new physics, if any, we expect to discover at the lhc? i will try to address this formidable question by re - formulating it as follows : is the breaking of the electroweak symmetry strong or weak? the manufacturer. one common distinction is by nominal pore size. it describes the maximum pore size distribution and gives only vague information about the retention capacity of a membrane. the exclusion limit or " cut - off " of the membrane is usually specified in the form of nmwc ( nominal molecular weight cut - off, or mwco, molecular weight cut off, with units in dalton ). it is defined as the minimum molecular weight of a globular molecule that is retained to 90 % by the membrane. the cut - off, depending on the method, can by converted to so - called d90, which is then expressed in a metric unit. in practice the mwco of the membrane should be at least 20 % lower than the molecular weight of the molecule that is to be separated. using track etched mica membranes beck and schultz demonstrated that hindered diffusion of molecules in pores can be described by the rankin equation. filter membranes are divided into four classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filt rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation ). ideally, even racemics can be enriched with a suitable membrane. when choosing membranes selectivity has priority over a high permeability, as low flows can easily be offset by increasing the filter surface with a modular structure. in gas phase filtration different deposition mechanisms are operative, so that particles having sizes below the pore size of the membrane can be retained as well. = = membrane classification = = bio - membrane is classified in two categories, synthetic membrane and natural membrane. synthetic membranes further classified in organic and inorganic membranes. organic membrane sub classified polymeric membranes and inorganic membrane sub classified ceramic polymers. = = synthesis of biomass membrane = = = = = the composite biomass membrane = = = green membrane or bio - membrane synthesis is the solution to protected environments which have largely comprehensive performance. biomass is used in the form of activated carbon nanoparticles, like using cellulose based biomass coconut shell, hazelnut shell, walnut shell, agricultural waste not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. more sophisticated techniques are now in development that can track protein products without mitigating their function, such as the addition of small sequences that will serve as binding motifs to monoclonal antibodies. expression studies aim to discover where and when specific proteins are produced. in these experiments, the dna sequence before the dna that codes for a protein, known as a gene ' s promoter, is reintroduced into an organism with the protein coding region replaced by a reporter gene such as gfp or an enzyme that catalyses the production of a dye. thus the time and place where a particular protein is produced can be observed. expression studies can be taken a step further by altering the promoter to find which pieces are crucial for the proper expression of the gene and are actually bound by transcription factor proteins ; this process is known as promoter bashing. = = = industrial = = = organisms can have their cells transformed with a gene coding for a useful protein, such as an enzyme, so that they will overexpress the desired protein. mass quantities of the protein can then be manufactured by growing the transformed organism in bioreactor equipment using industrial fermentation, and then purifying the protein. some genes do not work well in bacteria, so yeast, insect cells or mammalian cells can also be used. these techniques are used to produce medicines such as insulin, human growth hormone, and vaccines, supplements such as tryptophan, aid in the production of food ( chymosin in cheese making ) and fuels. other applications with genetically engineered bacteria could involve making them perform tasks outside their natural cycle, such as making biofuels, cleaning up oil spills, carbon and other toxic waste and detecting arsenic in drinking water. certain genetically modified microbes can also be used in biomining and bioremediation, due to their ability to extract heavy metals from their environment and incorporate them into compounds that are more easily recover classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation ). ideally, even racemics can be enriched with a suitable membrane. when choosing membranes selectivity has priority over a high permeability, as low flows can easily be offset by increasing the filter surface with a modular structure. in gas phase filtration different deposition mechanisms are operative, so that particles having sizes below the pore size of the membrane can be retained as well. = = membrane classification = = bio - membrane is classified in two categories, synthetic membrane and natural membrane. synthetic membranes further classified in organic and inorganic membranes. organic membrane sub classified polymeric membranes and inorganic membrane sub classified ceramic polymers. = = synthesis of biomass membrane the usual modelling of the syllogisms of the organon by a calculus of classes does not include relations. aristotle may however have envisioned them in the first two books as the category of relatives, where he allowed them to compose with themselves. composition is the main operation in combinatory logic, which therefore offers itself for a new kind of modelling. the resulting calculus includes also composition of predicates by logical connectives. Question: In what organ does pepsin help break down proteins? A) kidney B) stomach C) liver D) skin
B) stomach
Context: ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares as you read these words you are using a complex biological neural network. you have a highly interconnected set of some neurons to facilitate your reading, breathing, motion and thinking. each of your biological neurons, a rich assembly of tissue and chemistry, has the complexity, if not the speed, of a microprocessor. some of your neural structure was with you at birth. other parts have been established by experience. . these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world , depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer the action potential is widely considered a purely electrical phenomenon. however, one also finds mechanical and thermal changes that can be observed experimentally. in particular, nerve membranes become thicker and axons contract. the spatial length of the action potential can be quite large, ranging from millimeters to many centimeters. this suggests to employ macroscopic thermodynamics methods to understand its properties. the pulse length is several orders of magnitude larger than the synaptic gap, larger than the distance of the nodes of ranvier, and even larger than the size of many neurons such as pyramidal cells or brain stem motor neurons. here, we review the mechanical changes in nerves, theoretical possibilities to explain them, and implications of a mechanical nerve pulse for the neuron and for the brain. in particular, the contraction of nerves gives rise to the possibility of fast mechanical synapses. is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged Question: What begins when a neuron receives a chemical stimulus? A) a nerve impulse B) a metabolism impulse C) nerve reaction D) a induce impulse
A) a nerve impulse
Context: the boron buckyball avoids the high symmetry icosahedral cage structure. the previously reported ih symmetric structure is not an energy minimum in the potential energy surface and exhibits a spontaneous symmetry breaking to yield a puckered cage with a rare th symmetry. the homo - lumo gap is twice as large as the reported value and amounts to 1. 94 ev at b3lyp / 6 - 31g ( d ) level. the valence orbital structure of boron buckyball is identical to the one in the carbon analogue. ##ian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in ##ta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. hetero . species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ— piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in , characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc – 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of ##m and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to casting, also called the lost wax process, die casting, centrifugal casting, both vertical and horizontal, and continuous castings. each of these forms has advantages for certain metals and applications considering factors like magnetism and corrosion. forging – a red - hot billet is hammered into shape. rolling – a billet is passed through successively narrower rollers to create a sheet. extrusion – a hot and malleable metal is forced under pressure through a die, which shapes it before it cools. machining – lathes, milling machines and drills cut the cold metal to shape. sintering – a powdered metal is heated in a non - oxidizing environment after being compressed into a die. fabrication – sheets of metal are cut with guillotines or gas cutters and bent and welded into structural shape. laser cladding – metallic powder is blown through a movable laser beam ( e. g. mounted on a nc 5 - axis machine ). the resulting melted metal reaches a substrate to form a melt pool. by moving the laser head, it is possible to stack the tracks and build up a three - dimensional piece. 3d printing – sintering or melting amorphous powder metal in a 3d space to make any object to shape. cold - working processes, in which the product ' s shape is altered by rolling, fabrication or other processes, while the product is cold, can increase the strength of the product by a process called work hardening. work hardening creates microscopic defects in the metal, which resist further changes of shape. = = = heat treatment = = = metals can be heat - treated to alter the properties of strength, ductility, toughness, hardness and resistance to corrosion. common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering : annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft - edged so that, when the metal is hit or stressed it dents or perhaps bends, rather than breaking ; it is also easier to sand, grind, or cut annealed metal. quenching is the process of cooling metal very quickly after heating, thus " freezing " the metal ' s molecules in the very hard martensite form, which makes the metal harder. tempering relieves stresses in the metal that were caused by the hardening process ; tempering makes the metal less hard while making it better able to sustain inherited traits such as shape in pisum sativum ( peas ). what mendel learned from studying plants has had far - reaching benefits outside of botany. similarly, " jumping genes " were discovered by barbara mcclintock while she was studying maize. nevertheless, there are some distinctive genetic differences between plants and other organisms. species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ— piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one Question: Pink snapdragons are an example of what? A) grafting B) incomplete dominance C) nh3 hybridization D) cloning
B) incomplete dominance
Context: enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the in this scientific article, the data on air pollution by pm2. 5 particulate matter was evaluated in different locations in the city of cusco with respect to the environmental quality indexes ( inca ) of the ministry of the environment of the peruvian government. the results show that air pollution in the city of cusco is an environmental risk problem. more than 84 % of the monitored sites have a bad rating ( 101 - 500 ), the corresponding color is orange. this result shows that the air that citizens of cusco breathe is of poor quality and the population could experience health problems. the recommendation is to avoid outdoor exercises and activities. in the district of san jeronimo cusco, the average concentration has been 125 ug / m3, which corresponds to the inca interval of more than 125, within the red color threshold for care. the health effects are described as chronic lung and cardiovascular diseases, and the health authority should declare levels of alert. it has been concluded that according to inca, the air in the city of cusco is of poor quality and falls within the threshold of the care state value ( vuec ). poor indoor air quality can contribute to the development of various chronic respiratory diseases such as asthma, heart disease, and lung cancer. since air quality is extremely difficult for humans to detect though sensory processing, there is a need for efficient ventilation systems that can provide a healthier environment. in this paper, we have designed an energy efficient ventilation system that predicts sensor occupancy patterns based on historical data to improve indoor air quality. haptic technology ( also kinaesthetic communication or 3d touch ) is technology that can create an experience of touch by applying forces, vibrations, or motions to the user. these technologies can be used to create virtual objects in a computer simulation, to control virtual objects, and to enhance remote control of machines and devices ( telerobotics ). haptic devices may incorporate tactile sensors that measure forces exerted by the user on the interface. the word haptic, from the ancient greek : απτικος ( haptikos ), means " tactile, pertaining to the sense of touch ". simple haptic devices are common in the form of game controllers, joysticks, and steering wheels. haptic technology facilitates investigation of how the human sense of touch works by allowing the creation of controlled haptic virtual objects. vibrations and other tactile cues have also become an integral part of mobile user experience and interface design. most researchers distinguish three sensory systems related to sense of touch in humans : cutaneous, kinaesthetic and haptic. all perceptions mediated by cutaneous and kinaesthetic sensibility are referred to as tactual perception. the sense of touch may be classified as passive and active, and the term " haptic " is often associated with active touch to communicate or recognize objects. = = history = = one of the earliest applications of haptic technology was in large aircraft that use servomechanism systems to operate control surfaces. in lighter aircraft without servo systems, as the aircraft approached a stall, the aerodynamic buffeting ( vibrations ) was felt in the pilot ' s controls. this was a useful warning of a dangerous flight condition. servo systems tend to be " one - way ", meaning external forces applied aerodynamically to the control surfaces are not perceived at the controls, resulting in the lack of this important sensory cue. to address this, the missing normal forces are simulated with springs and weights. the angle of attack is measured, and as the critical stall point approaches a stick shaker is engaged which simulates the response of a simpler control system. alternatively, the servo force may be measured and the signal directed to a servo system on the control, also known as force feedback. force feedback has been implemented experimentally in some excavators and is useful when excavating mixed material such as large rocks embedded in silt or clay. it allows the operator to " feel " and work around unseen obstacles. in the 1960s, paul bach - the auger engineering radio array ( aera ) aims at the detection of air showers induced by high - energy cosmic rays. as an extension of the pierre auger observatory, it measures complementary information to the particle detectors, fluorescence telescopes and to the muon scintillators of the auger muons and infill for the ground array ( amiga ). aera is sensitive to all fundamental parameters of an extensive air shower such as the arrival direction, energy and depth of shower maximum. since the radio emission is induced purely by the electromagnetic component of the shower, in combination with the amiga muon counters, aera is perfect for separate measurements of the electrons and muons in the shower, if combined with a muon counting detector like amiga. in addition to the depth of the shower maximum, the ratio of the electron and muon number serves as a measure of the primary particle mass. ##nts from the air to reduce the potential adverse effects on humans and the environment. the process of air purification may be performed using methods such as mechanical filtration, ionization, activated carbon adsorption, photocatalytic oxidation, and ultraviolet light germicidal irradiation. = = = sewage treatment = = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the results of an experiment are presented whose aim is to explore the relationship between respiration and cerebral oxygenation. measurements of end tidal co2 ( etco2 ) were taken simultaneously with cerebral oxygen saturation ( rso2 ) using the invos cerebral oximeter of somanetics. due to the device limitations we could explore only subjects who could perform with a breathing rate of around 2 / min or less. six subjects were used who were experienced in yoga breathing techniques. they performed an identical periodic breathing exercise including periodicity of about 2 / min. the results of all six subjects clearly show a periodic change of cerebral oxygenation with the same period as the breathing exercises. similar periodic changes in blood volume index were observed as well. or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β€” the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws the aforesaid quantities is said to be equal or unequal. for instance, one solid is said to be equal or unequal to another ; number, too, and time can have these terms applied to them, indeed can all those kinds of quantity that have been mentioned. that which is not a quantity can by no means, it would seem, be termed equal or unequal to anything else. one particular disposition or one particular quality, such as whiteness, is by no means compared with another in terms of equality and inequality but rather in terms of similarity. thus it is the distinctive mark of quantity that it can be called equal and unequal. ― ( translated by e. m. edghill ) aristotle had separate categories for quantities ( number, length, volume ) and qualities ( temperature, density, pressure ), now called intensive and extensive properties. the scholastics, particularly richard swineshead and other oxford calculators in the 14th century, began seriously thinking about kinematics and quantitative treatment of qualities. for example, two flames have the same heat - intensity if they produce the same effect on water ( e. g, warming vs boiling ). since two intensities could be shown to be equal, and equality was considered the defining feature of quantities, it meant those intensities were quantifiable. around the 19th century, with the growth of modern logic, it became necessary to have a more concrete description of equality. with the rise of predicate logic due to the work of gottlob frege, logic shifted from being focused on classes of objects to being property - based. this was followed by a movement for describing mathematics in logical foundations, called logicism. this trend lead to the axiomatization of equality through the law of identity and the substitution property especially in mathematical logic and analytic philosophy. the precursor to the substitution property of equality was first formulated by gottfried leibniz in his discourse on metaphysics ( 1686 ), stating, roughly, that " no two distinct things can have all properties in common. " this has since broken into two principles, the substitution property ( if x = y, { \ displaystyle x = y, } then any property of x { \ displaystyle x } is a property of y { \ displaystyle y } ), and its converse, the identity of indiscernibles ( if x { \ displaystyle x } and y { \ displaystyle y } have all properties in common, then x = y { \ displaystyle x = in a test experiment at the final focus test beam of the stanford linear accelerator center, the fluorescence yield of 28. 5 gev electrons in air and nitrogen was measured. the measured photon yields between 300 and 400 nm at 1 atm and 29 deg c are y ( 760 torr, air ) = 4. 42 + / - 0. 73 and y ( 760 torr, nitrogen ) = 29. 2 + / - 4. 8 photons per electron per meter. assuming that the fluorescence yield is proportional to the energy deposition of a charged particle traveling through air, good agreement with measurements at lower particle energies is observed. Question: Air quality is a measure of what in the air? A) clouds B) gases C) water D) pollutants
D) pollutants
Context: energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photos of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in the transpiration stream. diffusion, osmosis, and active transport and mass flow are all different ways transport can occur. examples of elements that plants need to transport are nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. in vascular plants, these elements are extracted from the soil as soluble ions by the roots and transported throughout the plant in the xylem. most of the elements required for plant nutrition come from the chemical breakdown of soil minerals. sucrose produced by photosynthesis is transported from the leaves to other parts of the plant in the phloem and plant hormones are transported by a variety of processes. = = = plant hormones = = = plants are not passive, but respond to external signals such as light, touch, and injury by moving or growing towards or away from the stimulus, as appropriate. tangible evidence of touch sensitivity is the almost instantaneous collapse of leaflets of mimosa pudica, the insect traps of venus flytrap and bladderworts, and the pollinia of orchids. the hypothesis that plant growth and development is coordinated by plant hormones or plant growth regulators first emerged in the late 19th century. darwin experimented on the movements of plant shoots and roots towards light and gravity, and concluded " it is hardly an exaggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci – fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra of cells = = = autologous : the donor and the recipient of the cells are the same individual. cells are harvested, cultured or stored, and then reintroduced to the host. as a result of the host ' s own cells being reintroduced, an antigenic response is not elicited. the body ' s immune system recognizes these re - implanted cells as its own, and does not target them for attack. autologous cell dependence on host cell health and donor site morbidity may be deterrents to their use. adipose - derived and bone marrow - derived mesenchymal stem cells are commonly autologous in nature, and can be used in a myriad of ways, from helping repair skeletal tissue to replenishing beta cells in diabetic patients. allogenic : cells are obtained from the body of a donor of the same species as the recipient. while there are some ethical constraints to the use of human cells for in vitro studies ( i. e. human brain tissue chimera development ), the employment of dermal fibroblasts from human foreskin demonstrates an immunologically safe and thus a viable choice for allogenic tissue engineering of the skin. xenogenic : these cells are derived isolated cells from alternate species from the recipient. a notable example of xenogeneic tissue utilization is cardiovascular implant construction via animal cells. chimeric human - animal farming raises ethical concerns around the potential for improved consciousness from implanting human organs in animals. syngeneic or isogenic : these cells describe those borne from identical genetic code. this imparts an immunologic benefit similar to autologous cell lines ( see above ). autologous cells can be considered syngenic, but the classification also extends to non - autologously derived cells such as those from an identical twin, from genetically identical ( cloned ) research models, or induced stem cells ( isc ) as related to the donor. = = = stem cells = = = stem cells are undifferentiated cells with the ability to divide in culture and give rise to different forms of specialized cells. stem cells are divided into " adult " and " embryonic " stem cells according to their source. while there is still a large ethical debate related to the use of embryonic stem cells, it is thought that another alternative source – induced pluripotent stem cells – may be useful for the repair of diseased or damaged tissues, or may be used to grow new organs. totipotent cells by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. Question: What do solar cells convert the energy in sunlight into? A) subsequent energy B) free energy C) electrical energy D) experimental energy
C) electrical energy
Context: in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid . a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of , valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e βˆ’ e / k t { \ displaystyle e ^ { - e / kt } } – that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g ≀ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive behavioral responses to different stimuli, one can understand something about how those stimuli are processed. lewandowski & strohmetz ( 2009 ) reviewed a collection of innovative uses of behavioral measurement in psychology including behavioral traces, behavioral observations, and behavioral choice. behavioral traces are pieces of evidence that indicate behavior occurred, but the actor is not present ( e. g., litter in a parking lot or readings on an electric meter ). behavioral observations involve the direct witnessing of the actor engaging in the behavior ( e. g., watching how close a person sits next to another person ). behavioral choices are when a person selects between two or more options ( e. g., voting behavior, choice of a punishment for another participant ). reaction time. the time between the presentation of a stimulus and an appropriate response can indicate differences between two cognitive processes, and can indicate some things about their nature. for example, if in a search task the reaction times vary proportionally with the number of elements, then it is evident that this cognitive process of searching involves serial instead of parallel processing. psychophysical responses. psychophysical experiments are an old psychological technique, which has been adopted by cognitive psychology. they typically involve making judgments of some physical property, e. g. the loudness of a sound. correlation of subjective scales between individuals can show cognitive or sensory biases as compared to actual physical measurements. some examples include : sameness judgments for colors, tones, textures, etc. threshold differences for colors, tones, textures, etc. eye tracking. this methodology is used to study a variety of cognitive processes, most notably visual perception and language processing. the fixation point of the eyes is linked to an individual ' s focus of attention. thus, by monitoring eye movements, we can study what information is being processed at a given time. eye tracking allows us to study cognitive processes on extremely short time scales. eye movements reflect online decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying the mechanism leading to an auger transition is based on the residual coulomb interaction between the valence electron and the core electrons. on the assumption that the wave field is switched on adiabatically, the probability of the auger effect of the inner electrons of the atom is determined. cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions the connection between the quantum frequency of radiation by the transition of the electron from orbit n to orbit k and frequencies of circling of electron in these orbits for the atom of hydrogen is determined. is not present ( e. g., litter in a parking lot or readings on an electric meter ). behavioral observations involve the direct witnessing of the actor engaging in the behavior ( e. g., watching how close a person sits next to another person ). behavioral choices are when a person selects between two or more options ( e. g., voting behavior, choice of a punishment for another participant ). reaction time. the time between the presentation of a stimulus and an appropriate response can indicate differences between two cognitive processes, and can indicate some things about their nature. for example, if in a search task the reaction times vary proportionally with the number of elements, then it is evident that this cognitive process of searching involves serial instead of parallel processing. psychophysical responses. psychophysical experiments are an old psychological technique, which has been adopted by cognitive psychology. they typically involve making judgments of some physical property, e. g. the loudness of a sound. correlation of subjective scales between individuals can show cognitive or sensory biases as compared to actual physical measurements. some examples include : sameness judgments for colors, tones, textures, etc. threshold differences for colors, tones, textures, etc. eye tracking. this methodology is used to study a variety of cognitive processes, most notably visual perception and language processing. the fixation point of the eyes is linked to an individual ' s focus of attention. thus, by monitoring eye movements, we can study what information is being processed at a given time. eye tracking allows us to study cognitive processes on extremely short time scales. eye movements reflect online decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields ##idermal electronics mirror those of skin to allow them to perform in this same way. like skin, epidermal electronics are ultrathin ( h < 100 ΞΌm ), low - modulus ( e β‰ˆ70 kpa ), and lightweight ( < 10 mg / cm2 ), enabling them to conform to the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the smart shoe. in 2019 german footwear company puma was recognized as one of the " 100 best inventions of 2019 " by time for its fi laceless shoe that uses micro - motors to adjust the fit from an iphone. nike also introduced a smart shoe in 2019 known as adapt bb. the shoe featured buttons on the Question: Both endotherms and ectotherms control what through behavioral responses to changes in the environment? A) gas temperature B) body temperature C) hormones D) sleep cycles
B) body temperature
Context: . at the sending end, the information to be sent is converted by some type of transducer to a time - varying electrical signal called the modulation signal. the modulation signal may be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal consisting of a sequence of bits representing binary data from a computer. the modulation signal is applied to a radio transmitter. in the transmitter, an electronic oscillator generates an alternating current oscillating at a radio frequency, called the carrier wave because it serves to generate the radio waves that carry the information through the air. the modulation signal is used to modulate the carrier, varying some aspect of the carrier wave, impressing the information in the modulation signal onto the carrier. different radio systems use different modulation methods : amplitude modulation ( am ) – in an am transmitter, the amplitude ( strength ) of the radio carrier wave is varied by the modulation signal ; : 3 frequency modulation ( fm ) – in an fm transmitter, the frequency of the radio carrier wave is varied by the modulation signal ; : 33 frequency - shift keying ( fsk ) – used in wireless digital devices to transmit digital signals, the frequency of the carrier wave is shifted between frequencies. : 58 orthogonal frequency - division multiplexing ( ofdm ) – a family of digital modulation methods widely used in high - bandwidth systems such as wi - fi networks, cellphones, digital television broadcasting, and digital audio broadcasting ( dab ) to transmit digital data using a minimum of radio spectrum bandwidth. it has higher spectral efficiency and more resistance to fading than am or fm. in ofdm, multiple radio carrier waves closely spaced in frequency are transmitted within the radio channel, with each carrier modulated with bits from the incoming bitstream so multiple bits are being sent simultaneously, in parallel. at the receiver, the carriers are demodulated and the bits are combined in the proper order into one bitstream. many other types of modulation are also used. in some types, the carrier wave is suppressed, and only one or both modulation sidebands are transmitted. the modulated carrier is amplified in the transmitter and applied to a transmitting antenna which radiates the energy as radio waves. the radio waves carry the information to the receiver location. at the receiver, the radio wave induces a tiny oscillating voltage in the receiving antenna – a weaker replica of the current in the transmitting antenna. this voltage is applied to the radio receiver, which amplifies the weak radio signal so listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to it is well known that the bosonic hubbard model possesses a mott insulator phase. likewise, it is known that the dicke model exhibits a self - organized superradiant phase. by implementing an optical lattice inside of a high finesse optical cavity both models are merged such that an extended hubbard model with cavity - mediated infinite range interactions arises. in addition to a normal superfluid phase, two superradiant phases are found, one of them coherent and hence superfluid and one incoherent mott insulating. , especially temperature. standard lithography patterning techniques can be used to selectively deposit strain - inducing capping layers, to deposit a compressive film over only the pmos, for example. capping layers are key to the dual stress liner ( dsl ) approach reported by ibm - amd. in the dsl process, standard patterning and lithography techniques are used to selectively deposit a tensile silicon nitride film over the nmos and a compressive silicon nitride film over the pmos. a second prominent approach involves the use of a silicon - rich solid solution, especially silicon - germanium, to modulate channel strain. one manufacturing method involves epitaxial growth of silicon on top of a relaxed silicon - germanium underlayer. tensile strain is induced in the silicon as the lattice of the silicon layer is stretched to mimic the larger lattice constant of the underlying silicon - germanium. conversely, compressive strain could be induced by using a solid solution with a smaller lattice constant, such as silicon - carbon. see, e. g., u. s. patent no. 7, 023, 018. another closely related method involves replacing the source and drain region of a mosfet with silicon - germanium. = = in thin films = = strain can be induced in thin films with either epitaxial growth, or more recently, topological growth. epitaxial strain in thin films generally arises due to lattice mismatch between the film and its substrate and triple junction restructuring at the surface triple junction, which arises either during film growth or due to thermal expansion mismatch. tuning this epitaxial strain can be used to moderate the properties of thin films and induce phase transitions. the misfit parameter ( f { \ displaystyle f } ) is given by the equation below : f = ( a s βˆ’ a e ) / a e { \ displaystyle f = ( a _ { s } - a _ { e } ) / a _ { e } } where a e { \ displaystyle a _ { e } } is the lattice parameter of the epitaxial film and a s { \ displaystyle a _ { s } } is the lattice parameter of the substrate. after some critical film thickness, it becomes energetically favorable to relieve some mismatch strain through the formation of misfit dislocations or microtwins. misfit dislocations can be interpreted as a dangling bond at an interface coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. internal torsion of the ring composed of helical atomic configuration yields a non - trivial quantum phase shift in the electrons ' eigenstates. this torsion - induced phase shift causes novel kinds of persistent current flow and an aharonov - bohm like conductance oscillation. the two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings. . cold - working processes, in which the product ' s shape is altered by rolling, fabrication or other processes, while the product is cold, can increase the strength of the product by a process called work hardening. work hardening creates microscopic defects in the metal, which resist further changes of shape. = = = heat treatment = = = metals can be heat - treated to alter the properties of strength, ductility, toughness, hardness and resistance to corrosion. common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering : annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft - edged so that, when the metal is hit or stressed it dents or perhaps bends, rather than breaking ; it is also easier to sand, grind, or cut annealed metal. quenching is the process of cooling metal very quickly after heating, thus " freezing " the metal ' s molecules in the very hard martensite form, which makes the metal harder. tempering relieves stresses in the metal that were caused by the hardening process ; tempering makes the metal less hard while making it better able to sustain impacts without breaking. often, mechanical and thermal treatments are combined in what are known as thermo - mechanical treatments for better properties and more efficient processing of materials. these processes are common to high - alloy special steels, superalloys and titanium alloys. = = = plating = = = electroplating is a chemical surface - treatment technique. it involves bonding a thin layer of another metal such as gold, silver, chromium or zinc to the surface of the product. this is done by selecting the coating material electrolyte solution, which is the material that is going to coat the workpiece ( gold, silver, zinc ). there needs to be two electrodes of different materials : one the same material as the coating material and one that is receiving the coating material. two electrodes are electrically charged and the coating material is stuck to the work piece. it is used to reduce corrosion as well as to improve the product ' s aesthetic appearance. it is also used to make inexpensive metals look like the more expensive ones ( gold, silver ). = = = shot peening = = = shot peening is a cold working process used to finish metal parts. in the process of shot peening, small round shot is blasted against the surface of the part 28 size spectra of extensive air showers from 7 different experiments are analysed consistently. they are fitted by adjusting either 4 or 5 parameters : knee position, power law exponents above and below the knee, overall intensity and, in addition, a parameter describing the smoothness of the bend. the residuals are then normalized to the same knee position and averaged. when 5 parameters are employed no systematic deviation from a single smooth knee is apparent at the 1 % level up to a factor of 4 above the knee. at larger shower sizes a moderately significant deviation can be seen whose shape and position are compatible with a second knee caused by iron group nuclei. resistivity between a conductor and insulator. modern day electronics run on semiconductors, and the industry had an estimated us $ 530 billion market in 2021. its electronic properties can be greatly altered through intentionally introducing impurities in a process referred to as doping. semiconductor materials are used to build diodes, transistors, light - emitting diodes ( leds ), and analog and digital electric circuits, among their many uses. semiconductor devices have replaced thermionic devices like vacuum tubes in most applications. semiconductor devices are manufactured both as single discrete devices and as integrated circuits ( ics ), which consist of a number β€” from a few to millions β€” of devices manufactured and interconnected on a single semiconductor substrate. of all the semiconductors in use today, silicon makes up the largest portion both by quantity and commercial value. monocrystalline silicon is used to produce wafers used in the semiconductor and electronics industry. gallium arsenide ( gaas ) is the second most popular semiconductor used. due to its higher electron mobility and saturation velocity compared to silicon, it is a material of choice for high - speed electronics applications. these superior properties are compelling reasons to use gaas circuitry in mobile phones, satellite communications, microwave point - to - point links and higher frequency radar systems. other semiconductor materials include germanium, silicon carbide, and gallium nitride and have various applications. = = relation with other fields = = materials science evolved, starting from the 1950s because it was recognized that to create, discover and design new materials, one had to approach it in a unified manner. thus, materials science and engineering emerged in many ways : renaming and / or combining existing metallurgy and ceramics engineering departments ; splitting from existing solid state physics research ( itself growing into condensed matter physics ) ; pulling in relatively new polymer engineering and polymer science ; recombining from the previous, as well as chemistry, chemical engineering, mechanical engineering, and electrical engineering ; and more. the field of materials science and engineering is important both from a scientific perspective, as well as for applications field. materials are of the utmost importance for engineers ( or other applied fields ) because usage of the appropriate materials is crucial when designing systems. as a result, materials science is an increasingly important part of an engineer ' s education. materials physics is the use of physics to describe the physical properties of materials. it is a synthesis of physical sciences such as chemistry, solid mechanics, solid state physics, and materials science. materials physics is considered a subset of charged particles in an abelian coulomb phase are non - local infraparticles that are surrounded by a cloud of soft photons which extends to infinity. gauss ' law prevents the existence of charged particles in a periodic volume. in a $ c $ - periodic volume, which is periodic up to charge conjugation, on the other hand, charged particles can exist. this includes vortices in the $ 3 $ - d xy - model, magnetic monopoles in $ 4 $ - d $ \ mathrm { u } ( 1 ) $ gauge theory, as well as protons and other charged particles in qcd coupled to qed. in four dimensions non - abelian charges are confined. hence, in an infinite volume non - abelian infraparticles cost an infinite amount of energy. however, in a $ c $ - periodic volume non - abelian infraparticles ( whose energy increases linearly with the box size ) can indeed exist. investigating these states holds the promise of deepening our understanding of confinement. results of an experiment are presented whose aim is to explore the relationship between respiration and cerebral oxygenation. measurements of end tidal co2 ( etco2 ) were taken simultaneously with cerebral oxygen saturation ( rso2 ) using the invos cerebral oximeter of somanetics. due to the device limitations we could explore only subjects who could perform with a breathing rate of around 2 / min or less. six subjects were used who were experienced in yoga breathing techniques. they performed an identical periodic breathing exercise including periodicity of about 2 / min. the results of all six subjects clearly show a periodic change of cerebral oxygenation with the same period as the breathing exercises. similar periodic changes in blood volume index were observed as well. Question: What occurs when the bronchioles swell and the muscles around the bronchioles contract? A) allergies B) bronchitis C) nausea D) asthma
D) asthma
Context: the gas giant planets in the solar system have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. if a jupiter - like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. the hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. at some planet - star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. this runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. however, for icy moons of ganymede ' s size around a sun - like star we found that surface water ( either ice or liquid ) can persist indefinitely outside the runaway greenhouse orbital distance. in contrast, the surface water on smaller moons of europa ' s size will only persist on timescales greater than 1 gyr at distances ranging 1. 49 to 0. 74 au around a sun - like star for bond albedos of 0. 2 and 0. 8, where the lower albedo becomes relevant if ice melts. consequently, small moons can lose their icy shells, which would create a torus of h atoms around their host planet that might be detectable in future observations. a 4mj planet with a 15. 8day orbital period has been detected from very precise radial velocity measurements with the coralie echelle spectrograph. a second remote and more massive companion has also been detected. all the planetary companions so far detected in orbit closer than 0. 08 au have a parent star with a statistically higher metal content compared to the metallicity distribution of other stars with planets. different processes occuring during their formation may provide a possible explanation for this observation. recent surveys have revealed a lack of close - in planets around evolved stars more massive than 1. 2 msun. such planets are common around solar - mass stars. we have calculated the orbital evolution of planets around stars with a range of initial masses, and have shown how planetary orbits are affected by the evolution of the stars all the way to the tip of the red giant branch ( rgb ). we find that tidal interaction can lead to the engulfment of close - in planets by evolved stars. the engulfment is more efficient for more - massive planets and less - massive stars. these results may explain the observed semi - major axis distribution of planets around evolved stars with masses larger than 1. 5 msun. our results also suggest that massive planets may form more efficiently around intermediate - mass stars. three major planets, venus, earth, and mercury formed out of the solar nebula. a fourth planetesimal, theia, also formed near earth where it collided in a giant impact, rebounding as the planet mars. during this impact earth lost $ { \ approx } 4 $ \ % of its crust and mantle that is now is found on mars and the moon. at the antipode of the giant impact, $ \ approx $ 60 \ % of earth ' s crust, atmosphere, and a large amount of mantle were ejected into space forming the moon. the lost crust never reformed and became the earth ' s ocean basins. the theia impact site corresponds to indian ocean gravitational anomaly on earth and the hellas basin on mars. the dynamics of the giant impact are consistent with the rotational rates and axial tilts of both earth and mars. the giant impact removed sufficient co $ _ 2 $ from earth ' s atmosphere to avoid a runaway greenhouse effect, initiated plate tectonics, and gave life time to form near geothermal vents at the continental margins. mercury formed near venus where on a close approach it was slingshot into the sun ' s convective zone losing 94 \ % of its mass, much of which remains there today. black carbon, from co $ _ 2 $ decomposed by the intense heat, is still found on the surface of mercury. arriving at 616 km / s, mercury dramatically altered the sun ' s rotational energy, explaining both its anomalously slow rotation rate and axial tilt. these results are quantitatively supported by mass balances, the current locations of the terrestrial planets, and the orientations of their major orbital axes. outer satellites of the planets have distant, eccentric orbits that can be highly inclined or even retrograde relative to the equatorial planes of their planets. these irregular orbits cannot have formed by circumplanetary accretion and are likely products of early capture from heliocentric orbit. the irregular satellites may be the only small bodies remaining which are still relatively near their formation locations within the giant planet region. the study of the irregular satellites provides a unique window on processes operating in the young solar system and allows us to probe possible planet formation mechanisms and the composition of the solar nebula between the rocky objects in the main asteroid belt and the very volatile rich objects in the kuiper belt. the gas and ice giant planets all appear to have very similar irregular satellite systems irrespective of their mass or formation timescales and mechanisms. water ice has been detected on some of the outer satellites of saturn and neptune whereas none has been observed on jupiter ' s outer satellites. two planetary nebulae are shown to belong to the sagittarius dwarf galaxy, on the basis of their radial velocities. this is only the second dwarf spheroidal galaxy, after fornax, found to contain planetary nebulae. their existence confirms that this galaxy is at least as massive as the fornax dwarf spheroidal which has a single planetary nebula, and suggests a mass of a few times 10 * * 7 solar masses. the two planetary nebulae are located along the major axis of the galaxy, near the base of the tidal tail. there is a further candidate, situated at a very large distance along the direction of the tidal tail, for which no velocity measurement is available. the location of the planetary nebulae and globular clusters of the sagittarius dwarf galaxy suggests that a significant fraction of its mass is contained within the tidal tail. three planets with minimum masses less than 10 earth masses orbit the star hd 40307, suggesting these planets may be rocky. however, with only radial velocity data, it is impossible to determine if these planets are rocky or gaseous. here we exploit various dynamical features of the system in order to assess the physical properties of the planets. observations allow for circular orbits, but a numerical integration shows that the eccentricities must be at least 0. 0001. also, planets b and c are so close to the star that tidal effects are significant. if planet b has tidal parameters similar to the terrestrial planets in the solar system and a remnant eccentricity larger than 0. 001, then, going back in time, the system would have been unstable within the lifetime of the star ( which we estimate to be 6. 1 + / - 1. 6 gyr ). moreover, if the eccentricities are that large and the inner planet is rocky, then its tidal heating may be an order of magnitude greater than extremely volcanic io, on a per unit surface area basis. if planet b is not terrestrial, e. g. neptune - like, these physical constraints would not apply. this analysis suggests the planets are not terrestrial - like, and are more like our giant planets. in either case, we find that the planets probably formed at larger radii and migrated early - on ( via disk interactions ) into their current orbits. this study demonstrates how the orbital and dynamical properties of exoplanet systems may be used to constrain the planets ' physical properties. light and cold extrasolar planets such as ogle 2005 - blg - 390lb, a 5. 5 earth - mass planet detected via microlensing, could be frequent in the galaxy according to some preliminary results from microlensing experiments. these planets can be frozen rocky - or ocean - planets, situated beyond the snow line and, therefore, beyond the habitable zone of their system. they can nonetheless host a layer of liquid water, heated by radiogenic energy, underneath an ice shell surface for billions of years, before freezing completely. these results suggest that oceans under ice, like those suspected to be present on icy moons in the solar system, could be a common feature of cold low - mass extrasolar planets. planets less massive than about 10 mearth are expected to have no massive h - he atmosphere and a cometary composition ( 50 % rocks, 50 % water, by mass ) provided they formed beyond the snowline of protoplanetary disks. due to inward migration, such planets could be found at any distance between their formation site and the star. if migration stops within the habitable zone, this will produce a new kind of planets, called ocean - planets. ocean - planets typically consist in a silicate core, surrounded by a thick ice mantle, itself covered by a 100 km deep ocean. the existence of ocean - planets raises important astrobiological questions : can life originate on such body, in the absence of continent and ocean - silicate interfaces? what would be the nature of the atmosphere and the geochemical cycles? in this work, we address the fate of hot ocean - planets produced when migration ends at a closer distance. in this case the liquid / gas interface can disappear, and the hot h2o envelope is made of a supercritical fluid. although we do not expect these bodies to harbor life, their detection and identification as water - rich planets would give us insight as to the abundance of hot and, by extrapolation, cool ocean - planets. the formation of gas - giant planets within the lifetime of a protoplanetary disk is challenging especially far from a star. a promising model for the rapid formation of giant - planet cores is pebble accretion in which gas drag during encounters leads to high accretion rates. most models of pebble accretion consider disks with a monotonic, radial pressure profile. this causes a continuous inward flux of pebbles and inefficient growth. here we examine planet formation in a disk with multiple, intrinsic pressure bumps. in the outer disk, pebbles become trapped near these bumps allowing rapid growth under suitable conditions. in the inner disk, pebble traps may not exist because the inward gas advection velocity is too high. pebbles here are rapidly removed. in the outer disk, growth is very sensitive to the initial planet mass and the strength of turbulence. this is because turbulent density fluctuations raise planetary eccentricities, increasing the planet - pebble relative velocity. planetary seeds above a distance - dependent critical mass grow to a jupiter mass in 0. 5 - - 3 million years out to at least 60 au in a 0. 03 solar - mass disk. smaller bodies remain near their initial mass, leading to a sharp dichotomy in growth outcomes. for turbulent alpha = 1e - 4, the critical masses are 1e - 4 and 1e - 3 earth masses at 9 and 75 au, respectively. pressure bumps in disks may explain the large mass difference between the giant planets and kuiper belt objects, and also the existence of wide - orbit planets in some systems. Question: What giant planet is far away from and much less dense than earth? A) mars B) uranus C) venus D) jupiter
D) jupiter
Context: excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million ##yotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. the study of microorganisms, including protozoa, bacteria, fungi, and viruses. molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. neuroscience includes those disciplines of science that are related to the study of the nervous system. a main focus of neuroscience is the biology and physiology of the human brain and spinal cord. some related clinical specialties include neurology, neurosurgery and psychiatry. nutrition science ( theoretical focus ) and dietetics ( practical focus ) is the study of the relationship of food and drink to health and disease, especially in determining an optimal diet. medical nutrition therapy is done by dietitians and is prescribed for diabetes, cardiovascular diseases, weight and eating disorders, allergies, malnutrition, and neoplastic diseases. pathology as a science is the study of disease – the causes, course, progression and resolution thereof. pharmacology is the study of drugs and their actions. photobiology is the study of the interactions between non - ionizing radiation and living organisms. physiology is the study of the normal functioning of the body and the underlying regulatory mechanisms. radiobiology is the study of the interactions between ionizing radiation and living organisms. toxicology is the study of hazardous effects of drugs and poisons. = = = specialties = = = in the broadest meaning of " medicine ", there are many different specialties. in the uk, most specialities have their own body or college, which has its own entrance examination. these are collectively known as the royal colleges, although not all currently use the term " royal ". the development of a speciality is often driven by new technology ( such as the development of effective anaesthetics ) or ways of working ( such as emergency departments ) ; the new specialty leads to the formation of a unifying body of doctors and the prestige of administering their own examination. within medical circles, specialities usually fit into one of two broad categories : " medicine " and " surgery ". " medicine " refers to the practice of non - operative medicine, and most of its subspecialties require preliminary training in internal medicine. in the uk, this was traditionally evidenced by passing the examination for the membership of the royal college of physicians ( mrcp ) or the equivalent college in scotland or ireland. " surgery " refers to the practice of operative medicine, and most subspecialties in this area require preliminary training in general surgery, which in the uk leads to ##al nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the ##ry. immunology is the study of the immune system, which includes the innate and adaptive immune system in humans, for example. lifestyle medicine is the study of the chronic conditions, and how to prevent, treat and reverse them. medical physics is the study of the applications of physics principles in medicine. microbiology is the study of microorganisms, including protozoa, bacteria, fungi, and viruses. molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. neuroscience includes those disciplines of science that are related to the study of the nervous system. a main focus of neuroscience is the biology and physiology of the human brain and spinal cord. some related clinical specialties include neurology, neurosurgery and psychiatry. nutrition science ( theoretical focus ) and dietetics ( practical focus ) is the study of the relationship of food and drink to health and disease, especially in determining an optimal diet. medical nutrition therapy is done by dietitians and is prescribed for diabetes, cardiovascular diseases, weight and eating disorders, allergies, malnutrition, and neoplastic diseases. pathology as a science is the study of disease – the causes, course, progression and resolution thereof. pharmacology is the study of drugs and their actions. photobiology is the study of the interactions between non - ionizing radiation and living organisms. physiology is the study of the normal functioning of the body and the underlying regulatory mechanisms. radiobiology is the study of the interactions between ionizing radiation and living organisms. toxicology is the study of hazardous effects of drugs and poisons. = = = specialties = = = in the broadest meaning of " medicine ", there are many different specialties. in the uk, most specialities have their own body or college, which has its own entrance examination. these are collectively known as the royal colleges, although not all currently use the term " royal ". the development of a speciality is often driven by new technology ( such as the development of effective anaesthetics ) or ways of working ( such as emergency departments ) ; the new specialty leads to the formation of a unifying body of doctors and the prestige of administering their own examination. within medical circles, specialities usually fit into one of two broad categories : " medicine " and " surgery ". " medicine " refers to the practice of non - operative medicine, and most of its subspecialties require preliminary training in internal medicine. in the uk consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna that can move between cells β€” while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e. g., water, light, radiation, temperature, humidity, atmosphere, acidity, and soil ) of their environment is called an ecosystem. these biotic and abiotic components are linked together through nutrient cycles and energy flows. energy from the sun enters the system through photosynthesis and is incorporated into plant tissue. by feeding on plants and on one another, animals move matter and energy through the system. they also influence the quantity of plant and microbial biomass present. by breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and other microbes. = = = populations = = = a population is the group of organisms of the same species that occupies an area and reproduce from generation to generation. population size can be estimated by multiplying population density by the area or volume. the carrying capacity of an environment urinary tract infection ( utis ) is referred as one of the most common infection in medical sectors worldwide and antimicrobial resistance ( amr ) is also a global threat to human that is related with many diseases. as antibiotics used for the treatment of infectious diseases, the rate of resistance is increasing day by day. gram positive pathogens are commonly found in urine sample collected from different age groups of people, associated with uti. the study was conducted in a diagnostic center in dhaka, bangladesh with total 1308 urine samples from november 2021 to april 2022. gram positive pathogens were isolated and antimicrobial susceptibility tests were done. from total 121 samples of gram positive bacteria the highest prevalence rate of utis was found in age group of 21 - 30 year. mostly enterococcus spp. ( 33. 05 % ) staphylococcus aureus ( 27. 27 % ), streptococcus spp. ( 20. 66 % ), beta - hemolytic streptococci ( 19. 00 % ) were found as causative agents of uti compared to others. the majority of isolates have been detected as multi - drug resistant ( mdr ). the higher percentage of antibiotic resistance were found against azithromycin ( 75 % ), and cefixime ( 64. 46 % ). this research focused on the regular basis of surveillance for the gram - positive bacteria antibiotic susceptibility to increase awareness about the use of proper antibiotic thus minimize the drug resistance. fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants. brown biotechnology is related to the management of arid lands and deserts. one application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources. violet biotechnology is related to law, ethical and philosophical issues around biotechnology. microbial biotechnology has been proposed for the rapidly emerging area of biotechnology applications in space and microgravity ( space bioeconomy ) dark biotechnology is the color associated with bioterrorism or biological weapons and biowarfare which uses microorganisms, and toxins to cause diseases and death in humans, livestock and crops. = = = medicine = = = in medicine, modern biotechnology has many applications in areas such as pharmaceutical drug discoveries and production, pharmacogenomics, and genetic testing ( or genetic screening ). in 2021, nearly 40 % of the total company value of pharmaceutical biotech companies worldwide were active in oncology the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection , and includes, but is not limited to, the study of epidemics. genetics is the study of genes, and their role in biological inheritance. gynecology is the study of female reproductive system. histology is the study of the structures of biological tissues by light microscopy, electron microscopy and immunohistochemistry. immunology is the study of the immune system, which includes the innate and adaptive immune system in humans, for example. lifestyle medicine is the study of the chronic conditions, and how to prevent, treat and reverse them. medical physics is the study of the applications of physics principles in medicine. microbiology is the study of microorganisms, including protozoa, bacteria, fungi, and viruses. molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. neuroscience includes those disciplines of science that are related to the study of the nervous system. a main focus of neuroscience is the biology and physiology of the human brain and spinal cord. some related clinical specialties include neurology, neurosurgery and psychiatry. nutrition science ( theoretical focus ) and dietetics ( practical focus ) is the study of the relationship of food and drink to health and disease, especially in determining an optimal diet. medical nutrition therapy is done by dietitians and is prescribed for diabetes, cardiovascular diseases, weight and eating disorders, allergies, malnutrition, and neoplastic diseases. pathology as a science is the study of disease – the causes, course, progression and resolution thereof. pharmacology is the study of drugs and their actions. photobiology is the study of the interactions between non - ionizing radiation and living organisms. physiology is the study of the normal functioning of the body and the underlying regulatory mechanisms. radiobiology is the study of the interactions between ionizing radiation and living organisms. toxicology is the study of hazardous effects of drugs and poisons. = = = specialties = = = in the broadest meaning of " medicine ", there are many different specialties. in the uk, most specialities have their own body or college, which has its own entrance examination. these are collectively known as the royal colleges, although not all currently use the term " royal ". the development of a speciality is often driven by new technology ( such as the development of effective anaesthetics ) or ways of working ( such as emergency departments ) ; the new specialty leads to the formation of a unifying body of Question: Bacteria, viruses, fungi, and protozoa are examples of what, the term for a disease-causing microorganism? A) pathogen B) germ C) microbe D) fungus
A) pathogen
Context: not only is the bekenstein expression for the entropy of a black hole a convex function of the energy, rather than being a concave function as it must be, it predicts a final equilibrium temperature given by the harmonic mean. this violates the third law, and the principle of maximum work. the property that means are monotonically increasing functions of their argument underscores the error of transferring from temperature means to means in the internal energy when the energy is not a monotonically increasing function of temperature. whereas the former leads to an increase in entropy, the latter lead to a decrease in entropy thereby violating the second law. the internal energy cannot increase at a slower rate than the temperature itself. the belief that three dimensional space is infinite and flat in the absence of matter is a canon of physics that has been in place since the time of newton. the assumption that space is flat at infinity has guided several modern physical theories. but what do we actually know to support this belief? a simple argument, called the " telescope principle ", asserts that all that we can know about space is bounded by observations. physical theories are best when they can be verified by observations, and that should also apply to the geometry of space. the telescope principle is simple to state, but it leads to very interesting insights into relativity and yang - mills theory via projective equivalences of their respective spaces. so mars below means blood and war ", is a false cause fallacy. : 26 many astrologers claim that astrology is scientific. if one were to attempt to try to explain it scientifically, there are only four fundamental forces ( conventionally ), limiting the choice of possible natural mechanisms. : 65 some astrologers have proposed conventional causal agents such as electromagnetism and gravity. the strength of these forces drops off with distance. : 65 scientists reject these proposed mechanisms as implausible since, for example, the magnetic field, when measured from earth, of a large but distant planet such as jupiter is far smaller than that produced by ordinary household appliances. astronomer phil plait noted that in terms of magnitude, the sun is the only object with an electromagnetic field of note, but astrology isn ' t based just off the sun alone. : 65 while astrologers could try to suggest a fifth force, this is inconsistent with the trends in physics with the unification of electromagnetism and the weak force into the electroweak force. if the astrologer insisted on being inconsistent with the current understanding and evidential basis of physics, that would be an extraordinary claim. : 65 it would also be inconsistent with the other forces which drop off with distance. : 65 if distance is irrelevant, then, logically, all objects in space should be taken into account. : 66 carl jung sought to invoke synchronicity, the claim that two events have some sort of acausal connection, to explain the lack of statistically significant results on astrology from a single study he conducted. however, synchronicity itself is considered neither testable nor falsifiable. the study was subsequently heavily criticised for its non - random sample and its use of statistics and also its lack of consistency with astrology. = = psychology = = psychological studies have not found any robust relationship between astrological signs and life outcomes. for example, a study showed that zodiac signs are no more effective than random numbers in predicting subjective well - being and quality of life. it has also been shown that confirmation bias is a psychological factor that contributes to belief in astrology. : 344 : 180 – 181 : 42 – 48 confirmation bias is a form of cognitive bias. : 553 from the literature, astrology believers often tend to selectively remember those predictions that turned out to be true and do not remember those that turned out false. another, separate, form of confirmation bias also plays a role, where believers often fail to the project consists to determine, mathematically, the trajectory that will take an artificial satellite to fight against the air resistance. during our work, we had to consider that our satellite will crash to the surface of our planet. we started our study by understanding the system of forces that are acting between our satellite and the earth. in this work, we had to study the second law of newton by taking knowledge of the air friction, the speed of the satellite which helped us to find the equation that relates the trajectory of the satellite itself, its speed and the density of the air depending on the altitude. finally, we had to find a mathematic relation that links the density with the altitude and then we had to put it into our movement equation. in order to verify our model, we ' ll see what happens if we give a zero velocity to the satellite. education, science, in fact the whole society, extensively use images. between us and the world are the visual displays. screens, small and large, individual or not, are everywhere. images are increasingly the 2d substrate of our virtual interaction with reality. however images will never support a complete representation of the reality. three - dimensional representations will not change that. images are primarily a spatial representation of our world dedicated to our sight. key aspects such as energy and the associated forces are not spatially materialized. in classical physics, interaction description is based on newton equations with trajectory and force as the dual central concepts. images can in real time show all aspects of trajectories but not the associated dynamical aspects described by forces and energies. contrary to the real world, the world of images opposes no constrain, nor resistance to our actions. only the physical quantities, that do not contain mass in their dimension can be satisfactory represented by images. often symbols such as arrows are introduced to visualize the force vectors. . this, he argued, would have been more persuasive and would have produced less controversy. the use of poetic imagery based on the concepts of the macrocosm and microcosm, " as above so below " to decide meaning such as edward w. james ' example of " mars above is red, so mars below means blood and war ", is a false cause fallacy. : 26 many astrologers claim that astrology is scientific. if one were to attempt to try to explain it scientifically, there are only four fundamental forces ( conventionally ), limiting the choice of possible natural mechanisms. : 65 some astrologers have proposed conventional causal agents such as electromagnetism and gravity. the strength of these forces drops off with distance. : 65 scientists reject these proposed mechanisms as implausible since, for example, the magnetic field, when measured from earth, of a large but distant planet such as jupiter is far smaller than that produced by ordinary household appliances. astronomer phil plait noted that in terms of magnitude, the sun is the only object with an electromagnetic field of note, but astrology isn ' t based just off the sun alone. : 65 while astrologers could try to suggest a fifth force, this is inconsistent with the trends in physics with the unification of electromagnetism and the weak force into the electroweak force. if the astrologer insisted on being inconsistent with the current understanding and evidential basis of physics, that would be an extraordinary claim. : 65 it would also be inconsistent with the other forces which drop off with distance. : 65 if distance is irrelevant, then, logically, all objects in space should be taken into account. : 66 carl jung sought to invoke synchronicity, the claim that two events have some sort of acausal connection, to explain the lack of statistically significant results on astrology from a single study he conducted. however, synchronicity itself is considered neither testable nor falsifiable. the study was subsequently heavily criticised for its non - random sample and its use of statistics and also its lack of consistency with astrology. = = psychology = = psychological studies have not found any robust relationship between astrological signs and life outcomes. for example, a study showed that zodiac signs are no more effective than random numbers in predicting subjective well - being and quality of life. it has also been shown that confirmation bias is a psychological factor that contributes to belief in astrology. : 344 : 180 – 181 : affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, the motion of celestial bodies through a higher power such as god. aristotle did not have the technological advancements that would have explained the motion of celestial bodies. in addition, aristotle had many views on the elements. he believed that everything was derived of the elements earth, water, air, fire, and lastly the aether. the aether was a celestial element, and therefore made up the matter of the celestial bodies. the elements of earth, water, air and fire were derived of a combination of two of the characteristics of hot, wet, cold, and dry, and all had their inevitable place and motion. the motion of these elements begins with earth being the closest to " the earth, " then water, air, fire, and finally aether. in addition to the makeup of all things, aristotle came up with theories as to why things did not return to their natural motion. he understood that water sits above earth, air above water, and fire above air in their natural state. he explained that although all elements must return to their natural state, the human body and other living things have a constraint on the elements – thus not allowing the elements making one who they are to return to their natural state. the important legacy of this period included substantial advances in factual knowledge, especially in anatomy, zoology, botany, mineralogy, geography, mathematics and astronomy ; an awareness of the importance of certain scientific problems, especially those related to the problem of change and its causes ; and a recognition of the methodological importance of applying mathematics to natural phenomena and of undertaking empirical research. in the hellenistic age scholars frequently employed the principles developed in earlier greek thought : the application of mathematics and deliberate empirical research, in their scientific investigations. thus, clear unbroken lines of influence lead from ancient greek and hellenistic philosophers, to medieval muslim philosophers and scientists, to the european renaissance and enlightenment, to the secular sciences of the modern day. neither reason nor inquiry began with the ancient greeks, but the socratic method did, along with the idea of forms, give great advances in geometry, logic, and the natural sciences. according to benjamin farrington, former professor of classics at swansea university : " men were weighing for thousands of years before archimedes worked out the laws of equilibrium ; they must have had practical and intuitional knowledge of the principals involved. what archimedes did was to sort out the theoretical implications of this practical knowledge and present the resulting body of knowledge as a logically coherent system. " and again : " with astonishment we find ourselves on the threshold of modern science the gravitational poynting vector provides a mechanism for the transfer of gravitational energy to a system of falling objects. in the following we will show that the gravitational poynting vector together with the gravitational larmor theorem also provides a mechanism to explain how massive bodies acquire rotational kinetic energy when external mechanical forces are applied on them. forces and their effect upon matter. typically, engineering mechanics is used to analyze and predict the acceleration and deformation ( both elastic and plastic ) of objects under known forces ( also called loads ) or stresses. subdisciplines of mechanics include statics, the study of non - moving bodies under known loads, how forces affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are Question: Newton’s third law of motion describes what property of forces that means balance? A) gravity B) symmetry C) magnetism D) acceleration
B) symmetry
Context: please refer to the abstract part in the paper. this article is withdrawn because of a mistake in the main result of the paper. oscillations of the sun have been used to understand its interior structure. the extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. the corot ( convection rotation and planetary transits ) satellite, launched in december 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. the oscillation amplitudes are about 1. 5 times as large as those in the sun ; the stellar granulation is up to three times as high. the stellar amplitudes are about 25 % below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars. all christian authors held that the earth was round. athenagoras, an eastern christian writing around the year 175 ad, said that the earth was spherical. methodius ( c. 290 ad ), an eastern christian writing against " the theory of the chaldeans and the egyptians " said : " let us first lay bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture ##clonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectrometry facilitates screening and ranking of clones which bind to the native ( non - denaturated ) forms of antigen proteins. flow cytometry screening has been used for primary screening of a large number ( ~ 1000 ) of hybridoma clones recognizing the native form of the antigen on the cell surface. in the flow cytometry - based screening, a mixture of antigen - negative cells and antigen - positive cells is used as the antigen to be tested for each hybridoma supernatant sample. the b cell that produces the desired antibodies can be cloned to produce many identical daughter clones. supplemental media containing interleukin - 6 ( such as briclone ) are essential for this step. once a hybridoma colony is established, it will continually grow in culture medium like rpmi - 1640 ( with antibiotics and fetal bovine serum ) and produce antibodies. multiwell plates are used initially to grow the hybridomas, and after selection, are changed to larger tissue culture flasks. this maintains the well - being of the hybridomas and provides enough cells for cryopreservation and supernatant for subsequent investigations. the culture supernatant can yield 1 to 60 ΞΌg / ml of monoclonal antibody, which is maintained at - 20 Β°c or lower until required. by using culture supernatant or a purified immunoglobulin preparation, further analysis of a potential monoclonal antibody producing hybridoma can be made in terms of reactivity, specificity, and cross - reactivity. = = applications = = the use of monoclonal antibodies is numerous and includes the prevention, diagnosis, and treatment of disease. for example, monoclonal antibodies can distinguish subsets of b cells and t cells, which is helpful in identifying different types of leukaemias. in addition, specific monoclonal antibodies have been used to define cell surface markers the paper is withdrawn by the author because it is superseded by cond - mat / 0303357. a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectrometry facilitates screening and ranking of clones which bind to the native ( non - denaturated ) forms of antigen proteins. flow cytometry screening has been used for primary screening of a large number ( ~ 1000 ) of hybridoma clones recognizing the native form of the antigen on the cell surface. in the flow cytometry - based screening, a mixture of antigen - negative cells and antigen - positive cells is used as the antigen to be tested for each hybridoma supernatant sample. the b cell that produces the desired antibodies can be cloned to produce many identical daughter clones. supplemental media containing interleukin - 6 ( such as briclone ) are essential for this step. once a hybridoma colony is established, it will continually grow in culture medium like rpmi - 1640 ( with antibiotics and fetal bovine serum ) and produce antibodies. multiwell plates are used initially to grow the hybridomas, and after selection, are changed to larger tissue culture flasks. this maintains the well - being of the hybridomas and provides enough cells for cryopreservation and supernatant for subsequent investigations. the culture supernatant can yield 1 to 60 ΞΌg / ml of monoclonal antibody, which is maintained at - 20 Β°c or lower until required. by using culture supernatant or a purified immunoglobulin preparation, further analysis of a potential monoclonal antibody producing hybridoma can be made in terms of reactivity, specificity, and cross - reactivity. = = applications = = the use of mono we make two tiny corrections to our previous paper with the same title, and also obtain, as a bonus, something new. bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture, on the ground that the earth is suspended within the concavity of the sky, and that it has as much room on the one side of it as on the other : hence they say that the part that is beneath must also be inhabited. but they do not remark that, although it be supposed or scientifically two possible interpretations of frw cosmologies ( perfect fluid or dissipative fluid ) are considered as consecutive phases of the system. necessary conditions are found, for the transition from perfect fluid to dissipative regime to occur, bringing out the conspicuous role played by a particular state of the system ( the ' ' critical point ' ' ). Question: Translation is the second part of the central dogma of what? A) relativity B) molecular gastronomy C) molecular biology D) string theory
C) molecular biology
Context: parts of australia have been privileged to see dazzling lights in the night sky as the aurora australis ( known as the southern lights ) puts on a show this year. aurorae are significant in australian indigenous astronomical traditions. aboriginal people associate aurorae with fire, death, blood, and omens, sharing many similarities with native american communities. the first observations of saturn ' s visible - wavelength aurora were made by the cassini camera. the aurora was observed between 2006 and 2013 in the northern and southern hemispheres. the color of the aurora changes from pink at a few hundred km above the horizon to purple at 1000 - 1500 km above the horizon. the spectrum observed in 9 filters spanning wavelengths from 250 nm to 1000 nm has a prominent h - alpha line and roughly agrees with laboratory simulated auroras. auroras in both hemispheres vary dramatically with longitude. auroras form bright arcs between 70 and 80 degree latitude north and between 65 and 80 degree latitude south, which sometimes spiral around the pole, and sometimes form double arcs. a large 10, 000 - km - scale longitudinal brightness structure persists for more than 100 hours. this structure rotates approximately together with saturn. on top of the large steady structure, the auroras brighten suddenly on the timescales of a few minutes. these brightenings repeat with a period of about 1 hour. smaller, 1000 - km - scale structures may move faster or lag behind saturn ' s rotation on timescales of tens of minutes. the persistence of nearly - corotating large bright longitudinal structure in the auroral oval seen in two movies spanning 8 and 11 rotations gives an estimate on the period of 10. 65 $ \ pm $ 0. 15 h for 2009 in the northern oval and 10. 8 $ \ pm $ 0. 1 h for 2012 in the southern oval. the 2009 north aurora period is close to the north branch of saturn kilometric radiation ( skr ) detected at that time. the group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the mediterranean sea at a depth of about 2. 2 km with the antares optical beacon systems. a parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the antares site is in good agreement with these measurements. ammonium hydrosulphide has long since been postulated to exist at least in certain layers of the giant planets. its radiation products may be the reason for the red colour seen on jupiter. several ammonium salts, the products of nh3 and an acid, have previously been detected at comet 67p / churyumov - gerasimenko. the acid h2s is the fifth most abundant molecule in the coma of 67p followed by nh3. in order to look for the salt nh4 + sh -, we analysed in situ measurements from the rosetta / rosina double focusing mass spectrometer during the rosetta mission. nh3 and h2s appear to be independent of each other when sublimating directly from the nucleus. however, we observe a strong correlation between the two species during dust impacts, clearly pointing to the salt. we find that nh4 + sh - is by far the most abundant salt, more abundant in the dust impacts than even water. we also find all previously detected ammonium salts and for the first time ammonium fluoride. the amount of ammonia and acids balance each other, confirming that ammonia is mostly in the form of salt embedded into dust grains. allotropes s2 and s3 are strongly enhanced in the impacts, while h2s2 and its fragment hs2 are not detected, which is most probably the result of radiolysis of nh4 + sh -. this makes a prestellar origin of the salt likely. our findings may explain the apparent depletion of nitrogen in comets and maybe help to solve the riddle of the missing sulphur in star forming regions. emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has no adverse effect on pilot vision. = = = = ships = = = = ships have also adopted similar methods. though the earlier american arleigh burke - class destroyers incorporated some signature - reduction features. the norwegian skjold - class corvettes was the first coastal defence and the french la fayette - class frigates the first ocean - going stealth ships to enter service. other examples are the dutch de zeven provincien - class frigates, the taiwanese tuo chiang - class corvettes, german sachsen - class frigates, the swedish visby - class corvette, the american san antonio - class amphibious transport docks, and most modern warship designs. = = = materials = = = = = = = non - metallic airframe = = = = dielectric composite materials are more transparent to radar, whereas electrically conductive materials such as metals and carbon fibers reflect electromagnetic energy incident on the material ' s surface. composites may also contain ferrites to optimize the dielectric and magnetic properties of a material for its application. = = = = radar - absorbent material = = = = radiation - absorbent material ( ram ), often as paints, are used especially on the edges of metal surfaces. while the material and thickness of ram coatings can ##tase, human chorionic gonadotrophin, Ξ± - fetoprotein and others are organ - associated antigens and the production of monoclonal antibodies against these antigens helps in determining the nature of a primary tumor. monoclonal antibodies are especially useful in distinguishing morphologically similar lesions, like pleural and peritoneal mesothelioma, adenocarcinoma, and in the determination of the organ or tissue origin of undifferentiated metastases. selected monoclonal antibodies help in the detection of occult metastases ( cancer of unknown primary origin ) by immuno - cytological analysis of bone marrow, other tissue aspirates, as well as lymph nodes and other tissues and can have increased sensitivity over normal histopathological staining. one study performed a sensitive immuno - histochemical assay on bone marrow aspirates of 20 patients with localized prostate cancer. three monoclonal antibodies ( t16, c26, and ae - 1 ), capable of recognizing membrane and cytoskeletal antigens expressed by epithelial cells to detect tumour cells, were used in the assay. bone marrow aspirates of 22 % of patients with localized prostate cancer ( stage b, 0 / 5 ; stage c, 2 / 4 ), and 36 % patients with metastatic prostate cancer ( stage d1, 0 / 7 patients ; stage d2, 4 / 4 patients ) had antigen - positive cells in their bone marrow. it was concluded that immuno - histochemical staining of bone marrow aspirates are very useful to detect occult bone marrow metastases in patients with apparently localized prostate cancer. although immuno - cytochemistry using tumor - associated monoclonal antibodies has led to an improved ability to detect occult breast cancer cells in bone marrow aspirates and peripheral blood, further development of this method is necessary before it can be used routinely. one major drawback of immuno - cytochemistry is that only tumor - associated and not tumor - specific monoclonal antibodies are used, and as a result, some cross - reaction with normal cells can occur. in order to effectively stage breast cancer and assess the efficacy of purging regimens prior to autologous stem cell infusion, it is important to detect even small quantities of breast cancer cells. immuno - histochemical methods are ideal for this purpose because they are simple, sensitive, and quite specific prostate cancer. three monoclonal antibodies ( t16, c26, and ae - 1 ), capable of recognizing membrane and cytoskeletal antigens expressed by epithelial cells to detect tumour cells, were used in the assay. bone marrow aspirates of 22 % of patients with localized prostate cancer ( stage b, 0 / 5 ; stage c, 2 / 4 ), and 36 % patients with metastatic prostate cancer ( stage d1, 0 / 7 patients ; stage d2, 4 / 4 patients ) had antigen - positive cells in their bone marrow. it was concluded that immuno - histochemical staining of bone marrow aspirates are very useful to detect occult bone marrow metastases in patients with apparently localized prostate cancer. although immuno - cytochemistry using tumor - associated monoclonal antibodies has led to an improved ability to detect occult breast cancer cells in bone marrow aspirates and peripheral blood, further development of this method is necessary before it can be used routinely. one major drawback of immuno - cytochemistry is that only tumor - associated and not tumor - specific monoclonal antibodies are used, and as a result, some cross - reaction with normal cells can occur. in order to effectively stage breast cancer and assess the efficacy of purging regimens prior to autologous stem cell infusion, it is important to detect even small quantities of breast cancer cells. immuno - histochemical methods are ideal for this purpose because they are simple, sensitive, and quite specific. franklin et al. performed a sensitive immuno - cytochemical assay by using a combination of four monoclonal antibodies ( 260f9, 520c9, 317g5 and bre - 3 ) against tumor cell surface glycoproteins to identify breast tumour cells in bone marrow and peripheral blood. they concluded from the results that immuno - cytochemical staining of bone marrow and peripheral blood is a sensitive and simple way to detect and quantify breast cancer cells. one of the main reasons for metastatic relapse in patients with solid tumours is the early dissemination of malignant cells. the use of monoclonal antibodies ( mabs ) specific for cytokeratins can identify disseminated individual epithelial tumor cells in the bone marrow. one study reports on having developed an immuno - cytochemical procedure for simultaneous labeling of cytokeratin component no. 18 using only lidar or radar an accurate cloud boundary height estimate is often not possible. the combination of lidar and radar can give a reliable cloud boundary estimate in a much broader range of cases. however, also this combination with standard methods still can not measure the cloud boundaries in all cases. this will be illustrated with data from the clouds and radiation measurement campaigns, clara. rain is a problem : the radar has problems to measure the small cloud droplets in the presence of raindrops. similarly, few large particles below cloud base can obscure the cloud base in radar measurements. and the radar reflectivity can be very low at the cloud base of water clouds or in large regions of ice clouds, due to small particles. multiple cloud layers and clouds with specular reflections can pose problems for lidar. more advanced measurement techniques are suggested to solve these problems. an angle scanning lidar can, for example, detect specular reflections, while using information from the radars doppler velocity spectrum may help to detect clouds during rain. due to its location and climate, antarctica offers unique conditions for long - period observations across a broad wavelength regime, where important diagnostic lines for molecules and ions can be found, that are essential to understand the chemical properties of the interstellar medium. in addition to the natural benefits of the site, new technologies, resulting from astrophotonics, may allow miniaturised instruments, that are easier to winterise and advanced filters to further reduce the background in the infrared. nanodust, which undergoes stochastic heating by single starlight photons in the interstellar medium, ranges from angstrom - sized large molecules containing tens to thousands of atoms ( e. g. polycyclic aromatic hydrocarbon molecules ) to grains of a couple tens of nanometers. the presence of nanograins in astrophysical environments has been revealed by a variety of interstellar phenomena : the optical luminescence, the near - and mid - infrared emission, the galactic foreground microwave emission, and the ultraviolet extinction which are ubiquitously seen in the interstellar medium of the milky way and beyond. nanograins ( e. g. nanodiamonds ) have also been identified as presolar in primitive meteorites based on their isotopically anomalous composition. considering the very processes that lead to the detection of nanodust in the ism for the nanodust in the solar system shows that the observation of solar system nanodust by these processes is less likely. Question: What helps us see rainbows in the sky? A) visible light B) spectral light C) myopia D) prism
A) visible light
Context: radio waves. the radio waves carry the information to the receiver location. at the receiver, the radio wave induces a tiny oscillating voltage in the receiving antenna – a weaker replica of the current in the transmitting antenna. this voltage is applied to the radio receiver, which amplifies the weak radio signal so it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. the modulation signal is converted by a transducer back to a human - usable form : an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display, while a digital signal is applied to a computer or microprocessor, which interacts with human users. the radio waves from many transmitters pass through the air simultaneously without interfering with each other because each transmitter ' s radio waves oscillate at a different frequency, measured in hertz ( hz ), kilohertz ( khz ), megahertz ( mhz ) or gigahertz ( ghz ). the receiving antenna typically picks up the radio signals of many transmitters. the receiver uses tuned circuits to select the radio signal desired out of all the signals picked up by the antenna and reject the others. a tuned circuit acts like a resonator, similar to a tuning fork. it has a natural resonant frequency at which it oscillates. the resonant frequency of the receiver ' s tuned circuit is adjusted by the user to the frequency of the desired radio station ; this is called tuning. the oscillating radio signal from the desired station causes the tuned circuit to oscillate in sympathy, and it passes the signal on to the rest of the receiver. radio signals at other frequencies are blocked by the tuned circuit and not passed on. = = = bandwidth = = = a modulated radio wave, carrying an information signal, occupies a range of frequencies. the information in a radio signal is usually concentrated in narrow frequency bands called sidebands ( sb ) just above and below the carrier frequency. the width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth ( bw ). for any given signal - to - noise ratio, a given bandwidth can carry the same amount of information regardless of where in the radio frequency spectrum it is located ; bandwidth is a measure of information - carrying capacity. the bandwidth required by a radio transmission depends on the data rate of device connectivity. 5g is still a fairly new type of networking and is still being spread across nations. moving forward, 5g is going to set the standard of cellular service around the whole globe. corporations such as at & t, verizon, and t - mobile are some of the notorious cellular companies that are rolling out 5g services across the us. 5g started being deployed at the beginning of 2020 and has been growing ever since. according to the gsm association, by 2025, approximately 1. 7 billion subscribers will have a subscription with 5g service. 5g wireless signals are transmitted through large numbers of small cell stations located in places like light poles or building roofs. in the past, 4g networking had to rely on large cell towers in order to transmit signals over large distances. with the introduction of 5g networking, it is imperative that small cell stations are used because the mm wave spectrum, which is the specific type of band used in 5g services, strictly travels over short distances. if the distances between cell stations were longer, signals may suffer from interference from inclimate weather, or other objects such as houses, buildings, trees, and much more. in 5g networking, there are 3 main kinds of 5g : low - band, mid - band, and high - band. low - band frequencies operate below 2 ghz, mid - band frequencies operate between 2 – 10 ghz, and high - band frequencies operate between 20 and 100 ghz. verizon have seen outrageous numbers on their high - band 5g service, which they deem " ultraband ", which hit speeds of over 3 gbit / s. the main advantage of 5g networks is that the data transmission rate is much higher than the previous cellular network, up to 10 gbit / s, which is faster than the current wired internet and 100 times faster than the previous 4g lte cellular network. another advantage is lower network latency ( faster response time ), less than 1 millisecond, and 4g is 30 - 70 milliseconds. the peak rate needs to reach the gbit / s standard to meet the high data volume of high - definition video, virtual reality and so on. the air interface delay level needs to be around 1ms, which meets real - time applications such as autonomous driving and telemedicine. large network capacity, providing the connection capacity of 100 billion devices to meet iot communication. the spectrum efficiency is 10 times higher than lte. with continuous wide area coverage and when fast radio burst ( frb ) waves propagate through the local ( < 1 pc ) environment of the frb source, electrons in the plasma undergo large - amplitude oscillations. the finite - amplitude effects cause the effective plasma frequency and cyclotron frequency to be dependent on the wave strength. the dispersion measure and rotation measure should therefore vary slightly from burst to burst for a repeating source, depending on the luminosity and frequency of the individual burst. furthermore, free - free absorption of strong waves is suppressed due to the accelerated electrons ' reduced energy exchange in coulomb collisions. this allows bright low - frequency bursts to propagate through an environment that would be optically thick to low - amplitude waves. given a large sample of bursts from a repeating source, it would be possible to use the deficit of low - frequency and low - luminosity bursts to infer the emission measure of the local intervening plasma and its distance from the source. information about the local environment will shed light on the nature of frb sources. rolling out 5g services across the us. 5g started being deployed at the beginning of 2020 and has been growing ever since. according to the gsm association, by 2025, approximately 1. 7 billion subscribers will have a subscription with 5g service. 5g wireless signals are transmitted through large numbers of small cell stations located in places like light poles or building roofs. in the past, 4g networking had to rely on large cell towers in order to transmit signals over large distances. with the introduction of 5g networking, it is imperative that small cell stations are used because the mm wave spectrum, which is the specific type of band used in 5g services, strictly travels over short distances. if the distances between cell stations were longer, signals may suffer from interference from inclimate weather, or other objects such as houses, buildings, trees, and much more. in 5g networking, there are 3 main kinds of 5g : low - band, mid - band, and high - band. low - band frequencies operate below 2 ghz, mid - band frequencies operate between 2 – 10 ghz, and high - band frequencies operate between 20 and 100 ghz. verizon have seen outrageous numbers on their high - band 5g service, which they deem " ultraband ", which hit speeds of over 3 gbit / s. the main advantage of 5g networks is that the data transmission rate is much higher than the previous cellular network, up to 10 gbit / s, which is faster than the current wired internet and 100 times faster than the previous 4g lte cellular network. another advantage is lower network latency ( faster response time ), less than 1 millisecond, and 4g is 30 - 70 milliseconds. the peak rate needs to reach the gbit / s standard to meet the high data volume of high - definition video, virtual reality and so on. the air interface delay level needs to be around 1ms, which meets real - time applications such as autonomous driving and telemedicine. large network capacity, providing the connection capacity of 100 billion devices to meet iot communication. the spectrum efficiency is 10 times higher than lte. with continuous wide area coverage and high mobility, the user experience rate reaches 100 mbit / s. the flow density and the number of connections are greatly increased. since 5g is a relatively new type of service, only phones which are newly released or are upcoming can support 5g service. some of these phones include the iphone 12 / 13 ; select more resistance to fading than am or fm. in ofdm, multiple radio carrier waves closely spaced in frequency are transmitted within the radio channel, with each carrier modulated with bits from the incoming bitstream so multiple bits are being sent simultaneously, in parallel. at the receiver, the carriers are demodulated and the bits are combined in the proper order into one bitstream. many other types of modulation are also used. in some types, the carrier wave is suppressed, and only one or both modulation sidebands are transmitted. the modulated carrier is amplified in the transmitter and applied to a transmitting antenna which radiates the energy as radio waves. the radio waves carry the information to the receiver location. at the receiver, the radio wave induces a tiny oscillating voltage in the receiving antenna – a weaker replica of the current in the transmitting antenna. this voltage is applied to the radio receiver, which amplifies the weak radio signal so it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. the modulation signal is converted by a transducer back to a human - usable form : an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display, while a digital signal is applied to a computer or microprocessor, which interacts with human users. the radio waves from many transmitters pass through the air simultaneously without interfering with each other because each transmitter ' s radio waves oscillate at a different frequency, measured in hertz ( hz ), kilohertz ( khz ), megahertz ( mhz ) or gigahertz ( ghz ). the receiving antenna typically picks up the radio signals of many transmitters. the receiver uses tuned circuits to select the radio signal desired out of all the signals picked up by the antenna and reject the others. a tuned circuit acts like a resonator, similar to a tuning fork. it has a natural resonant frequency at which it oscillates. the resonant frequency of the receiver ' s tuned circuit is adjusted by the user to the frequency of the desired radio station ; this is called tuning. the oscillating radio signal from the desired station causes the tuned circuit to oscillate in sympathy, and it passes the signal on to the rest of the receiver. radio signals at other frequencies are blocked by the tuned circuit and not passed on. = = = bandwidth = = = a modulated radio . species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ— piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in stations to television receivers ( called televisions or tvs ) in viewer ' s homes. terrestrial television broadcasting uses the bands 41 – 88 mhz ( vhf low band or band i, carrying rf channels 1 – 6 ), 174 – 240 mhz, ( vhf high band or band iii ; carrying rf channels 7 – 13 ), and 470 – 614 mhz ( uhf band iv and band v ; carrying rf channels 14 and up ). the exact frequency boundaries vary in different countries. propagation is by line - of - sight, so reception is limited by the visual horizon. in the us, the effective radiated power ( erp ) of television transmitters is regulated according to height above average terrain. viewers closer to the television transmitter can use a simple " rabbit ears " dipole antenna on top of the tv, but viewers in fringe reception areas typically require an outdoor antenna mounted on the roof to get adequate reception. satellite television – a set - top box which receives subscription direct - broadcast satellite television, and displays it on an ordinary television. a direct broadcast satellite in geostationary orbit 22, 200 miles ( 35, 700 km ) above the earth ' s equator transmits many channels ( up to 900 ) modulated on a 12. 2 to 12. 7 ghz ku band microwave downlink signal to a rooftop satellite dish antenna on the subscriber ' s residence. the microwave signal is converted to a lower intermediate frequency at the dish and conducted into the building by a coaxial cable to a set - top box connected to the subscriber ' s tv, where it is demodulated and displayed. the subscriber pays a monthly fee. = = = = time and frequency = = = = government standard frequency and time signal services operate time radio stations which continuously broadcast extremely accurate time signals produced by atomic clocks, as a reference to synchronize other clocks. examples are bpc, dcf77, jjy, msf, rtz, tdf, wwv, and yvto. one use is in radio clocks and watches, which include an automated receiver that periodically ( usually weekly ) receives and decodes the time signal and resets the watch ' s internal quartz clock to the correct time, thus allowing a small watch or desk clock to have the same accuracy as an atomic clock. government time stations are declining in number because gps satellites and the internet network time protocol ( ntp ) provide equally accurate time standards. = = = voice communication = = = = = = = two - way voice communication = = close analysis of the published interpretation of the number of rock - shelter sites in australia provides further evidence that there was no intensification in the growth of human population between 1000 and 10, 000 years bp. an alternative way of determining the time - dependent distribution of the size of human population between 1000 and 10, 000 years bp is discussed. ##m and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to qualitative evidence suggests that heresy within the medieval catholic church had many of the characteristics of a scale - free network. from the perspective of the church, heresy can be seen as a virus. the virus persisted for long periods of time, breaking out again even when the church believed it to have been eradicated. a principal mechanism of heresy was through a small number of individuals with very large numbers of social contacts. initial attempts by the inquisition to suppress the virus by general persecution, or even mass slaughtering, of populations thought to harbour the " disease " failed. gradually, however, the inquisition learned about the nature of the social networks by which heresy both spread and persisted. eventually, a policy of targeting key individuals was implemented, which proved to be much more successful. Question: How the individuals in a population are spread throughout their habitat is referred to as what? A) population spread B) population habitation C) habitual distribution D) population distribution
D) population distribution
Context: ##as sutra chhandah - sutra ), a sanskrit treatise on prosody. pingala ' s work also contains the basic ideas of fibonacci numbers ( called maatraameru ). although the chandah sutra hasn ' t survived in its entirety, a 10th - century commentary on it by halayudha has. halayudha, who refers to the pascal triangle as meru - prastara ( literally " the staircase to mount meru " ), has this to say : draw a square. beginning at half the square, draw two other similar squares below it ; below these two, three other squares, and so on. the marking should be started by putting 1 in the first square. put 1 in each of the two squares of the second line. in the third line put 1 in the two squares at the ends and, in the middle square, the sum of the digits in the two squares lying above it. in the fourth line put 1 in the two squares at the ends. in the middle ones put the sum of the digits in the two squares above each. proceed in this way. of these lines, the second gives the combinations with one syllable, the third the combinations with two syllables,... the text also indicates that pingala was aware of the combinatorial identity : ( n 0 ) + ( n 1 ) + ( n 2 ) + [UNK] + ( n n βˆ’ 1 ) + ( n n ) = 2 n { \ displaystyle { n \ choose 0 } + { n \ choose 1 } + { n \ choose 2 } + \ cdots + { n \ choose n - 1 } + { n \ choose n } = 2 ^ { n } } katyayana katyayana ( c. 3rd century bce ) is notable for being the last of the vedic mathematicians. he wrote the katyayana sulba sutra, which presented much geometry, including the general pythagorean theorem and a computation of the square root of 2 correct to five decimal places. = = jain mathematics ( 400 bce – 200 ce ) = = although jainism as a religion and philosophy predates its most famous exponent, the great mahaviraswami ( 6th century bce ), most jain texts on mathematical topics were composed after the 6th century bce. jain mathematicians are important historically as crucial links between the mathematics of the vedic period and that of the " classical period. " a significant historical contribution of jain mathematicians lay in their freeing indian mathematics from its religious and ritualistic cortisol, corticosterone and aldosterone activate full - length glucocorticoid receptor ( gr ) from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates. activation by aldosterone a mineralocorticoid, indicates partial divergence of elephant shark gr from the mr. progesterone activates elephant shark mr, but not elephant shark gr. progesterone inhibits steroid binding to elephant shark gr, but not to human gr. deletion of the n - terminal domain ( ntd ) from elephant shark gr ( truncated gr ) reduced the response to corticosteroids, while truncated and full - length elephant shark mr had similar responses to corticosteroids. chimeras of elephant shark gr ntd fused to mr dbd + lbd had increased activation by corticosteroids and progesterone compared to full - length elephant shark mr. elephant shark mr ntd fused to gr dbd + lbd had similar activation as full - length elephant shark mr, indicating that activation of human gr by the ntd evolved early in gr divergence from the mr. made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up in the year 1598 philipp uffenbach published a printed diptych sundial, which is a forerunner of franz ritters horizantal sundial. uffenbach ' s sundial contains apart from the usual information on a sundial ascending signs of the zodiac, several brigthest stars, an almucantar and most important the oldest gnomonic world map known so far. the sundial is constructed for the polar height of 50 1 / 6 degrees, the height of frankfurt / main the town of his citizenship. muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up the muck tube. the pressurized air flow must be constant to ensure regular air changes for the workers and prevent excessive inflow of mud or water at the base of the caisson. when the caisson hits bedrock, the sandhogs exit through the airlock and fill the box with concrete, forming a solid foundation pier. a pneumatic ( compressed - air ) caisson has the advantage of providing dry working conditions, which is better for placing concrete. it is also well suited for foundations for which other methods might cause settlement of adjacent structures. construction workers who leave the pressurized environment of the caisson must decompress at a rate that allows symptom - free release of inert gases dissolved in the body tissues if they are to avoid decompression sickness, a condition first identified in caisson workers, and originally named " caisson disease " in recognition of the occupational hazard. construction of the brooklyn bridge, which was built with the help of pressurised caissons, resulted in numerous workers being either killed or permanently injured by caisson disease during its construction. barotrauma of the ears, sinus cavities and lungs and dysbaric osteonecrosis are other risks. = = other uses = = caissons have also been used in the installation of hydraulic elevators where a single - stage ram is installed below the ground level. caissons, codenamed phoenix, were an integral part of the mulberry harbours used during the world war ii allied invasion of normandy. = = other meanings = = boat lift caissons : the word caisson is also used as a synonym for the moving trough part of caisson locks, canal lifts and inclines in which boats and ships rest while being lifted from one canal elevation to another ; the water is retained on the inside of the caisson, or excluded from the caisson, according to the respective operating principle. structural caissons : caisson is also sometimes used as a colloquial term for a reinforced concrete structure formed by pouring into a hollow cylindrical form, typically by placing a caisson form below grade in an open excavation and pouring once backfill is complete, or by weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial , and finally large gunpowder - propelled arrows and rocket weaponry. : 220 – 221 eventually, perishable bamboo was replaced with hollow tubes of cast iron, and so too did the terminology of this new weapon change, from ' fire - spear ' huo qiang to ' fire - tube ' huo tong. : 221 this ancestor to the gun was complemented by the ancestor to the cannon, what the chinese referred to since the 13th century as the ' multiple bullets magazine erupter ' bai zu lian zhu pao, a tube of bronze or cast iron that was filled with about 100 lead balls. : 263 – 264 the earliest known depiction of a gun is a sculpture from a cave in sichuan, dating to 1128, that portrays a figure carrying a vase - shaped bombard, firing flames and a cannonball. however, the oldest existent archaeological discovery of a metal barrel handgun is from the chinese heilongjiang excavation, dated to 1288. : 293 the chinese also discovered the explosive potential of packing hollowed cannonball shells with gunpowder. written later by jiao yu in his huolongjing ( mid - 14th century ), this manuscript recorded an earlier song - era cast - iron cannon known as the ' flying - cloud thunderclap eruptor ' ( fei yun pi - li pao ). the manuscript stated that : as noted before, the change in terminology for these new weapons during the song period were gradual. the early song cannons were at first termed the same way as the chinese trebuchet catapult. a later ming dynasty scholar known as mao yuanyi would explain this use of terminology and true origins of the cannon in his text of the wubei zhi, written in 1628 : the 14th - century huolongjing was also one of the first chinese texts to carefully describe to the use of explosive land mines, which had been used by the late song chinese against the mongols in 1277, and employed by the yuan dynasty afterwards. the innovation of the detonated land mine was accredited to one luo qianxia in the campaign of defense against the mongol invasion by kublai khan, : 192 later chinese texts revealed that the chinese land mine employed either a rip cord or a motion booby trap of a pin releasing falling weights that rotated a steel flint wheel, which in turn created sparks that ignited the train of fuses for the land mines. : 199 furthermore, the song employed the earliest known gunpowder - propelled rockets in warfare during the late 13th century, : 477 its earliest form being in space, can adversely affect the earth ' s environment. some hypergolic rocket propellants, such as hydrazine, are highly toxic prior to combustion, but decompose into less toxic compounds after burning. rockets using hydrocarbon fuels, such as kerosene, release carbon dioxide and soot in their exhaust. carbon dioxide emissions are insignificant compared to those from other sources ; on average, the united states consumed 803 million us gal ( 3. 0 million m3 ) of liquid fuels per day in 2014, while a single falcon 9 rocket first stage burns around 25, 000 us gallons ( 95 m3 ) of kerosene fuel per launch. even if a falcon 9 were launched every single day, it would only represent 0. 006 % of liquid fuel consumption ( and carbon dioxide emissions ) for that day. additionally, the exhaust from lox - and lh2 - fueled engines, like the ssme, is almost entirely water vapor. nasa addressed environmental concerns with its canceled constellation program in accordance with the national environmental policy act in 2011. in contrast, ion engines use harmless noble gases like xenon for propulsion. an example of nasa ' s environmental efforts is the nasa sustainability base. additionally, the exploration sciences building was awarded the leed gold rating in 2010. on may 8, 2003, the environmental protection agency recognized nasa as the first federal agency to directly use landfill gas to produce energy at one of its facilities β€” the goddard space flight center, greenbelt, maryland. in 2018, nasa along with other companies including sensor coating systems, pratt & whitney, monitor coating and utrc launched the project caution ( coatings for ultra high temperature detection ). this project aims to enhance the temperature range of the thermal history coating up to 1, 500 Β°c ( 2, 730 Β°f ) and beyond. the final goal of this project is improving the safety of jet engines as well as increasing efficiency and reducing co2 emissions. = = = climate change = = = nasa also researches and publishes on climate change. its statements concur with the global scientific consensus that the climate is warming. bob walker, who has advised former us president donald trump on space issues, has advocated that nasa should focus on space exploration and that its climate study operations should be transferred to other agencies such as noaa. former nasa atmospheric scientist j. marshall shepherd countered that earth science study was built into nasa ' s mission at its creation in the 1958 national aeronautics and space act. nasa won the 2020 webby people ' s voice award for green in the category navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea the united rest mass and charge of a particle correspond to the two forms of the same regularity of the unified nature of its ultimate structure. each of them contains the electric, weak, strong and the gravitational contributions. as a consequence, the force of an attraction among the two neutrinos and force of their repulsion must be defined from the point of view of any of the existing types of the actions. therefore, to understand the nature of the micro world interaction at the fundamental level, one must use the fact that each of the four types of well known forces includes both a kind of the newton and a kind of the coulomb components. the opinion has been spoken that the existence of the gravitational parts of the united rest mass and charge would imply the availability of such a fifth force which come forwards in the system as a unified whole. Question: The passenger pigeon, the dodo bird, and the woolly mammoth represent individual cases of what fate? A) isolation B) extinction C) accumulation D) compression
B) extinction
Context: single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division carbon chains are sometimes considered as possible carriers of some diffuse interstellar bands. spectroscopic observations in uv band carried by spectrometer stis fed with hst, give us the possibility to detect many interstellar molecules. we focused our attention on c2 molecule and we detected it in spectra of three reddened stars ( hd27778, hd147933, hd207198 ). interstellar molecule c2 was detected as a set of absorption lines around 2313 angstroms. so on. these plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile butadiene styrene ( abs ) in which calcium carbonate chalk, talc, glass fibers or carbon fibers have been added for added strength, bulk, or electrostatic dispersion. these additions may be termed reinforcing fibers, or dispersants, depending on their purpose. = = = polymers = = = polymers are chemical compounds made up of a large number of identical components linked together like chains. polymers are the raw materials ( the resins ) used to make what are commonly called plastics and rubber. plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. plastics in former and in current widespread use include polyethylene, polypropylene, polyvinyl chloride ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - ##spersion. these additions may be termed reinforcing fibers, or dispersants, depending on their purpose. = = = polymers = = = polymers are chemical compounds made up of a large number of identical components linked together like chains. polymers are the raw materials ( the resins ) used to make what are commonly called plastics and rubber. plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. plastics in former and in current widespread use include polyethylene, polypropylene, polyvinyl chloride ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment to investigate the affinity of acetylated wood for organic liquids, yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. the acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and / or very slowly. on the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. the effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. the easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups. prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their Question: Both fats and oils are made up of long chains of carbon atoms that are bonded together. what are these chains called? A) nucleic acids B) amino acids C) metabolic acids D) fatty acids
D) fatty acids
Context: shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration , depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and , there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions when the hydration shell of a protein is filled with at least 0. 6 gram of water per gram of protein, a significant anti - correlation between the vibrational free energy and the potential energy of energy - minimized conformers is observed. this means that low potential energy, well - hydrated, protein conformers tend to be more rigid than high - energy ones. on the other hand, in the case of casp target 624, when its hydration shell is filled, a significant average energy gap is observed between the crystal structure and the best conformers proposed during the prediction experiment, strongly suggesting that including explicit water molecules may help identifying unlikely conformers among good - looking ones. protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat Question: What adds phosphate groups to receptor proteins at the surface of the cell? A) nitrogen kinases B) receptor kinases C) brain kinases D) protein kinases
B) receptor kinases
Context: weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea higher concentrations of atmospheric nitrous oxide ( n2o ) are expected to slightly warm earth ' s surface because of increases in radiative forcing. radiative forcing is the difference in the net upward thermal radiation flux from the earth through a transparent atmosphere and radiation through an otherwise identical atmosphere with greenhouse gases. radiative forcing, normally measured in w / m ^ 2, depends on latitude, longitude and altitude, but it is often quoted for the tropopause, about 11 km of altitude for temperate latitudes, or for the top of the atmosphere at around 90 km. for current concentrations of greenhouse gases, the radiative forcing per added n2o molecule is about 230 times larger than the forcing per added carbon dioxide ( co2 ) molecule. this is due to the heavy saturation of the absorption band of the relatively abundant greenhouse gas, co2, compared to the much smaller saturation of the absorption bands of the trace greenhouse gas n2o. but the rate of increase of co2 molecules, about 2. 5 ppm / year ( ppm = part per million by mole ), is about 3000 times larger than the rate of increase of n2o molecules, which has held steady at around 0. 00085 ppm / year since 1985. so, the contribution of nitrous oxide to the annual increase in forcing is 230 / 3000 or about 1 / 13 that of co2. if the main greenhouse gases, co2, ch4 and n2o have contributed about 0. 1 c / decade of the warming observed over the past few decades, this would correspond to about 0. 00064 k per year or 0. 064 k per century of warming from n2o. proposals to place harsh restrictions on nitrous oxide emissions because of warming fears are not justified by these facts. restrictions would cause serious harm ; for example, by jeopardizing world food supplies. ambient air ( see lockheed f - 117 nighthawk, rectangular nozzles on the lockheed martin f - 22 raptor, and serrated nozzle flaps on the lockheed martin f - 35 lightning ). often, cool air is deliberately injected into the exhaust flow to boost this process ( see ryan aqm - 91 firefly and northrop b - 2 spirit ). the stefan – boltzmann law shows how this results in less energy ( thermal radiation in infrared spectrum ) being released and thus reduces the heat signature. in some aircraft, the jet exhaust is vented above the wing surface to shield it from observers below, as in the lockheed f - 117 nighthawk, and the unstealthy fairchild republic a - 10 thunderbolt ii. to achieve infrared stealth, the exhaust gas is cooled to the temperatures where the brightest wavelengths it radiates are absorbed by atmospheric carbon dioxide and water vapor, greatly reducing the infrared visibility of the exhaust plume. another way to reduce the exhaust temperature is to circulate coolant fluids such as fuel inside the exhaust pipe, where the fuel tanks serve as heat sinks cooled by the flow of air along the wings. ground combat includes the use of both active and passive infrared sensors. thus, the united states marine corps ( usmc ) ground combat uniform requirements document specifies infrared reflective quality standards. = = reducing radio frequency ( rf ) emissions = = in addition to reducing infrared and acoustic emissions, a stealth vehicle must avoid radiating any other detectable energy, such as from onboard radars, communications systems, or rf leakage from electronics enclosures. the f - 117 uses passive infrared and low light level television sensor systems to aim its weapons and the f - 22 raptor has an advanced lpi radar which can illuminate enemy aircraft without triggering a radar warning receiver response. = = measuring = = the size of a target ' s image on radar is measured by the rcs, often represented by the symbol Οƒ and expressed in square meters. this does not equal geometric area. a perfectly conducting sphere of projected cross sectional area 1 m2 ( i. e. a diameter of 1. 13 m ) will have an rcs of 1 m2. note that for radar wavelengths much less than the diameter of the sphere, rcs is independent of frequency. conversely, a square flat plate of area 1 m2 will have an rcs of Οƒ = 4Ο€ a2 / Ξ»2 ( where a = area, Ξ» = wavelength ), or 13, 982 m2 at 10 ghz if the radar is perpendicular to the flat winds from agn and quasars will form large amounts of dust, as the cool gas in these winds passes through the ( pressure, temperature ) region where dust is formed in agb stars. conditions in the gas are benign to dust at these radii. as a result quasar winds may be a major source of dust at high redshifts, obviating a difficulty with current observations, and requiring far less dust to exist at early epochs. approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0. 1 bar in the atmospheres of earth, titan, jupiter, saturn, uranus and neptune, despite great differences in atmospheric composition, gravity, internal heat and sunlight. in all these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of shortwave solar radiation, from a region below characterised by convection, weather, and clouds. however, it is not obvious why the tropopause occurs at the specific pressure near 0. 1 bar. here we use a physically - based model to demonstrate that, at atmospheric pressures lower than 0. 1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. at higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. a common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets the 0. 1 bar tropopause. we hypothesize that a tropopause at a pressure of approximately 0. 1 bar is characteristic of many thick atmospheres, including exoplanets and exomoons in our galaxy and beyond. judicious use of this rule could help constrain the atmospheric structure, and thus the surface environments and habitability, of exoplanets. floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial ( e. g., trunks of trees, boulders and accumulations of gravel ) from a river bed furnishes a simple and efficient means of increasing the discharging capacity of its channel. such removals will consequently lower the height of floods upstream. every impediment to the flow, in proportion to its extent, raises the level of the river above it so as to produce the additional artificial fall necessary to convey the flow through the restricted channel, thereby reducing the total available fall. reducing the length of the channel by substituting straight cuts for a winding course is the only way in which the effective fall can be increased. hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial ( e. g., trunks of trees, boulders and accumulations of gravel ) from a river bed furnishes a simple and efficient means of increasing the discharging capacity of its channel. such removals will consequently lower the height of floods upstream. every impediment to the flow, in proportion to Question: Cold fronts in winter may bring what type of storm? A) monsoon B) snow storm C) typhoon D) showers
B) snow storm
Context: ##l ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly ferment a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats – the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a rapid rate, many regulatory authorities require continuing medical education. medical practitioners upgrade their knowledge in various ways, including medical journals, seminars, conferences, and online programs. a database of objectives covering medical knowledge, as suggested by national societies across the united states, can be searched at http : / / data. medobjectives . these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world . throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β€” one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley – to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley – to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a judgments to the practice of medicine. medical humanities includes the humanities ( literature, philosophy, ethics, history and religion ), social science ( anthropology, cultural studies, psychology, sociology ), and the arts ( literature, theater, film, and visual arts ) and their application to medical education and practice. nosokinetics is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of which offer more ergonomic layouts of the keys. assistive technology devices have been created to enable disabled people to use modern touch screen mobile computers such as the ipad, iphone and ipod touch. the pererro is a plug and play adapter for ios devices which uses the built in apple voiceover feature in combination with a basic switch. this brings touch screen technology to those who were previously unable to use it. apple, with the release of ios 7 had introduced the ability to navigate apps using switch control. switch access could be activated either through an external bluetooth connected switch, single touch of the screen, or use of right and left head turns using the device ' s camera. additional accessibility features include the use of assistive touch which allows a user to access multi - touch gestures through pre - programmed onscreen buttons. for users with physical disabilities a large variety of switches are available and customizable to the user ' s needs varying in size, shape, or amount of pressure required for activation. switch access may be placed near any area of the body which has consistent and reliable mobility and less subject to fatigue. common sites include the hands, head, and feet. eye gaze and head mouse systems can also be used as an alternative mouse navigation. a user may use single or multiple switch sites and the process often involves a scanning through items on a screen and activating the switch once the desired object is highlighted. = = home automation = = the form of home automation called assistive domotics focuses on making it possible for elderly and disabled people to live independently. home automation is becoming a viable option for the elderly and disabled who would prefer to stay in their own homes rather than move to a healthcare facility. this field uses much of the same technology and equipment as home automation for security, entertainment, and energy conservation but tailors it towards elderly and disabled users. for example, automated prompts and reminders use motion sensors and pre - recorded audio messages ; an automated prompt in the kitchen may remind the resident to turn off the oven, and one by the front door may remind the resident to lock the door. = = assistive technology and innovation = = innovation is happening in assistive technology either through improvements to existing devices or the creation of new products. in the wipo published 2021 report on technology trends, assistive products are grouped into either conventional or emerging technologies. conventional assisting technology tracks innovation within well - established assistive products, whereas emerging assistive technology refers to more advanced products. these identified advanced assistive products are distinguished from the Question: What is added to alcohol and used as an antiseptic? A) arsenic B) iodine C) chlorine D) chloride
B) iodine
Context: ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, ##iation is the process of exposing food to ionizing radiation in order to destroy microorganisms, bacteria, viruses, or insects that might be present in the food. the radiation sources used include radioisotope gamma ray sources, x - ray generators and electron accelerators. further applications include sprout inhibition, delay of ripening, increase of juice yield, and improvement of re - hydration. irradiation is a more general term of deliberate exposure of materials to radiation to achieve a technical goal ( in this context ' ionizing radiation ' is implied ). as such it is also used on non - food items, such as medical hardware, plastics, tubes for gas - pipelines, hoses for floor - heating, shrink - foils for food packaging, automobile parts, wires and cables ( isolation ), tires, and even gemstones. compared to the amount of food irradiated, the volume of those every - day applications is huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioact i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β€” the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in ##artificial liver device, " temporary liver ", extracorporeal liver assist device ( elad ) : the human hepatocyte cell line ( c3a line ) in a hollow fiber bioreactor can mimic the hepatic function of the liver for acute instances of liver failure. a fully capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to the decomposition theorem is deduced from local purity. a kaluza - klein model, with a matter source associated with hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. the environmental effect generally causes a matter - induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. there is an albedo due to the radion cloud, with an energy dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the hole. harding - cox presidential election. = = technology = = radio waves are radiated by electric charges undergoing acceleration. they are generated artificially by time - varying electric currents, consisting of electrons flowing back and forth in a metal conductor called an antenna. as they travel farther from the transmitting antenna, radio waves spread out so their signal strength ( intensity in watts per square meter ) decreases ( see inverse - square law ), so radio transmissions can only be received within a limited range of the transmitter, the distance depending on the transmitter power, the antenna radiation pattern, receiver sensitivity, background noise level, and presence of obstructions between transmitter and receiver. an omnidirectional antenna transmits or receives radio waves in all directions, while a directional antenna transmits radio waves in a beam in a particular direction, or receives waves from only one direction. radio waves travel at the speed of light in vacuum and at slightly lower velocity in air. the other types of electromagnetic waves besides radio waves, infrared, visible light, ultraviolet, x - rays and gamma rays, can also carry information and be used for communication. the wide use of radio waves for telecommunication is mainly due to their desirable propagation properties stemming from their longer wavelength. radio waves have the ability to pass through the atmosphere in any weather, foliage, and at longer wavelengths through most building materials. by diffraction, longer wavelengths can bend around obstructions, and unlike other electromagnetic waves they tend to be scattered rather than absorbed by objects larger than their wavelength. = = radio communication = = in radio communication systems, information is carried across space using radio waves. at the sending end, the information to be sent is converted by some type of transducer to a time - varying electrical signal called the modulation signal. the modulation signal may be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal consisting of a sequence of bits representing binary data from a computer. the modulation signal is applied to a radio transmitter. in the transmitter, an electronic oscillator generates an alternating current oscillating at a radio frequency, called the carrier wave because it serves to generate the radio waves that carry the information through the air. the modulation signal is used to modulate the carrier, varying some aspect of the carrier wave, impressing the information in the modulation signal onto the carrier. different radio systems use different modulation methods : amplitude modulation ( am ) – in an am transmitter, the amplitude ( strength ) of the radio carrier wave is varied by the modulation , natural phenomena on earth only involve gravity and electromagnetism, and not nuclear reactions. this is because atomic nuclei are generally kept apart because they contain positive electrical charges and therefore repel each other. in 1896, henri becquerel was investigating phosphorescence in uranium salts when he discovered a new phenomenon which came to be called radioactivity. he, pierre curie and marie curie began investigating the phenomenon. in the process, they isolated the element radium, which is highly radioactive. they discovered that radioactive materials produce intense, penetrating rays of three distinct sorts, which they labeled alpha, beta, and gamma after the first three greek letters. some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. all of the early researchers received various radiation burns, much like sunburn, and thought little of it. the new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. Question: Excretion of ions occurs mainly through what organ? A) lungs B) Heart C) tissues D) kidneys
D) kidneys
Context: according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β€” the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' in products for both consumers and manufacturers. metallurgy is distinct from the craft of metalworking. metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. a specialist practitioner of metallurgy is known as a metallurgist. the science of metallurgy is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon . historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' s definition was extended to the more general scientific study of metals, alloys, and related processes. in english, the pronunciation is the more common one in the united kingdom. the pronunciation is the more common one in the us and is the first - listed variant in various american dictionaries, including merriam - webster collegiate and american heritage. = = history = = the earliest metal employed by humans appears to be gold, which can be found " native ". small amounts of natural gold, dating to the late paleolithic period, 40, 000 bc, have been found in spanish caves. silver, copper, tin and meteoric iron ". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or mostly waste. concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products. mining may not be necessary, if the ore body and physical environment are conducive to leaching. leaching dissolves minerals in an ore body and results in an enriched solution. the solution is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted – lowry acid – base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid – base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron ##chemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' s definition was extended to the more general scientific study of metals, alloys, and related processes. in english, the pronunciation is the more common one in the united kingdom. the pronunciation is the more common one in the us and is the first - listed variant in various american dictionaries, including merriam - webster collegiate scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β€” the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws, which have become fundamental concepts in chemistry. some of them are : = = history = = the history of chemistry spans a period from the ancient past to the present. since several millennia bc, civilizations were using technologies that would eventually form the basis of the various branches of chemistry. examples include extracting metals from ores Question: Acids can also react with metals, and when they do they produce what? A) rust B) alloys C) potassium gas D) hydrogen gas
D) hydrogen gas
Context: in steady state, the fuel cycle of a fusion plasma requires inward particle fluxes of fuel ions. these particle flows are also accompanied by heating. in the case of classical transport in a rotating cylindrical plasma, this heating can proceed through several distinct channels depending on the physical mechanisms involved. some channels directly heat the fuel ions themselves, whereas others heat electrons. which channel dominates depends, in general, on the details of the temperature, density, and rotation profiles of the plasma constituents. however, remarkably, under relatively few assumptions concerning these profiles, if the alpha particles, the byproducts of the fusion reaction, can be removed directly by other means, a hot - ion mode tends to emerge naturally. nuclear jets containing relativistic ` ` hot ' ' particles close to the central engine cool dramatically by producing high energy radiation. the radiative dissipation is similar to the famous compton drag acting upon ` ` cold ' ' thermal particles in a relativistic bulk flow. highly relativistic protons induce anisotropic showers raining electromagnetic power down onto the putative accretion disk. thus, the radiative signature of hot hadronic jets is x - ray irradiation of cold thermal matter. the synchrotron radio emission of the accelerated electrons is self - absorbed due to the strong magnetic fields close to the magnetic nozzle. i suggest that the main process that amplifies magnetic fields in cooling flows in clusters and group of galaxies is a jet - driven dynamo ( jedd ). the main processes that are behind the jedd is the turbulence that is formed by the many vortices formed in the inflation processes of bubbles, and the large scale shear formed by the propagating jet. it is sufficient that a strong turbulence exits in the vicinity of the jets and bubbles, just where the shear is large. the typical amplification time of magnetic fields by the jedd near the jets and bubbles is approximately hundred million years. the amplification time in the entire cooling flow region is somewhat longer. the vortices that create the turbulence are those that also transfer energy from the jets to the intra - cluster medium, by mixing shocked jet gas with the intra - cluster medium gas, and by exciting sound waves. the jedd model adds magnetic fields to the cyclical behavior of energy and mass in the jet - feedback mechanism ( jfm ) in cooling flows. development and interaction of starting vortices initiated by dielectric barrier discharge ( dbd ) plasma actuators in quiescent air are illustrated in the attached fluid dynamics videos. these include a series of smoke flow visualisations, showing the starting vortices moving parallel or normal to the wall at several different actuator configurations. ##ration fuel cell operations in a temperature gradient membrane distillation = = membrane shapes and flow geometries = = there are two main flow configurations of membrane processes : cross - flow ( or tangential flow ) and dead - end filtrations. in cross - flow filtration the feed flow is tangential to the surface of the membrane, retentate is removed from the same side further downstream, whereas the permeate flow is tracked on the other side. in dead - end filtration, the direction of the fluid flow is normal to the membrane surface. both flow geometries offer some advantages and disadvantages. generally, dead - end filtration is used for feasibility studies on a laboratory scale. the dead - end membranes are relatively easy to fabricate which reduces the cost of the separation process. the dead - end membrane separation process is easy to implement and the process is usually cheaper than cross - flow membrane filtration. the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process. the disc tube module uses a cross - flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs. = = membrane performance and governing equations = = the selection of synthetic membranes for a targeted separation process is usually based on few requirements. membranes have to provide enough mass transfer area to process large amounts of feed stream. the selected membrane has to have high selectivity ( rejection ) properties for certain particles ; it has to resist fouling and to have high mechanical stability. it also needs to be rep drag ( up to 15 % less during use ), and inertia ( for faster, stronger control response to change vehicle orientation to reduce detection ). two promising approaches are flexible wings, and fluidics. in flexible wings, much or all of a wing surface can change shape in flight to deflect air flow. adaptive compliant wings are a military and commercial effort. the x - 53 active aeroelastic wing was a us air force, boeing, and nasa effort. in fluidics, fluid injection into airflows is being researched for use in aircraft to control direction, in two ways : circulation control and thrust vectoring. in both, larger more complex mechanical parts are replaced by smaller, simpler, lower mass fluidic systems, in which larger forces in fluids are diverted by smaller jets or flows of fluid intermittently, to change the direction of vehicles. mechanical control surfaces that must move cause an important part of aircraft radar cross - section. omitting mechanical control surfaces can reduce radar returns. as of 2023, at least two countries are known to be researching fluidic control. in britain, bae systems has tested two fluidically controlled unmanned aircraft, one starting in 2010 named demon, and another starting in 2017 named magma, with the university of manchester. in the united states, the defense advanced research projects agency ( darpa ) program named control of revolutionary aircraft with novel effectors ( crane ) seeks "... to design, build, and flight test a novel x - plane that incorporates active flow control ( afc ) as a primary design consideration.... in 2023, the aircraft received its official designation as x - 65. " in january 2024, construction began, at boeing subsidiary aurora flight sciences. according to darpa, the aurora x - 65 could be completed and unveiled as soon as early 2025, with the first flight occurring in summer 2025. in circulation control, near the trailing edges of wings, aircraft flight control systems are replaced by slots which emit fluid flows. = = list of stealth aircraft = = f - 117 nighthawk b - 2 spirit f - 22 raptor f - 35 lightning ii j - 20 su - 57 b - 21 raider fc - 31 su - 75 checkmate = = list of stealth helicopters = = boeing – sikorsky rah - 66 comanche hughes 500p = = list of reduced - signature ships = = navy ships worldwide have incorporated signature - reduction features, mostly for the purpose of reducing anti - ship missile detection range and enhancing countermeasure effectiveness ##ization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process. the disc tube module uses a cross - flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs. = = membrane performance and governing equations = = the selection of synthetic membranes for a targeted separation process is usually based on few requirements. membranes have to provide enough mass transfer area to process large amounts of feed stream. the selected membrane has to have high selectivity ( rejection ) properties for certain particles ; it has to resist fouling and to have high mechanical stability. it also needs to be reproducible and to have low manufacturing costs. the main modeling equation for the dead - end filtration at constant pressure drop is represented by darcy ' s law : d v p d t = q = Ξ΄ p ΞΌ a ( 1 r m + r ) { \ displaystyle { \ frac { dv _ release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in the transpiration stream. diffusion, osmosis, and active transport and mass flow are all different ways transport can occur. examples of elements that plants need to transport are nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. in vascular plants, these elements are extracted from the soil as soluble ions by the roots and transported throughout the plant in the xylem. most of the elements required for plant nutrition come from the chemical breakdown of soil minerals. sucrose produced by photosynthesis is transported from the leaves to other parts of the plant in the phloem and plant hormones are transported by a variety of processes. = = = plant hormones = = = plants are not passive, but respond to external signals such as light, touch, and injury by moving or growing towards or away from the stimulus, as appropriate. tangible evidence of touch sensitivity is the almost instantaneous collapse of leaflets of mimosa pudica, the insect traps of venus flytrap and bladderworts, and the pollinia of orchids. the hypothesis that plant growth and development is coordinated by plant hormones or plant growth regulators first emerged in the late 19th century. darwin experimented on the movements of plant shoots and roots towards light and gravity, and concluded " it is hardly an exaggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially ##physical processes which take place in human beings as they make sense of information received through the visual system. the subject of the image. when developing an imaging system, designers must consider the observables associated with the subjects which will be imaged. these observables generally take the form of emitted or reflected energy, such as electromagnetic energy or mechanical energy. the capture device. once the observables associated with the subject are characterized, designers can then identify and integrate the technologies needed to capture those observables. for example, in the case of consumer digital cameras, those technologies include optics for collecting energy in the visible portion of the electromagnetic spectrum, and electronic detectors for converting the electromagnetic energy into an electronic signal. the processor. for all digital imaging systems, the electronic signals produced by the capture device must be manipulated by an algorithm which formats the signals so they can be displayed as an image. in practice, there are often multiple processors involved in the creation of a digital image. the display. the display takes the electronic signals which have been manipulated by the processor and renders them on some visual medium. examples include paper ( for printed, or " hard copy " images ), television, computer monitor, or projector. note that some imaging scientists will include additional " links " in their description of the imaging chain. for example, some will include the " source " of the energy which " illuminates " or interacts with the subject of the image. others will include storage and / or transmission systems. = = subfields = = subfields within imaging science include : image processing, computer vision, 3d computer graphics, animations, atmospheric optics, astronomical imaging, biological imaging, digital image restoration, digital imaging, color science, digital photography, holography, magnetic resonance imaging, medical imaging, microdensitometry, optics, photography, remote sensing, radar imaging, radiometry, silver halide, ultrasound imaging, photoacoustic imaging, thermal imaging, visual perception, and various printing technologies. = = methodologies = = acoustic imaging coherent imaging uses an active coherent illumination source, such as in radar, synthetic aperture radar ( sar ), medical ultrasound and optical coherence tomography ; non - coherent imaging systems include fluorescent microscopes, optical microscopes, and telescopes. chemical imaging, the simultaneous measurement of spectra and pictures digital imaging, creating digital images, generally by scanning or through digital photography disk image, a file which contains the exact content of a data storage medium document imaging, replicating documents commonly Question: Convection is the transfer of what type of energy by particles moving through a fluid? A) thermal B) Chemical C) atmospheric D) Nuclear
A) thermal
Context: stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent – grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomi of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that ##ian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohy to investigate the affinity of acetylated wood for organic liquids, yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. the acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and / or very slowly. on the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. the effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. the easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups. pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form ##ta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. hetero in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid Question: Foresters commonly inoculate pine seedlings with a type of what to promote growth? A) fungi B) yeast C) soil D) proteins
A) fungi
Context: others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly ferment and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell . these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world the exceptional log del pezzo surfaces with delta = 1 are classified. prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable a horn angle between a circle and its tangent is considered in euclid ' s elements, and euclid remarks that it is smaller than any acute rectilinear angle. already in antiquity, proclus wondered whether it is possible to bisect horn angles. we will give a construction of a bisector which was within the means of ancient geometers since the time of archimedes and apollonius. we will also compare it to the conformal bisection method introduced in modern times. short note by marcel brillouin on the representation of the mass point in general relativity. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their the divergence found by nesterenko, lambiase and scarpetta in the casimir energy on a semi - circular cylinder is attributed to the existence of edges. Question: What are animal fats and oils such as olive and vegetable oil classified as? A) proteins B) amino acids C) lipids D) inorganic compounds
C) lipids
Context: applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle transition and lose their toughness, becoming more brittle and prone to cracking. metals under continual cyclic loading can suffer from metal fatigue. metals under constant stress at elevated temperatures can creep. = = = metalworking processes = = = casting – molten metal is poured into a shaped mold. variants of casting include sand casting, investment the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales surface. ceramics such as alumina, boron carbide and silicon carbide have been used in bulletproof vests to repel small arms rifle fire. such plates are known commonly as ballistic plates. similar material is used to protect cockpits of some military aircraft, because of the low weight of the material. silicon nitride parts are used in ceramic ball bearings. their higher hardness means that they are much less susceptible to wear and can offer more than triple lifetimes. they also deform less under load meaning they have less contact with the bearing retainer walls and can roll faster. in very high speed applications, heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or applications continue to expand as researchers develop new kinds of ceramics to serve different purposes. zirconium dioxide ceramics are used in the manufacture of knives. the blade of the ceramic knife will stay sharp for much longer than that of a steel knife, although it is more brittle and can be snapped by dropping it on a hard surface. ceramics such as alumina, boron carbide and silicon carbide have been used in bulletproof vests to repel small arms rifle fire. such plates are known commonly as ballistic plates. similar material is used to protect cockpits of some military aircraft, because of the low weight of the material. silicon nitride parts are used in ceramic ball bearings. their higher hardness means that they are much less susceptible to wear and can offer more than triple lifetimes. they also deform less under load meaning they have less contact with the bearing retainer walls and can roll faster. in very high speed applications, heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment processes such as quenching and tempering can significantly change these properties, however. in contrast, certain metal alloys exhibit unique properties where their size and density remain unchanged across a range of temperatures. cast iron is defined as an iron – carbon alloy with more than 2. 00 %, but less than 6. 67 % carbon. stainless steel is defined as a regular steel alloy with greater than 10 % by weight alloying content of chromium. nickel and molybdenum are typically also added in stainless steels. other significant metallic alloys are those of aluminium, titanium, copper and magnesium. copper alloys have been known for a long time ( since the bronze age ), while the alloys of the other three metals have been relatively recently developed. due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. the alloys of aluminium, titanium and magnesium are also known and valued for their high strength to weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. these materials are ideal for situations where high strength to weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering applications. = = = semiconductors = = = a semiconductor is a material that has a resistivity between a conductor and insulator. modern day electronics run on semiconductors, and the industry had an estimated us $ 530 billion market in 2021. its electronic properties can be greatly altered through intentionally introducing impurities in a process referred to as doping. semiconductor materials are used to build diodes, transistors, light - emitting diodes ( leds ), and analog and digital electric circuits, among their many uses. semiconductor devices have replaced thermionic devices like vacuum tubes in most applications. semiconductor devices are manufactured both as single discrete devices and as integrated circuits ( ics ), which consist of a number β€” from a still a complex and relatively expensive material to produce. polymers on the other hand can be produced in huge volumes, with a great variety of material characteristics. mems devices can be made from polymers by processes such as injection molding, embossing or stereolithography and are especially well suited to microfluidic applications such as disposable blood testing cartridges. metals metals can also be used to create mems elements. while metals do not have some of the advantages displayed by silicon in terms of mechanical properties, when used within their limitations, metals can exhibit very high degrees of reliability. metals can be deposited by electroplating, evaporation, and sputtering processes. commonly used metals include gold, nickel, aluminium, copper, chromium, titanium, tungsten, platinum, and silver. ceramics the nitrides of silicon, aluminium and titanium as well as silicon carbide and other ceramics are increasingly applied in mems fabrication due to advantageous combinations of material properties. aln crystallizes in the wurtzite structure and thus shows pyroelectric and piezoelectric properties enabling sensors, for instance, with sensitivity to normal and shear forces. tin, on the other hand, exhibits a high electrical conductivity and large elastic modulus, making it possible to implement electrostatic mems actuation schemes with ultrathin beams. moreover, the high resistance of tin against biocorrosion qualifies the material for applications in biogenic environments. the figure shows an electron - microscopic picture of a mems biosensor with a 50 nm thin bendable tin beam above a tin ground plate. both can be driven as opposite electrodes of a capacitor, since the beam is fixed in electrically isolating side walls. when a fluid is suspended in the cavity its viscosity may be derived from bending the beam by electrical attraction to the ground plate and measuring the bending velocity. = = basic processes = = = = = deposition processes = = = one of the basic building blocks in mems processing is the ability to deposit thin films of material with a thickness anywhere from one micrometre to about 100 micrometres. the nems process is the same, although the measurement of film deposition ranges from a few nanometres to one micrometre. there are two types of deposition processes, as follows. = = = = physical deposition = = = = physical vapor deposition ( " pvd " ) consists of a process in which a material is removed from a target, and was used before copper smelting was known. copper smelting is believed to have originated when the technology of pottery kilns allowed sufficiently high temperatures. the concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently work hardened to be suitable for making tools. bronze is an alloy of copper with tin ; the latter being found in relatively few deposits globally caused a long time to elapse before true tin bronze became widespread. ( see : tin sources and trade in ancient times ) bronze was a major advancement over stone as a material for making tools, both because of its mechanical properties like strength and ductility and because it could be cast in molds to make intricately shaped objects. bronze significantly advanced shipbuilding technology with better tools and bronze nails. bronze nails replaced the old method of attaching boards of the hull with cord woven through drilled holes. better ships enabled long - distance trade and the advance of civilization. this technological trend apparently began in the fertile crescent and spread outward over time. these developments were not, and still are not, universal. the three - age system does not accurately describe the technology history of groups outside of eurasia, and does not apply at all in the case of some isolated populations, such as the spinifex people, the sentinelese, and various amazonian tribes, which still make use of stone age technology, and have not developed agricultural or metal technology. these villages preserve traditional customs in the face of global modernity, exhibiting a remarkable resistance to the rapid advancement of technology. = = = = iron age = = = = before iron smelting was developed the only iron was obtained from meteorites and is usually identified by having nickel content. meteoric iron was rare and valuable, but was sometimes used to make tools and other implements, such as fish hooks. the iron age involved the adoption of iron smelting technology. it generally replaced bronze and made it possible to produce tools which were stronger, lighter and cheaper to make than bronze equivalents. the raw materials to make iron, such as ore and limestone, are far more abundant than copper and especially tin ores. consequently, iron was produced in many areas. it was not possible to mass manufacture steel or pure iron because of the high temperatures required. furnaces could reach melting temperature but the crucibles and molds needed for melting and casting had not been developed. steel could be produced by forging bloomery iron to reduce the carbon content in a in products for both consumers and manufacturers. metallurgy is distinct from the craft of metalworking. metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. a specialist practitioner of metallurgy is known as a metallurgist. the science of metallurgy is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon . historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' s definition was extended to the more general scientific study of metals, alloys, and related processes. in english, the pronunciation is the more common one in the united kingdom. the pronunciation is the more common one in the us and is the first - listed variant in various american dictionaries, including merriam - webster collegiate and american heritage. = = history = = the earliest metal employed by humans appears to be gold, which can be found " native ". small amounts of natural gold, dating to the late paleolithic period, 40, 000 bc, have been found in spanish caves. silver, copper, tin and meteoric iron Question: What type of alloys are used in musical instruments? A) brass B) bronze C) plastics D) copper
A) brass
Context: inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seeding and diffusion throughout the whole structure of both cells and nutrients. biodegradability is often an essential factor since scaffolds should preferably be absorbed by the surrounding tissues without the necessity of surgical removal. the rate at which degradation occurs has to coincide as much as possible with the rate of tissue formation : this means that while cells are fabricating their own natural matrix structure around themselves, the scaffold is able to provide structural integrity within the body and eventually it will break down leaving the newly formed tissue which will take over the mechanical load. injectability is also important for clinical uses. recent research on organ printing is showing how crucial a good control of the 3d environment is to ensure reproducibility of experiments and offer better results. = = = materials = = = material selection is an essential aspect of producing a scaffold. the materials utilized can be natural or synthetic and can be biodegradable or non - biodegradable. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla – polylactic acid. this is a polyester which ##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb – usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently medical purposes. cells are often ' seeded ' into these structures capable of supporting three - dimensional tissue formation. scaffolds mimic the extracellular matrix of the native tissue, recapitulating the in vivo milieu and allowing cells to influence their own microenvironments. they usually serve at least one of the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seeding and diffusion throughout the whole structure of both cells and nutrients. biodegradability is often an essential factor since scaffolds should preferably be absorbed by the surrounding tissues without the necessity of surgical removal. the rate at which degradation occurs has to coincide as much as possible with the rate of tissue formation : this means that while cells are fabricating their own natural matrix structure around themselves, the scaffold is able to provide structural integrity within the body and eventually it will break down leaving the newly formed tissue which will take over the mechanical load. injectability is also important for clinical uses. recent research on organ printing is showing how crucial a good control of the 3d environment is to ensure reproducibility of experiments and offer better results. = = = materials = = = material selection is an essential aspect of producing a scaffold. the materials utilized can be natural or synthetic and can be biodegradable or non - biodegradable. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. more sophisticated techniques are now in development that can track protein products without mitigating their function, such as the addition of small sequences that will serve as binding motifs to monoclonal antibodies. expression studies aim to discover where and when specific proteins are produced. in these experiments, the dna sequence before the dna that codes for as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. more sophisticated techniques are now in development that can track protein products without mitigating their function, such as the addition of small sequences that will serve as binding motifs to monoclonal antibodies. expression studies aim to discover where and when specific proteins are produced. in these experiments, the dna sequence before the dna that codes for a protein, known as a gene ' s promoter, is reintroduced into an organism with the protein coding region replaced by a reporter gene such as gfp or an enzyme that catalyses the production of a dye. thus the time and place where a particular protein is produced can be observed. expression studies can be taken a in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guide generation times. corn has been used to study mechanisms of photosynthesis and phloem loading of sugar in c4 plants. the single celled green alga chlamydomonas reinhardtii, while not an embryophyte itself, contains a green - pigmented chloroplast related to that of land plants, making it useful for study. a red alga cyanidioschyzon merolae has also been used to study some basic chloroplast functions. spinach, peas, soybeans and a moss physcomitrella patens are commonly used to study plant cell biology. agrobacterium tumefaciens, a soil rhizosphere bacterium, can attach to plant cells and infect them with a callus - inducing ti plasmid by horizontal gene transfer, causing a callus infection called crown gall disease. schell and van montagu ( 1977 ) hypothesised that the ti plasmid could be a natural vector for introducing the nif gene responsible for nitrogen fixation in the root nodules of legumes and other plant species. today, genetic modification of the ti plasmid is one of the main techniques for introduction of transgenes to plants and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various oscillations of the sun have been used to understand its interior structure. the extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. the corot ( convection rotation and planetary transits ) satellite, launched in december 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. the oscillation amplitudes are about 1. 5 times as large as those in the sun ; the stellar granulation is up to three times as high. the stellar amplitudes are about 25 % below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars. Question: Osteoclasts and osteoblasts play key roles in repair of what? A) liver B) heart C) bone D) brain
C) bone
Context: a polygon is a shape that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain or circuit. these segments are called its edges or sides, and the points where two edges meet are the polygon ' s vertices ( singular : vertex ) or corners. the interior of the polygon is sometimes called its body. an n - gon is a polygon with n sides. a polygon is a 2 - dimensional example of the more general polytope in any number of dimensions. a circle is a simple shape of two - dimensional geometry that is the set of all points in a plane that are at a given distance from a given point, the center. the distance between any of the points and the center is called the radius. it can also be defined as the locus of a point equidistant from a fixed point. a perimeter is a path that surrounds a two - dimensional shape. the term may be used either for the path or its length - it can be thought of as the length of the outline of a shape. the perimeter of a circle or ellipse is called its circumference. area is the quantity that expresses the extent of a two - dimensional figure or shape. there are several well - known formulas for the areas of simple shapes such as triangles, rectangles, and circles. = = = proportions = = = two quantities are proportional if a change in one is always accompanied by a change in the other, and if the changes are always related by use of a constant multiplier. the constant is called the coefficient of proportionality or proportionality constant. if one quantity is always the product of the other and a constant, the two are said to be directly proportional. x and y are directly proportional if the ratio y x { \ displaystyle { \ tfrac { y } { x } } } is constant. if the product of the two quantities is always equal to a constant, the two are said to be inversely proportional. x and y are inversely proportional if the product x y { \ displaystyle xy } is constant. = = = analytic geometry = = = analytic geometry is the study of geometry using a coordinate system. this contrasts with synthetic geometry. usually the cartesian coordinate system is applied to manipulate equations for planes, straight lines, and squares, often in two and sometimes in three dimensions. geometrically, one studies the euclidean plane ( 2 dimensions ) and euclidean space ( 3 dimensions ). as taught in school all christian authors held that the earth was round. athenagoras, an eastern christian writing around the year 175 ad, said that the earth was spherical. methodius ( c. 290 ad ), an eastern christian writing against " the theory of the chaldeans and the egyptians " said : " let us first lay bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture the curvature radiation is applied to the explain the circular polarization of frbs. significant circular polarization is reported in both apparently non - repeating and repeating frbs. curvature radiation can produce significant circular polarization at the wing of the radiation beam. in the curvature radiation scenario, in order to see significant circular polarization in frbs ( 1 ) more energetic bursts, ( 2 ) burst with electrons having higher lorentz factor, ( 3 ) a slowly rotating neutron star at the centre are required. different rotational period of the central neutron star may explain why some frbs have high circular polarization, while others don ' t. considering possible difference in refractive index for the parallel and perpendicular component of electric field, the position angle may change rapidly over the narrow pulse window of the radiation beam. the position angle swing in frbs may also be explained by this non - geometric origin, besides that of the rotating vector model. bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture, on the ground that the earth is suspended within the concavity of the sky, and that it has as much room on the one side of it as on the other : hence they say that the part that is beneath must also be inhabited. but they do not remark that, although it be supposed or scientifically and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has outer satellites of the planets have distant, eccentric orbits that can be highly inclined or even retrograde relative to the equatorial planes of their planets. these irregular orbits cannot have formed by circumplanetary accretion and are likely products of early capture from heliocentric orbit. the irregular satellites may be the only small bodies remaining which are still relatively near their formation locations within the giant planet region. the study of the irregular satellites provides a unique window on processes operating in the young solar system and allows us to probe possible planet formation mechanisms and the composition of the solar nebula between the rocky objects in the main asteroid belt and the very volatile rich objects in the kuiper belt. the gas and ice giant planets all appear to have very similar irregular satellite systems irrespective of their mass or formation timescales and mechanisms. water ice has been detected on some of the outer satellites of saturn and neptune whereas none has been observed on jupiter ' s outer satellites. and is invariant under the process of counting. an identity is an equation that remains true for all values of its variables. there are also inequalities that remain true when the values of their variables change. the distance between two points on a number line is not changed by adding the same quantity to both numbers. on the other hand, multiplication does not have this same property, as distance is not invariant under multiplication. angles and ratios of distances are invariant under scalings, rotations, translations and reflections. these transformations produce similar shapes, which is the basis of trigonometry. in contrast, angles and ratios are not invariant under non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο€ ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example, casting, also called the lost wax process, die casting, centrifugal casting, both vertical and horizontal, and continuous castings. each of these forms has advantages for certain metals and applications considering factors like magnetism and corrosion. forging – a red - hot billet is hammered into shape. rolling – a billet is passed through successively narrower rollers to create a sheet. extrusion – a hot and malleable metal is forced under pressure through a die, which shapes it before it cools. machining – lathes, milling machines and drills cut the cold metal to shape. sintering – a powdered metal is heated in a non - oxidizing environment after being compressed into a die. fabrication – sheets of metal are cut with guillotines or gas cutters and bent and welded into structural shape. laser cladding – metallic powder is blown through a movable laser beam ( e. g. mounted on a nc 5 - axis machine ). the resulting melted metal reaches a substrate to form a melt pool. by moving the laser head, it is possible to stack the tracks and build up a three - dimensional piece. 3d printing – sintering or melting amorphous powder metal in a 3d space to make any object to shape. cold - working processes, in which the product ' s shape is altered by rolling, fabrication or other processes, while the product is cold, can increase the strength of the product by a process called work hardening. work hardening creates microscopic defects in the metal, which resist further changes of shape. = = = heat treatment = = = metals can be heat - treated to alter the properties of strength, ductility, toughness, hardness and resistance to corrosion. common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering : annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft - edged so that, when the metal is hit or stressed it dents or perhaps bends, rather than breaking ; it is also easier to sand, grind, or cut annealed metal. quenching is the process of cooling metal very quickly after heating, thus " freezing " the metal ' s molecules in the very hard martensite form, which makes the metal harder. tempering relieves stresses in the metal that were caused by the hardening process ; tempering makes the metal less hard while making it better able to sustain ##ization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an assembly of self - supporting fibers with dense skin separation layers, and a more open matrix helping to withstand pressure gradients and maintain structural integrity. the hollow fiber modules can contain up to 10, 000 fibers ranging from 200 to 2500 ΞΌm in diameter ; the main advantage of hollow fiber modules is the very large surface area within an enclosed volume, increasing the efficiency of the separation process. the disc tube module uses a cross - flow geometry and consists of a pressure tube and hydraulic discs, which are held by a central tension rod, and membrane cushions that lie between two discs. = = membrane performance and governing equations = = the selection of synthetic membranes for a targeted separation process is usually based on few requirements. membranes have to provide enough mass transfer area to process large amounts of feed stream. the selected membrane has to have high selectivity ( rejection ) properties for certain particles ; it has to resist fouling and to have high mechanical stability. it also needs to be reproducible and to have low manufacturing costs. the main modeling equation for the dead - end filtration at constant pressure drop is represented by darcy ' s law : d v p d t = q = Ξ΄ p ΞΌ a ( 1 r m + r ) { \ displaystyle { \ frac { dv _ the thickness of freshly made soap films is usually in the micron range, and interference colors make thickness fluctuations easily visible. circular patterns of constant thickness are commonly observed, either a thin film disc in a thicker film or the reverse. in this letter, we evidence the line tension at the origin of these circular patterns. using a well controlled soap film preparation, we produce a piece of thin film surrounded by a thicker film. the thickness profile, measured with a spectral camera, leads to a line tension of the order of 0. 1 nn which drives the relaxation of the thin film shape, initially very elongated, toward a circular shape. a balance between line tension and air friction leads to a quantitative prediction of the relaxation process. such a line tension is expected to play a role in the production of marginal regeneration patches, involved in soap film drainage and stability. Question: What is the general shape of centrioles? A) spherical B) rod C) arc D) oval
B) rod
Context: river - beds ), but not for where there may be large obstructions in the ground. an open caisson that is used in soft grounds or high water tables, where open trench excavations are impractical, can also be used to install deep manholes, pump stations and reception / launch pits for microtunnelling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caisson ##lling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on earth, though it does include human effects on the environment. = = methodology = = methodologies vary depending on the nature of the subjects being studied. studies typically fall into one of three categories : observational, experimental, or theoretical. earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena ( ##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers – civil works program river morphology and stream restoration references Question: Why does water infiltrate the ground? A) prolonged drought conditions B) because soil and rocks are porous C) run-off from flooding D) gravity
B) because soil and rocks are porous
Context: ##lling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called river - beds ), but not for where there may be large obstructions in the ground. an open caisson that is used in soft grounds or high water tables, where open trench excavations are impractical, can also be used to install deep manholes, pump stations and reception / launch pits for microtunnelling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caisson made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up , the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six subsea engineering and the ability to detect, track and destroy submarines ( anti - submarine warfare ) required the parallel development of a host of marine scientific instrumentation and sensors. visible light is not transferred far underwater, so the medium for transmission of data is primarily acoustic. high - frequency sound is used to measure the depth of the ocean, determine the nature of the seafloor, and detect submerged objects. the higher the frequency, the higher the definition of the data that is returned. sound navigation and ranging or sonar was developed during the first world war to detect submarines, and has been greatly refined through to the present day. submarines similarly use sonar equipment to detect and target other submarines and surface ships, and to detect submerged obstacles such as seamounts that pose a navigational obstacle. simple echo - sounders point straight down and can give an accurate reading of ocean depth ( or look up at the underside of sea - ice ). more advanced echo sounders use a fan - shaped beam or sound, or multiple beams to derive highly detailed images of the ocean floor. high power systems can penetrate the soil and seabed rocks to give information about the geology of the seafloor, and are widely used in geophysics for the discovery of hydrocarbons, or for engineering survey. for close - range underwater communications, optical transmission is possible, mainly using blue lasers. these have a high bandwidth compared with acoustic systems, but the range is usually only a few tens of metres, and ideally at night. as well as acoustic communications and navigation, sensors have been developed to measure ocean parameters such as temperature, salinity, oxygen levels and other properties including nitrate levels, levels of trace chemicals and environmental dna. the industry trend has been towards smaller, more accurate and more affordable systems so that they can be purchased and used by university departments and small companies as well as large corporations, research organisations and governments. the sensors and instruments are fitted to autonomous and remotely - operated systems as well as ships, and are enabling these systems to take on tasks that hitherto required an expensive human - crewed platform. manufacture of marine sensors and instruments mainly takes place in asia, europe and north america. products are advertised in specialist journals, and through trade shows such as oceanology international and ocean business which help raise awareness of the products. = = = environmental engineering = = = in every coastal and offshore project, environmental sustainability is an important consideration for the preservation of ocean ecosystems and natural resources. instances in which marine engineers benefit from knowledge of environmental engineering include creation of fisheries, clean ##s ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up the muck tube. the pressurized air flow must be constant to ensure regular air changes for the workers and prevent excessive inflow of mud or water at the base of the caisson. when the caisson hits bedrock, the sandhogs exit through the airlock and fill the box with concrete, forming a solid foundation pier. a pneumatic ( compressed - air ) caisson has the advantage of providing dry working conditions, which is better for placing concrete. it is also well suited for foundations for which other methods might cause settlement of adjacent structures. construction workers who leave the pressurized environment of the caisson must decompress at a rate that allows symptom - free release of inert gases dissolved in the body tissues if they are to avoid decompression sickness, a condition first identified in caisson workers, and originally named " caisson disease " in recognition of the occupational hazard. construction of the brooklyn bridge, which was built with the help of pressurised caissons, resulted in numerous workers being either killed or permanently injured by caisson disease during its construction. barotrauma of the ears, sinus cavities and lungs and dysbaric osteonecrosis are other risks. = = other uses = = caissons have also been used in the installation of hydraulic elevators where a single - stage ram is installed below the ground level. caissons, codenamed phoenix, were an integral part of the mulberry harbours used during the world war ii allied invasion of normandy. = = other meanings = = boat lift caissons : the word caisson is also used as a synonym for the moving trough part of caisson locks, canal lifts and inclines in which boats and ships rest while being lifted from one canal elevation to another ; the water is retained on the inside of the caisson, or excluded from the caisson earliest record of a ship under sail is that of a nile boat dating to around 7, 000 bce. from prehistoric times, egyptians likely used the power of the annual flooding of the nile to irrigate their lands, gradually learning to regulate much of it through purposely built irrigation channels and " catch " basins. the ancient sumerians in mesopotamia used a complex system of canals and levees to divert water from the tigris and euphrates rivers for irrigation. archaeologists estimate that the wheel was invented independently and concurrently in mesopotamia ( in present - day iraq ), the northern caucasus ( maykop culture ), and central europe. time estimates range from 5, 500 to 3, 000 bce with most experts putting it closer to 4, 000 bce. the oldest artifacts with drawings depicting wheeled carts date from about 3, 500 bce. more recently, the oldest - known wooden wheel in the world as of 2024 was found in the ljubljana marsh of slovenia ; austrian experts have established that the wheel is between 5, 100 and 5, 350 years old. the invention of the wheel revolutionized trade and war. it did not take long to discover that wheeled wagons could be used to carry heavy loads. the ancient sumerians used a potter ' s wheel and may have invented it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, superdielectric behavior was observed in pastes made of high surface area alumina filled to the level of incipient wetness with water containing dissolved sodium chloride ( table salt ). in some cases the dielectric constants were greater than 10 ^ 10. in this article i explain in detail a method for making small amounts of liquid oxygen in the classroom if there is no access to a cylinder of compressed oxygen gas. i also discuss two methods for identifying the fact that it is liquid oxygen as opposed to liquid nitrogen. muck ) from the edge of the workspace to a water - filled pit, connected by a tube ( called the muck tube ) to the surface. a crane at the surface removes the soil with a clamshell bucket. the water pressure in the tube balances the air pressure, with excess air escaping up the muck tube. the pressurized air flow must be constant to ensure regular air changes for the workers and prevent excessive inflow of mud or water at the base of the caisson. when the caisson hits bedrock, the sandhogs exit through the airlock and fill the box with concrete, forming a solid foundation pier. a pneumatic ( compressed - air ) caisson has the advantage of providing dry working conditions, which is better for placing concrete. it is also well suited for foundations for which other methods might cause settlement of adjacent structures. construction workers who leave the pressurized environment of the caisson must decompress at a rate that allows symptom - free release of inert gases dissolved in the body tissues if they are to avoid decompression sickness, a condition first identified in caisson workers, and originally named " caisson disease " in recognition of the occupational hazard. construction of the brooklyn bridge, which was built with the help of pressurised caissons, resulted in numerous workers being either killed or permanently injured by caisson disease during its construction. barotrauma of the ears, sinus cavities and lungs and dysbaric osteonecrosis are other risks. = = other uses = = caissons have also been used in the installation of hydraulic elevators where a single - stage ram is installed below the ground level. caissons, codenamed phoenix, were an integral part of the mulberry harbours used during the world war ii allied invasion of normandy. = = other meanings = = boat lift caissons : the word caisson is also used as a synonym for the moving trough part of caisson locks, canal lifts and inclines in which boats and ships rest while being lifted from one canal elevation to another ; the water is retained on the inside of the caisson, or excluded from the caisson, according to the respective operating principle. structural caissons : caisson is also sometimes used as a colloquial term for a reinforced concrete structure formed by pouring into a hollow cylindrical form, typically by placing a caisson form below grade in an open excavation and pouring once backfill is complete, or by Question: What is the upward force exerted by fluids when any object, such as a boat, is placed in it? A) impetuous force B) atomic force C) human force D) bouyant force
D) bouyant force
Context: electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis are combined in the proper order into one bitstream. many other types of modulation are also used. in some types, the carrier wave is suppressed, and only one or both modulation sidebands are transmitted. the modulated carrier is amplified in the transmitter and applied to a transmitting antenna which radiates the energy as radio waves. the radio waves carry the information to the receiver location. at the receiver, the radio wave induces a tiny oscillating voltage in the receiving antenna – a weaker replica of the current in the transmitting antenna. this voltage is applied to the radio receiver, which amplifies the weak radio signal so it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. the modulation signal is converted by a transducer back to a human - usable form : an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display, while a digital signal is applied to a computer or microprocessor, which interacts with human users. the radio waves from many transmitters pass through the air simultaneously without interfering with each other because each transmitter ' s radio waves oscillate at a different frequency, measured in hertz ( hz ), kilohertz ( khz ), megahertz ( mhz ) or gigahertz ( ghz ). the receiving antenna typically picks up the radio signals of many transmitters. the receiver uses tuned circuits to select the radio signal desired out of all the signals picked up by the antenna and reject the others. a tuned circuit acts like a resonator, similar to a tuning fork. it has a natural resonant frequency at which it oscillates. the resonant frequency of the receiver ' s tuned circuit is adjusted by the user to the frequency of the desired radio station ; this is called tuning. the oscillating radio signal from the desired station causes the tuned circuit to oscillate in sympathy, and it passes the signal on to the rest of the receiver. radio signals at other frequencies are blocked by the tuned circuit and not passed on. = = = bandwidth = = = a modulated radio wave, carrying an information signal, occupies a range of frequencies. the information in a radio signal is usually concentrated in narrow frequency bands called sidebands ( sb ) just above and below the carrier frequency. the width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. the modulation signal is converted by a transducer back to a human - usable form : an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display, while a digital signal is applied to a computer or microprocessor, which interacts with human users. the radio waves from many transmitters pass through the air simultaneously without interfering with each other because each transmitter ' s radio waves oscillate at a different frequency, measured in hertz ( hz ), kilohertz ( khz ), megahertz ( mhz ) or gigahertz ( ghz ). the receiving antenna typically picks up the radio signals of many transmitters. the receiver uses tuned circuits to select the radio signal desired out of all the signals picked up by the antenna and reject the others. a tuned circuit acts like a resonator, similar to a tuning fork. it has a natural resonant frequency at which it oscillates. the resonant frequency of the receiver ' s tuned circuit is adjusted by the user to the frequency of the desired radio station ; this is called tuning. the oscillating radio signal from the desired station causes the tuned circuit to oscillate in sympathy, and it passes the signal on to the rest of the receiver. radio signals at other frequencies are blocked by the tuned circuit and not passed on. = = = bandwidth = = = a modulated radio wave, carrying an information signal, occupies a range of frequencies. the information in a radio signal is usually concentrated in narrow frequency bands called sidebands ( sb ) just above and below the carrier frequency. the width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth ( bw ). for any given signal - to - noise ratio, a given bandwidth can carry the same amount of information regardless of where in the radio frequency spectrum it is located ; bandwidth is a measure of information - carrying capacity. the bandwidth required by a radio transmission depends on the data rate of the information being sent, and the spectral efficiency of the modulation method used ; how much data it can transmit in each unit of bandwidth. different types of information signals carried by radio have different data rates. for example, a television signal has a greater data rate than an audio signal. the radio spectrum, the total range of , depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in beacon transmits two signals simultaneously on different frequencies. a directional antenna transmits a beam of radio waves that rotates like a lighthouse at a fixed rate, 30 times per second. when the directional beam is facing north, an omnidirectional antenna transmits a pulse. by measuring the difference in phase of these two signals, an aircraft can determine its bearing ( or " radial " ) from the station accurately. by taking a bearing on two vor beacons an aircraft can determine its position ( called a " fix " ) to an accuracy of about 90 metres ( 300 ft ). most vor beacons also have a distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 – 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) – legacy fixed radio beacons used before the vo more resistance to fading than am or fm. in ofdm, multiple radio carrier waves closely spaced in frequency are transmitted within the radio channel, with each carrier modulated with bits from the incoming bitstream so multiple bits are being sent simultaneously, in parallel. at the receiver, the carriers are demodulated and the bits are combined in the proper order into one bitstream. many other types of modulation are also used. in some types, the carrier wave is suppressed, and only one or both modulation sidebands are transmitted. the modulated carrier is amplified in the transmitter and applied to a transmitting antenna which radiates the energy as radio waves. the radio waves carry the information to the receiver location. at the receiver, the radio wave induces a tiny oscillating voltage in the receiving antenna – a weaker replica of the current in the transmitting antenna. this voltage is applied to the radio receiver, which amplifies the weak radio signal so it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. the modulation signal is converted by a transducer back to a human - usable form : an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display, while a digital signal is applied to a computer or microprocessor, which interacts with human users. the radio waves from many transmitters pass through the air simultaneously without interfering with each other because each transmitter ' s radio waves oscillate at a different frequency, measured in hertz ( hz ), kilohertz ( khz ), megahertz ( mhz ) or gigahertz ( ghz ). the receiving antenna typically picks up the radio signals of many transmitters. the receiver uses tuned circuits to select the radio signal desired out of all the signals picked up by the antenna and reject the others. a tuned circuit acts like a resonator, similar to a tuning fork. it has a natural resonant frequency at which it oscillates. the resonant frequency of the receiver ' s tuned circuit is adjusted by the user to the frequency of the desired radio station ; this is called tuning. the oscillating radio signal from the desired station causes the tuned circuit to oscillate in sympathy, and it passes the signal on to the rest of the receiver. radio signals at other frequencies are blocked by the tuned circuit and not passed on. = = = bandwidth = = = a modulated radio radio waves. the radio waves carry the information to the receiver location. at the receiver, the radio wave induces a tiny oscillating voltage in the receiving antenna – a weaker replica of the current in the transmitting antenna. this voltage is applied to the radio receiver, which amplifies the weak radio signal so it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. the modulation signal is converted by a transducer back to a human - usable form : an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display, while a digital signal is applied to a computer or microprocessor, which interacts with human users. the radio waves from many transmitters pass through the air simultaneously without interfering with each other because each transmitter ' s radio waves oscillate at a different frequency, measured in hertz ( hz ), kilohertz ( khz ), megahertz ( mhz ) or gigahertz ( ghz ). the receiving antenna typically picks up the radio signals of many transmitters. the receiver uses tuned circuits to select the radio signal desired out of all the signals picked up by the antenna and reject the others. a tuned circuit acts like a resonator, similar to a tuning fork. it has a natural resonant frequency at which it oscillates. the resonant frequency of the receiver ' s tuned circuit is adjusted by the user to the frequency of the desired radio station ; this is called tuning. the oscillating radio signal from the desired station causes the tuned circuit to oscillate in sympathy, and it passes the signal on to the rest of the receiver. radio signals at other frequencies are blocked by the tuned circuit and not passed on. = = = bandwidth = = = a modulated radio wave, carrying an information signal, occupies a range of frequencies. the information in a radio signal is usually concentrated in narrow frequency bands called sidebands ( sb ) just above and below the carrier frequency. the width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth ( bw ). for any given signal - to - noise ratio, a given bandwidth can carry the same amount of information regardless of where in the radio frequency spectrum it is located ; bandwidth is a measure of information - carrying capacity. the bandwidth required by a radio transmission depends on the data rate of a proof that the set of real numbers is denumerable is given. bear ' ) was conspicuous on radar. it is now known that propellers and jet turbine blades produce a bright radar image ; the bear has four pairs of large 18 - foot ( 5. 6 m ) diameter contra - rotating propellers. another important factor is internal construction. some stealth aircraft have skin that is radar transparent or absorbing, behind which are structures termed reentrant triangles. radar waves penetrating the skin get trapped in these structures, reflecting off the internal faces and losing energy. this method was first used on the blackbird series : a - 12, yf - 12a, lockheed sr - 71 blackbird. the most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar Question: What do dendrites receive signals from? A) hormones B) electrons C) fibers D) neurons
D) neurons
Context: cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing , while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short generation times. corn has been used to study mechanisms of photosynthesis and phloem loading of sugar in c4 plants. the single celled green alga chlamydomonas reinhardtii, while not an embryophyte itself, contains a green - pigmented chloroplast related to that of land plants, making it useful for study. a red alga cyanidioschyzon merolae has also been used to study some basic chloroplast functions. spinach, peas, soybeans and a moss physcomitrella patens are commonly used to study plant cell biology. agrobacterium tumefaciens, a soil rhizosphere bacterium, can attach to plant cells and infect them with a callus - inducing ti plasmid by horizontal gene transfer, causing a callus infection called crown gall disease. schell and van montagu ( 1977 ) ##tes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent . species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ— piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and mutations has only existed since the 1970s. the term " genetic engineering " was coined by the russian - born geneticist nikolay timofeev - ressovsky in his 1934 paper " the experimental production of mutations ", published in the british journal biological reviews. jack williamson used the term in his science fiction novel dragon ' s island, published in 1951 – one year before dna ' s role in heredity was confirmed by alfred hershey and martha chase, and two years before james watson and francis crick showed that the dna molecule has a double - helix structure – though the general concept of direct genetic manipulation was explored in rudimentary form plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short generation times. corn has been used to study mechanisms of photosynthesis and phloem loading of sugar in c4 plants. the single celled green alga chlamydomonas reinhardtii, while not an embryophyte itself, contains a green - pigmented chloroplast related to that Question: What is the term for the exchange of genetic material between non-sister chromatids of homologous chromosomes? A) meiosis B) asexual reproduction C) crossing-over D) inheritance
C) crossing-over
Context: grasping an object is a matter of first moving a prehensile organ at some position in the world, and then managing the contact relationship between the prehensile organ and the object. once the contact relationship has been established and made stable, the object is part of the body and it can move in the world. as any action, the action of grasping is ontologically anchored in the physical space while the correlative movement originates in the space of the body. evolution has found amazing solutions that allow organisms to rapidly and efficiently manage the relationship between their body and the world. it is then natural that roboticists consider taking inspiration of these natural solutions, while contributing to better understand their origin. of a point on the object, including whole - body translations and rotations ( rigid transformations ). deformation are changes in the relative position between internals points on the object, excluding rigid transformations, causing the body to change shape or size. strain is the relative internal deformation, the dimensionless change in shape of an infinitesimal cube of material relative to a reference configuration. mechanical strains are caused by mechanical stress, see stress - strain curve. the relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic. elasticity in materials occurs when applied stress does not surpass the energy required to break molecular bonds, allowing the material to deform reversibly and return to its original shape once the stress is removed. the linear relationship for a material is known as young ' s modulus. above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation. the determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis. in the above figure, it can be seen that the compressive loading ( indicated by the arrow ) has caused deformation in the cylinder so that the original shape ( dashed lines ) has changed ( deformed ) into one with bulging sides. the sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change. as a result, the material is forced out laterally. internal forces ( in this case at right angles to the deformation ) resist the applied load. = = types of deformation = = depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. the image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel. different deformation modes may occur under different conditions, as can be depicted using a deformation mechanism map. permanent deformation is irreversible ; the deformation stays even after removal of the applied forces, while the temporary deformation is recoverable as it disappears after the removal of applied forces. temporary deformation is also called elastic deformation, while the permanent deformation is called plastic deformation. = = = elastic deformation = = = the study of temporary or elastic deformation in the case of engineering strain is applied to materials used in mechanical and structural engineering, such as concrete and steel, which are subjected to very small deformations. engineering strain is modeled by infinitesimal strain theory, also called the motion of celestial bodies through a higher power such as god. aristotle did not have the technological advancements that would have explained the motion of celestial bodies. in addition, aristotle had many views on the elements. he believed that everything was derived of the elements earth, water, air, fire, and lastly the aether. the aether was a celestial element, and therefore made up the matter of the celestial bodies. the elements of earth, water, air and fire were derived of a combination of two of the characteristics of hot, wet, cold, and dry, and all had their inevitable place and motion. the motion of these elements begins with earth being the closest to " the earth, " then water, air, fire, and finally aether. in addition to the makeup of all things, aristotle came up with theories as to why things did not return to their natural motion. he understood that water sits above earth, air above water, and fire above air in their natural state. he explained that although all elements must return to their natural state, the human body and other living things have a constraint on the elements – thus not allowing the elements making one who they are to return to their natural state. the important legacy of this period included substantial advances in factual knowledge, especially in anatomy, zoology, botany, mineralogy, geography, mathematics and astronomy ; an awareness of the importance of certain scientific problems, especially those related to the problem of change and its causes ; and a recognition of the methodological importance of applying mathematics to natural phenomena and of undertaking empirical research. in the hellenistic age scholars frequently employed the principles developed in earlier greek thought : the application of mathematics and deliberate empirical research, in their scientific investigations. thus, clear unbroken lines of influence lead from ancient greek and hellenistic philosophers, to medieval muslim philosophers and scientists, to the european renaissance and enlightenment, to the secular sciences of the modern day. neither reason nor inquiry began with the ancient greeks, but the socratic method did, along with the idea of forms, give great advances in geometry, logic, and the natural sciences. according to benjamin farrington, former professor of classics at swansea university : " men were weighing for thousands of years before archimedes worked out the laws of equilibrium ; they must have had practical and intuitional knowledge of the principals involved. what archimedes did was to sort out the theoretical implications of this practical knowledge and present the resulting body of knowledge as a logically coherent system. " and again : " with astonishment we find ourselves on the threshold of modern science the world is changing at an ever - increasing pace. and it has changed in a much more fundamental way than one would think, primarily because it has become more connected and interdependent than in our entire history. every new product, every new invention can be combined with those that existed before, thereby creating an explosion of complexity : structural complexity, dynamic complexity, functional complexity, and algorithmic complexity. how to respond to this challenge? and what are the costs? affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, classical mechanics is based upon a mechanical picture of nature that is fundamentally incorrect. it has been replaced at the basic level by a radically different theory : quantum mechanics. this change entails an enormous shift in our basic conception of nature, one that can profoundly alter the scientific image of man himself. self - image is the foundation of values, and the replacement of the mechanistic self - image derived from classical mechanics by one concordant with quantum mechanics may provide the foundation of a moral order better suited to our times, a self - image that endows human life with meaning, responsibility, and a deeper linkage to nature as a whole. on biological causation and the diversity of life. he made countless observations of nature, especially the habits and attributes of plants and animals on lesbos, classified more than 540 animal species, and dissected at least 50. aristotle ' s writings profoundly influenced subsequent islamic and european scholarship, though they were eventually superseded in the scientific revolution. aristotle also contributed to theories of the elements and the cosmos. he believed that the celestial bodies ( such as the planets and the sun ) had something called an unmoved mover that put the celestial bodies in motion. aristotle tried to explain everything through mathematics and physics, but sometimes explained things such as the motion of celestial bodies through a higher power such as god. aristotle did not have the technological advancements that would have explained the motion of celestial bodies. in addition, aristotle had many views on the elements. he believed that everything was derived of the elements earth, water, air, fire, and lastly the aether. the aether was a celestial element, and therefore made up the matter of the celestial bodies. the elements of earth, water, air and fire were derived of a combination of two of the characteristics of hot, wet, cold, and dry, and all had their inevitable place and motion. the motion of these elements begins with earth being the closest to " the earth, " then water, air, fire, and finally aether. in addition to the makeup of all things, aristotle came up with theories as to why things did not return to their natural motion. he understood that water sits above earth, air above water, and fire above air in their natural state. he explained that although all elements must return to their natural state, the human body and other living things have a constraint on the elements – thus not allowing the elements making one who they are to return to their natural state. the important legacy of this period included substantial advances in factual knowledge, especially in anatomy, zoology, botany, mineralogy, geography, mathematics and astronomy ; an awareness of the importance of certain scientific problems, especially those related to the problem of change and its causes ; and a recognition of the methodological importance of applying mathematics to natural phenomena and of undertaking empirical research. in the hellenistic age scholars frequently employed the principles developed in earlier greek thought : the application of mathematics and deliberate empirical research, in their scientific investigations. thus, clear unbroken lines of influence lead from ancient greek and hellenistic philosophers, to medieval muslim philosophers and scientists, to the european renaissance and enlightenment, to the secular sciences of the modern day. neither reason the classical and the quantum motion of a massive body in the rotating tube is considered. photon is included. the spin motion described by the bargmann - michel - telegdi equation is considered in the rotation tube and rotating system. such as rigid motions. dual to the notion of invariants are coinvariants, also known as orbits, which formalizes the notion of congruence : objects which can be taken to each other by a group action. for example, under the group of rigid motions of the plane, the perimeter of a triangle is an invariant, while the set of triangles congruent to a given triangle is a coinvariant. these are connected as follows : invariants are constant on coinvariants ( for example, congruent triangles have the same perimeter ), while two objects which agree in the value of one invariant may or may not be congruent ( for example, two triangles with the same perimeter need not be congruent ). in classification problems, one might seek to find a complete set of invariants, such that if two objects have the same values for this set of invariants, then they are congruent. for example, triangles such that all three sides are equal are congruent under rigid motions, via sss congruence, and thus the lengths of all three sides form a complete set of invariants for triangles. the three angle measures of a triangle are also invariant under rigid motions, but do not form a complete set as incongruent triangles can share the same angle measures. however, if one allows scaling in addition to rigid motions, then the aaa similarity criterion shows that this is a complete set of invariants. = = = independent of presentation = = = secondly, a function may be defined in terms of some presentation or decomposition of a mathematical object ; for instance, the euler characteristic of a cell complex is defined as the alternating sum of the number of cells in each dimension. one may forget the cell complex structure and look only at the underlying topological space ( the manifold ) – as different cell complexes give the same underlying manifold, one may ask if the function is independent of choice of presentation, in which case it is an intrinsically defined invariant. this is the case for the euler characteristic, and a general method for defining and computing invariants is to define them for a given presentation, and then show that they are independent of the choice of presentation. note that there is no notion of a group action in this sense. the most common examples are : the presentation of a manifold in terms of coordinate charts – invariants must be unchanged under change of coordinates. various manifold decompositions, as discussed for euler characteristic. invariants of a presentation of a group. = = the gravitational poynting vector provides a mechanism for the transfer of gravitational energy to a system of falling objects. in the following we will show that the gravitational poynting vector together with the gravitational larmor theorem also provides a mechanism to explain how massive bodies acquire rotational kinetic energy when external mechanical forces are applied on them. Question: What must be overcome to change the motion of an object? A) pressure B) weight C) inertia D) density
C) inertia
Context: the walls of a victim ' s stomach. toxicology, a subfield of forensic chemistry, focuses on detecting and identifying drugs, poisons, and other toxic substances in biological samples. forensic toxicologists work on cases involving drug overdoses, poisoning, and substance abuse. their work is critical in determining whether harmful substances play a role in a person ’ s death or impairment. read more james marsh was the first to apply this new science to the art of forensics. he was called by the prosecution in a murder trial to give evidence as a chemist in 1832. the defendant, john bodle, was accused of poisoning his grandfather with arsenic - laced coffee. marsh performed the standard test by mixing a suspected sample with hydrogen sulfide and hydrochloric acid. while he was able to detect arsenic as yellow arsenic trisulfide, when it was shown to the jury it had deteriorated, allowing the suspect to be acquitted due to reasonable doubt. annoyed by that, marsh developed a much better test. he combined a sample containing arsenic with sulfuric acid and arsenic - free zinc, resulting in arsine gas. the gas was ignited, and it decomposed to pure metallic arsenic, which, when passed to a cold surface, would appear as a silvery - black deposit. so sensitive was the test, known formally as the marsh test, that it could detect as little as one - fiftieth of a milligram of arsenic. he first described this test in the edinburgh philosophical journal in 1836. = = = ballistics and firearms = = = ballistics is " the science of the motion of projectiles in flight ". in forensic science, analysts examine the patterns left on bullets and cartridge casings after being ejected from a weapon. when fired, a bullet is left with indentations and markings that are unique to the barrel and firing pin of the firearm that ejected the bullet. this examination can help scientists identify possible makes and models of weapons connected to a crime. henry goddard at scotland yard pioneered the use of bullet comparison in 1835. he noticed a flaw in the bullet that killed the victim and was able to trace this back to the mold that was used in the manufacturing process. = = = anthropometry = = = the french police officer alphonse bertillon was the first to apply the anthropological technique of anthropometry to law enforcement, thereby creating an identification system based on physical measurements. before that time, criminals could be identified only by name or photograph. dissatisfied with the ad hoc methods used to identify captured a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid – base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. . oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβˆ’ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid – base reactions are hydroxide ( ohβˆ’ ) and phosphate ( po43βˆ’ ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then methods may be used in all subdisciplines of chemistry, excluding purely theoretical chemistry. biochemistry is the study of the chemicals, chemical reactions and interactions that take place at a molecular level in living organisms. biochemistry is highly interdisciplinary, covering medicinal chemistry, neurochemistry, molecular biology, forensics, plant science and genetics. inorganic chemistry is the study of the properties and reactions of inorganic compounds, such as metals and minerals. the distinction between organic and inorganic disciplines is not absolute and there is much overlap, most importantly in the sub - discipline of organometallic chemistry. materials chemistry is the preparation, characterization, and understanding of solid state components or devices with a useful current or future function. the field is a new breadth of study in graduate programs, and it integrates elements from all classical areas of chemistry like organic chemistry, inorganic chemistry, and crystallography with a focus on fundamental issues that are unique to materials. primary systems of study include the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but the cross section of elastic electron - proton scattering taking place in an electron gas is calculated within the closed time path method. it is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. the other term is due to the scattering particles - electron gas entanglement. this term dominates the usual one when the exchange energy is in the vicinity of the fermi energy. furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime. behavioral responses to different stimuli, one can understand something about how those stimuli are processed. lewandowski & strohmetz ( 2009 ) reviewed a collection of innovative uses of behavioral measurement in psychology including behavioral traces, behavioral observations, and behavioral choice. behavioral traces are pieces of evidence that indicate behavior occurred, but the actor is not present ( e. g., litter in a parking lot or readings on an electric meter ). behavioral observations involve the direct witnessing of the actor engaging in the behavior ( e. g., watching how close a person sits next to another person ). behavioral choices are when a person selects between two or more options ( e. g., voting behavior, choice of a punishment for another participant ). reaction time. the time between the presentation of a stimulus and an appropriate response can indicate differences between two cognitive processes, and can indicate some things about their nature. for example, if in a search task the reaction times vary proportionally with the number of elements, then it is evident that this cognitive process of searching involves serial instead of parallel processing. psychophysical responses. psychophysical experiments are an old psychological technique, which has been adopted by cognitive psychology. they typically involve making judgments of some physical property, e. g. the loudness of a sound. correlation of subjective scales between individuals can show cognitive or sensory biases as compared to actual physical measurements. some examples include : sameness judgments for colors, tones, textures, etc. threshold differences for colors, tones, textures, etc. eye tracking. this methodology is used to study a variety of cognitive processes, most notably visual perception and language processing. the fixation point of the eyes is linked to an individual ' s focus of attention. thus, by monitoring eye movements, we can study what information is being processed at a given time. eye tracking allows us to study cognitive processes on extremely short time scales. eye movements reflect online decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward – hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. ##nts from the air to reduce the potential adverse effects on humans and the environment. the process of air purification may be performed using methods such as mechanical filtration, ionization, activated carbon adsorption, photocatalytic oxidation, and ultraviolet light germicidal irradiation. = = = sewage treatment = = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the Question: Which action of the stomach helps chemical digestion by gastric juice? A) chewing B) peristalsis C) churning action D) contraction
C) churning action
Context: it is hard for us humans to recognize things in nature until we have invented them ourselves. for image - forming optics, nature has made virtually every kind of lens humans have devised. but what about lensless " imaging "? recently, we showed that a bare array of sensors on a curved substrate could achieve resolution not limited by diffraction - without any lens at all provided that the objects imaged conform to our a priori assumptions. is it possible that somewhere in nature we will find this kind of vision system? we think so and provide examples that seem to make no sense whatever unless they are using something like our lensless imaging work. in gravitational lensing, the concept of optical depth assumes the lens is dark. several microlensing detections have now been made where the lens may be bright. relations are developed between apparent and absolute optical depth in the regime of the apparent and absolute brightness of the lens. an apparent optical depth through bright lenses is always less than the true, absolute optical depth. the greater the intrinsic brightness of the lens, the more likely it will be found nearer the source. and integrated circuits. wafer bonding involves joining two or more substrates ( usually having the same diameter ) to one another to form a composite structure. there are several types of wafer bonding processes that are used in microsystems fabrication including : direct or fusion wafer bonding, wherein two or more wafers are bonded together that are usually made of silicon or some other semiconductor material ; anodic bonding wherein a boron - doped glass wafer is bonded to a semiconductor wafer, usually silicon ; thermocompression bonding, wherein an intermediary thin - film material layer is used to facilitate wafer bonding ; and eutectic bonding, wherein a thin - film layer of gold is used to bond two silicon wafers. each of these methods have specific uses depending on the circumstances. most wafer bonding processes rely on three basic criteria for successfully bonding : the wafers to be bonded are sufficiently flat ; the wafer surfaces are sufficiently smooth ; and the wafer surfaces are sufficiently clean. the most stringent criteria for wafer bonding is usually the direct fusion wafer bonding since even one or more small particulates can render the bonding unsuccessful. in comparison, wafer bonding methods that use intermediary layers are often far more forgiving. both bulk and surface silicon micromachining are used in the industrial production of sensors, ink - jet nozzles, and other devices. but in many cases the distinction between these two has diminished. a new etching technology, deep reactive - ion etching, has made it possible to combine good performance typical of bulk micromachining with comb structures and in - plane operation typical of surface micromachining. while it is common in surface micromachining to have structural layer thickness in the range of 2 ΞΌm, in har silicon micromachining the thickness can be from 10 to 100 ΞΌm. the materials commonly used in har silicon micromachining are thick polycrystalline silicon, known as epi - poly, and bonded silicon - on - insulator ( soi ) wafers although processes for bulk silicon wafer also have been created ( scream ). bonding a second wafer by glass frit bonding, anodic bonding or alloy bonding is used to protect the mems structures. integrated circuits are typically not combined with har silicon micromachining. = = applications = = some common commercial applications of mems include : inkjet printers, which use piezoelectrics or thermal bubble ejection to the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include ag also launched missions to mercury in 2004, with the messenger probe demonstrating as the first use of a solar sail. nasa also launched probes to the outer solar system starting in the 1960s. pioneer 10 was the first probe to the outer planets, flying by jupiter, while pioneer 11 provided the first close up view of the planet. both probes became the first objects to leave the solar system. the voyager program launched in 1977, conducting flybys of jupiter and saturn, neptune, and uranus on a trajectory to leave the solar system. the galileo spacecraft, deployed from the space shuttle flight sts - 34, was the first spacecraft to orbit jupiter, discovering evidence of subsurface oceans on the europa and observed that the moon may hold ice or liquid water. a joint nasa - european space agency - italian space agency mission, cassini – huygens, was sent to saturn ' s moon titan, which, along with mars and europa, are the only celestial bodies in the solar system suspected of being capable of harboring life. cassini discovered three new moons of saturn and the huygens probe entered titan ' s atmosphere. the mission discovered evidence of liquid hydrocarbon lakes on titan and subsurface water oceans on the moon of enceladus, which could harbor life. finally launched in 2006, the new horizons mission was the first spacecraft to visit pluto and the kuiper belt. beyond interplanetary probes, nasa has launched many space telescopes. launched in the 1960s, the orbiting astronomical observatory were nasa ' s first orbital telescopes, providing ultraviolet, gamma - ray, x - ray, and infrared observations. nasa launched the orbiting geophysical observatory in the 1960s and 1970s to look down at earth and observe its interactions with the sun. the uhuru satellite was the first dedicated x - ray telescope, mapping 85 % of the sky and discovering a large number of black holes. launched in the 1990s and early 2000s, the great observatories program are among nasa ' s most powerful telescopes. the hubble space telescope was launched in 1990 on sts - 31 from the discovery and could view galaxies 15 billion light years away. a major defect in the telescope ' s mirror could have crippled the program, had nasa not used computer enhancement to compensate for the imperfection and launched five space shuttle servicing flights to replace the damaged components. the compton gamma ray observatory was launched from the atlantis on sts - 37 in 1991, discovering a possible source of antimatter at the center of the milky way and observing that the majority of gamma - ray bursts the rapidly developing research field of organic analogue sensors aims to replace traditional semiconductors with naturally occurring materials. photosensors, or photodetectors, change their electrical properties in response to the light levels they are exposed to. organic photosensors can be functionalised to respond to specific wavelengths, from ultra - violet to red light. performing cyclic voltammetry on fungal mycelium and fruiting bodies under different lighting conditions shows no appreciable response to changes in lighting condition. however, functionalising the specimen using pedot : pss yields in a photosensor that produces large, instantaneous current spikes when the light conditions change. future works would look at interfacing this organic photosensor with an appropriate digital back - end for interpreting and processing the response. there cannot exist a single parametrization that covers the whole surface. therefore, one often considers surfaces which are parametrized by several parametric equations, whose images cover the surface. this is formalized by the concept of manifold : in the context of manifolds, typically in topology and differential geometry, a surface is a manifold of dimension two ; this means that a surface is a topological space such that every point has a neighborhood which is homeomorphic to an open subset of the euclidean plane ( see surface ( topology ) and surface ( differential geometry ) ). this allows defining surfaces in spaces of dimension higher than three, and even abstract surfaces, which are not contained in any other space. on the other hand, this excludes surfaces that have singularities, such as the vertex of a conical surface or points where a surface crosses itself. in classical geometry, a surface is generally defined as a locus of a point or a line. for example, a sphere is the locus of a point which is at a given distance of a fixed point, called the center ; a conical surface is the locus of a line passing through a fixed point and crossing a curve ; a surface of revolution is the locus of a curve rotating around a line. a ruled surface is the locus of a moving line satisfying some constraints ; in modern terminology, a ruled surface is a surface, which is a union of lines. = = terminology = = there are several kinds of surfaces that are considered in mathematics. an unambiguous terminology is thus necessary to distinguish them when needed. a topological surface is a surface that is a manifold of dimension two ( see Β§ topological surface ). a differentiable surface is a surfaces that is a differentiable manifold ( see Β§ differentiable surface ). every differentiable surface is a topological surface, but the converse is false. a " surface " is often implicitly supposed to be contained in a euclidean space of dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a connected open subset of r2 is a topological surface. if the function is differentiable, the graph is a differentiable surface. a plane is both an algebraic surface and a differentiable surface. it is also a ruled surface and a surface of revolution. a circular cylinder ( that is, the locus of a line crossing ; and the wafer surfaces are sufficiently clean. the most stringent criteria for wafer bonding is usually the direct fusion wafer bonding since even one or more small particulates can render the bonding unsuccessful. in comparison, wafer bonding methods that use intermediary layers are often far more forgiving. both bulk and surface silicon micromachining are used in the industrial production of sensors, ink - jet nozzles, and other devices. but in many cases the distinction between these two has diminished. a new etching technology, deep reactive - ion etching, has made it possible to combine good performance typical of bulk micromachining with comb structures and in - plane operation typical of surface micromachining. while it is common in surface micromachining to have structural layer thickness in the range of 2 ΞΌm, in har silicon micromachining the thickness can be from 10 to 100 ΞΌm. the materials commonly used in har silicon micromachining are thick polycrystalline silicon, known as epi - poly, and bonded silicon - on - insulator ( soi ) wafers although processes for bulk silicon wafer also have been created ( scream ). bonding a second wafer by glass frit bonding, anodic bonding or alloy bonding is used to protect the mems structures. integrated circuits are typically not combined with har silicon micromachining. = = applications = = some common commercial applications of mems include : inkjet printers, which use piezoelectrics or thermal bubble ejection to deposit ink on paper. accelerometers in modern cars for a large number of purposes including airbag deployment and electronic stability control. inertial measurement units ( imus ) : mems accelerometers. mems gyroscopes in remote controlled, or autonomous, helicopters, planes and multirotors ( also known as drones ), used for automatically sensing and balancing flying characteristics of roll, pitch and yaw. mems magnetic field sensor ( magnetometer ) may also be incorporated in such devices to provide directional heading. mems inertial navigation systems ( inss ) of modern cars, airplanes, submarines and other vehicles to detect yaw, pitch, and roll ; for example, the autopilot of an airplane. accelerometers in consumer electronics devices such as game controllers ( nintendo wii ), personal media players / cell phones ( virtually all smartphones, various htc pda models ), augmented passage of carbon dioxide as aluminum and glass. = = = ceramics and glasses = = = another application of materials science is the study of ceramics and glasses, typically the most brittle materials with industrial relevance. many ceramics and glasses exhibit covalent or ionic - covalent bonding with sio2 ( silica ) as a fundamental building block. ceramics – not to be confused with raw, unfired clay – are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another material. cermets are ceramic particles containing some metals. the wear resistance of tools is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties. ceramics can be significantly strengthened for engineering applications using the principle of crack deflection. this process involves the strategic addition of second - phase particles within a ceramic matrix, optimizing their shape, size, and distribution to direct and control crack propagation. this approach enhances fracture toughness, paving the way for the creation of advanced, high - performance ceramics in various industries. = = = composites = = = another application of materials science in industry is making composite materials. these are structured materials composed of two or more macroscopic phases. applications range from structural elements such as steel - reinforced concrete, to the thermal insulating tiles, which play a key and integral role in nasa ' s space shuttle thermal protection system, which is used to protect the surface of the shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap teeth. forensic optometry is the study of glasses and other eyewear relating to crime scenes and criminal investigations. forensic pathology is a field in which the principles of medicine and pathology are applied to determine a cause of death or injury in the context of a legal inquiry. forensic podiatry is an application of the study of feet footprint or footwear and their traces to analyze scene of crime and to establish personal identity in forensic examinations. forensic psychiatry is a specialized branch of psychiatry as applied to and based on scientific criminology. forensic psychology is the study of the mind of an individual, using forensic methods. usually it determines the circumstances behind a criminal ' s behavior. forensic seismology is the study of techniques to distinguish the seismic signals generated by underground nuclear explosions from those generated by earthquakes. forensic serology is the study of the body fluids. forensic social work is the specialist study of social work theories and their applications to a clinical, criminal justice or psychiatric setting. practitioners of forensic social work connected with the criminal justice system are often termed social supervisors, whilst the remaining use the interchangeable titles forensic social worker, approved mental health professional or forensic practitioner and they conduct specialist assessments of risk, care planning and act as an officer of the court. forensic toxicology is the study of the effect of drugs and poisons on / in the human body. forensic video analysis is the scientific examination, comparison and evaluation of video in legal matters. mobile device forensics is the scientific examination and evaluation of evidence found in mobile phones, e. g. call history and deleted sms, and includes sim card forensics. trace evidence analysis is the analysis and comparison of trace evidence including glass, paint, fibres and hair ( e. g., using micro - spectrophotometry ). wildlife forensic science applies a range of scientific disciplines to legal cases involving non - human biological evidence, to solve crimes such as poaching, animal abuse, and trade in endangered species. = = questionable techniques = = some forensic techniques, believed to be scientifically sound at the time they were used, have turned out later to have much less scientific merit or none. some such techniques include : comparative bullet - lead analysis was used by the fbi for over four decades, starting with the john f. kennedy assassination in 1963. the theory was that each batch of ammunition possessed a chemical makeup so distinct that a bullet could be traced back to a particular batch or even a specific box. internal studies and an outside study by the national academy of sciences found that the technique was unreliable due to Question: What two lenses comprise a compound microscope? A) polarized and focal B) scope and focus C) concave and convex D) objective and eyepiece
D) objective and eyepiece
Context: earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on earth, though it does include human effects on the environment. = = methodology = = methodologies vary depending on the nature of the subjects being studied. studies typically fall into one of three categories : observational, experimental, or theoretical. earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena ( aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna that can move between cells β€” while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e. onset of electro - chemical corrosion. similar problems are encountered in coastal and offshore structures. = = = anti - fouling = = = anti - fouling is the process of eliminating obstructive organisms from essential components of seawater systems. depending on the nature and location of marine growth, this process is performed in a number of different ways : marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. electro - chlorination involves running high electrical current through sea water, altering the water ' s chemical composition to create sodium hypochlorite, purging any bio - matter. an electrolytic method of anti - fouling involves running electrical current through two anodes ( scardino, 2009 ). these anodes typically consist of copper and aluminum ( or alternatively, iron ). the first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio - matter. the second metal, aluminum, coats the inside of the pipes to prevent corrosion. other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship ' s hull. this growth interferes with the smoothness and uniformity of the ship ' s hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel - efficient. marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms. = = = pollution control = = = = = = = sulfur emission = = = = the burning of marine fuels releases harmful pollutants into the atmosphere. ships burn marine diesel in addition to heavy fuel oil. heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. however, heavy fuel oil may only be burned in international waters due to the pollution created. it is commercially advantageous due to the cost effectiveness compared to other marine fuels. it is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 ( smith, 2018 ). = = = = oil and water discharge = = = = water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm ( parts per million ) of oil to be discharged. water is tested or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales of us $ 980. 5 billion with a profit margin of 10. 3 %. = = = professional societies = = = = = see also = = = = references = = = = bibliography = = = = further reading = = popular reading atkins, p. w. galileo ' s finger ( oxford university press ) chemistry is the scientific study of the properties and behavior of matter. it is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions : their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. chemistry also addresses the nature of chemical bonds in chemical compounds. in the scope of its subject, chemistry occupies an intermediate position between physics and biology. it is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. for example, chemistry explains aspects of plant growth ( botany ), the formation of igneous rocks ( geology ), how atmospheric ozone is formed and how environmental pollutants are degraded ( ecology ), the properties of the soil on the moon ( cosmochemistry ), how medications work ( pharmacology ), and how to collect dna evidence at a crime scene ( forensics ). chemistry has existed under various names since ancient times. it has evolved, and now chemistry encompasses various areas of specialisation, or subdisciplines, that continue to increase in number and interrelate to create further interdisciplinary fields of study. the applications of various fields of chemistry are used frequently for economic purposes in the chemical industry. = = etymology = = the word chemistry comes from a modification during the renaissance of the word alchemy, which referred to an earlier set of practices that encompassed elements of chemistry, metallurgy, philosophy, astrology, astronomy, mysticism, and medicine. alchemy is often associated with the quest to turn lead or other base metals into gold, though alchemists were also interested in many of the questions of modern chemistry. the modern word alchemy in turn is derived from the arabic word al - kimia ( Ψ§Ω„ΩƒΫŒΩ…ΫŒΨ§Ψ‘ ). this may have egyptian origins since al - kimia is derived from the ancient greek χημια, which is in turn derived from the word kemet, which is the ancient name of egypt in the egyptian language. alternately, al - kimia may derive from χημΡια ' cast together '. = = modern principles = = the current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that unitary recordings in freely - moving pulse weakly electric fish suggest spike timing encoding of electrosensory signals in products for both consumers and manufacturers. metallurgy is distinct from the craft of metalworking. metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. a specialist practitioner of metallurgy is known as a metallurgist. the science of metallurgy is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gym the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment processes such as quenching and tempering can significantly change these properties, however. in contrast, certain metal alloys exhibit unique properties where their size and density remain unchanged across a range of temperatures. cast iron is defined as an iron – carbon alloy with more than 2. 00 %, but less than 6. 67 % carbon. stainless steel is defined as a regular steel alloy with greater than 10 % by weight alloying content of chromium. nickel and molybdenum are typically also added in stainless steels. other significant metallic alloys are those of aluminium, titanium, copper and magnesium. copper alloys have been known for a Question: Physical and chemical differences help ecologists distinguish between freshwater and marine types of what? A) habitats B) biomes C) cities D) microbiomes
B) biomes
Context: = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include ag not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as ##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, the rapidly developing research field of organic analogue sensors aims to replace traditional semiconductors with naturally occurring materials. photosensors, or photodetectors, change their electrical properties in response to the light levels they are exposed to. organic photosensors can be functionalised to respond to specific wavelengths, from ultra - violet to red light. performing cyclic voltammetry on fungal mycelium and fruiting bodies under different lighting conditions shows no appreciable response to changes in lighting condition. however, functionalising the specimen using pedot : pss yields in a photosensor that produces large, instantaneous current spikes when the light conditions change. future works would look at interfacing this organic photosensor with an appropriate digital back - end for interpreting and processing the response. solid state components or devices with a useful current or future function. the field is a new breadth of study in graduate programs, and it integrates elements from all classical areas of chemistry like organic chemistry, inorganic chemistry, and crystallography with a focus on fundamental issues that are unique to materials. primary systems of study include the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry Question: What are the organic compounds that the body needs in small amounts to function properly; humans need 13 different ones? A) nutrients B) minerals C) proteins D) vitamins
D) vitamins
Context: was used before copper smelting was known. copper smelting is believed to have originated when the technology of pottery kilns allowed sufficiently high temperatures. the concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently work hardened to be suitable for making tools. bronze is an alloy of copper with tin ; the latter being found in relatively few deposits globally caused a long time to elapse before true tin bronze became widespread. ( see : tin sources and trade in ancient times ) bronze was a major advancement over stone as a material for making tools, both because of its mechanical properties like strength and ductility and because it could be cast in molds to make intricately shaped objects. bronze significantly advanced shipbuilding technology with better tools and bronze nails. bronze nails replaced the old method of attaching boards of the hull with cord woven through drilled holes. better ships enabled long - distance trade and the advance of civilization. this technological trend apparently began in the fertile crescent and spread outward over time. these developments were not, and still are not, universal. the three - age system does not accurately describe the technology history of groups outside of eurasia, and does not apply at all in the case of some isolated populations, such as the spinifex people, the sentinelese, and various amazonian tribes, which still make use of stone age technology, and have not developed agricultural or metal technology. these villages preserve traditional customs in the face of global modernity, exhibiting a remarkable resistance to the rapid advancement of technology. = = = = iron age = = = = before iron smelting was developed the only iron was obtained from meteorites and is usually identified by having nickel content. meteoric iron was rare and valuable, but was sometimes used to make tools and other implements, such as fish hooks. the iron age involved the adoption of iron smelting technology. it generally replaced bronze and made it possible to produce tools which were stronger, lighter and cheaper to make than bronze equivalents. the raw materials to make iron, such as ore and limestone, are far more abundant than copper and especially tin ores. consequently, iron was produced in many areas. it was not possible to mass manufacture steel or pure iron because of the high temperatures required. furnaces could reach melting temperature but the crucibles and molds needed for melting and casting had not been developed. steel could be produced by forging bloomery iron to reduce the carbon content in a prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. this includes the ancient and medieval kingdoms and empires of the middle east and near east, ancient iran, ancient egypt, ancient nubia, and anatolia in present - day turkey, ancient nok, carthage, the celts, greeks and romans of ancient europe, medieval europe, ancient and medieval china, ancient and medieval india, ancient and medieval japan, amongst others. a 16th century book by georg agricola, de re metallica, describes the highly developed and complex processes of mining metal ores, metal extraction, and metallurgy of the time. agricola has been described as the " father of metallurgy ". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. this includes the ancient and medieval kingdoms and empires of the middle east and near east, ancient iran, ancient egypt, ancient nubia, and anatolia in present - day turkey, ancient nok, carthage, the celts, greeks and romans of ancient europe, medieval europe, ancient and medieval china, ancient and medieval india, ancient and medieval japan, amongst others. a 16th century book by georg agricola, de re metallica, describes the highly developed and complex processes of mining metal ores, metal extraction, and metallurgy of the time. agricola has been described as the " father of metallurgy ". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or mostly waste. concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products. mining may not be necessary, if the ore body and physical environment are conducive to leaching. leaching dissolves minerals in an ore body and results in an enriched solution. the solution near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. this includes the ancient and medieval kingdoms and empires of the middle east and near east, ancient iran, ancient egypt, ancient nubia, and anatolia in present - day turkey, ancient nok, carthage, the celts, greeks and romans of ancient europe, medieval europe, ancient and medieval china, ancient and medieval india, ancient and medieval japan, amongst others. a 16th century book by georg agricola, de re metallica, describes the highly developed and complex processes of mining metal ores, metal extraction, and metallurgy of the time. agricola has been described as the " father of metallurgy ". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or mostly waste. concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products. mining may not be necessary, if the ore body and physical environment are conducive to leaching. leaching dissolves minerals in an ore body and results in an enriched solution. the solution is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate ##elting. metallurgy of lead has also been found in the balkans during the same period. copper smelting is documented at sites in anatolia and at the site of tal - i iblis in southeastern iran from c. 5000 bc. copper smelting is first documented in the delta region of northern egypt in c. 4000 bc, associated with the maadi culture. this represents the earliest evidence for smelting in africa. the varna necropolis, bulgaria, is a burial site located in the western industrial zone of varna, approximately 4 km from the city centre, internationally considered one of the key archaeological sites in world prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. this includes the ancient and medieval kingdoms and empires of the middle east and near east, ancient iran, ancient egypt, ancient nubia, and anatolia in present - day turkey, ancient nok, carthage, the celts, greeks and romans of ancient europe, medieval europe, ancient and medieval china, ancient and medieval india, ancient and medieval japan, amongst others. a 16th century book by georg agricola, de re metallica, describes the highly developed and complex processes of mining metal ores, metal extraction, and metallurgy of the time. agricola has been described as the " father of metallurgy ". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or mostly waste. concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products. mining may not be necessary, if the ore body and physical environment are conducive to leaching. leaching dissolves minerals in an ore body and results in an enriched solution. the solution is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications other contemporary production centre. the earliest documented use of lead ( possibly native or smelted ) in the near east dates from the 6th millennium bc, is from the late neolithic settlements of yarim tepe and arpachiyah in iraq. the artifacts suggest that lead smelting may have predated copper smelting. metallurgy of lead has also been found in the balkans during the same period. copper smelting is documented at sites in anatolia and at the site of tal - i iblis in southeastern iran from c. 5000 bc. copper smelting is first documented in the delta region of northern egypt in c. 4000 bc, associated with the maadi culture. this represents the earliest evidence for smelting in africa. the varna necropolis, bulgaria, is a burial site located in the western industrial zone of varna, approximately 4 km from the city centre, internationally considered one of the key archaeological sites in world prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. this includes the ancient and medieval kingdoms and empires of the middle east and near east, ancient iran, ancient egypt, ancient nubia, and anatolia in present - day turkey, ancient nok, carthage, the celts, greeks and romans of ancient europe, medieval europe, ancient and medieval china, ancient and work hardened to be suitable for making tools. bronze is an alloy of copper with tin ; the latter being found in relatively few deposits globally caused a long time to elapse before true tin bronze became widespread. ( see : tin sources and trade in ancient times ) bronze was a major advancement over stone as a material for making tools, both because of its mechanical properties like strength and ductility and because it could be cast in molds to make intricately shaped objects. bronze significantly advanced shipbuilding technology with better tools and bronze nails. bronze nails replaced the old method of attaching boards of the hull with cord woven through drilled holes. better ships enabled long - distance trade and the advance of civilization. this technological trend apparently began in the fertile crescent and spread outward over time. these developments were not, and still are not, universal. the three - age system does not accurately describe the technology history of groups outside of eurasia, and does not apply at all in the case of some isolated populations, such as the spinifex people, the sentinelese, and various amazonian tribes, which still make use of stone age technology, and have not developed agricultural or metal technology. these villages preserve traditional customs in the face of global modernity, exhibiting a remarkable resistance to the rapid advancement of technology. = = = = iron age = = = = before iron smelting was developed the only iron was obtained from meteorites and is usually identified by having nickel content. meteoric iron was rare and valuable, but was sometimes used to make tools and other implements, such as fish hooks. the iron age involved the adoption of iron smelting technology. it generally replaced bronze and made it possible to produce tools which were stronger, lighter and cheaper to make than bronze equivalents. the raw materials to make iron, such as ore and limestone, are far more abundant than copper and especially tin ores. consequently, iron was produced in many areas. it was not possible to mass manufacture steel or pure iron because of the high temperatures required. furnaces could reach melting temperature but the crucibles and molds needed for melting and casting had not been developed. steel could be produced by forging bloomery iron to reduce the carbon content in a somewhat controllable way, but steel produced by this method was not homogeneous. in many eurasian cultures, the iron age was the last major step before the development of written language, though again this was not universally the case. in europe, large hill forts were built either as a refuge in time of war or sometimes as insights from stripe incommensurabilities and antiferromagnetic stability indicate that the magnetic moments of both host cu ^ 2 + ions and cu atoms from electron doping support the thermal hall effect in cuprates, whereas those of o atoms from hole doping oppose it. ##wi, turkana, dating from 3. 3 million years ago. stone tools diversified through the pleistocene period, which ended ~ 12, 000 years ago. the earliest evidence of warfare between two groups is recorded at the site of nataruk in turkana, kenya, where human skeletons with major traumatic injuries to the head, neck, ribs, knees and hands, including an embedded obsidian bladelet on a skull, are evidence of inter - group conflict between groups of nomadic hunter - gatherers 10, 000 years ago. humans entered the bronze age as they learned to smelt copper into an alloy with tin to make weapons. in asia where copper - tin ores are rare, this development was delayed until trading in bronze began in the third millennium bce. in the middle east and southern european regions, the bronze age follows the neolithic period, but in other parts of the world, the copper age is a transition from neolithic to the bronze age. although the iron age generally follows the bronze age, in some areas the iron age intrudes directly on the neolithic from outside the region, with the exception of sub - saharan africa where it was developed independently. the first large - scale use of iron weapons began in asia minor around the 14th century bce and in central europe around the 11th century bce followed by the middle east ( about 1000 bce ) and india and china. the assyrians are credited with the introduction of horse cavalry in warfare and the extensive use of iron weapons by 1100 bce. assyrians were also the first to use iron - tipped arrows. = = = post - classical technology = = = the wujing zongyao ( essentials of the military arts ), written by zeng gongliang, ding du, and others at the order of emperor renzong around 1043 during the song dynasty illustrate the eras focus on advancing intellectual issues and military technology due to the significance of warfare between the song and the liao, jin, and yuan to their north. the book covers topics of military strategy, training, and the production and employment of advanced weaponry. advances in military technology aided the song dynasty in its defense against hostile neighbors to the north. the flamethrower found its origins in byzantine - era greece, employing greek fire ( a chemically complex, highly flammable petrol fluid ) in a device with a siphon hose by the 7th century. : 77 the earliest reference to greek fire in china was made in 917, written by wu renchen in his spring and autumn annals of the ten kingdoms. : 80 in 91 Question: To undo the tarnish on copper pennies, you can place them in what liquid? A) vinegar B) honey C) distilled water D) seawater
A) vinegar
Context: ##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds , the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six to investigate the affinity of acetylated wood for organic liquids, yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. the acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and / or very slowly. on the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. the effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. the easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups. is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the a rail gun launching at 9 mj of energy would need roughly 32 mj worth of energy from capacitors. current advances in energy storage allow for energy densities as high as 2. 5 mj / dm3, which means that a battery delivering 32 mj of energy would require a volume of 12. 8 dm3 per shot ; this is not a viable volume for use in a modern main battle tank, especially one designed to be lighter than existing models. there has even been discussion about eliminating the necessity for an outside electrical source in etc ignition by initiating the plasma cartridge through a small explosive force. furthermore, etc technology is not only applicable to solid propellants. to increase muzzle velocity even further electrothermal - chemical ignition can work with liquid propellants, although this would require further research into plasma ignition. etc technology is also compatible with existing projects to reduce the amount of recoil delivered to the vehicle while firing. understandably, recoil of a gun firing a projectile at 17 mj or more will increase directly with the increase in muzzle energy in accordance to newton ' s third law of motion and successful implementation of recoil reduction mechanisms will be vital to the installation of an etc powered gun in an existing vehicle design. for example, oto melara ' s new lightweight 120 mm l / 45 gun has achieved a recoil force of 25 t by using a longer recoil mechanism ( 550 mm ) and a pepperpot muzzle brake. reduction in recoil can also be achieved through mass attenuation of the thermal sleeve. the ability of etc technology to be applied to existing gun designs means that for future gun upgrades there ' s no longer the necessity to redesign the turret to include a larger breech or caliber gun barrel. several countries have already determined that etc technology is viable for the future and have funded indigenous projects considerably. these include the united states, germany and the united kingdom, amongst others. the united states ' xm360, which was planned to equip the future combat systems mounted combat system light tank and may be the m1 abrams ' next gun upgrade, is reportedly based on the xm291 and may include etc technology, or portions of etc technology. tests of this gun have been performed using " precision ignition " technology, which may refer to etc ignition. = = notes = = = = bibliography = = = = external links = = electromagnetic launch symposium http : / / www. powerlabs. org / electrothermal. htm the graphane with chemically bonded alkali metals ( li, na, k ) was considered as potential material for hydrogen storage. the ab initio calculations show that such material can adsorb as many as 4 hydrogen molecules per li, na and k metal atoms. these values correspond to 12. 20 wt %, 10. 33 wt % and 8. 56 wt % of hydrogen, respectively and exceed the doe requirements. the thermodynamic analysis shows that li - graphane complex is the most promising for hydrogen storage with ability to adsorb 3 hydrogen molecules per metal atom at 300 k and pressure in the range from 5 to 250 atm. another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen Question: What kind of bonding between alcohol molecules means that more energy is required to convert the liquid to vapor, and boiling points are therefore high? A) weaker carbon bonding B) stronger mineral bonding C) stronger diffusion bonding D) stronger hydrogen bonding
D) stronger hydrogen bonding
Context: weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial in the year 1598 philipp uffenbach published a printed diptych sundial, which is a forerunner of franz ritters horizantal sundial. uffenbach ' s sundial contains apart from the usual information on a sundial ascending signs of the zodiac, several brigthest stars, an almucantar and most important the oldest gnomonic world map known so far. the sundial is constructed for the polar height of 50 1 / 6 degrees, the height of frankfurt / main the town of his citizenship. all christian authors held that the earth was round. athenagoras, an eastern christian writing around the year 175 ad, said that the earth was spherical. methodius ( c. 290 ad ), an eastern christian writing against " the theory of the chaldeans and the egyptians " said : " let us first lay bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β€” giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β€” created by the internal motions of the core β€” produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make the first observations of saturn ' s visible - wavelength aurora were made by the cassini camera. the aurora was observed between 2006 and 2013 in the northern and southern hemispheres. the color of the aurora changes from pink at a few hundred km above the horizon to purple at 1000 - 1500 km above the horizon. the spectrum observed in 9 filters spanning wavelengths from 250 nm to 1000 nm has a prominent h - alpha line and roughly agrees with laboratory simulated auroras. auroras in both hemispheres vary dramatically with longitude. auroras form bright arcs between 70 and 80 degree latitude north and between 65 and 80 degree latitude south, which sometimes spiral around the pole, and sometimes form double arcs. a large 10, 000 - km - scale longitudinal brightness structure persists for more than 100 hours. this structure rotates approximately together with saturn. on top of the large steady structure, the auroras brighten suddenly on the timescales of a few minutes. these brightenings repeat with a period of about 1 hour. smaller, 1000 - km - scale structures may move faster or lag behind saturn ' s rotation on timescales of tens of minutes. the persistence of nearly - corotating large bright longitudinal structure in the auroral oval seen in two movies spanning 8 and 11 rotations gives an estimate on the period of 10. 65 $ \ pm $ 0. 15 h for 2009 in the northern oval and 10. 8 $ \ pm $ 0. 1 h for 2012 in the southern oval. the 2009 north aurora period is close to the north branch of saturn kilometric radiation ( skr ) detected at that time. navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea oscillations of the sun have been used to understand its interior structure. the extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. the corot ( convection rotation and planetary transits ) satellite, launched in december 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. the oscillation amplitudes are about 1. 5 times as large as those in the sun ; the stellar granulation is up to three times as high. the stellar amplitudes are about 25 % below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars. variation in total solar irradiance is thought to have little effect on the earth ' s surface temperature because of the thermal time constant - - the characteristic response time of the earth ' s global surface temperature to changes in forcing. this time constant is large enough to smooth annual variations but not necessarily variations having a longer period such as those due to solar inertial motion ; the magnitude of these surface temperature variations is estimated. strongly dipolar mesogenic compounds with a chiral center located in a lateral alkyl chain were synthesized, and shown to form the ferroelectric nematic phase. the presence of molecular chirality induced a helical structure in both the n and nf phases, but with opposite helix sense in the two phases. the relaxation frequency of the polar fluctuations was found to be lower for the chiral nf phase than for its achiral, non - branched counterpart with the same lateral chain length. bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture, on the ground that the earth is suspended within the concavity of the sky, and that it has as much room on the one side of it as on the other : hence they say that the part that is beneath must also be inhabited. but they do not remark that, although it be supposed or scientifically Question: During summer in the northern hemisphere, the north pole is tilted toward what? A) the north star B) moon C) horizon D) sun
D) sun
Context: high quality thread. the power loom was invented by edmund cartwright in 1787. in the mid - 1750s, the steam engine was applied to the water power - constrained iron, copper and lead industries for powering blast bellows. these industries were located near the mines, some of which were using steam engines for mine pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress was made in water supply and sanitation and the engineering skills of the romans were largely neglected throughout europe. the first documented use of sand filters to purify the water supply dates to 1804, when the owner of a bleachery in paisley, scotland, john gibb, installed an experimental filter, selling his unwanted in 1738. the spinning jenny, invented in 1764, was a machine that used multiple spinning wheels ; however, it produced low quality thread. the water frame patented by richard arkwright in 1767, produced a better quality thread than the spinning jenny. the spinning mule, patented in 1779 by samuel crompton, produced a high quality thread. the power loom was invented by edmund cartwright in 1787. in the mid - 1750s, the steam engine was applied to the water power - constrained iron, copper and lead industries for powering blast bellows. these industries were located near the mines, some of which were using steam engines for mine pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. this includes the ancient and medieval kingdoms and empires of the middle east and near east, ancient iran, ancient egypt, ancient nubia, and anatolia in present - day turkey, ancient nok, carthage, the celts, greeks and romans of ancient europe, medieval europe, ancient and medieval china, ancient and medieval india, ancient and medieval japan, amongst others. a 16th century book by georg agricola, de re metallica, describes the highly developed and complex processes of mining metal ores, metal extraction, and metallurgy of the time. agricola has been described as the " father of metallurgy ". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or mostly waste. concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products. mining may not be necessary, if the ore body and physical environment are conducive to leaching. leaching dissolves minerals in an ore body and results in an enriched solution. the solution ultramagnetized neutron stars or magnetars are magnetically powered neutron stars. their strong magnetic fields dominate the physical processes in their crusts and their surroundings. the past few years have seen several advances in our theoretical and observational understanding of these objects. in spite of a surfeit of observations, their spectra are still poorly understood. i will discuss the emission from strongly magnetized condensed matter surfaces of neutron stars, recent advances in our expectations of the surface composition of magnetars and a model for the non - thermal emission from these objects. torsion oscillations of the neutron star crust are landau damped by the alfven continuum in the bulk. for strong magnetic fields ( in magnetars ), undamped alfven eigenmodes appear. cobalt nanowires with a diameter in the range between 50 to 100nm can be prepared as single - crystal wires with the easy axis ( the c - axis ) perpendicular to the wire axis. the competition between the crystal anisotropy and demagnetization energy frustrates the magnetization direction. a periodic modulation of the angle between m and the wire axis yields a lower energy. applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle transition and lose their toughness, becoming more brittle and prone to cracking. metals under continual cyclic loading can suffer from metal fatigue. metals under constant stress at elevated temperatures can creep. = = = metalworking processes = = = casting – molten metal is poured into a shaped mold. variants of casting include sand casting, investment is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle was done using the spinning wheel and weaving was done on a hand - and - foot - operated loom. it took from three to five spinners to supply one weaver. the invention of the flying shuttle in 1733 doubled the output of a weaver, creating a shortage of spinners. the spinning frame for wool was invented in 1738. the spinning jenny, invented in 1764, was a machine that used multiple spinning wheels ; however, it produced low quality thread. the water frame patented by richard arkwright in 1767, produced a better quality thread than the spinning jenny. the spinning mule, patented in 1779 by samuel crompton, produced a high quality thread. the power loom was invented by edmund cartwright in 1787. in the mid - 1750s, the steam engine was applied to the water power - constrained iron, copper and lead industries for powering blast bellows. these industries were located near the mines, some of which were using steam engines for mine pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, Question: Also called lodestone, the mineral magnetite is the most powerful what? A) healing magnet B) natural permanent magnet C) synthetic magnet D) material on Earth
B) natural permanent magnet
Context: blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb – usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently specialized for specific settings such as in a classroom or nursing home. positioning is often important in seating arrangements to ensure that user ' s body pressure is distributed equally without inhibiting movement in a desired way. positioning devices have been developed to aid in allowing people to stand and bear weight on their legs without risk of a fall. , characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc – 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthala required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the the clinical symptoms of pulmonary embolism ( pe ) are very diverse and non - specific, which makes it difficult to diagnose. in addition, pulmonary embolism has multiple triggers and is one of the major causes of vascular death. therefore, if it can be detected and treated quickly, it can significantly reduce the risk of death in hospitalized patients. in the detection process, the cost of computed tomography pulmonary angiography ( ctpa ) is high, and angiography requires the injection of contrast agents, which increase the risk of damage to the patient. therefore, this study will use a deep learning approach to detect pulmonary embolism in all patients who take a ct image of the chest using a convolutional neural network. with the proposed pulmonary embolism detection system, we can detect the possibility of pulmonary embolism at the same time as the patient ' s first ct image, and schedule the ctpa test immediately, saving more than a week of ct image screening time and providing timely diagnosis and treatment to the patient. the heart beat data recorded from samples before and during meditation are analyzed using two different scaling analysis methods. these analyses revealed that mediation severely affects the long range correlation of heart beat of a normal heart. moreover, it is found that meditation induces periodic behavior in the heart beat. the complexity of the heart rate variability is quantified using multiscale entropy analysis and recurrence analysis. the complexity of the heart beat during mediation is found to be more. such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single ##liative medicine is a relatively modern branch of clinical medicine that deals with pain and symptom relief and emotional support in patients with terminal illnesses including cancer and heart failure. hospital medicine is the general medical care of hospitalized patients. physicians whose primary professional focus is hospital medicine are called hospitalists in the united states and canada. the term most responsible physician ( mrp ) or attending physician is also used interchangeably to describe this role. laser medicine involves the use of lasers in the diagnostics or treatment of various conditions. many other health science fields, e. g. dietetics medical ethics deals with ethical and moral principles that apply values and judgments to the practice of medicine. medical humanities includes the humanities ( literature, philosophy, ethics, history and religion ), social science ( anthropology, cultural studies, psychology, sociology ), and the arts ( literature, theater, film, and visual arts ) and their application to medical education and practice. nosokinetics is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions Question: How many valves are in the heart? A) one B) two C) four D) six
C) four
Context: gravity induced condensation takes the form of momentum alignment in an ensemble of identical particles. use is made of a one - dimensional ising model to calculate the alignment per particle and the correlation length as a function of the temperature. these parameters indicate that momentum alignment is possible in the proximity of some astrophysical objects and in earth, or near earth laboratories. momenta oscillations behave as known spin oscillations and obey identical dispersion relations. the gravitational poynting vector provides a mechanism for the transfer of gravitational energy to a system of falling objects. in the following we will show that the gravitational poynting vector together with the gravitational larmor theorem also provides a mechanism to explain how massive bodies acquire rotational kinetic energy when external mechanical forces are applied on them. railgun currently cannot achieve a higher muzzle velocity than the amount of energy input. even at 50 % efficiency a rail gun launching a projectile with a kinetic energy of 20 mj would require an energy input into the rails of 40 mj, and 50 % efficiency has not yet been achieved. to put this into perspective, a rail gun launching at 9 mj of energy would need roughly 32 mj worth of energy from capacitors. current advances in energy storage allow for energy densities as high as 2. 5 mj / dm3, which means that a battery delivering 32 mj of energy would require a volume of 12. 8 dm3 per shot ; this is not a viable volume for use in a modern main battle tank, especially one designed to be lighter than existing models. there has even been discussion about eliminating the necessity for an outside electrical source in etc ignition by initiating the plasma cartridge through a small explosive force. furthermore, etc technology is not only applicable to solid propellants. to increase muzzle velocity even further electrothermal - chemical ignition can work with liquid propellants, although this would require further research into plasma ignition. etc technology is also compatible with existing projects to reduce the amount of recoil delivered to the vehicle while firing. understandably, recoil of a gun firing a projectile at 17 mj or more will increase directly with the increase in muzzle energy in accordance to newton ' s third law of motion and successful implementation of recoil reduction mechanisms will be vital to the installation of an etc powered gun in an existing vehicle design. for example, oto melara ' s new lightweight 120 mm l / 45 gun has achieved a recoil force of 25 t by using a longer recoil mechanism ( 550 mm ) and a pepperpot muzzle brake. reduction in recoil can also be achieved through mass attenuation of the thermal sleeve. the ability of etc technology to be applied to existing gun designs means that for future gun upgrades there ' s no longer the necessity to redesign the turret to include a larger breech or caliber gun barrel. several countries have already determined that etc technology is viable for the future and have funded indigenous projects considerably. these include the united states, germany and the united kingdom, amongst others. the united states ' xm360, which was planned to equip the future combat systems mounted combat system light tank and may be the m1 abrams ' next gun upgrade, is reportedly based on the xm291 and may include etc technology, or portions of etc technology. tests of this gun have been performed using " affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, a rail gun launching at 9 mj of energy would need roughly 32 mj worth of energy from capacitors. current advances in energy storage allow for energy densities as high as 2. 5 mj / dm3, which means that a battery delivering 32 mj of energy would require a volume of 12. 8 dm3 per shot ; this is not a viable volume for use in a modern main battle tank, especially one designed to be lighter than existing models. there has even been discussion about eliminating the necessity for an outside electrical source in etc ignition by initiating the plasma cartridge through a small explosive force. furthermore, etc technology is not only applicable to solid propellants. to increase muzzle velocity even further electrothermal - chemical ignition can work with liquid propellants, although this would require further research into plasma ignition. etc technology is also compatible with existing projects to reduce the amount of recoil delivered to the vehicle while firing. understandably, recoil of a gun firing a projectile at 17 mj or more will increase directly with the increase in muzzle energy in accordance to newton ' s third law of motion and successful implementation of recoil reduction mechanisms will be vital to the installation of an etc powered gun in an existing vehicle design. for example, oto melara ' s new lightweight 120 mm l / 45 gun has achieved a recoil force of 25 t by using a longer recoil mechanism ( 550 mm ) and a pepperpot muzzle brake. reduction in recoil can also be achieved through mass attenuation of the thermal sleeve. the ability of etc technology to be applied to existing gun designs means that for future gun upgrades there ' s no longer the necessity to redesign the turret to include a larger breech or caliber gun barrel. several countries have already determined that etc technology is viable for the future and have funded indigenous projects considerably. these include the united states, germany and the united kingdom, amongst others. the united states ' xm360, which was planned to equip the future combat systems mounted combat system light tank and may be the m1 abrams ' next gun upgrade, is reportedly based on the xm291 and may include etc technology, or portions of etc technology. tests of this gun have been performed using " precision ignition " technology, which may refer to etc ignition. = = notes = = = = bibliography = = = = external links = = electromagnetic launch symposium http : / / www. powerlabs. org / electrothermal. htm basics of neutrino oscillations is discussed. importance of time - energy uncertainty relation is stressed. neutrino oscillations in the leading approximation and evidence for neutrino oscillations are briefly summarized. forces and their effect upon matter. typically, engineering mechanics is used to analyze and predict the acceleration and deformation ( both elastic and plastic ) of objects under known forces ( also called loads ) or stresses. subdisciplines of mechanics include statics, the study of non - moving bodies under known loads, how forces affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are a prediction and observational evidence for the mass of a dark matter particle are presented.. there are four puzzling questions about by the magnitudes of neutrino mixings and mass splittings. a brief sketch is given of the various kinds of models of neutrino masses and how they answer these questions. special attention is given to so - called " lopsided " models. electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, perform tasks that are either too dangerous or too precise for humans to perform them economically, and to ensure better quality. many companies employ assembly lines of robots, especially in automotive industries and some factories are so robotized that they can run by themselves. outside the factory, robots have been employed in bomb disposal, space exploration, and many other fields. robots are also sold for various residential applications, from recreation to domestic applications. = = = structural analysis = = = structural analysis is the branch of mechanical engineering ( and also civil engineering ) devoted to examining why and how objects fail and to fix the objects and their performance. structural failures occur in two general modes : static failure, and fatigue failure. static structural failure occurs when, upon being loaded ( having a force applied ) the object being analyzed either breaks or is deformed plastically, depending on the criterion for failure. fatigue failure occurs when an object fails after a number of repeated loading and unloading cycles. fatigue failure occurs because of imperfections in the object : a microscopic crack on the surface of the object, for instance, will grow slightly with each cycle ( propagation ) until the crack is large enough to cause ultimate failure. failure is not simply defined as when a part breaks, however ; it is defined as when a part does not operate as intended. some systems, such as the perforated top sections of some plastic bags, are designed to break. if these systems do not break, failure analysis might be employed to determine the cause. structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure Question: Momentum is directly related to both mass and? A) intensity B) mass C) speed D) velocity
D) velocity
Context: as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase . currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla – polylactic acid. this is a polyester which degrades within the human body to form lactic acid, a naturally occurring chemical which is easily removed from the body. similar materials are polyglycolic acid ( pga ) and polycaprolactone ( pcl ) : their degradation mechanism is similar to that of pla, but pcl degrades slower and pga degrades faster. pla is commonly combined with pga to create poly - lactic - co - glycolic acid ( plga ). this is especially useful because the degradation of plga can be tailored by altering the weight percentages of pla and pga : more pla – slower degradation, more pga – faster degradation. this tunability, along with its biocompatibility, makes it an extremely useful material for scaffold creation. scaffolds may also be constructed from natural materials : in particular different derivatives of the extracellular matrix have been studied to evaluate their ability to support cell growth. protein based materials – such as collagen, or fibrin, and polysaccharidic materials - like chitosan or glycosaminoglycans ( gags ), have all proved suitable in terms of cell compatibility. among gags, hyaluronic acid, possibly in combination with cross linking agents ( e. g. glutaraldehyde, water - soluble carbodiimide, etc. ), is one of the possible choices as scaffold material. due to the covalent attachment of thiol groups to these polymers, they can crosslink via disulfide bond formation. the use of thiolated polymers ( thiomers ) as scaffold material for tissue engineering was initially introduced at the 4th central european symposium on pharmaceutical technology in vienna 2001. as thiomers are biocompatible, exhibit cellular mimicking properties and efficiently support proliferation and differentiation of various cell types, ##thic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat treatment the glass partly crystallizes. in many cases, so - called ' nucleation agents ' are added in order to regulate and control the crystallization process. because there is usually no pressing and sintering, glass - ceramics do not contain the volume fraction of porosity typically present in sintered ceramics. the term mainly refers to a mix of lithium and aluminosilicates which yields an array of materials with interesting thermomechanical properties. the most commercially important of these have the distinction of being impervious to thermal shock. thus, glass - ceramics have become extremely useful for countertop cooking. the negative of tool usage was found in ethiopia within the great rift valley, dating back to 2. 5 million years ago. the earliest methods of stone tool making, known as the oldowan " industry ", date back to at least 2. 3 million years ago. this era of stone tool use is called the paleolithic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat treatment the glass partly crystallizes. in many cases, so - called ' nucleation agents ' are added in order to regulate and control the crystallization process. because there is usually no pressing and sintering, glass - ceramics do not contain the volume fraction of porosity typically present in sintered ceramics. the ##ning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and Question: Bones are made up of different types of what? A) tissue B) cartilage C) blood cells D) fiber
A) tissue
Context: in products for both consumers and manufacturers. metallurgy is distinct from the craft of metalworking. metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. a specialist practitioner of metallurgy is known as a metallurgist. the science of metallurgy is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon is further subdivided into two broad categories : chemical metallurgy and physical metallurgy. chemical metallurgy is chiefly concerned with the reduction and oxidation of metals, and the chemical performance of metals. subjects of study in chemical metallurgy include mineral processing, the extraction of metals, thermodynamics, electrochemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle ##chemistry, and chemical degradation ( corrosion ). in contrast, physical metallurgy focuses on the mechanical properties of metals, the physical properties of metals, and the physical performance of metals. topics studied in physical metallurgy include crystallography, material characterization, mechanical metallurgy, phase transformations, and failure mechanisms. historically, metallurgy has predominately focused on the production of metals. metal production begins with the processing of ores to extract the metal, and includes the mixture of metals to make alloys. metal alloys are often a blend of at least two different metallic elements. however, non - metallic elements are often added to alloys in order to achieve properties suitable for an application. the study of metal production is subdivided into ferrous metallurgy ( also known as black metallurgy ) and non - ferrous metallurgy, also known as colored metallurgy. ferrous metallurgy involves processes and alloys based on iron, while non - ferrous metallurgy involves processes and alloys based on other metals. the production of ferrous metals accounts for 95 % of world metal production. modern metallurgists work in both emerging and traditional areas as part of an interdisciplinary team alongside material scientists and other engineers. some traditional areas include mineral processing, metal production, heat treatment, failure analysis, and the joining of metals ( including welding, brazing, and soldering ). emerging areas for metallurgists include nanotechnology, superconductors, composites, biomedical materials, electronic materials ( semiconductors ) and surface engineering. = = etymology and pronunciation = = metallurgy derives from the ancient greek μΡταλλουργος, metallourgos, " worker in metal ", from μΡταλλον, metallon, " mine, metal " + Ρργον, ergon, " work " the word was originally an alchemist ' s term for the extraction of metals from minerals, the ending - urgy signifying a process, especially manufacturing : it was discussed in this sense in the 1797 encyclopΓ¦dia britannica. in the late 19th century, metallurgy ' s definition was extended to the more general scientific study of metals, alloys, and related processes. in english, the pronunciation is the more common one in the united kingdom. the pronunciation is the more common one in the us and is the first - listed variant in various american dictionaries, including merriam - webster collegiate applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle transition and lose their toughness, becoming more brittle and prone to cracking. metals under continual cyclic loading can suffer from metal fatigue. metals under constant stress at elevated temperatures can creep. = = = metalworking processes = = = casting – molten metal is poured into a shaped mold. variants of casting include sand casting, investment is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment processes such as quenching and tempering can significantly change these properties, however. in contrast, certain metal alloys exhibit unique properties where their size and density remain unchanged across a range of temperatures. cast iron is defined as an iron – carbon alloy with more than 2. 00 %, but less than 6. 67 % carbon. stainless steel is defined as a regular steel alloy with greater than 10 % by weight alloying content of chromium. nickel and molybdenum are typically also added in stainless steels. other significant metallic alloys are those of aluminium, titanium, copper and magnesium. copper alloys have been known for a long time ( since the bronze age ), while the alloys of the other three metals have been relatively recently developed. due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. the alloys of aluminium, titanium and magnesium are also known and valued for their high strength to weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. these materials are ideal for situations where high strength to weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering applications. = = = semiconductors = = = a semiconductor is a material that has a resistivity between a conductor and insulator. modern day electronics run on semiconductors, and the industry had an estimated us $ 530 billion market in 2021. its electronic properties can be greatly altered through intentionally introducing impurities in a process referred to as doping. semiconductor materials are used to build diodes, transistors, light - emitting diodes ( leds ), and analog and digital electric circuits, among their many uses. semiconductor devices have replaced thermionic devices like vacuum tubes in most applications. semiconductor devices are manufactured both as single discrete devices and as integrated circuits ( ics ), which consist of a number β€” from a still a complex and relatively expensive material to produce. polymers on the other hand can be produced in huge volumes, with a great variety of material characteristics. mems devices can be made from polymers by processes such as injection molding, embossing or stereolithography and are especially well suited to microfluidic applications such as disposable blood testing cartridges. metals metals can also be used to create mems elements. while metals do not have some of the advantages displayed by silicon in terms of mechanical properties, when used within their limitations, metals can exhibit very high degrees of reliability. metals can be deposited by electroplating, evaporation, and sputtering processes. commonly used metals include gold, nickel, aluminium, copper, chromium, titanium, tungsten, platinum, and silver. ceramics the nitrides of silicon, aluminium and titanium as well as silicon carbide and other ceramics are increasingly applied in mems fabrication due to advantageous combinations of material properties. aln crystallizes in the wurtzite structure and thus shows pyroelectric and piezoelectric properties enabling sensors, for instance, with sensitivity to normal and shear forces. tin, on the other hand, exhibits a high electrical conductivity and large elastic modulus, making it possible to implement electrostatic mems actuation schemes with ultrathin beams. moreover, the high resistance of tin against biocorrosion qualifies the material for applications in biogenic environments. the figure shows an electron - microscopic picture of a mems biosensor with a 50 nm thin bendable tin beam above a tin ground plate. both can be driven as opposite electrodes of a capacitor, since the beam is fixed in electrically isolating side walls. when a fluid is suspended in the cavity its viscosity may be derived from bending the beam by electrical attraction to the ground plate and measuring the bending velocity. = = basic processes = = = = = deposition processes = = = one of the basic building blocks in mems processing is the ability to deposit thin films of material with a thickness anywhere from one micrometre to about 100 micrometres. the nems process is the same, although the measurement of film deposition ranges from a few nanometres to one micrometre. there are two types of deposition processes, as follows. = = = = physical deposition = = = = physical vapor deposition ( " pvd " ) consists of a process in which a material is removed from a target, and based on 1 / 10 and 1 / 100 weight percentages of the carbon and other alloying elements they contain. thus, the extracting and purifying methods used to extract iron in a blast furnace can affect the quality of steel that is produced. solid materials are generally grouped into three basic classifications : ceramics, metals, and polymers. this broad classification is based on the empirical makeup and atomic structure of the solid materials, and most solids fall into one of these broad categories. an item that is often made from each of these materials types is the beverage container. the material types used for beverage containers accordingly provide different advantages and disadvantages, depending on the material used. ceramic ( glass ) containers are optically transparent, impervious to the passage of carbon dioxide, relatively inexpensive, and are easily recycled, but are also heavy and fracture easily. metal ( aluminum alloy ) is relatively strong, is a good barrier to the diffusion of carbon dioxide, and is easily recycled. however, the cans are opaque, expensive to produce, and are easily dented and punctured. polymers ( polyethylene plastic ) are relatively strong, can be optically transparent, are inexpensive and lightweight, and can be recyclable, but are not as impervious to the passage of carbon dioxide as aluminum and glass. = = = ceramics and glasses = = = another application of materials science is the study of ceramics and glasses, typically the most brittle materials with industrial relevance. many ceramics and glasses exhibit covalent or ionic - covalent bonding with sio2 ( silica ) as a fundamental building block. ceramics – not to be confused with raw, unfired clay – are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another ". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or mostly waste. concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products. mining may not be necessary, if the ore body and physical environment are conducive to leaching. leaching dissolves minerals in an ore body and results in an enriched solution. the solution is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications Question: What do metals typically lose to achieve stability? A) atoms B) electrons C) ions D) molecules
B) electrons
Context: protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = mei of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ft ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted β€œ the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilis activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short for nucleotide synthesis. hence, unfused myeloma cells die, as they cannot produce nucleotides by the de novo or salvage pathways because they lack hgprt. removal of the unfused myeloma cells is necessary because they have the potential to outgrow other cells, especially weakly established hybridomas. unfused b cells die as they have a short life span. in this way, only the b cell - myeloma hybrids survive, since the hgprt gene coming from the b cells is functional. these cells produce antibodies ( a property of b cells ) and are immortal ( a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectrometry facilitates screening and ranking of clones which bind to the native ( non - denaturated ) forms of antigen proteins. flow cytometry screening has been used for primary screening of a large number ( ~ 1000 ) of hybridoma clones recognizing the native form of the antigen on the cell surface. in the flow cytometry - based screening, a mixture of antigen - negative cells and antigen - positive cells is used as the antigen to be tested for each hybridoma supernatant sample. the b cell that produces the desired antibodies can be cloned to produce many identical daughter clones. supplemental media containing interleukin - 6 ( such as briclone ) are essential for this step. once a hybridoma colony is established, it will continually grow in culture medium like rpmi - 1640 ( with antibiotics and fetal bovine serum ) and produce antibodies. multiwell plates are used initially to grow the hybridomas, and after selection, a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectrometry facilitates screening and ranking of clones which bind to the native ( non - denaturated ) forms of antigen proteins. flow cytometry screening has been used for primary screening of a large number ( ~ 1000 ) of hybridoma clones recognizing the native form of the antigen on the cell surface. in the flow cytometry - based screening, a mixture of antigen - negative cells and antigen - positive cells is used as the antigen to be tested for each hybridoma supernatant sample. the b cell that produces the desired antibodies can be cloned to produce many identical daughter clones. supplemental media containing interleukin - 6 ( such as briclone ) are essential for this step. once a hybridoma colony is established, it will continually grow in culture medium like rpmi - 1640 ( with antibiotics and fetal bovine serum ) and produce antibodies. multiwell plates are used initially to grow the hybridomas, and after selection, are changed to larger tissue culture flasks. this maintains the well - being of the hybridomas and provides enough cells for cryopreservation and supernatant for subsequent investigations. the culture supernatant can yield 1 to 60 ΞΌg / ml of monoclonal antibody, which is maintained at - 20 Β°c or lower until required. by using culture supernatant or a purified immunoglobulin preparation, further analysis of a potential monoclonal antibody producing hybridoma can be made in terms of reactivity, specificity, and cross - reactivity. = = applications = = the use of mono Question: What happens when a sperm and an egg cell combine? A) migration B) manipulation C) fertilization D) stimulation
C) fertilization
Context: grasping an object is a matter of first moving a prehensile organ at some position in the world, and then managing the contact relationship between the prehensile organ and the object. once the contact relationship has been established and made stable, the object is part of the body and it can move in the world. as any action, the action of grasping is ontologically anchored in the physical space while the correlative movement originates in the space of the body. evolution has found amazing solutions that allow organisms to rapidly and efficiently manage the relationship between their body and the world. it is then natural that roboticists consider taking inspiration of these natural solutions, while contributing to better understand their origin. current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the of a point on the object, including whole - body translations and rotations ( rigid transformations ). deformation are changes in the relative position between internals points on the object, excluding rigid transformations, causing the body to change shape or size. strain is the relative internal deformation, the dimensionless change in shape of an infinitesimal cube of material relative to a reference configuration. mechanical strains are caused by mechanical stress, see stress - strain curve. the relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic. elasticity in materials occurs when applied stress does not surpass the energy required to break molecular bonds, allowing the material to deform reversibly and return to its original shape once the stress is removed. the linear relationship for a material is known as young ' s modulus. above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation. the determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis. in the above figure, it can be seen that the compressive loading ( indicated by the arrow ) has caused deformation in the cylinder so that the original shape ( dashed lines ) has changed ( deformed ) into one with bulging sides. the sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change. as a result, the material is forced out laterally. internal forces ( in this case at right angles to the deformation ) resist the applied load. = = types of deformation = = depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. the image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel. different deformation modes may occur under different conditions, as can be depicted using a deformation mechanism map. permanent deformation is irreversible ; the deformation stays even after removal of the applied forces, while the temporary deformation is recoverable as it disappears after the removal of applied forces. temporary deformation is also called elastic deformation, while the permanent deformation is called plastic deformation. = = = elastic deformation = = = the study of temporary or elastic deformation in the case of engineering strain is applied to materials used in mechanical and structural engineering, such as concrete and steel, which are subjected to very small deformations. engineering strain is modeled by infinitesimal strain theory, also called al - kimia is derived from the ancient greek χημια, which is in turn derived from the word kemet, which is the ancient name of egypt in the egyptian language. alternately, al - kimia may derive from χημΡια ' cast together '. = = modern principles = = the current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο€ ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example, objects with translational symmetry are invariant under certain translations. the integral [UNK] m k d ΞΌ { \ textstyle \ int _ { m } k \, d \ mu } of the gaussian curvature k { \ displaystyle k } of a two - dimensional riemannian manifold ( m, g ) { \ displaystyle ( m, g ) } is invariant under changes of the riemannian metric g { \ displaystyle g }. this is the gauss – bonnet theorem. = = = mu puzzle = = = the mu puzzle is a good example of a logical problem where determining an invariant is of use for an imp are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example, objects with translational symmetry are invariant under certain translations. the integral [UNK] m k d ΞΌ { \ textstyle \ int _ { m } k \, d \ mu } of the gaussian curvature k { \ displaystyle k } of a two - dimensional riemannian manifold ( m, g ) { \ displaystyle ( m, g ) } is invariant under changes of the riemannian metric g { \ displaystyle g }. this is the gauss – bonnet theorem. = = = mu puzzle = = = the mu puzzle is a good example of a logical problem where determining an invariant is of use for an impossibility proof. the puzzle asks one to start with the word mi and transform it into the word mu, using in each step one of the following transformation rules : if a string ends with an i, a u may be appended ( xi β†’ xiu ) the string after the m may be completely duplicated ( mx β†’ mxx ) any three consecutive i ' s ( iii ) may be replaced with a single u ( xiiiy β†’ xuy ) any two consecutive u ' s may be removed ( xuuy β†’ xy ) an example derivation ( with superscripts indicating the applied rules ) is mi β†’2 mii β†’ the greek letter Ο€ ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example, objects with translational symmetry are invariant under certain translations. the integral [UNK] m k d ΞΌ { \ textstyle \ int _ { m } k \, d \ mu } of the gaussian curvature k { \ displaystyle k } of a two - dimensional riemannian manifold ( m, g ) { \ displaystyle ( m, g ) } is invariant under changes of the riemannian metric g { \ displaystyle g }. this is the gauss – bonnet theorem. = = = mu puzzle = = = the mu puzzle is a good example of a logical problem where determining an invariant is of use for an impossibility proof. the puzzle asks one to start with the word mi and transform it into the word mu, using in each step one of the following transformation rules : if a string ends with an i, a u may be appended ( xi β†’ xiu ) the string after the m may be completely duplicated ( and is invariant under the process of counting. an identity is an equation that remains true for all values of its variables. there are also inequalities that remain true when the values of their variables change. the distance between two points on a number line is not changed by adding the same quantity to both numbers. on the other hand, multiplication does not have this same property, as distance is not invariant under multiplication. angles and ratios of distances are invariant under scalings, rotations, translations and reflections. these transformations produce similar shapes, which is the basis of trigonometry. in contrast, angles and ratios are not invariant under non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο€ ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution is invariant under translations of the real line. hence the variance of a random variable is unchanged after the addition of a constant. the fixed points of a transformation are the elements in the domain that are invariant under the transformation. they may, depending on the application, be called symmetric with respect to that transformation. for example, = = a simple example of invariance is expressed in our ability to count. for a finite set of objects of any kind, there is a number to which we always arrive, regardless of the order in which we count the objects in the set. the quantity β€” a cardinal number β€” is associated with the set, and is invariant under the process of counting. an identity is an equation that remains true for all values of its variables. there are also inequalities that remain true when the values of their variables change. the distance between two points on a number line is not changed by adding the same quantity to both numbers. on the other hand, multiplication does not have this same property, as distance is not invariant under multiplication. angles and ratios of distances are invariant under scalings, rotations, translations and reflections. these transformations produce similar shapes, which is the basis of trigonometry. in contrast, angles and ratios are not invariant under non - uniform scaling ( such as stretching ). the sum of a triangle ' s interior angles ( 180Β° ) is invariant under all the above operations. as another example, all circles are similar : they can be transformed into each other and the ratio of the circumference to the diameter is invariant ( denoted by the greek letter Ο€ ( pi ) ). some more complicated examples : the real part and the absolute value of a complex number are invariant under complex conjugation. the tricolorability of knots. the degree of a polynomial is invariant under a linear change of variables. the dimension and homology groups of a topological object are invariant under homeomorphism. the number of fixed points of a dynamical system is invariant under many mathematical operations. euclidean distance is invariant under orthogonal transformations. area is invariant under linear maps which have determinant Β±1 ( see equiareal map Β§ linear transformations ). some invariants of projective transformations include collinearity of three or more points, concurrency of three or more lines, conic sections, and the cross - ratio. the determinant, trace, eigenvectors, and eigenvalues of a linear endomorphism are invariant under a change of basis. in other words, the spectrum of a matrix is invariant under a change of basis. the principal invariants of tensors do not change with rotation of the coordinate system ( see invariants of tensors ). the singular values of a matrix are invariant under orthogonal transformations. lebesgue measure is invariant under translations. the variance of a probability distribution a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 – 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 – 2 ), or a downshift maneuver in passing ( 4 – 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new part in the design must support the development and manufacturing schedule of the model. design for manufacturability ( dfm ) : dfm refers to designing vehicular components in such a way that they are not only feasible to manufacture, but also such that they are cost - efficient to produce while resulting in acceptable Question: What is the ability to change or move matter? A) energy B) volume C) density D) temperature
A) energy
Context: we throw a brief glance at galois ' life, on the occasion of his 200th anniversary ( written in german ). . species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ— piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in venus flytrap and bladderworts, and the pollinia of orchids. the hypothesis that plant growth and development is coordinated by plant hormones or plant growth regulators first emerged in the late 19th century. darwin experimented on the movements of plant shoots and roots towards light and gravity, and concluded " it is hardly an exaggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, masculinity and warmth. the five phases – fire, earth, metal, wood, and water – described a cycle of transformations in nature. the water turned into wood, which turned into the fire when it burned. the ashes left by fire were earth. using these principles, chinese philosophers and doctors explored human anatomy, characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc – 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell – which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, have evolved from the earliest emergence of life to present day. earth formed about 4. 5 billion years ago and all life on earth, both living and extinct, descended from a last universal common ancestor that lived about 3. 5 billion years ago. geologists have developed a geologic time scale that divides the history of the earth into major divisions, starting with four eons ( hadean, archean, proterozoic, and phanerozoic ), the first three of which are collectively known as the precambrian, which lasted approximately 4 billion years. each eon can be divided into eras, with the phanerozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became ##das, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc – 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using inductive reasoning in his works physics and meteorology. while aristotle considered natural philosophy more seriously than his predecessors, he approached it as a theoretical branch of science. still, inspired by his work, ancient roman philosophers of the early 1st century ad, including lucretius, seneca and pliny the elder, wrote treatise the gas giant planets in the solar system have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. if a jupiter - like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. the hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. at some planet - star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. this runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. however, for icy moons of ganymede ' s size around a sun - like star we found that surface water ( either ice or liquid ) can persist indefinitely outside the runaway greenhouse orbital distance. in contrast, the surface water on smaller moons of europa ' s size will only persist on timescales greater than 1 gyr at distances ranging 1. 49 to 0. 74 au around a sun - like star for bond albedos of 0. 2 and 0. 8, where the lower albedo becomes relevant if ice melts. consequently, small moons can lose their icy shells, which would create a torus of h atoms around their host planet that might be detectable in future observations. Question: How many weeks are in the life cycle of ladybugs A) two to four B) three to six C) nine to six D) four to six
D) four to six
Context: reflectometer ), which takes measurements in the visible region ( and a little beyond ) of a given color sample. if the custom of taking readings at 10 nanometer increments is followed, the visible light range of 400 – 700 nm will yield 31 readings. these readings are typically used to draw the sample ' s spectral reflectance curve ( how much it reflects, as a function of wavelength ) β€” the most accurate data that can be provided regarding its characteristics. the readings by themselves are typically not as useful as their tristimulus values, which can be converted into chromaticity co - ordinates and manipulated through color space transformations. for this purpose, a spectrocolorimeter may be used. a spectrocolorimeter is simply a spectrophotometer that can estimate tristimulus values by numerical integration ( of the color matching functions ' inner product with the illuminant ' s spectral power distribution ). one benefit of spectrocolorimeters over tristimulus colorimeters is that they do not have optical filters, which are subject to manufacturing variance, and have a fixed spectral transmittance curve β€” until they age. on the other hand, tristimulus colorimeters are purpose - built, cheaper, and easier to use. the cie ( international commission on illumination ) recommends using measurement intervals under 5 nm, even for smooth spectra. sparser measurements fail to accurately characterize spiky emission spectra, such as that of the red phosphor of a crt display, depicted aside. = = = color temperature meter = = = photographers and cinematographers use information provided by these meters to decide what color balancing should be done to make different light sources appear to have the same color temperature. if the user enters the reference color temperature, the meter can calculate the mired difference between the measurement and the reference, enabling the user to choose a corrective color gel or photographic filter with the closest mired factor. internally the meter is typically a silicon photodiode tristimulus colorimeter. the correlated color temperature can be calculated from the tristimulus values by first calculating the chromaticity co - ordinates in the cie 1960 color space, then finding the closest point on the planckian locus. = = see also = = color science photometry radiometry = = references = = = = further reading = = schanda, janos d. ( 1997 ). " colorimetry " ( pdf ). in casimer decusatis ( ed. ). handbook parametric excitation of rotons by oscillating electric field exhibits a narrow resonance at the roton minimum frequency. the resonance width is in good agreement with experimental results on the microwave absorption in superfluid helium. ; and the wafer surfaces are sufficiently clean. the most stringent criteria for wafer bonding is usually the direct fusion wafer bonding since even one or more small particulates can render the bonding unsuccessful. in comparison, wafer bonding methods that use intermediary layers are often far more forgiving. both bulk and surface silicon micromachining are used in the industrial production of sensors, ink - jet nozzles, and other devices. but in many cases the distinction between these two has diminished. a new etching technology, deep reactive - ion etching, has made it possible to combine good performance typical of bulk micromachining with comb structures and in - plane operation typical of surface micromachining. while it is common in surface micromachining to have structural layer thickness in the range of 2 ΞΌm, in har silicon micromachining the thickness can be from 10 to 100 ΞΌm. the materials commonly used in har silicon micromachining are thick polycrystalline silicon, known as epi - poly, and bonded silicon - on - insulator ( soi ) wafers although processes for bulk silicon wafer also have been created ( scream ). bonding a second wafer by glass frit bonding, anodic bonding or alloy bonding is used to protect the mems structures. integrated circuits are typically not combined with har silicon micromachining. = = applications = = some common commercial applications of mems include : inkjet printers, which use piezoelectrics or thermal bubble ejection to deposit ink on paper. accelerometers in modern cars for a large number of purposes including airbag deployment and electronic stability control. inertial measurement units ( imus ) : mems accelerometers. mems gyroscopes in remote controlled, or autonomous, helicopters, planes and multirotors ( also known as drones ), used for automatically sensing and balancing flying characteristics of roll, pitch and yaw. mems magnetic field sensor ( magnetometer ) may also be incorporated in such devices to provide directional heading. mems inertial navigation systems ( inss ) of modern cars, airplanes, submarines and other vehicles to detect yaw, pitch, and roll ; for example, the autopilot of an airplane. accelerometers in consumer electronics devices such as game controllers ( nintendo wii ), personal media players / cell phones ( virtually all smartphones, various htc pda models ), augmented the ability of high energy lepton and photon colliders to probe the gauge couplings of the top - quark is summarized. interaction between tannin and bovine serum albumin ( bsa ) was examined by the fluorescent quenching. the process of elimination between bsa and tannin was the one of a stationary state, and the coupling coefficient was one. the working strength between the tannin and the beef serum was hydrophobic one. an extended polya urn model with two colors, black and white, is studied with some slln and clt on the proportion of white balls. the attenuation length and refractive index of liquid xenon for intrinsic scintillation light ( 178nm ) have been measured in a single experiment. the value obtained for attenuation length is 364 + - 18 mm. the refractive index is found to be 1. 69 + - 0. 02. both values were measured at a temperature of 170 + - 1 k. listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to assuming that the e ( 38 ) boson candidate recently observed at the jinr nuclotron is produced in a bremsstrahlung - like manner and decays only to two photons, its coupling constant to light quarks is estimated to be $ \ sim 10 ^ { - 4 } $. of a light source can be measured with a spectroradiometer, which works by optically collecting the light, then passing it through a monochromator before reading it in narrow bands of wavelength. reflected color can be measured using a spectrophotometer ( also called spectroreflectometer or reflectometer ), which takes measurements in the visible region ( and a little beyond ) of a given color sample. if the custom of taking readings at 10 nanometer increments is followed, the visible light range of 400 – 700 nm will yield 31 readings. these readings are typically used to draw the sample ' s spectral reflectance curve ( how much it reflects, as a function of wavelength ) β€” the most accurate data that can be provided regarding its characteristics. the readings by themselves are typically not as useful as their tristimulus values, which can be converted into chromaticity co - ordinates and manipulated through color space transformations. for this purpose, a spectrocolorimeter may be used. a spectrocolorimeter is simply a spectrophotometer that can estimate tristimulus values by numerical integration ( of the color matching functions ' inner product with the illuminant ' s spectral power distribution ). one benefit of spectrocolorimeters over tristimulus colorimeters is that they do not have optical filters, which are subject to manufacturing variance, and have a fixed spectral transmittance curve β€” until they age. on the other hand, tristimulus colorimeters are purpose - built, cheaper, and easier to use. the cie ( international commission on illumination ) recommends using measurement intervals under 5 nm, even for smooth spectra. sparser measurements fail to accurately characterize spiky emission spectra, such as that of the red phosphor of a crt display, depicted aside. = = = color temperature meter = = = photographers and cinematographers use information provided by these meters to decide what color balancing should be done to make different light sources appear to have the same color temperature. if the user enters the reference color temperature, the meter can calculate the mired difference between the measurement and the reference, enabling the user to choose a corrective color gel or photographic filter with the closest mired factor. internally the meter is typically a silicon photodiode tristimulus colorimeter. the correlated color temperature can be calculated from the tristimulus values by first calculating the chromaticity co - ordinates in the cie 1960 color space, then finding the closest Question: What is the respiratory pigment of almost every vertebrate? A) insulin B) hemoglobin C) iron D) plasma
B) hemoglobin
Context: beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar – in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 – 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar – aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) – military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar – an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical missiles, ships, vehicles, and also to map weather patterns and terrain. a radar set consists of a transmitter and receiver. the transmitter emits a narrow beam of radio waves which is swept around the surrounding space. when the beam strikes a target object, radio waves are reflected back to the receiver. the direction of the beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar – in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 – 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar – aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) – military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 – 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 – 2 ), or a downshift maneuver in passing ( 4 – 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new part in the design must support the development and manufacturing schedule of the model. design for manufacturability ( dfm ) : dfm refers to designing vehicular components in such a way that they are not only feasible to manufacture, but also such that they are cost - efficient to produce while resulting in acceptable . doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar – in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 – 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar – aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) – military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar – an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical fan - shaped beam of microwaves around the water surface surrounding the craft out to the horizon. weather radar – a doppler radar which maps weather precipitation intensities and wind speeds with the echoes returned from raindrops and their radial velocity by their doppler shift. phased - array radar – a radar set fluid dynamics video demonstrating the evolution of dynamic stall on a wind turbine blade. affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, such as rigid motions. dual to the notion of invariants are coinvariants, also known as orbits, which formalizes the notion of congruence : objects which can be taken to each other by a group action. for example, under the group of rigid motions of the plane, the perimeter of a triangle is an invariant, while the set of triangles congruent to a given triangle is a coinvariant. these are connected as follows : invariants are constant on coinvariants ( for example, congruent triangles have the same perimeter ), while two objects which agree in the value of one invariant may or may not be congruent ( for example, two triangles with the same perimeter need not be congruent ). in classification problems, one might seek to find a complete set of invariants, such that if two objects have the same values for this set of invariants, then they are congruent. for example, triangles such that all three sides are equal are congruent under rigid motions, via sss congruence, and thus the lengths of all three sides form a complete set of invariants for triangles. the three angle measures of a triangle are also invariant under rigid motions, but do not form a complete set as incongruent triangles can share the same angle measures. however, if one allows scaling in addition to rigid motions, then the aaa similarity criterion shows that this is a complete set of invariants. = = = independent of presentation = = = secondly, a function may be defined in terms of some presentation or decomposition of a mathematical object ; for instance, the euler characteristic of a cell complex is defined as the alternating sum of the number of cells in each dimension. one may forget the cell complex structure and look only at the underlying topological space ( the manifold ) – as different cell complexes give the same underlying manifold, one may ask if the function is independent of choice of presentation, in which case it is an intrinsically defined invariant. this is the case for the euler characteristic, and a general method for defining and computing invariants is to define them for a given presentation, and then show that they are independent of the choice of presentation. note that there is no notion of a group action in this sense. the most common examples are : the presentation of a manifold in terms of coordinate charts – invariants must be unchanged under change of coordinates. various manifold decompositions, as discussed for euler characteristic. invariants of a presentation of a group. = = , its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 – 2 ), or a downshift maneuver in passing ( 4 – 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new part in the design must support the development and manufacturing schedule of the model. design for manufacturability ( dfm ) : dfm refers to designing vehicular components in such a way that they are not only feasible to manufacture, but also such that they are cost - efficient to produce while resulting in acceptable quality that meets design specifications and engineering tolerances. this requires coordination between the design engineers and the assembly / manufacturing teams. quality management : quality control is an important factor within the production process, as high quality is needed to meet customer requirements and to avoid expensive recall campaigns. the complexity of components involved in the production process requires there are no limits for the speeds of light and particles in general relativity ( gr ). four examples illustrate this basic result, which is too often neglected. study of stability of nuclei, flow and multifragmentation in heavy - ion collisions. Question: Objects moving at different speeds, in different directions have different what? A) velocities B) protons C) electrons D) vibrations
A) velocities
Context: = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biological tissues. tissue engineering often involves the use of cells placed on tissue scaffolds in the formation of new viable tissue for a medical purpose, but is not limited to applications involving cells and tissue scaffolds. while it was once categorized as a sub - field of biomaterials, having grown in scope and importance, it can be considered as a field of its own. while most definitions of tissue engineering cover a broad range of applications, in practice, the term is closely associated with applications that repair or replace portions of or whole tissues ( i. e. organs, bone, cartilage, blood vessels, bladder, skin, muscle etc. ). often, the tissues involved require certain mechanical and structural properties for proper functioning. the term has also been applied to efforts to perform specific biochemical functions using cells within an artificially - created support system ( e. g. an artificial pancreas, or a bio artificial liver ). the term regenerative medicine is often used synonymously with tissue engineering, although those involved in regenerative medicine place more emphasis on the use of stem cells or progenitor cells to produce tissues. = = overview = = a commonly applied definition of tissue engineering, as stated by langer and vacanti, is " an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve [ biological tissue ] function or a whole organ ". in addition, langer and vacanti also state that there are three main types of tissue engineering : cells, tissue - inducing substances, and a cells + matrix approach ( often referred to as a scaffold ). tissue engineering has also been defined as " understanding the principles of tissue growth, and applying this to produce functional replacement tissue for clinical use ". a further description goes on to say that an " underlying supposition of tissue engineering is that the employment of natural biology of the system will allow for greater success in developing therapeutic strategies aimed at the replacement, repair, maintenance, or enhancement of tissue function ". developments in the multidisciplinary field of tissue engineering have yielded a novel set of tissue replacement parts and implementation strategies. scientific advances in biomaterials, stem cells, growth and differentiation factors, and biomimetic environments have created unique opportunities to fabric , but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats – the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats – the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiot according to the organic nomenclature system. the names for inorganic compounds are created according to the inorganic nomenclature system. when a compound has more than one component, then they are divided into two classes, the electropositive and the electronegative components. in addition the chemical abstracts service ( cas ) has devised a method to index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as Question: What type of compounds make up the cells and tissues of organisms? A) organic compounds B) productive compounds C) hormonal compounds D) biochemical compounds
D) biochemical compounds
Context: ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = mei of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ftsz polymerization and " z - ring " formation ). the new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. the new daughter cells have tightly coiled dna rods, ribosomes, and plasmids. = = = sexual reproduction and meiosis = = = meiosis is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. two aspects of sexual reproduction, meiotic recombination and outcrossing, are likely maintained respectively by the adaptive advantages of recombinational repair of genomic dna damage and genetic complementation which masks the expression of deleterious recessive mutations. the beneficial effect of genetic complementation, derived from outcrossing ( cross - fertilization ) is also referred to as hybrid vigor or heterosis. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted β€œ the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilis it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in the last eukaryotic common ancestor. prokaryotes ( i. e., archaea and bacteria ) can also undergo cell division ( or binary fission ). unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. before binary fission, dna in the bacterium is tightly coiled. after it has uncoiled and duplicated, it is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. growth of a new cell wall begins to separate the bacterium ( triggered by ft of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the , subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that Question: Meiosis and what process are both preceded by one round of dna replication; however, they differ in producing haploid or diploid daughter cells? A) fertilization B) cloning C) mitosis D) photosynthesis
C) mitosis
Context: electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β€” the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws, which have become fundamental concepts in chemistry. some of them are : = = history = = the history of chemistry spans a period from the ancient past to the present. since several millennia bc, civilizations were using technologies that would eventually form the basis of the various branches of chemistry. examples include extracting metals from ores ". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or mostly waste. concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products. mining may not be necessary, if the ore body and physical environment are conducive to leaching. leaching dissolves minerals in an ore body and results in an enriched solution. the solution is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron – carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle ##ist, sio2, silicon nitride, and various metals for masking. its reaction to silicon is " plasmaless ", is purely chemical and spontaneous and is often operated in pulsed mode. models of the etching action are available, and university laboratories and various commercial tools offer solutions using this approach. modern vlsi processes avoid wet etching, and use plasma etching instead. plasma etchers can operate in several modes by adjusting the parameters of the plasma. ordinary plasma etching operates between 0. 1 and 5 torr. ( this unit of pressure, commonly used in vacuum engineering, equals approximately 133. 3 pascals. ) the plasma produces energetic free radicals, neutrally charged, that react at the surface of the wafer. since neutral particles attack the wafer from all angles, this process is isotropic. plasma etching can be isotropic, i. e., exhibiting a lateral undercut rate on a patterned surface approximately the same as its downward etch rate, or can be anisotropic, i. e., exhibiting a smaller lateral undercut rate than its downward etch rate. such anisotropy is maximized in deep reactive ion etching. the use of the term anisotropy for plasma etching should not be conflated with the use of the same term when referring to orientation - dependent etching. the source gas for the plasma usually contains small molecules rich in chlorine or fluorine. for instance, carbon tetrachloride ( ccl4 ) etches silicon and aluminium, and trifluoromethane etches silicon dioxide and silicon nitride. a plasma containing oxygen is used to oxidize ( " ash " ) photoresist and facilitate its removal. ion milling, or sputter etching, uses lower pressures, often as low as 10βˆ’4 torr ( 10 mpa ). it bombards the wafer with energetic ions of noble gases, often ar +, which knock atoms from the substrate by transferring momentum. because the etching is performed by ions, which approach the wafer approximately from one direction, this process is highly anisotropic. on the other hand, it tends to display poor selectivity. reactive - ion etching ( rie ) operates under conditions intermediate between sputter and plasma etching ( between 10βˆ’3 and 10βˆ’1 torr ). deep reactive - ion etching ( drie ) modifies the rie technique to produce deep, narrow features. ##ting the principle of conservation of mass and developing a new system of chemical nomenclature used to this day. english scientist john dalton proposed the modern theory of atoms ; that all substances are composed of indivisible ' atoms ' of matter and that different atoms have varying atomic weights. the development of the electrochemical theory of chemical combinations occurred in the early 19th century as the result of the work of two scientists in particular, jons jacob berzelius and humphry davy, made possible by the prior invention of the voltaic pile by alessandro volta. davy discovered nine new elements including the alkali metals by extracting them from their oxides with electric current. british william prout first proposed ordering all the elements by their atomic weight as all atoms had a weight that was an exact multiple of the atomic weight of hydrogen. j. a. r. newlands devised an early table of elements, which was then developed into the modern periodic table of elements in the 1860s by dmitri mendeleev and independently by several other scientists including julius lothar meyer. the inert gases, later called the noble gases were discovered by william ramsay in collaboration with lord rayleigh at the end of the century, thereby filling in the basic structure of the table. organic chemistry was developed by justus von liebig and others, following friedrich wohler ' s synthesis of urea. other crucial 19th century advances were ; an understanding of valence bonding ( edward frankland in 1852 ) and the application of thermodynamics to chemistry ( j. w. gibbs and svante arrhenius in the 1870s ). at the turn of the twentieth century the theoretical underpinnings of chemistry were finally understood due to a series of remarkable discoveries that succeeded in probing and discovering the very nature of the internal structure of atoms. in 1897, j. j. thomson of the university of cambridge discovered the electron and soon after the french scientist becquerel as well as the couple pierre and marie curie investigated the phenomenon of radioactivity. in a series of pioneering scattering experiments ernest rutherford at the university of manchester discovered the internal structure of the atom and the existence of the proton, classified and explained the different types of radioactivity and successfully transmuted the first element by bombarding nitrogen with alpha particles. his work on atomic structure was improved on by his students, the danish physicist niels bohr, the englishman henry moseley and the german otto hahn, who went on to father the emerging nuclear chemistry and discovered nuclear fission. the electronic theory the decomposition theorem is deduced from local purity. is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named according to the organic nomenclature system. the names for inorganic compounds are created according to the inorganic nomenclature system. when a compound has more than one component, then they are divided into two classes, the electropositive and the electronegative components. in addition the chemical abstracts service ( cas ) has devised a method to index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with patterned surface approximately the same as its downward etch rate, or can be anisotropic, i. e., exhibiting a smaller lateral undercut rate than its downward etch rate. such anisotropy is maximized in deep reactive ion etching. the use of the term anisotropy for plasma etching should not be conflated with the use of the same term when referring to orientation - dependent etching. the source gas for the plasma usually contains small molecules rich in chlorine or fluorine. for instance, carbon tetrachloride ( ccl4 ) etches silicon and aluminium, and trifluoromethane etches silicon dioxide and silicon nitride. a plasma containing oxygen is used to oxidize ( " ash " ) photoresist and facilitate its removal. ion milling, or sputter etching, uses lower pressures, often as low as 10βˆ’4 torr ( 10 mpa ). it bombards the wafer with energetic ions of noble gases, often ar +, which knock atoms from the substrate by transferring momentum. because the etching is performed by ions, which approach the wafer approximately from one direction, this process is highly anisotropic. on the other hand, it tends to display poor selectivity. reactive - ion etching ( rie ) operates under conditions intermediate between sputter and plasma etching ( between 10βˆ’3 and 10βˆ’1 torr ). deep reactive - ion etching ( drie ) modifies the rie technique to produce deep, narrow features. in reactive - ion etching ( rie ), the substrate is placed inside a reactor, and several gases are introduced. a plasma is struck in the gas mixture using an rf power source, which breaks the gas molecules into ions. the ions accelerate towards, and react with, the surface of the material being etched, forming another gaseous material. this is known as the chemical part of reactive ion etching. there is also a physical part, which is similar to the sputtering deposition process. if the ions have high enough energy, they can knock atoms out of the material to be etched without a chemical reaction. it is a very complex task to develop dry etch processes that balance chemical and physical etching, since there are many parameters to adjust. by changing the balance it is possible to influence the anisotropy of the etching, since the chemical part is isotropic and the physical part highly anisotropic the combination can or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted – lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted – lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β€” the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws Question: In their pure form, all elements have an oxidation number of what? A) 2 B) 7 C) 3 D) zero
D) zero
Context: species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer – resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) – and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants than animals. genetic evidence suggests that the true evolutionary relationship of multicelled organisms is as shown in the cladogram below – fungi are more closely related to animals than to plants. in 1998, the angiosperm phylogeny group published a phylogeny for flowering plants based on an analysis of short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer – resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithosphere, atmosphere, and hydrosphere ) compartments of earth. there are biogeochemical cycles for nitrogen, carbon, and water. = = = conservation = = = conservation biology is the study of the conservation of earth ' s biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying . species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ— piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an o - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like Question: What is a close relationship between two species in which at least one species benefits called? A) morphogenesis B) parasitic C) symbiosis D) competition
C) symbiosis
Context: listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetic diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation and management. diving medicine ( or hyperbaric medicine ) is the prevention and treatment of diving - related problems. evolutionary medicine is a perspective on medicine derived through applying evolutionary theory. forensic medicine deals with medical questions in legal context, such as determination of the time and cause of death, type of weapon used to inflict ##ry. immunology is the study of the immune system, which includes the innate and adaptive immune system in humans, for example. lifestyle medicine is the study of the chronic conditions, and how to prevent, treat and reverse them. medical physics is the study of the applications of physics principles in medicine. microbiology is the study of microorganisms, including protozoa, bacteria, fungi, and viruses. molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. neuroscience includes those disciplines of science that are related to the study of the nervous system. a main focus of neuroscience is the biology and physiology of the human brain and spinal cord. some related clinical specialties include neurology, neurosurgery and psychiatry. nutrition science ( theoretical focus ) and dietetics ( practical focus ) is the study of the relationship of food and drink to health and disease, especially in determining an optimal diet. medical nutrition therapy is done by dietitians and is prescribed for diabetes, cardiovascular diseases, weight and eating disorders, allergies, malnutrition, and neoplastic diseases. pathology as a science is the study of disease – the causes, course, progression and resolution thereof. pharmacology is the study of drugs and their actions. photobiology is the study of the interactions between non - ionizing radiation and living organisms. physiology is the study of the normal functioning of the body and the underlying regulatory mechanisms. radiobiology is the study of the interactions between ionizing radiation and living organisms. toxicology is the study of hazardous effects of drugs and poisons. = = = specialties = = = in the broadest meaning of " medicine ", there are many different specialties. in the uk, most specialities have their own body or college, which has its own entrance examination. these are collectively known as the royal colleges, although not all currently use the term " royal ". the development of a speciality is often driven by new technology ( such as the development of effective anaesthetics ) or ways of working ( such as emergency departments ) ; the new specialty leads to the formation of a unifying body of doctors and the prestige of administering their own examination. within medical circles, specialities usually fit into one of two broad categories : " medicine " and " surgery ". " medicine " refers to the practice of non - operative medicine, and most of its subspecialties require preliminary training in internal medicine. in the uk in the old age, few people need special care if they are suffering from specific diseases as they can get stroke while they are in normal life routine. also patients of any age, who are not able to walk, need to be taken care of personally but for this, either they have to be in hospital or someone like nurse should be with them for better care. this is costly in terms of money and man power. a person is needed for 24x7 care of these people. to help in this aspect we purposes a vision based system which will take input from the patient and will provide information to the specified person, who is currently may not in the patient room. this will reduce the need of man power, also a continuous monitoring would not be needed. the system is using ms kinect for gesture detection for better accuracy and this system can be installed at home or hospital easily. the system provides gui for simple usage and gives visual and audio feedback to user. this system work on natural hand interaction and need no training before using and also no need to wear any glove or color strip. ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on not only is the bekenstein expression for the entropy of a black hole a convex function of the energy, rather than being a concave function as it must be, it predicts a final equilibrium temperature given by the harmonic mean. this violates the third law, and the principle of maximum work. the property that means are monotonically increasing functions of their argument underscores the error of transferring from temperature means to means in the internal energy when the energy is not a monotonically increasing function of temperature. whereas the former leads to an increase in entropy, the latter lead to a decrease in entropy thereby violating the second law. the internal energy cannot increase at a slower rate than the temperature itself. Question: Multiple sclerosis, huntington’s disease, parkinson’s disease, and alzheimer’s disease are example of diseases of which body system? A) circulatory system B) nervous system C) muscular system D) lymphatic system
B) nervous system
Context: biology is the scientific study of life and living organisms. it is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, origin, evolution, and distribution of life. central to biology are five fundamental themes : the cell as the basic unit of life, genes and heredity as the basis of inheritance, evolution as the driver of biological diversity, energy transformation for sustaining life processes, and the maintenance of internal stability ( homeostasis ). biology examines life across multiple levels of organization, from molecules and cells to organisms, populations, and ecosystems. subdisciplines include molecular biology, physiology, ecology, evolutionary biology, developmental biology, and systematics, among others. each of these fields applies a range of methods to investigate biological phenomena, including observation, experimentation, and mathematical modeling. modern biology is grounded in the theory of evolution by natural selection, first articulated by charles darwin, and in the molecular understanding of genes encoded in dna. the discovery of the structure of dna and advances in molecular genetics have transformed many areas of biology, leading to applications in medicine, agriculture, biotechnology, and environmental science. life on earth is believed to have originated over 3. 7 billion years ago. today, it includes a vast diversity of organisms β€” from single - celled archaea and bacteria to complex multicellular plants, fungi, and animals. biologists classify organisms based on shared characteristics and evolutionary relationships, using taxonomic and phylogenetic frameworks. these organisms interact with each other and with their environments in ecosystems, where they play roles in energy flow and nutrient cycling. as a constantly evolving field, biology incorporates new discoveries and technologies that enhance the understanding of life and its processes, while contributing to solutions for challenges such as disease, climate change, and biodiversity loss. = = history = = the earliest of roots of science, which included medicine, can be traced to ancient egypt and mesopotamia in around 3000 to 1200 bce. their contributions shaped ancient greek natural philosophy. ancient greek philosophers such as aristotle ( 384 – 322 bce ) contributed extensively to the development of biological knowledge. he explored biological causation and the diversity of life. his successor, theophrastus, began the scientific study of plants. scholars of the medieval islamic world who wrote on biology included al - jahiz ( 781 – 869 ), al - dinawari ( 828 – 896 ), who wrote on botany, and rhazes ( 865 – 925 ) who wrote on anatomy and physiology. medicine was especially well ##yotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. ) of the mass of all organisms, with calcium, phosphorus, sulfur, sodium, chlorine, and magnesium constituting essentially all the remainder. different elements can combine to form compounds such as water, which is fundamental to life. biochemistry is the study of chemical processes within and relating to living organisms. molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = . most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture, on the ground that the earth is suspended within the concavity of the sky, and that it has as much room on the one side of it as on the other : hence they say that the part that is beneath must also be inhabited. but they do not remark that, although it be supposed or scientifically demonstrated that the world is of a round and spherical form, yet it does not follow that the other side of the earth is bare of water ; nor even, though it be bare, does it immediately follow that it is peopled. for scripture, which proves the truth of its historical statements by the accomplishment of its prophecies, gives no false information ; and it is too absurd to say, that some men might have taken ship and traversed the whole wide ocean, and crossed from this side of the world to the other, and that thus even the inhabitants of that distant region are descended from that one first man. some historians do not view augustine ' s scriptural commentaries as endorsing any particular cosmological model, endorsing instead the view that augustine shared the common view of his contemporaries that the earth is spherical, in line with his endorsement of science in de genesi ad litteram. c. p. e. nothaft, responding to writers like leo ferrari who described augustine as endorsing a flat earth, says that "... other recent writers on the subject treat augustine ' s acceptance of the earth ' s spherical shape as a well - established fact ". while it always remained a minority view, from the mid - fourth to the seventh centuries ad, the flat - earth view experienced a revival, around the time when diodorus of tarsus founded the exegetical school known as the school of antioch, which sought to counter what he saw as the pagan cosmology of the greeks with a return to the traditional cosmology. the writings of diodorus did not survive, but are reconstructed from later criticism. this revival primarily took place in the east syriac world ( with little influence on the latin west ) where it gained proponents such as ephrem the syrian and in the popular hexaemeral homilies of jacob of serugh. chrys genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way that gives us long - term ( decade - to - decade ) feedback on our performance as stewards of the planet. the effort includes understanding the functions of soil microbiotic crusts and exploring the potential to sequester atmospheric carbon in soil organic matter. relating the concept of agriculture to soil quality, however, has not the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) – including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). " consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β€” of which around 1 million are insects β€” but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β€” pieces of dna that can move between cells β€” while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e. g., water, light, radiation, temperature, humidity, atmosphere, acidity, and soil ) of their environment is called an ecosystem. these biotic and abiotic components are linked together through nutrient cycles and energy flows. energy from the sun enters the system through photosynthesis and is incorporated into plant tissue. by feeding on plants and on one another, animals move matter and energy through the system. they also influence the quantity of plant and microbial biomass present. by breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and other microbes. = = = populations = = = a population is the group of organisms of the same species that occupies an area and reproduce from generation to generation. population size can be estimated by multiplying population density by the area or volume. the carrying capacity of an environment the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection Question: What includes the living organisms in an area and the non-living aspects of the environment? A) degradation B) ecosystem C) outpost D) habitat
B) ecosystem
Context: ##yotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial , tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian – triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous – paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mit urinary tract infection ( utis ) is referred as one of the most common infection in medical sectors worldwide and antimicrobial resistance ( amr ) is also a global threat to human that is related with many diseases. as antibiotics used for the treatment of infectious diseases, the rate of resistance is increasing day by day. gram positive pathogens are commonly found in urine sample collected from different age groups of people, associated with uti. the study was conducted in a diagnostic center in dhaka, bangladesh with total 1308 urine samples from november 2021 to april 2022. gram positive pathogens were isolated and antimicrobial susceptibility tests were done. from total 121 samples of gram positive bacteria the highest prevalence rate of utis was found in age group of 21 - 30 year. mostly enterococcus spp. ( 33. 05 % ) staphylococcus aureus ( 27. 27 % ), streptococcus spp. ( 20. 66 % ), beta - hemolytic streptococci ( 19. 00 % ) were found as causative agents of uti compared to others. the majority of isolates have been detected as multi - drug resistant ( mdr ). the higher percentage of antibiotic resistance were found against azithromycin ( 75 % ), and cefixime ( 64. 46 % ). this research focused on the regular basis of surveillance for the gram - positive bacteria antibiotic susceptibility to increase awareness about the use of proper antibiotic thus minimize the drug resistance. the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection ##rozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian – triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous – paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokar are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, for natural scientists, with the creation of transgenic organisms one of the most important tools for analysis of gene function. genes and other genetic information from a wide range of organisms can be inserted into bacteria for storage and modification, creating genetically modified bacteria in the process. bacteria are cheap, easy to grow, clonal, multiply quickly, relatively easy to transform and can be stored at - 80 Β°c almost indefinitely. once a gene is isolated it can be stored inside the bacteria providing an unlimited supply for research. organisms are genetically engineered to discover the functions of certain genes. this could be the effect on the phenotype of the organism, where the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition are dreidels fair? in other words, does the average dreidel have an equal chance of turning up any one of its four sides? to explore this hypothesis, three different dreidels were each spun hundreds of times with the number of occurrences of each side recorded. it was found that all three dreidels tested - - a cheap plastic dreidel, an old wooden dreidel, and a dreidel that came embossed with a picture of santa claus - - were not fair. statistically, for each dreidel, some sides came up significantly more often than others. although an unfair dreidel does not necessarily make the game itself unfair, it is conjectured that hundreds of pounds of chocolate have been distributed during chanukah under false pretenses. Question: Bacteria may become untreatable if they develop what in response to multiple antibiotics? A) weakness B) affinity C) acceptance D) resistance
D) resistance
Context: known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats – the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table industrial applications. this branch of biotechnology is the most used for the industries of refining and combustion principally on the production of bio - oils with photosynthetic micro - algae. green biotechnology is biotechnology applied to agricultural processes. an example would be the selection and domestication of plants via micropropagation. another example is the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of poll the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants. brown biotechnology is related to the management of arid lands and deserts. one application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources. violet biotechnology is related to law, ethical and philosophical issues around biotechnology. micro , they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β€” a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei ; they must be slowed ( slow neutrons ), generally by collision with the nuclei of a neutron moderator, before they can be easily captured. today, this type of fission is commonly used to generate electricity. = = = nuclear fusion = = = if nuclei are forced to collide, they can undergo nuclear fusion. this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleos associated with these molecules, on a large scale ". bioinformatics plays a key role in various areas, such as functional genomics, structural genomics, and proteomics, and forms a key component in the biotechnology and pharmaceutical sector. blue biotechnology is based on the exploitation of sea resources to create products and industrial applications. this branch of biotechnology is the most used for the industries of refining and combustion principally on the production of bio - oils with photosynthetic micro - algae. green biotechnology is biotechnology applied to agricultural processes. an example would be the selection and domestication of plants via micropropagation. another example is the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants. brown biotechnology is related to the management of arid lands and deserts. one application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources. violet biotechnology is related to law, ethical and philosophical issues around biotechnology. microbial biotechnology has been proposed for the rapidly emerging area of biotechnology applications in space and microgravity ( space bioeconomy ) dark biotechnology is the color associated with bioterrorism or biological weapons and biowarfare which uses microorganisms, and toxins to cause diseases and death in humans, livestock and crops. = = = medicine = = = in medicine, modern biotechnology has many applications in areas such as pharmaceutical drug discoveries and production, pharmacogenomics, and genetic testing ( or genetic screening ). in 2021, nearly 40 % of the total company value of pharmaceutical biotech companies worldwide were active in oncology with neurology and rare diseases being the other two big applications. pharmacogenomics ( a combination of pharmacology and genomics ) is the technology that analyses how genetic makeup affects an individual ' s response to drugs. researchers in the field investigate the influence of genetic variation on drug responses in patients by Question: What grows through blue cheese that gives it the distinctive appearance and flavor? A) Bacteria B) Roots C) Viruses D) fungus
D) fungus
Context: human blood primarily comprises plasma, red blood cells, white blood cells, and platelets. it plays a vital role in transporting nutrients to different organs, where it stores essential health - related data about the human body. blood cells are utilized to defend the body against diverse infections, including fungi, viruses, and bacteria. hence, blood analysis can help physicians assess an individual ' s physiological condition. blood cells have been sub - classified into eight groups : neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes ( promyelocytes, myelocytes, and metamyelocytes ), erythroblasts, and platelets or thrombocytes on the basis of their nucleus, shape, and cytoplasm. traditionally, pathologists and hematologists in laboratories have examined these blood cells using a microscope before manually classifying them. the manual approach is slower and more prone to human error. therefore, it is essential to automate this process. in our paper, transfer learning with cnn pre - trained models. vgg16, vgg19, resnet - 50, resnet - 101, resnet - 152, inceptionv3, mobilenetv2, and densenet - 20 applied to the pbc dataset ' s normal dib. the overall accuracy achieved with these models lies between 91. 375 and 94. 72 %. hence, inspired by these pre - trained architectures, a model has been proposed to automatically classify the ten types of blood cells with increased accuracy. a novel cnn - based framework has been presented to improve accuracy. the proposed cnn model has been tested on the pbc dataset normal dib. the outcomes of the experiments demonstrate that our cnn - based framework designed for blood cell classification attains an accuracy of 99. 91 % on the pbc dataset. our proposed convolutional neural network model performs competitively when compared to earlier results reported in the literature. and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell this proceeding explores some of the questions that connect the lhc and neutrino experiments : what is the origin of mass? what is the meaning of flavor? is there direct evidence of new forces or particles? the neutrino program investigating these questions is large and diverse. the strategy here, to narrow the discussion, is to focus on relatively new ideas for experiments that may be less known within the lhc community. we present the standard model calculation of the optical activity of a neutrino sea , depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β€” the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in . most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support urinary tract infection ( utis ) is referred as one of the most common infection in medical sectors worldwide and antimicrobial resistance ( amr ) is also a global threat to human that is related with many diseases. as antibiotics used for the treatment of infectious diseases, the rate of resistance is increasing day by day. gram positive pathogens are commonly found in urine sample collected from different age groups of people, associated with uti. the study was conducted in a diagnostic center in dhaka, bangladesh with total 1308 urine samples from november 2021 to april 2022. gram positive pathogens were isolated and antimicrobial susceptibility tests were done. from total 121 samples of gram positive bacteria the highest prevalence rate of utis was found in age group of 21 - 30 year. mostly enterococcus spp. ( 33. 05 % ) staphylococcus aureus ( 27. 27 % ), streptococcus spp. ( 20. 66 % ), beta - hemolytic streptococci ( 19. 00 % ) were found as causative agents of uti compared to others. the majority of isolates have been detected as multi - drug resistant ( mdr ). the higher percentage of antibiotic resistance were found against azithromycin ( 75 % ), and cefixime ( 64. 46 % ). this research focused on the regular basis of surveillance for the gram - positive bacteria antibiotic susceptibility to increase awareness about the use of proper antibiotic thus minimize the drug resistance. one often wishes to quickly add a few overlined characters such as anti - b0 or anti - neutrino to a microsoft word document. underlined characters are straightforward but overlined characters require equation editor which makes small picture files. the font here allows one to directly add overlined english and the most used overlined greek characters to microsoft word documents on apple macintosh computers. a report to the fermilab director from the study group on future neutrino experiments at fermilab neutrinoless double beta decay pops up almost in any extension of the standard model. it is perhaps the only process, which can unambiguously determine whether the massive neutrinos are majorana or dirac type particles. in addition from the lifetime of this decay, combined with sufficient knowledge of the relevant nuclear matrix elements, one can set a constraint involving the neutrino masses. furthemore, if one incorporates the recent results of the neutrino oscillation experiments, one can determine or set a stringent limit on the neutrino mass scale. in addition one may obtain usefull information regarding the presence of right handed currents and the right handed neutrino mass scale. one can also constrain the parameters of supersymmetry and, in particular, set limits in of r - parity violating couplings as well as get information about extra dimensions. Question: The two main types of phagocytic cells in the mammalian body are neutrophils and what other? A) macrophages B) eukaryotes C) histones D) leukocytes
A) macrophages
Context: , etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison, the other is open to ambient air ; it has a gridded electrode. when smoke enters the open chamber, the current is disrupted as the smoke particles attach to the charged ions and restore them to a neutral electrical state. this reduces the current in the open chamber. when the current drops below a certain threshold, the alarm is triggered. = = = food processing and agriculture = = = in biology and agriculture, radiation is used to induce mutations to produce new or improved species, such as in atomic gardening. another use in insect control is the sterile insect technique, where male insects are sterilized by radiation and released, so they have which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures wrought, which itself is the original past passive participle of the word work, now superseded by the weak verb forms worker and worked respectively. ) blacksmithing and the various related smithing and metal - crafts. folk music played on acoustic instruments. mathematics ( particularly, pure mathematics ) organic farming and animal husbandry ( i. e. ; agriculture as practiced by all american farmers prior to world war ii ). milling in the sense of operating hand - constructed equipment with the intent to either grind grain, or the reduction of timber to lumber as practiced in a saw - mill. fulling, felting, drop spindle spinning, hand knitting, crochet, & similar textile preparation. the production of charcoal by the collier, for use in home heating, foundry operations, smelting, the various smithing trades, and for brushing ones teeth as in colonial america. glass - blowing. various subskills of food preservation : smoking salting pickling drying note : home canning is a counter example of a low technology since some of the supplies needed to pursue this skill rely on a global trade network and an existing manufacturing infrastructure. the production of various alcoholic beverages : wine : poorly preserved fruit juice. beer : a way to preserve the calories of grain products from decay. whiskey : an improved ( distilled ) form of beer. flint - knapping masonry as used in castles, cathedrals, and root cellars. = = = domestic or consumer = = = ( non exhaustive ) list of low - tech in a westerner ' s everyday life : getting around by bike, and repairing it with second - hand materials using a cargo bike to carry loads ( rather than a gasoline vehicle ) drying clothes on a clothesline or on a drying rack washing clothes by hand, or in a human - powered washing machine cooling one ' s home with a fan or an air expander ( rather than electrical appliances such as air conditioners ) using a bell as door bell a cellar, " desert fridge ", or icebox ( rather than a fridge or freezer ) long - distance travel by sailing boat ( rather than by plane ) a wicker bag or a tote bag ( rather than a plastic bag ) to carry things swedish lighter ( rather than disposable lighter or matches ) a hand drill, instead of an electric one lighting with sunlight or candles hemp textiles to water plants with drip irrigation paper sheets for note - taking to clean with a broom ( rather than a vacuum cleaner ) to find one ' s way with map ##thic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures was used before copper smelting was known. copper smelting is believed to have originated when the technology of pottery kilns allowed sufficiently high temperatures. the concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently work hardened to be suitable for making tools. bronze is an alloy of copper with tin ; the latter being found in relatively few deposits globally caused a long time to elapse before true tin bronze became widespread. ( see : tin sources and trade in ancient times ) bronze was a major advancement over stone as a material for making tools, both because of its mechanical properties like strength and ductility and because it could be cast in molds to make intricately shaped objects. bronze significantly advanced shipbuilding technology with better tools and bronze nails. bronze nails replaced the old method of attaching boards of the hull with cord woven through drilled holes. better ships enabled long - distance trade and the advance of civilization. this technological trend apparently began in the fertile crescent and spread outward over time. these developments were not, and still are not, universal. the three - age system does not accurately describe the technology history of groups outside of eurasia, and does not apply at all in the case of some isolated populations, such as the spinifex people, the sentinelese, and various amazonian tribes, which still make use of stone age technology, and have not developed agricultural or metal technology. these villages preserve traditional customs in the face of global modernity, exhibiting a remarkable resistance to the rapid advancement of technology. = = = = iron age = = = = before iron smelting was developed the only iron was obtained from meteorites and is usually identified by having nickel content. meteoric iron was rare and valuable, but was sometimes used to make tools and other implements, such as fish hooks. the iron age involved the adoption of iron smelting technology. it generally replaced bronze and made it possible to produce tools which were stronger, lighter and cheaper to make than bronze equivalents. the raw materials to make iron, such as ore and limestone, are far more abundant than copper and especially tin ores. consequently, iron was produced in many areas. it was not possible to mass manufacture steel or pure iron because of the high temperatures required. furnaces could reach melting temperature but the crucibles and molds needed for melting and casting had not been developed. steel could be produced by forging bloomery iron to reduce the carbon content in a of tool usage was found in ethiopia within the great rift valley, dating back to 2. 5 million years ago. the earliest methods of stone tool making, known as the oldowan " industry ", date back to at least 2. 3 million years ago. this era of stone tool use is called the paleolithic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop the exceptional log del pezzo surfaces with delta = 1 are classified. and child health in boston, said of the digital generation, " their brains are rewarded not for staying on task, but for jumping to the next thing. the worry is we ' re raising a generation of kids in front of screens whose brains are going to be wired differently. " students have always faced distractions ; computers and cell phones are a particular challenge because the stream of data can interfere with focusing and learning. although these technologies affect adults too, young people may be more influenced by it as their developing brains can easily become habituated to switching tasks and become unaccustomed to sustaining attention. too much information, coming too rapidly, can overwhelm thinking. technology is " rapidly and profoundly altering our brains. " high exposure levels stimulate brain cell alteration and release neurotransmitters, which causes the strengthening of some neural pathways and the weakening of others. this leads to heightened stress levels on the brain that, at first, boost energy levels, but, over time, actually augment memory, impair cognition, lead to depression, and alter the neural circuitry of the hippocampus, amygdala and prefrontal cortex. these are the brain regions that control mood and thought. if unchecked, the underlying structure of the brain could be altered. overstimulation due to technology may begin too young. when children are exposed before the age of seven, important developmental tasks may be delayed, and bad learning habits might develop, which " deprives children of the exploration and play that they need to develop. " media psychology is an emerging specialty field that embraces electronic devices and the sensory behaviors occurring from the use of educational technology in learning. = = = sociocultural criticism = = = according to lai, " the learning environment is a complex system where the interplay and interactions of many things impact the outcome of learning. " when technology is brought into an educational setting, the pedagogical setting changes in that technology - driven teaching can change the entire meaning of an activity without adequate research validation. if technology monopolizes an activity, students can begin to develop the sense that " life would scarcely be thinkable without technology. " leo marx considered the word " technology " itself as problematic, susceptible to reification and " phantom objectivity ", which conceals its fundamental nature as something that is only valuable insofar as it benefits the human condition. technology ultimately comes down to affecting the relations between people, but this notion is obfuscated when technology is treated as an abstract notion devoid of , and carpentry. the trade of the ship - wright. the trade of the wheel - wright. the trade of the wainwright : making wagons. ( the latin word for a two - wheeled wagon is carpentum, the maker of which was a carpenter. ) ( wright is the agent form of the word wrought, which itself is the original past passive participle of the word work, now superseded by the weak verb forms worker and worked respectively. ) blacksmithing and the various related smithing and metal - crafts. folk music played on acoustic instruments. mathematics ( particularly, pure mathematics ) organic farming and animal husbandry ( i. e. ; agriculture as practiced by all american farmers prior to world war ii ). milling in the sense of operating hand - constructed equipment with the intent to either grind grain, or the reduction of timber to lumber as practiced in a saw - mill. fulling, felting, drop spindle spinning, hand knitting, crochet, & similar textile preparation. the production of charcoal by the collier, for use in home heating, foundry operations, smelting, the various smithing trades, and for brushing ones teeth as in colonial america. glass - blowing. various subskills of food preservation : smoking salting pickling drying note : home canning is a counter example of a low technology since some of the supplies needed to pursue this skill rely on a global trade network and an existing manufacturing infrastructure. the production of various alcoholic beverages : wine : poorly preserved fruit juice. beer : a way to preserve the calories of grain products from decay. whiskey : an improved ( distilled ) form of beer. flint - knapping masonry as used in castles, cathedrals, and root cellars. = = = domestic or consumer = = = ( non exhaustive ) list of low - tech in a westerner ' s everyday life : getting around by bike, and repairing it with second - hand materials using a cargo bike to carry loads ( rather than a gasoline vehicle ) drying clothes on a clothesline or on a drying rack washing clothes by hand, or in a human - powered washing machine cooling one ' s home with a fan or an air expander ( rather than electrical appliances such as air conditioners ) using a bell as door bell a cellar, " desert fridge ", or icebox ( rather than a fridge or freezer ) long - distance travel by sailing boat ( rather than by plane ) a wicker bag or a tote bag ( rather than a plastic bag ) to ##ning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and Question: What is aggravated by practices such as logging, mining, construction, and paving surfaces? A) seismic activity B) global warming C) water pollution D) soil erosion
D) soil erosion
Context: single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress was made in water supply and sanitation and the engineering skills of the romans were largely neglected throughout europe. the first documented use of sand filters to purify the water supply dates to 1804, when the owner of a bleachery in paisley, scotland, john gibb, installed an experimental filter, selling his unwanted surplus to the public. the first treated public water supply in the world was installed by engineer james simpson for the chelsea waterworks company in london in 1829. the first screw - down water tap was patented in 1845 by guest and chrimes, a brass foundry in rotherham. the practice of water treatment soon became mainstream, ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress was made in water supply and sanitation and the engineering skills of the romans were largely neglected throughout europe. the first documented use of sand filters to purify the water supply dates to 1804, when the owner of a bleachery in paisley, scotland, john gibb, installed an experimental filter, selling his unwanted surplus to the public. the first treated public water supply in the world was installed by engineer james simpson for the chelsea waterworks company in london in 1829. the first screw - down water tap was patented in 1845 by guest and chrimes, a brass foundry in rotherham. the practice of water treatment soon became mainstream, and the virtues of the system were made starkly apparent after the investigations of the physician john snow during the 1854 broad street cholera outbreak demonstrated the role of the water supply in spreading the cholera epidemic. = = = second industrial revolution ( 1860s – 1914 ) = = = the 19th century saw astonishing developments in transportation, construction, = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids if the hazard rate $ \ frac { f ' ( x ) } { 1 - f ( x ) } $ is increasing ( in $ x $ ), then $ \ mathbb e \, ( x _ { n : n } - x _ { n - 1 : n } ) $ is decreasing ( in $ n $ ), and moreover, completely monotone. high quality thread. the power loom was invented by edmund cartwright in 1787. in the mid - 1750s, the steam engine was applied to the water power - constrained iron, copper and lead industries for powering blast bellows. these industries were located near the mines, some of which were using steam engines for mine pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress was made in water supply and sanitation and the engineering skills of the romans were largely neglected throughout europe. the first documented use of sand filters to purify the water supply dates to 1804, when the owner of a bleachery in paisley, scotland, john gibb, installed an experimental filter, selling his unwanted the hecke category is bigraded. for completeness, we classify gradings on the hecke category. we also classify object - preserving autoequivalences. possible value. the most common representation of a positive integer is a string of bits, using the binary numeral system. the order of the memory bytes storing the bits varies ; see endianness. the width, precision, or bitness of an integral type is the number of bits in its representation. an integral type with n bits can encode 2n numbers ; for example an unsigned type typically represents the non - negative values 0 through 2n βˆ’ 1. other encodings of integer values to bit patterns are sometimes used, for example binary - coded decimal or gray code, or as printed character codes such as ascii. there are four well - known ways to represent signed numbers in a binary computing system. the most common is two ' s complement, which allows a signed integral type with n bits to represent numbers from βˆ’2 ( nβˆ’1 ) through 2 ( nβˆ’1 ) βˆ’ 1. two ' s complement arithmetic is convenient because there is a perfect one - to - one correspondence between representations and values ( in particular, no separate + 0 and βˆ’0 ), and because addition, subtraction and multiplication do not need to distinguish between signed and unsigned types. other possibilities include offset binary, sign - magnitude, and ones ' complement. some computer languages define integer sizes in a machine - independent way ; others have varying definitions depending on the underlying processor word size. not all language implementations define variables of all integer sizes, and defined sizes may not even be distinct in a particular implementation. an integer in one programming language may be a different size in a different language, on a different processor, or in an execution context of different bitness ; see Β§ words. some older computer architectures used decimal representations of integers, stored in binary - coded decimal ( bcd ) or other format. these values generally require data sizes of 4 bits per decimal digit ( sometimes called a nibble ), usually with additional bits for a sign. many modern cpus provide limited support for decimal integers as an extended datatype, providing instructions for converting such values to and from binary values. depending on the architecture, decimal integers may have fixed sizes ( e. g., 7 decimal digits plus a sign fit into a 32 - bit word ), or may be variable - length ( up to some maximum digit size ), typically occupying two digits per byte ( octet ). = = common integral data types = = different cpus support different integral data types. typically, hardware will support both signed and unsigned types, but only a small, fixed set of widths cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress was made in water supply and sanitation and the engineering skills of the romans were largely neglected throughout europe. the first documented use of sand filters to purify the water supply dates to 1804, when the owner of a bleachery in paisley, scotland, john gibb, installed an experimental filter, selling his unwanted surplus to the public. the first treated public water supply in the world was installed by engineer james simpson for the chelsea waterworks company in london in 1829. the first screw - down water tap was patented in 1845 by guest and chrimes, a brass foundry in rotherham. the practice of water treatment soon became mainstream, and the virtues of the system were made starkly apparent after the investigations of the physician john snow during the 1854 broad street cholera outbreak demonstrated the role of the water supply in spreading the cholera epidemic. = = = second industrial revolution ( 1860s – 1914 ) = = = the 19th century saw astonishing developments in transportation, construction, manufacturing and communication technologies originating in europe. after a recession at the end of the 1830s and a general slowdown in major inventions, the second industrial revolution was a period of rapid innovation and industrialization that began in the 1860s or around 1870 and lasted until world war i. it included rapid development of chemical, electrical, petroleum are commonly referred to as " cross - hatching ". phantom – ( not shown ) are alternately long - and double short - dashed thin lines used to represent a feature or component that is not part of the specified part or assembly. e. g. billet ends that may be used for testing, or the machined product that is the focus of a tooling drawing. lines can also be classified by a letter classification in which each line is given a letter. type a lines show the outline of the feature of an object. they are the thickest lines on a drawing and done with a pencil softer than hb. type b lines are dimension lines and are used for dimensioning, projecting, extending, or leaders. a harder pencil should be used, such as a 2h pencil. type c lines are used for breaks when the whole object is not shown. these are freehand drawn and only for short breaks. 2h pencil type d lines are similar to type c, except these are zigzagged and only for longer breaks. 2h pencil type e lines indicate hidden outlines of internal features of an object. these are dotted lines. 2h pencil type f lines are type e lines, except these are used for drawings in electrotechnology. 2h pencil type g lines are used for centre lines. these are dotted lines, but a long line of 10 – 20 mm, then a 1 mm gap, then a small line of 2 mm. 2h pencil type h lines are the same as type g, except that every second long line is thicker. these indicate the cutting plane of an object. 2h pencil type k lines indicate the alternate positions of an object and the line taken by that object. these are drawn with a long line of 10 – 20 mm, then a small gap, then a small line of 2 mm, then a gap, then another small line. 2h pencil. = = = multiple views and projections = = = in most cases, a single view is not sufficient to show all necessary features, and several views are used. types of views include the following : = = = = multiview projection = = = = a multiview projection is a type of orthographic projection that shows the object as it looks from the front, right, left, top, bottom, or back ( e. g. the primary views ), and is typically positioned relative to each other according to the rules of either first - angle or third - angle projection. the origin and vector direction of the projectors ( Question: What type of hydrocarbon is coal? A) solid B) gas C) liqued D) mineral
A) solid
Context: ##artificial liver device, " temporary liver ", extracorporeal liver assist device ( elad ) : the human hepatocyte cell line ( c3a line ) in a hollow fiber bioreactor can mimic the hepatic function of the liver for acute instances of liver failure. a fully capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. these concerns have led to the development of a regulatory framework, which started in 1975. it has led to an international treaty, the cartagena protocol on biosafety, that was adopted in 2000. individual countries have developed their own regulatory systems regarding gmos, with the most marked differences occurring between the united states and europe. = = overview = = genetic engineering is a process that alters the genetic structure of an organism by either removing or introducing dna, or modifying existing genetic material in situ. unlike traditional animal and plant breeding, which involves doing multiple crosses and then selecting for the organism with the desired phenotype, genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. these concerns have led to the development of a regulatory framework, which started in 1975. it has led to an international treaty, the cartagena protocol on biosafety, that was adopted in 2000. individual countries have developed their own regulatory systems regarding gmos, with the most marked differences occurring between the united states and europe. = = overview = = genetic engineering is a process that alters the genetic structure of an organism by either removing or introducing dna, or modifying existing genetic material in situ. unlike traditional animal and plant breeding, which involves doing multiple crosses and then selecting for the organism with the desired phenotype, used to manufacture existing medicines relatively easily and cheaply. the first genetically engineered products were medicines designed to treat human diseases. to cite one example, in 1978 genentech developed synthetic humanized insulin by joining its gene with a plasmid vector inserted into the bacterium escherichia coli. insulin, widely used for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals ( cattle or pigs ). the genetically engineered bacteria are able to produce large quantities of synthetic human insulin at relatively low cost. biotechnology has also enabled emerging therapeutics like gene therapy. the application of biotechnology to basic science ( for example through the human genome project ) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well. genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child ' s parentage ( genetic mother and father ) or in general a person ' s ancestry. in addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. genetic testing identifies changes in chromosomes, genes, or proteins. most of the time, testing is used to find changes that are associated with inherited disorders. the results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person ' s chance of developing or passing on a genetic disorder. as of 2011 several hundred genetic tests were in use. since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling. = = = agriculture = = = genetically modified crops ( " gm crops ", or " biotech crops " ) are plants used in agriculture, the dna of which has been modified with genetic engineering techniques. in most cases, the main aim is to introduce a new trait that does not occur naturally in the species. biotechnology firms can contribute to future food security by improving the nutrition and viability of urban agriculture. furthermore, the protection of intellectual property rights encourages private sector investment in agrobiotechnology. examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments ( e. g. resistance to a herbicide ), reduction of spoilage, or improving the nutrient profile of the crop. examples in non - food crops include production of for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals ( cattle or pigs ). the genetically engineered bacteria are able to produce large quantities of synthetic human insulin at relatively low cost. biotechnology has also enabled emerging therapeutics like gene therapy. the application of biotechnology to basic science ( for example through the human genome project ) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well. genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child ' s parentage ( genetic mother and father ) or in general a person ' s ancestry. in addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. genetic testing identifies changes in chromosomes, genes, or proteins. most of the time, testing is used to find changes that are associated with inherited disorders. the results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person ' s chance of developing or passing on a genetic disorder. as of 2011 several hundred genetic tests were in use. since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling. = = = agriculture = = = genetically modified crops ( " gm crops ", or " biotech crops " ) are plants used in agriculture, the dna of which has been modified with genetic engineering techniques. in most cases, the main aim is to introduce a new trait that does not occur naturally in the species. biotechnology firms can contribute to future food security by improving the nutrition and viability of urban agriculture. furthermore, the protection of intellectual property rights encourages private sector investment in agrobiotechnology. examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments ( e. g. resistance to a herbicide ), reduction of spoilage, or improving the nutrient profile of the crop. examples in non - food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation. farmers have widely adopted gm technology. between 1996 and 2011, the total surface area of land cultivated with gm crops had increased by a factor of 94, from 17, 000 to 1, 600, 000 square liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β€” the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β€” the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β€” they allow a reaction to proceed more rapidly without being consumed by it β€” by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on Question: What chemicals in the liver support glucose homeostasis? A) lactobacilli and insulin B) glucagon and insulin C) cytosol and insulin D) Force and insulin
B) glucagon and insulin
Context: from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 – 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for electronics, in capacitors, inductors, sensors, etc. ) a slurry can be used in place of a powder, and then cast into a desired shape, dried and then sintered. indeed, traditional pottery is done with this type of method, using a plastic mixture worked with the hands. if a mixture of different materials is used together in a ceramic, the sintering temperature is sometimes above the melting point of one minor component – a liquid phase sintering. this results in shorter sintering times compared to solid state sintering. such liquid phase sintering involves in faster diffusion processes and may result in abnormal grain approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 – 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for electronics, in capacitors, inductors, sensors, etc. ) a slurry can be used in place of a powder, and then cast into a desired shape, dried and then sintered. indeed, traditional pottery is done with this type of method, using a plastic mixture worked with the hands. above any tidal limit and their average freshwater discharge are proportionate to the extent of their basins and the amount of rain which, after falling over these basins, reaches the river channels in the bottom of the valleys, by which it is conveyed to the sea. the drainage basin of a river is the expanse of country bounded by a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer the less of it people would be prepared to buy ( other things unchanged ). as the price of a commodity falls, consumers move toward it from relatively more expensive goods ( the substitution effect ). in addition, purchasing power from the price decline increases ability to buy ( the income effect ). other factors can change demand ; for example an increase in income will shift the demand curve for a normal good outward relative to the origin, as in the figure. all determinants are predominantly taken as constant factors of demand and supply. supply is the relation between the price of a good and the quantity available for sale at that price. it may be represented as a table or graph relating price and quantity supplied. producers, for example business firms, are hypothesised to be profit maximisers, meaning that they attempt to produce and supply the amount of goods that will bring them the highest profit. supply is typically represented as a function relating price and quantity, if other factors are unchanged. that is, the higher the price at which the good can be sold, the more of it producers will supply, as in the figure. the higher price makes it profitable to increase production. just as on the demand side, the position of the supply can shift, say from a change in the price of a productive input or a technical improvement. the " law of supply " states that, in general, a rise in price leads to an expansion in supply and a fall in price leads to a contraction in supply. here as well, the determinants of supply, such as price of substitutes, cost of production, technology applied and various factors inputs of production are all taken to be constant for a specific time period of evaluation of supply. market equilibrium occurs where quantity supplied equals quantity demanded, the intersection of the supply and demand curves in the figure above. at a price below equilibrium, there is a shortage of quantity supplied compared to quantity demanded. this is posited to bid the price up. at a price above equilibrium, there is a surplus of quantity supplied compared to quantity demanded. this pushes the price down. the model of supply and demand predicts that for given supply and demand curves, price and quantity will stabilise at the price that makes quantity supplied equal to quantity demanded. similarly, demand - and - supply theory predicts a new price - quantity combination from a shift in demand ( as to the figure ), or in supply. = = = firms = = = people frequently do not trade directly on markets. instead, on the supply side, they may work the manufacturer. one common distinction is by nominal pore size. it describes the maximum pore size distribution and gives only vague information about the retention capacity of a membrane. the exclusion limit or " cut - off " of the membrane is usually specified in the form of nmwc ( nominal molecular weight cut - off, or mwco, molecular weight cut off, with units in dalton ). it is defined as the minimum molecular weight of a globular molecule that is retained to 90 % by the membrane. the cut - off, depending on the method, can by converted to so - called d90, which is then expressed in a metric unit. in practice the mwco of the membrane should be at least 20 % lower than the molecular weight of the molecule that is to be separated. using track etched mica membranes beck and schultz demonstrated that hindered diffusion of molecules in pores can be described by the rankin equation. filter membranes are divided into four classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filt Question: When resources become limiting, populations follow a logistic growth curve in which the size will level off at a point called what? A) containing capacity B) carrying capacity C) believed capacity D) full capacity
B) carrying capacity
Context: and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of the major staple foods, such as hemp, teff, maize, rice, wheat and other cereal grasses, pulses, bananas and plantains, as well as hemp, flax and cotton grown for their fibres, are the outcome of prehistoric selection over thousands of years from among wild ancestral plants with the most desirable characteristics. botanists study how plants produce food and how to increase yields, for example through plant breeding, making their work important to humanity ' s ability to feed the world and provide food security for future generations. botanists also study weeds, which are a considerable problem in agriculture, and the biology and control of plant pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant – people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gym Question: Along with climate, this also influences the type of vegetation that can grow in the region? A) population density B) fertilizer use C) gravity D) soil type
D) soil type
Context: has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named the belief that three dimensional space is infinite and flat in the absence of matter is a canon of physics that has been in place since the time of newton. the assumption that space is flat at infinity has guided several modern physical theories. but what do we actually know to support this belief? a simple argument, called the " telescope principle ", asserts that all that we can know about space is bounded by observations. physical theories are best when they can be verified by observations, and that should also apply to the geometry of space. the telescope principle is simple to state, but it leads to very interesting insights into relativity and yang - mills theory via projective equivalences of their respective spaces. is it possible to define what we could mean by chaos in a space - time metric ( even in the simplest toy - model studies )? is it of importance for phenomena we may search for in nature? quantum mechanics is interpreted by the adjacent vacuum that behaves as a virtual particle to be absorbed and emitted by its matter. as described in the vacuum universe model, the adjacent vacuum is derived from the pre - inflationary universe in which the pre - adjacent vacuum is absorbed by the pre - matter. this absorbed pre - adjacent vacuum is emitted to become the added space for the inflation in the inflationary universe whose space - time is separated from the pre - inflationary universe. this added space is the adjacent vacuum. the absorption of the adjacent vacuum as the added space results in the adjacent zero space ( no space ), quantum mechanics is the interaction between matter and the three different types of vacuum : the adjacent vacuum, the adjacent zero space, and the empty space. the absorption of the adjacent vacuum results in the empty space superimposed with the adjacent zero space, confining the matter in the form of particle. when the absorbed vacuum is emitted, the adjacent vacuum can be anywhere instantly in the empty space superimposed with the adjacent zero space where any point can be the starting point ( zero point ) of space - time. consequently, the matter that expands into the adjacent vacuum has the probability to be anywhere instantly in the form of wavefunction. in the vacuum universe model, the universe not only gains its existence from the vacuum but also fattens itself with the vacuum. during the inflation, the adjacent vacuum also generates the periodic table of elementary particles to account for all elementary particles and their masses in a good agreement with the observed values. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends or, and not. vectors can be added and subtracted. rotations can be combined using the function composition operation, performing the first rotation and then the second. operations on sets include the binary operations union and intersection and the unary operation of complementation. operations on functions include composition and convolution. operations may not be defined for every possible value of its domain. for example, in the real numbers one cannot divide by zero or take square roots of negative numbers. the values for which an operation is defined form a set called its domain of definition or active domain. the set which contains the values produced is called the codomain, but the set of actual values attained by the operation is its codomain of definition, active codomain, image or range. for example, in the real numbers, the squaring operation only produces non - negative numbers ; the codomain is the set of real numbers, but the range is the non - negative numbers. operations can involve dissimilar objects : a vector can be multiplied by a scalar to form another vector ( an operation known as scalar multiplication ), and the inner product operation on two vectors produces a quantity that is scalar. an operation may or may not have certain properties, for example it may be associative, commutative, anticommutative, idempotent, and so on. the values combined are called operands, arguments, or inputs, and the value produced is called the value, result, or output. operations can have fewer or more than two inputs ( including the case of zero input and infinitely many inputs ). an operator is similar to an operation in that it refers to the symbol or the process used to denote the operation. hence, their point of view is different. for instance, one often speaks of " the operation of addition " or " the addition operation, " when focusing on the operands and result, but one switch to " addition operator " ( rarely " operator of addition " ), when focusing on the process, or from the more symbolic viewpoint, the function + : x Γ— x β†’ x ( where x is a set such as the set of real numbers ). = = definition = = an n - ary operation Ο‰ on a set x is a function Ο‰ : xn β†’ x. the set xn is called the domain of the operation, the output set is called the codomain of the operation, and the fixed non - negative integer n ( the number of opera brane - universe model embedded in 6 - dimensional space - time with the signature ( 2 + 4 ) is considered. a matter is gravitationally trapped in three space dimensions, but both time - like directions are open. choosing of the dimension and the signature of the model is initiated with the conformal symmetry for massless particles and any point in our world can be ( 1 + 1 ) string - like object. we bring you, as usual, the sun and moon and stars, plus some galaxies and a new section on astrobiology. some highlights are short ( the newly identified class of gamma - ray bursts, and the deep impact on comet 9p / tempel 1 ), some long ( the age of the universe, which will be found to have the earth at its center ), and a few metonymic, for instance the term " down - sizing " to describe the evolution of star formation rates with redshift. the crystals of potassium hydrogen carbonate ( khco3 ) and the kdco3 analogue are isomorphous. they are composed of hydrogen or deuterium bonded centrosymmetric dimers ( hco3 - ) ( 2 ) or ( dco3 - ) ( 2 ). the space group symmetry of khpd1 - pco3 ( p approximate to 0. 75 ) determined with neutron diffraction is identical to those of khco3 and kdco3. this is at variance with a random distribution of h and d nuclei. these crystals are macroscopic quantum systems in which protons or / and deuterons merge into macroscopic states. ##trahedron, cube, octahedron, dodecahedron, or icosahedron. " in logic, the extension of a predicate is the set of all objects for which the predicate is true. further, the logical principle of extensionality judges two objects to objects to be equal if they satisfy the same external properties. since, by the axiom, two sets are defined to be equal if they satisfy membership, sets are extentional. jose ferreiros credits richard dedekind for being the first to explicitly state the principle, although he does not assert it as a definition : it very frequently happens that different things a, b, c... considered for any reason under a common point of view, are collected together in the mind, and one then says that they form a system s ; one calls the things a, b, c... the elements of the system s, they are contained in s ; conversely, s consists of these elements. such a system s ( or a collection, a manifold, a totality ), as an object of our thought, is likewise a thing ; it is completely determined when, for every thing, it is determined whether it is an element of s or not. = = = background = = = around the turn of the 20th century, mathematics faced several paradoxes and counter - intuitive results. for example, russell ' s paradox showed a contradiction of naive set theory, it was shown that the parallel postulate cannot be proved, the existence of mathematical objects that cannot be computed or explicitly described, and the existence of theorems of arithmetic that cannot be proved with peano arithmetic. the result was a foundational crisis of mathematics. the resolution of this crisis involved the rise of a new mathematical discipline called mathematical logic, which studies formal logic within mathematics. subsequent discoveries in the 20th century then stabilized the foundations of mathematics into a coherent framework valid for all mathematics. this framework is based on a systematic use of axiomatic method and on set theory, specifically zermelo – fraenkel set theory, developed by ernst zermelo and abraham fraenkel. this set theory ( and set theory in general ) is now considered the most common foundation of mathematics. = = = set equality based on first - order logic with equality = = = in first - order logic with equality ( see Β§ axioms ), the axiom of extensionality states that two sets that contain the same elements are the same set. logic axiom : x = y [UNK] [UNK] z, ( z Question: What is defined as anything that takes up space and has mass? A) elements B) matter C) atoms D) electrons
B) matter
Context: = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( , but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is mwco, molecular weight cut off, with units in dalton ). it is defined as the minimum molecular weight of a globular molecule that is retained to 90 % by the membrane. the cut - off, depending on the method, can by converted to so - called d90, which is then expressed in a metric unit. in practice the mwco of the membrane should be at least 20 % lower than the molecular weight of the molecule that is to be separated. using track etched mica membranes beck and schultz demonstrated that hindered diffusion of molecules in pores can be described by the rankin equation. filter membranes are divided into four classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation ) the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a Question: What is the name of the simplest carbon molecule? A) Buckminsterfullerine B) methane C) graphite D) butane
B) methane
Context: and cell phones are a particular challenge because the stream of data can interfere with focusing and learning. although these technologies affect adults too, young people may be more influenced by it as their developing brains can easily become habituated to switching tasks and become unaccustomed to sustaining attention. too much information, coming too rapidly, can overwhelm thinking. technology is " rapidly and profoundly altering our brains. " high exposure levels stimulate brain cell alteration and release neurotransmitters, which causes the strengthening of some neural pathways and the weakening of others. this leads to heightened stress levels on the brain that, at first, boost energy levels, but, over time, actually augment memory, impair cognition, lead to depression, and alter the neural circuitry of the hippocampus, amygdala and prefrontal cortex. these are the brain regions that control mood and thought. if unchecked, the underlying structure of the brain could be altered. overstimulation due to technology may begin too young. when children are exposed before the age of seven, important developmental tasks may be delayed, and bad learning habits might develop, which " deprives children of the exploration and play that they need to develop. " media psychology is an emerging specialty field that embraces electronic devices and the sensory behaviors occurring from the use of educational technology in learning. = = = sociocultural criticism = = = according to lai, " the learning environment is a complex system where the interplay and interactions of many things impact the outcome of learning. " when technology is brought into an educational setting, the pedagogical setting changes in that technology - driven teaching can change the entire meaning of an activity without adequate research validation. if technology monopolizes an activity, students can begin to develop the sense that " life would scarcely be thinkable without technology. " leo marx considered the word " technology " itself as problematic, susceptible to reification and " phantom objectivity ", which conceals its fundamental nature as something that is only valuable insofar as it benefits the human condition. technology ultimately comes down to affecting the relations between people, but this notion is obfuscated when technology is treated as an abstract notion devoid of good and evil. langdon winner makes a similar point by arguing that the underdevelopment of the philosophy of technology leaves us with an overly simplistic reduction in our discourse to the supposedly dichotomous notions of the " making " versus the " uses " of new technologies and that a narrow focus on " use is the scientific study of inheritance. mendelian inheritance, specifically, is the process by which genes and traits are passed on from parents to offspring. it has several principles. the first is that genetic characteristics, alleles, are discrete and have alternate forms ( e. g., purple vs. white or tall vs. dwarf ), each inherited from one of two parents. based on the law of dominance and uniformity, which states that some alleles are dominant while others are recessive ; an organism with at least one dominant allele will display the phenotype of that dominant allele. during gamete formation, the alleles for each gene segregate, so that each gamete carries only one allele for each gene. heterozygotic individuals produce gametes with an equal frequency of two alleles. finally, the law of independent assortment, states that genes of different traits can segregate independently during the formation of gametes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can a minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0. 1 bar in the atmospheres of earth, titan, jupiter, saturn, uranus and neptune, despite great differences in atmospheric composition, gravity, internal heat and sunlight. in all these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of shortwave solar radiation, from a region below characterised by convection, weather, and clouds. however, it is not obvious why the tropopause occurs at the specific pressure near 0. 1 bar. here we use a physically - based model to demonstrate that, at atmospheric pressures lower than 0. 1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. at higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. a common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets the 0. 1 bar tropopause. we hypothesize that a tropopause at a pressure of approximately 0. 1 bar is characteristic of many thick atmospheres, including exoplanets and exomoons in our galaxy and beyond. judicious use of this rule could help constrain the atmospheric structure, and thus the surface environments and habitability, of exoplanets. i reject the following null hypothesis : { h0 : your data are normal }. such drastic decision is motivated by theoretical reasons, and applies to your current data, the past ones, and the future ones. while this situation may appear embarrassing, it does not invalidate any of your results. moreover, it allows to save time and energy that are currently spent in vain by performing the following unnecessary tasks : ( i ) carrying out normality tests ; ( ii ) pretending to do something if normality is rejected ; and ( iii ) arguing about normality with referee # 2. one often wishes to quickly add a few overlined characters such as anti - b0 or anti - neutrino to a microsoft word document. underlined characters are straightforward but overlined characters require equation editor which makes small picture files. the font here allows one to directly add overlined english and the most used overlined greek characters to microsoft word documents on apple macintosh computers. we make a few comments on some misleading statements in the above paper. new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper assertions made in a document recently deposited in the arxiv are refuted. ammonium hydrosulphide has long since been postulated to exist at least in certain layers of the giant planets. its radiation products may be the reason for the red colour seen on jupiter. several ammonium salts, the products of nh3 and an acid, have previously been detected at comet 67p / churyumov - gerasimenko. the acid h2s is the fifth most abundant molecule in the coma of 67p followed by nh3. in order to look for the salt nh4 + sh -, we analysed in situ measurements from the rosetta / rosina double focusing mass spectrometer during the rosetta mission. nh3 and h2s appear to be independent of each other when sublimating directly from the nucleus. however, we observe a strong correlation between the two species during dust impacts, clearly pointing to the salt. we find that nh4 + sh - is by far the most abundant salt, more abundant in the dust impacts than even water. we also find all previously detected ammonium salts and for the first time ammonium fluoride. the amount of ammonia and acids balance each other, confirming that ammonia is mostly in the form of salt embedded into dust grains. allotropes s2 and s3 are strongly enhanced in the impacts, while h2s2 and its fragment hs2 are not detected, which is most probably the result of radiolysis of nh4 + sh -. this makes a prestellar origin of the salt likely. our findings may explain the apparent depletion of nitrogen in comets and maybe help to solve the riddle of the missing sulphur in star forming regions. the celebrated franck - hertz experiment is reinterpreted by analogy with the glimmentladung experiment, formerly performed by heinrich hertz. Question: Hyperparathyroidism results from an overproduction of what? A) tharayroid hormone B) elevated hormone C) inhibited hormone D) parathyroid hormone
D) parathyroid hormone
Context: the flow of a gas through porous medium is considered in the case of pressure dependent permeability. approximate self - similar solutions of the boundary - value problems are found. in this article i explain in detail a method for making small amounts of liquid oxygen in the classroom if there is no access to a cylinder of compressed oxygen gas. i also discuss two methods for identifying the fact that it is liquid oxygen as opposed to liquid nitrogen. ##g mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal, water, plaster and epoxy β€” most of which will be eliminated upon firing. a ceramic - filled epoxy, such as martyte, is sometimes used to protect structural steel under conditions of rocket exhaust impingement. these forming techniques are well known for providing tools and other components with dimensional stability, surface quality, high ( near theoretical ) density and microstructural uniformity. the increasing use and diversity of specialty forms of ceramics adds to the diversity of process technologies to be used. thus, reinforcing fibers and filaments are mainly made by polymer, sol - gel, or cvd processes, but melt two initially correlated coherent states, each interacting with its own independent dissipative environment exhibit a sudden transition from classical to quantum decoherence. this change in the dynamics is a turning point in the decoherence, in the sense that depending on the average number of photons of each cavity, decoherence can even be suppressed. indeed, the quantum state is time - independent for a time span in the mesoscopic regime, revealing a decoherence - free subspace. furthermore, the absence of decoherence is manifested in the apparition of a metastable pointer state basis. a coherent hybrid of states with different number of cooper pairs can be built in a superconductor grain as a result of periodically repeated discrete encounters with bulk superconductor leads. as a direct manifestation of such states a non - dissipative current depending on the phase difference between the leads can be measured. when fragile molecules such as glycine, polyglicine, alkanes, and alkanethiols are embedded in liquid helium nanodroplets, electron - impact ionization of the beam leads to fragmentation which is as extensive as that of isolated gas - phase molecules. however, it turns out that if a few molecules of water are co - embedded with the peptide and alkane chains, their fragmentation is drastically reduced or completely eliminated. on the other hand, the fragmentation of alkanethiols remains unaffected. on the basis of these observations, it is proposed that the fragmentation " buffering " effect may correlate with the magnitude of the impurity ' s electric dipole moment, which steers the migration of the ionizing he ^ + hole in the droplet. the homogeneous and isotropic cosmological model in the weyl conformal geometry is considered. we showed that, despite the conformal invariance, the dust matter is allowed in such a universe. it is shown that the number of dust particles is not conserved, i. e., they are continuously produced. the general form of the law for their creation is found. context. water together with o2 are important gas phase ingredients to cool dense gas in order to form stars. on dust grains, h2 o is an important constituent of the icy mantle in which a complex chemistry is taking place, as revealed by hot core observations. the formation of water can occur on dust grain surfaces, and can impact gas phase composition. aims. the formation of molecules such as oh, h2 o, ho2, h2 o2, as well as their deuterated forms and o2 and o3 is studied in order to assess how the chemistry varies in different astrophysical environments, and how the gas phase is affected by grain surface chemistry. methods. we use monte carlo simulations to follow the formation of molecules on bare grains as well as the fraction of molecules released into the gas phase. we consider a surface reaction network, based on gas phase reactions, as well as uv photo - dissociation of the chemical species. results. we show that grain surface chemistry has a strong impact on gas phase chemistry, and that this chemistry is very different for different dust grain temperatures. low temperatures favor hydrogenation, while higher temperatures favor oxygenation. also, uv photons dissociate the molecules on the surface, that can reform subsequently. the formation - destruction cycle increases the amount of species released into the gas phase. we also determine the time scales to form ices in diffuse and dense clouds, and show that ices are formed only in shielded environments, as supported by observations. are unchanged. that is, the higher the price at which the good can be sold, the more of it producers will supply, as in the figure. the higher price makes it profitable to increase production. just as on the demand side, the position of the supply can shift, say from a change in the price of a productive input or a technical improvement. the " law of supply " states that, in general, a rise in price leads to an expansion in supply and a fall in price leads to a contraction in supply. here as well, the determinants of supply, such as price of substitutes, cost of production, technology applied and various factors inputs of production are all taken to be constant for a specific time period of evaluation of supply. market equilibrium occurs where quantity supplied equals quantity demanded, the intersection of the supply and demand curves in the figure above. at a price below equilibrium, there is a shortage of quantity supplied compared to quantity demanded. this is posited to bid the price up. at a price above equilibrium, there is a surplus of quantity supplied compared to quantity demanded. this pushes the price down. the model of supply and demand predicts that for given supply and demand curves, price and quantity will stabilise at the price that makes quantity supplied equal to quantity demanded. similarly, demand - and - supply theory predicts a new price - quantity combination from a shift in demand ( as to the figure ), or in supply. = = = firms = = = people frequently do not trade directly on markets. instead, on the supply side, they may work in and produce through firms. the most obvious kinds of firms are corporations, partnerships and trusts. according to ronald coase, people begin to organise their production in firms when the costs of doing business becomes lower than doing it on the market. firms combine labour and capital, and can achieve far greater economies of scale ( when the average cost per unit declines as more units are produced ) than individual market trading. in perfectly competitive markets studied in the theory of supply and demand, there are many producers, none of which significantly influence price. industrial organisation generalises from that special case to study the strategic behaviour of firms that do have significant control of price. it considers the structure of such markets and their interactions. common market structures studied besides perfect competition include monopolistic competition, various forms of oligopoly, and monopoly. managerial economics applies microeconomic analysis to specific decisions in business firms or other management units. it draws heavily from quantitative methods such as operations research and within protogalaxies, thermal instability leads to the formation of a population of cool fragments, confined by the pressure of residual hot gas. the hot gas remains in quasi - hydrostatic equilibrium, at approximately the virial temperature of the dark matter halo. it is heated by compression and shock dissipation and is cooled by bremsstrahlung emission and conductive losses into the cool clouds. the cool fragments are photoionized and heated by the extragalactic uv background and nearby massive stars. the smallest clouds are evaporated due to conductive heat transfer from the hot gas. all are subject to disruption due to hydrodynamic instabilities. they also gain mass due to collisions and mergers and condensation from the hot gas due to conduction. the size distribution of the fragments in turn determines the rate and efficiency of star formation during the early phase of galactic evolution. we have performed one - dimensional hydrodynamic simulations of the evolution of the hot and cool gas. the cool clouds are assumed to follow a power - law size distribution, and fall into the galactic potential, subject to drag from the hot gas. the relative amounts of the hot and cool gas is determined by the processes discussed above, and star formation occurs at a rate sufficient to maintain the cool clouds at 10 $ ^ 4 $ k. we present density distributions for the two phases and also for the stars for several cases, parametrized by the circular speeds of the potentials. under some conditions, primarily low densities of the hot gas, conduction is more efficient than radiative processes at cooling the hot gas, limiting the x - ray radiation from the halo gas. Question: What is formed when different gases are confined to the same container? A) homogeneous mixture B) linear mixture C) compact mixture D) particulate mixture
A) homogeneous mixture
Context: another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such , the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six the recent report on laser cooling of liquid may contradict the law of energy conservation. or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for during aqueous corrosion, atoms in the solid react chemically with oxygen, leading either to the formation of an oxide film or to the dissolution of the host material. commonly, the first step in corrosion involves an oxygen atom from the dissociated water that reacts with the surface atoms and breaks near surface bonds. in contrast, hydrogen on the surface often functions as a passivating species. here, we discovered that the roles of o and h are reversed in the early corrosion stages on a si terminated sic surface. o forms stable species on the surface, and chemical attack occurs by h that breaks the si - c bonds. this so - called hydrogen scission reaction is enabled by a newly discovered metastable bridging hydroxyl group that can form during water dissociation. the si atom that is displaced from the surface during water attack subsequently forms h2sio3, which is a known precursor to the formation of silica and silicic acid. this study suggests that the roles of h and o in oxidation need to be reconsidered. the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a superdielectric behavior was observed in pastes made of high surface area alumina filled to the level of incipient wetness with water containing dissolved sodium chloride ( table salt ). in some cases the dielectric constants were greater than 10 ^ 10. is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon – carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller – urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the , which are not contained in any other space. on the other hand, this excludes surfaces that have singularities, such as the vertex of a conical surface or points where a surface crosses itself. in classical geometry, a surface is generally defined as a locus of a point or a line. for example, a sphere is the locus of a point which is at a given distance of a fixed point, called the center ; a conical surface is the locus of a line passing through a fixed point and crossing a curve ; a surface of revolution is the locus of a curve rotating around a line. a ruled surface is the locus of a moving line satisfying some constraints ; in modern terminology, a ruled surface is a surface, which is a union of lines. = = terminology = = there are several kinds of surfaces that are considered in mathematics. an unambiguous terminology is thus necessary to distinguish them when needed. a topological surface is a surface that is a manifold of dimension two ( see Β§ topological surface ). a differentiable surface is a surfaces that is a differentiable manifold ( see Β§ differentiable surface ). every differentiable surface is a topological surface, but the converse is false. a " surface " is often implicitly supposed to be contained in a euclidean space of dimension 3, typically r3. a surface that is contained in a projective space is called a projective surface ( see Β§ projective surface ). a surface that is not supposed to be included in another space is called an abstract surface. = = examples = = the graph of a continuous function of two variables, defined over a connected open subset of r2 is a topological surface. if the function is differentiable, the graph is a differentiable surface. a plane is both an algebraic surface and a differentiable surface. it is also a ruled surface and a surface of revolution. a circular cylinder ( that is, the locus of a line crossing a circle and parallel to a given direction ) is an algebraic surface and a differentiable surface. a circular cone ( locus of a line crossing a circle, and passing through a fixed point, the apex, which is outside the plane of the circle ) is an algebraic surface which is not a differentiable surface. if one removes the apex, the remainder of the cone is the union of two differentiable surfaces. the surface of a polyhedron is a topological surface, which is neither a differentiable surface nor an algebraic surface. a hyperbolic paraboloid ( the graph of the function z = xy ) is a differentiable surface and Question: What property of fluids causes something to stay on or near the surface of water? A) weight B) buoyancy C) density D) strength
B) buoyancy
Context: oxygen ion migration in li2mno3 was systematically studied by first - principles calculations. hole polaron is found effective to lower the migration barrier of oxygen ion. molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation ). ideally, even racemics can be enriched with a suitable membrane. when choosing membranes selectivity has priority over a high permeability, as low flows can easily be offset by increasing the filter surface with a modular structure. in gas phase filtration different deposition mechanisms are operative, so that particles having sizes below the pore size of the membrane can be retained as well. = = membrane classification = = bio - membrane is classified in two categories, synthetic membrane and natural membrane. synthetic membranes further classified in organic and inorganic membranes. organic membrane sub classified polymeric membranes and inorganic membrane sub classified ceramic polymers. = = synthesis of biomass membrane = = = = = the composite biomass membrane = = = green membrane or bio - membrane synthesis is the solution to protected environments which have largely comprehensive performance. biomass is used in the form of activated carbon nanoparticles, like using cellulose based biomass coconut shell, hazelnut shell, walnut shell, agricultural wastes of corn stalks etc. which improve surface hydrophilicity, larger pore size, more and lower surface roughness therefore, the separation and anti - fouling performance of membranes are also improved simultaneously. = = = fabrication of pure biomass based membrane = = = a biomass - based membrane is a membrane made from organic materials such as plant fibers. these membranes are often used in water filtration and wastewater treatment applications. the fabrication of a pure biomass - based membrane is a complex process that involves a number of steps. the first step is to create a slurry of the organic materials. this slurry is then cast of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 – 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar – aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) – military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar – an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical fan - shaped beam of microwaves around the water surface surrounding the craft out to the horizon. weather radar – a doppler radar which maps weather precipitation intensities and wind speeds with the echoes returned from raindrops and their radial velocity by their doppler shift. phased - array radar – a radar set that uses a phased array, a computer - controlled antenna that can steer the radar beam quickly to point in different directions without moving the antenna. phased - array radars were developed by the military to track fast - moving missiles and aircraft. they are widely used in military equipment and are now spreading to civilian applications. synthetic aperture radar ( sar ) – a specialized airborne radar set that produces a high - resolution map of ground terrain. the radar is mounted on an aircraft or spacecraft and the radar antenna radiates a beam of radio waves sideways at right angles to the direction of motion, toward the ground. in processing the return radar signal, the beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar – in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 – 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar – aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) – military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar – an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical from 20 micrometres to a millimetre ( i. e., 0. 02 to 1. 0 mm ), although components arranged in arrays ( e. g., digital micromirror devices ) can be more than 1000 mm2. they usually consist of a central unit that processes data ( an integrated circuit chip such as microprocessor ) and several components that interact with the surroundings ( such as microsensors ). because of the large surface area to volume ratio of mems, forces produced by ambient electromagnetism ( e. g., electrostatic charges and magnetic moments ), and fluid dynamics ( e. g., surface tension and viscosity ) are more important design considerations than with larger scale mechanical devices. mems technology is distinguished from molecular nanotechnology or molecular electronics in that the latter two must also consider surface chemistry. the potential of very small machines was appreciated before the technology existed that could make them ( see, for example, richard feynman ' s famous 1959 lecture there ' s plenty of room at the bottom ). mems became practical once they could be fabricated using modified semiconductor device fabrication technologies, normally used to make electronics. these include molding and plating, wet etching ( koh, tmah ) and dry etching ( rie and drie ), electrical discharge machining ( edm ), and other technologies capable of manufacturing small devices. they merge at the nanoscale into nanoelectromechanical systems ( nems ) and nanotechnology. = = history = = an early example of a mems device is the resonant - gate transistor, an adaptation of the mosfet, developed by robert a. wickstrom for harvey c. nathanson in 1965. another early example is the resonistor, an electromechanical monolithic resonator patented by raymond j. wilfinger between 1966 and 1971. during the 1970s to early 1980s, a number of mosfet microsensors were developed for measuring physical, chemical, biological and environmental parameters. the term " mems " was introduced in 1986. s. c. jacobsen ( pi ) and j. e. wood ( co - pi ) introduced the term " mems " by way of a proposal to darpa ( 15 july 1986 ), titled " micro electro - mechanical systems ( mems ) ", granted to the university of utah. the term " mems " was presented by way of an invited talk by s the clinical symptoms of pulmonary embolism ( pe ) are very diverse and non - specific, which makes it difficult to diagnose. in addition, pulmonary embolism has multiple triggers and is one of the major causes of vascular death. therefore, if it can be detected and treated quickly, it can significantly reduce the risk of death in hospitalized patients. in the detection process, the cost of computed tomography pulmonary angiography ( ctpa ) is high, and angiography requires the injection of contrast agents, which increase the risk of damage to the patient. therefore, this study will use a deep learning approach to detect pulmonary embolism in all patients who take a ct image of the chest using a convolutional neural network. with the proposed pulmonary embolism detection system, we can detect the possibility of pulmonary embolism at the same time as the patient ' s first ct image, and schedule the ctpa test immediately, saving more than a week of ct image screening time and providing timely diagnosis and treatment to the patient. ##ate flux which is the volumetric flow rate per unit of membrane area. the solute sieving coefficient and hydraulic permeability allow the quick assessment of the synthetic membrane performance. = = membrane separation processes = = membrane separation processes have a very important role in the separation industry. nevertheless, they were not considered technically important until the mid - 1970s. membrane separation processes differ based on separation mechanisms and size of the separated particles. the widely used membrane processes include microfiltration, ultrafiltration, nanofiltration, reverse osmosis, electrolysis, dialysis, electrodialysis, gas separation, vapor permeation, pervaporation, membrane distillation, and membrane contactors. all processes except for pervaporation involve no phase change. all processes except electrodialysis are pressure driven. microfiltration and ultrafiltration is widely used in food and beverage processing ( beer microfiltration, apple juice ultrafiltration ), biotechnological applications and pharmaceutical industry ( antibiotic production, protein purification ), water purification and wastewater treatment, the microelectronics industry, and others. nanofiltration and reverse osmosis membranes are mainly used for water purification purposes. dense membranes are utilized for gas separations ( removal of co2 from natural gas, separating n2 from air, organic vapor removal from air or a nitrogen stream ) and sometimes in membrane distillation. the later process helps in the separation of azeotropic compositions reducing the costs of distillation processes. = = pore size and selectivity = = the pore sizes of technical membranes are specified differently depending on the manufacturer. one common distinction is by nominal pore size. it describes the maximum pore size distribution and gives only vague information about the retention capacity of a membrane. the exclusion limit or " cut - off " of the membrane is usually specified in the form of nmwc ( nominal molecular weight cut - off, or mwco, molecular weight cut off, with units in dalton ). it is defined as the minimum molecular weight of a globular molecule that is retained to 90 % by the membrane. the cut - off, depending on the method, can by converted to so - called d90, which is then expressed in a metric unit. in practice the mwco of the membrane should be at least 20 % lower than the molecular weight of the molecule that is to be separated. using track etched mica membranes beck and schultz demonstrated that hindered diffusion of molecules in pores can be described by the rankin equation. filter membranes are divided into four development and interaction of starting vortices initiated by dielectric barrier discharge ( dbd ) plasma actuators in quiescent air are illustrated in the attached fluid dynamics videos. these include a series of smoke flow visualisations, showing the starting vortices moving parallel or normal to the wall at several different actuator configurations. baby while they are in other parts of the house. the wavebands used vary by region, but analog baby monitors generally transmit with low power in the 16, 9. 3 – 49. 9 or 900 mhz wavebands, and digital systems in the 2. 4 ghz waveband. many baby monitors have duplex channels so the parent can talk to the baby, and cameras to show video of the baby. wireless microphone – a battery - powered microphone with a short - range transmitter that is handheld or worn on a person ' s body which transmits its sound by radio to a nearby receiver unit connected to a sound system. wireless microphones are used by public speakers, performers, and television personalities so they can move freely without trailing a microphone cord. traditionally, analog models transmit in fm on unused portions of the television broadcast frequencies in the vhf and uhf bands. some models transmit on two frequency channels for diversity reception to prevent nulls from interrupting transmission as the performer moves around. some models use digital modulation to prevent unauthorized reception by scanner radio receivers ; these operate in the 900 mhz, 2. 4 ghz or 6 ghz ism bands. european standards also support wireless multichannel audio systems ( wmas ) that can better support the use of large numbers of wireless microphones at a single event or venue. as of 2021, u. s. regulators were considering adopting rules for wmas. = = = data communication = = = wireless networking – automated radio links which transmit digital data between computers and other wireless devices using radio waves, linking the devices together transparently in a computer network. computer networks can transmit any form of data : in addition to email and web pages, they also carry phone calls ( voip ), audio, and video content ( called streaming media ). security is more of an issue for wireless networks than for wired networks since anyone nearby with a wireless modem can access the signal and attempt to log in. the radio signals of wireless networks are encrypted using wpa. wireless lan ( wireless local area network or wi - fi ) – based on the ieee 802. 11 standards, these are the most widely used computer networks, used to implement local area networks without cables, linking computers, laptops, cell phones, video game consoles, smart tvs and printers in a home or office together, and to a wireless router connecting them to the internet with a wire or cable connection. wireless routers in public places like libraries, hotels and coffee shops create wireless access points ( hotspots ) to allow the public to stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has no adverse effect on pilot vision. = = = = ships = = = = ships have also adopted similar methods. though the earlier american arleigh burke - class destroyers incorporated some signature - reduction features. the norwegian skjold - class corvettes was the first coastal defence and the french la fayette - class frigates the first ocean - going stealth ships to enter service. other examples are the dutch de zeven provincien - class frigates, the taiwanese tuo chiang - class corvettes, german sachsen - class frigates, the swedish visby - class corvette, the american san antonio - class amphibious transport docks, and most modern Question: What are the tiny sacs in the lungs where gas exchange takes place? A) alveoli B) ganglion C) vacuoles D) chambers
A) alveoli
Context: ##ian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohy commonly called plastics and rubber. plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. plastics in former and in current widespread use include polyethylene, polypropylene, polyvinyl chloride ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xyle the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 – 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for electronics, in capacitors, inductors, sensors, etc. ) a slurry can be used in place of a powder, and then cast into a desired shape, dried and then sintered. indeed, traditional pottery is done with this type of method, using a plastic mixture worked with the hands. if a mixture of different materials is used together in a ceramic, the sintering temperature is sometimes above the melting point of one minor component – a liquid phase sintering. this results in shorter sintering times compared to solid state sintering. such liquid phase sintering involves in faster diffusion processes and may result in abnormal grain growth. = = strength of ceramics = = a material ' s strength is dependent on its microstructure. the engineering processes to which a material is subjected can alter its microstructure. the variety of strengthening mechanisms that alter the strength of a material include the mechanism of grain boundary strengthening. thus, although yield strength is maximized with decreasing grain size, ultimately, very small grain sizes make the material brittle. considered in tandem with the fact that the yield strength is the parameter that predicts plastic deformation in the material, one can make informed decisions on how to increase the strength of a material depending on its microstructural properties and the desired end effect. the relation between yield stress and grain size is described mathematically by the hall - petch equation which is Οƒ y = Οƒ 0 + k y d { \ displaystyle \ sigma _ { y } = \ sigma _ { 0 } + { k _ { y } \ over { ##m and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to three of what is called the six simple machines, from which all machines are based. these machines are the inclined plane, the wedge, and the lever, which allowed the ancient egyptians to move millions of limestone blocks which weighed approximately 3. 5 tons ( 7, 000 lbs. ) each into place to create structures like the great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu ##ta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " – their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. hetero ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu shastra ', suggests a thorough understanding of materials engineering, hydrology, and sanitation. = = = = china = = = = the chinese made many first - known discoveries and developments. major technological contributions from china include the earliest known form of the binary code and epigenetic sequencing, early seismological detectors, Question: What is the stage between a zygote and polyp? A) pupa B) worm C) egg D) larva
D) larva
Context: charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change , natural phenomena on earth only involve gravity and electromagnetism, and not nuclear reactions. this is because atomic nuclei are generally kept apart because they contain positive electrical charges and therefore repel each other. in 1896, henri becquerel was investigating phosphorescence in uranium salts when he discovered a new phenomenon which came to be called radioactivity. he, pierre curie and marie curie began investigating the phenomenon. in the process, they isolated the element radium, which is highly radioactive. they discovered that radioactive materials produce intense, penetrating rays of three distinct sorts, which they labeled alpha, beta, and gamma after the first three greek letters. some of these kinds of radiation could pass through ordinary matter, and all of them could be harmful in large amounts. all of the early researchers received various radiation burns, much like sunburn, and thought little of it. the new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine ( as had the discoveries of electricity and magnetism, earlier ), and a number of patent medicines and treatments involving radioactivity were put forward. gradually it was realized that the radiation produced by radioactive decay was ionizing radiation, and that even quantities too small to burn could pose a severe long - term hazard. many of the scientists working on radioactivity died of cancer as a result of their exposure. radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters. as the atom came to be better understood, the nature of radioactivity became clearer. some larger atomic nuclei are unstable, and so decay ( release matter or energy ) after a random interval. the three forms of radiation that becquerel and the curies discovered are also more fully understood. alpha decay is when a nucleus releases an alpha particle, which is two protons and two neutrons, equivalent to a helium nucleus. beta decay is the release of a beta particle, a high - energy electron. gamma decay releases gamma rays, which unlike alpha and beta radiation are not matter but electromagnetic radiation of very high frequency, and therefore energy. this type of radiation is the most dangerous and most difficult to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named it is believed that there may have been a large number of black holes formed in the very early universe. these would have quantised masses. a charged ` ` elementary black hole ' ' ( with the minimum possible mass ) can capture electrons, protons and other charged particles to form a ` ` black hole atom ' '. we find the spectrum of such an object with a view to laboratory and astronomical observation of them, and estimate the lifetime of the bound states. there is no limit to the charge of the black hole, which gives us the possibility of observing z > 137 bound states and transitions at the lower continuum. negatively charged black holes can capture protons. for z > 1, the orbiting protons will coalesce to form a nucleus ( after beta - decay of some protons to neutrons ), with a stability curve different to that of free nuclei. in this system there is also the distinct possibility of single quark capture. this leads to the formation of a coloured black hole that plays the role of an extremely heavy quark interacting strongly with the other two quarks. finally we consider atoms formed with much larger black holes. in a voltaic cell, positive ( negative ) ions flow from the low ( high ) potential electrode to the high ( low ) potential electrode, driven by an ` electromotive force ' which points in opposite direction and overcomes the electric force. similarly in a superconductor charge flows in direction opposite to that dictated by the faraday electric field as the magnetic field is expelled in the meissner effect. the puzzle is the same in both cases : what drives electric charges against electromagnetic forces? i propose that the answer is also the same in both cases : kinetic energy lowering, or ` quantum pressure '. octet hyperon charge radii are calculated in a chiral constituent quark model including electromagnetic exchange currents between quarks. in impulse approximation one observes a decrease of the hyperon charge radii with increasing strangeness. this effect is reduced by exchange currents. due to exchange currents, the charge radius of the negatively charged hyperons are close to the proton charge radius. other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit , etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison, the other is open to ambient air ; it has a gridded electrode. when smoke enters the open chamber, the current is disrupted as the smoke particles attach to the charged ions and restore them to a neutral electrical state. this reduces the current in the open chamber. when the current drops below a certain threshold, the alarm is triggered. = = = food processing and agriculture = = = in biology and agriculture, radiation is used to induce mutations to produce new or improved species, such as in atomic gardening. another use in insect control is the sterile insect technique, where male insects are sterilized by radiation and released, so they have strangelets ( stable lumps of quark matter ) can have masses and charges much higher than those of nuclei, but have very low charge - to - mass ratios. this is confirmed in a relativistic thomas - fermi model. the high charge allows astrophysical strangelet acceleration to energies orders of magnitude higher than for protons. in addition, strangelets are much less susceptible to the interactions with the cosmic microwave background that suppress the flux of cosmic ray protons and nuclei above energies of $ 10 ^ { 19 } $ - - $ 10 ^ { 20 } $ ev ( the gzk - cutoff ). this makes strangelets an interesting possibility for explaining ultra - high energy cosmic rays. it is well known and well established by scientific observation that a free neutron radioactively decays into a proton plus an electron plus an anti - neutrino with a mean life time before decay of about 900 seconds. that established fact conflicts sharply with the hypothesis that the neutron is composed of two down plus one up quark and that the proton is composed of one down plus two up quarks. that conflict throws doubt on the entire quark hypothesis. Question: What is the term for a particle outside the nucleus of an atom that has a negative electric charge? A) neutron B) ion C) proton D) electron
D) electron
Context: this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleosynthesis, the light elements ( lithium to calcium ) as well as some of the heavy elements ( beyond iron and nickel, via the s - process ). the remaining abundance of heavy elements, from nickel to uranium and beyond, is due to supernova nucleosynthesis, the r - process. of course, these natural processes of astrophysics are not examples of nuclear " technology ". because of the very strong repulsion of nuclei, fusion is difficult to achieve in a controlled fashion. hydrogen bombs, formally known as thermonuclear weapons, obtain their enormous destructive power from fusion, but their energy cannot be controlled. controlled fusion is achieved in particle accelerators ; this is how many synthetic elements are produced. a fusor can also produce controlled fusion and is a useful neutron source. however, both of these devices operate at a net energy loss. controlled, viable fusion power has proven elusive, despite the occasional hoax. technical and theoretical difficulties have hindered the development of working civilian fusion technology, though research continues to this day around the world. nuclear fusion was initially pursued only in theoretical stages during world war ii, when scientists on the manhattan project ( led by edward teller ) investigated it as a method to build a bomb. the project abandoned fusion after concluding that it would require a fission reaction to detonate. it took until 1952 for the first full hydrogen bomb to be detonated, so - called because it used reactions between deuterium and tritium. fusion reactions are much more energetic per unit mass of fuel than fission reactions, but starting the fusion chain reaction is much more difficult. = = nuclear weapons = = a nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion. both reactions release vast quantities of energy from relatively small amounts of matter. even small nuclear devices can devastate a city by blast, fire and radiation. nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality difficult. = = nuclear weapons = = a nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion. both reactions release vast quantities of energy from relatively small amounts of matter. even small nuclear devices can devastate a city by blast, fire and radiation. nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality ( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β€” a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei ; they must be slowed ( slow neutrons ), generally by collision with the nuclei of a neutron moderator, before they can be easily captured. today, this type of fission is commonly used to generate electricity. = = = nuclear fusion = = = if nuclei are forced to collide, they can undergo nuclear fusion. this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleosynthesis, the light elements ( lithium to calcium ) as well as some of the heavy elements ( beyond iron and nickel, via the s - process ). the remaining abundance of heavy elements, from nickel to uranium and beyond, is due to supernova nucleosynthesis, the r - process. of course, these natural processes of astrophysics are not examples of nuclear " technology ". because of the very strong repulsion of nuclei, fusion is difficult to achieve in a controlled fashion. hydrogen bombs, formally known as thermonuclear weapons, obtain their enormous destructive power from fusion, but their energy cannot be controlled team of physicists who were concerned that nazi germany might also be seeking to build a bomb based on nuclear fission. ( the earliest known nuclear reaction on earth occurred naturally, 1. 7 billion years ago, in oklo, gabon, africa. ) the second artificial nuclear reactor, the x - 10 graphite reactor, was also a part of the manhattan project, as were the plutonium - producing reactors of the hanford engineer works. the first nuclear reactor to generate electricity was experimental breeder reactor i ( ebr - i ), which did so near arco, idaho, in 1951. ebr - i was a standalone facility, not connected to a grid, but a later idaho research reactor in the borax series did briefly supply power to the town of arco in 1955. the first commercial nuclear power plant, built to be connected to an electrical grid, is the obninsk nuclear power plant, which began operation in 1954. the second is the shippingport atomic power station, which produced electricity in 1957. for a chronology, from the discovery of uranium to the current era, see outline history of nuclear energy or history of nuclear power. also see history of nuclear engineering part 1 : radioactivity, part 2 : building the bomb, and part 3 : atoms for peace. see list of commercial nuclear reactors for a comprehensive listing of nuclear power reactors and iaea power reactor information system ( pris ) for worldwide and country - level statistics on nuclear power generation. = = sub - disciplines = = nuclear engineers work in such areas as the following : nuclear reactor design, which has evolved from the generation i, proof - of concept, reactors of the 1950s and 1960s, to generation ii, generation iii, and generation iv concepts thermal hydraulics and heat transfer. in a typical nuclear power plant, heat generates steam that drives a steam turbine and a generator that produces electricity materials science as it relates to nuclear power applications managing the nuclear fuel cycle, in which fissile material is obtained, formed into fuel, removed when depleted, and safely stored or reprocessed nuclear propulsion, mainly for military naval vessels, but there have been concepts for aircraft and missiles. nuclear power has been used in space since the 1960s plasma physics, which is integral to the development of fusion power weapons development and management generation of radionuclides, which have applications in industry, medicine, and many other areas nuclear waste management health physics nuclear medicine and medical physics health and safety instrumentation and control engineering process engineering project management quality engineering reactor operations nuclear security ( detection of atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei ; they must be slowed ( slow neutrons ), generally by collision with the nuclei of a neutron moderator, before they can be easily captured. today, this type of fission is commonly used to generate electricity. = = = nuclear fusion = = = if nuclei are forced to collide, they can undergo nuclear fusion. this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleosynthesis, the light elements ( lithium to calcium ) as well as some of the heavy elements ( beyond iron and nickel, via the s - process ). the remaining abundance of heavy elements, from nickel to uranium and beyond, is due to supernova nucleosynthesis, the r - process. of course, these natural processes of astrophysics are not examples of nuclear " technology ". because of the very strong repulsion of nuclei, fusion is difficult to achieve in a controlled fashion. hydrogen bombs, formally known as thermonuclear weapons, obtain their enormous destructive power from fusion, but their energy cannot be controlled. controlled fusion is achieved in particle accelerators ; this is how many synthetic elements are produced. a fusor can also produce controlled fusion and is a useful neutron source. however, both of these devices operate at a net energy loss. controlled, viable fusion power has proven elusive, despite the occasional hoax. technical and theoretical difficulties have hindered the development of working civilian fusion technology, though research continues to this day around the world. nuclear fusion was initially pursued only in theoretical stages during world war ii, when scientists on the manhattan project ( led by edward teller ) investigated it as a method to build a bomb. the project abandoned fusion after concluding that it would require a fission reaction to detonate. it took until 1952 for the first full hydrogen bomb to be detonated, so - called because it used reactions between deuterium and tritium. fusion reactions are much more energetic per unit mass of fuel than fission reactions, but starting the fusion chain reaction is much more genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and , these natural processes of astrophysics are not examples of nuclear " technology ". because of the very strong repulsion of nuclei, fusion is difficult to achieve in a controlled fashion. hydrogen bombs, formally known as thermonuclear weapons, obtain their enormous destructive power from fusion, but their energy cannot be controlled. controlled fusion is achieved in particle accelerators ; this is how many synthetic elements are produced. a fusor can also produce controlled fusion and is a useful neutron source. however, both of these devices operate at a net energy loss. controlled, viable fusion power has proven elusive, despite the occasional hoax. technical and theoretical difficulties have hindered the development of working civilian fusion technology, though research continues to this day around the world. nuclear fusion was initially pursued only in theoretical stages during world war ii, when scientists on the manhattan project ( led by edward teller ) investigated it as a method to build a bomb. the project abandoned fusion after concluding that it would require a fission reaction to detonate. it took until 1952 for the first full hydrogen bomb to be detonated, so - called because it used reactions between deuterium and tritium. fusion reactions are much more energetic per unit mass of fuel than fission reactions, but starting the fusion chain reaction is much more difficult. = = nuclear weapons = = a nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion. both reactions release vast quantities of energy from relatively small amounts of matter. even small nuclear devices can devastate a city by blast, fire and radiation. nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality ( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and mutations has only existed since the 1970s. the term " genetic engineering " was coined by the russian - born geneticist nikolay timofeev - ressovsky in his 1934 paper " the experimental production of mutations ", published in the british journal biological reviews. jack williamson used the term in his science fiction novel dragon ' young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations animal cells using microinjection, where it can be injected through the cell ' s nuclear envelope directly into the nucleus, or through the use of viral vectors. plant genomes can be engineered by physical methods or by use of agrobacterium for the delivery of sequences hosted in t - dna binary vectors. in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes Question: Scientists goal is develop nuclear fusion power plants, where the energy from fusion of hydrogen nuclei can be converted to what? A) oil B) wind C) electricity D) gasoline
C) electricity
Context: has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is photons ( bosons ) confined in a hollow waveguide containing an atomic gas could show spin - charge separation, which is more commonly associated with one - dimensional fermions. . the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose – einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and a discontinuity of a turbulent ideal fluid is considered. it is supposed to be split and dispersed, or spread in the stochastic environment forming a gas without hydrostatic pressure. two equal - mass fragments of a discontinuity are indistinguishable from each other. a gas, that possesses such properties, must behave itself as the madelung medium. of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ—1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose – einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends Question: In which state of matter are particles completely separate from one another? A) phosphorus state B) liquid state C) gaseous state D) solid state
C) gaseous state
Context: it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes ##als force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβˆ’. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid – base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the smart shoe. in 2019 german footwear company puma was recognized as one of the " 100 best inventions of 2019 " by time for its fi laceless shoe that uses micro - motors to adjust the fit from an iphone. nike also introduced a smart shoe in 2019 known as adapt bb. the shoe featured buttons on the side to loosen or tighten the fit with a custom motor and gear, which could also be controlled by a smartphone. = = modern technologies = = on april 16, 2013, google invited " glass explorers " who had pre - ordered its wearable glasses at the 2012 google i / o conference to pick up their devices. the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o – h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole – dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β€” often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds the graphane with chemically bonded alkali metals ( li, na, k ) was considered as potential material for hydrogen storage. the ab initio calculations show that such material can adsorb as many as 4 hydrogen molecules per li, na and k metal atoms. these values correspond to 12. 20 wt %, 10. 33 wt % and 8. 56 wt % of hydrogen, respectively and exceed the doe requirements. the thermodynamic analysis shows that li - graphane complex is the most promising for hydrogen storage with ability to adsorb 3 hydrogen molecules per metal atom at 300 k and pressure in the range from 5 to 250 atm. plasma etching should not be conflated with the use of the same term when referring to orientation - dependent etching. the source gas for the plasma usually contains small molecules rich in chlorine or fluorine. for instance, carbon tetrachloride ( ccl4 ) etches silicon and aluminium, and trifluoromethane etches silicon dioxide and silicon nitride. a plasma containing oxygen is used to oxidize ( " ash " ) photoresist and facilitate its removal. ion milling, or sputter etching, uses lower pressures, often as low as 10βˆ’4 torr ( 10 mpa ). it bombards the wafer with energetic ions of noble gases, often ar +, which knock atoms from the substrate by transferring momentum. because the etching is performed by ions, which approach the wafer approximately from one direction, this process is highly anisotropic. on the other hand, it tends to display poor selectivity. reactive - ion etching ( rie ) operates under conditions intermediate between sputter and plasma etching ( between 10βˆ’3 and 10βˆ’1 torr ). deep reactive - ion etching ( drie ) modifies the rie technique to produce deep, narrow features. in reactive - ion etching ( rie ), the substrate is placed inside a reactor, and several gases are introduced. a plasma is struck in the gas mixture using an rf power source, which breaks the gas molecules into ions. the ions accelerate towards, and react with, the surface of the material being etched, forming another gaseous material. this is known as the chemical part of reactive ion etching. there is also a physical part, which is similar to the sputtering deposition process. if the ions have high enough energy, they can knock atoms out of the material to be etched without a chemical reaction. it is a very complex task to develop dry etch processes that balance chemical and physical etching, since there are many parameters to adjust. by changing the balance it is possible to influence the anisotropy of the etching, since the chemical part is isotropic and the physical part highly anisotropic the combination can form sidewalls that have shapes from rounded to vertical. deep reactive ion etching ( drie ) is a special subclass of rie that is growing in popularity. in this process, etch depths of hundreds of micrometers are achieved with almost vertical sidewalls. the primary technology is based on the Question: Van der waals forces are weak interactions between molecules that involve what? A) atoms B) dipoles C) photons D) particles
B) dipoles
Context: the clinical symptoms of pulmonary embolism ( pe ) are very diverse and non - specific, which makes it difficult to diagnose. in addition, pulmonary embolism has multiple triggers and is one of the major causes of vascular death. therefore, if it can be detected and treated quickly, it can significantly reduce the risk of death in hospitalized patients. in the detection process, the cost of computed tomography pulmonary angiography ( ctpa ) is high, and angiography requires the injection of contrast agents, which increase the risk of damage to the patient. therefore, this study will use a deep learning approach to detect pulmonary embolism in all patients who take a ct image of the chest using a convolutional neural network. with the proposed pulmonary embolism detection system, we can detect the possibility of pulmonary embolism at the same time as the patient ' s first ct image, and schedule the ctpa test immediately, saving more than a week of ct image screening time and providing timely diagnosis and treatment to the patient. listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to objective : endobronchial valves are a minimally invasive treatment for emphysema. after bronchoscopic placement the valves reduce the flow of air into targeted areas of the lung, causing collapse, and allowing the remainder of the lung to function more effectively. approach : x - ray velocimetry is a novel method that uses x - ray images taken during a breath to track lung motion, producing 3d maps of local ventilation. healthy sheep received a ct scan and underwent x - ray velocimetry imaging before and after endobronchial valves were placed in the lung. sheep were imaged again when the endobronchial valves were removed after 14 days. main results : x - ray velocimetry enabled visualisation and quantification of a reduction of airflow to the areas downstream of the endobronchial valves, both in areas where collapse was and was not visible in ct. changes to ventilation were also clearly visible in the remainder of the lungs. significance : this preclinical study has shown x - ray velocimetry is capable of detecting changes to ventilation caused by endobronchial valve placement, paving the way towards use in patients. poor indoor air quality can contribute to the development of various chronic respiratory diseases such as asthma, heart disease, and lung cancer. since air quality is extremely difficult for humans to detect though sensory processing, there is a need for efficient ventilation systems that can provide a healthier environment. in this paper, we have designed an energy efficient ventilation system that predicts sensor occupancy patterns based on historical data to improve indoor air quality. the resonant coupling between alfv \ ' { e } n waves is reconsidered. new results are found for cold plasmas there temperature effects are negligible. resonant electric dipole - dipole interactions between cold rydberg atoms were observed using microwave spectroscopy. laser - cooled rb atoms in a magneto - optical trap were optically excited to 45d rydberg states using a pulsed laser. a microwave pulse transferred a fraction of these rydberg atoms to the 46p state. a second microwave pulse then drove atoms in the 45d state to the 46d state, and was used as a probe of interatomic interactions. the spectral width of this two - photon probe transition was found to depend on the presence of the 46p atoms, and is due to the resonant electric dipole - dipole interaction between 45d and 46p rydberg atoms. unitary recordings in freely - moving pulse weakly electric fish suggest spike timing encoding of electrosensory signals a specially designed and produced edge filter with pronounced nonlinear effects is carefully characterized. the nonlinear effects are estimated at the intensities close to the laser - induced damage. comment : monitoring networked applications with incremental quantile estimation [ arxiv : 0708. 0302 ] the biggest shake - up in editing since melies played with time and sequences in the early 1900s ". by the early 1990s, avid products began to replace such tools as the moviola, steenbeck, and kem flatbed editors, allowing editors to handle their film creations with greater ease. the first feature film edited using the avid was let ' s kill all the lawyers in 1992, directed by ron senkowski. the film was edited at a 30fps ntsc rate, then used avid mediamatch to generate a negative cutlist from the edl. the first feature film edited natively at 24fps with what was to become the avid film composer was emerson park. the first studio film to be edited at 24fps was lost in yonkers, directed by martha coolidge. by 1994 only three feature films used the new digital editing system. by 1995 dozens had switched to avid, and it signaled the beginning of the end of cutting celluloid. in 1996 walter murch accepted the academy award for editing the english patient ( which also won best picture ), which he cut on the avid. this was the first editing oscar awarded to a digitally edited film ( although the final print was still created with traditional negative cutting ). in 1994 avid introduced open media framework ( omf ) as an open standard file format for sharing media and related metadata. over the years, avid has released numerous freeware versions of media composer. initially this included avid free dv : a free edition of media composer with limited functionality ; avid xpress dv : a consumer edition of media composer ; and then avid xpress pro : a prosumer edition of media composer. these editions were discontinued in 2008 as the flagship media composer was lowered in price. later, avid released media composer | first, which included a large portion of media composer ' s functionality but its exporting workflows publishing finished videos directly to web services like youtube. on march 29, 1999, avid technology, inc. adjusted the amount originally allocated to ipr & d and restated its third - quarter 1998 consolidated financial statements accordingly, considering the sec ' s views. in february 2018, avid appointed jeff rosica as ceo, after terminating louis hernandez jr, who was accused of workplace misconduct. in november 2023, avid technology was acquired by an affiliate of stg for $ 1. 4 billion. this process delisted avid from the public stock exchange, making it private. in april 2024, avid appointed wellford dillard as ceo, Question: What part of the body does emphysema affect? A) bones B) heart C) brain D) lungs
D) lungs
Context: it is well known and well established by scientific observation that a free neutron radioactively decays into a proton plus an electron plus an anti - neutrino with a mean life time before decay of about 900 seconds. that established fact conflicts sharply with the hypothesis that the neutron is composed of two down plus one up quark and that the proton is composed of one down plus two up quarks. that conflict throws doubt on the entire quark hypothesis. , they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β€” a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei ; they must be slowed ( slow neutrons ), generally by collision with the nuclei of a neutron moderator, before they can be easily captured. today, this type of fission is commonly used to generate electricity. = = = nuclear fusion = = = if nuclei are forced to collide, they can undergo nuclear fusion. this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleos has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β€” a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union ( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - contains a unique number that when added with any number leaves the latter unchanged. this unique number is known as the system ' s additive identity element. for example, the integers has the structure of an ordered ring. this number is generally denoted as 0. because of the total order in this ring, there are numbers greater than zero, called the positive numbers. another property required for a ring to be ordered is that, for each positive number, there exists a unique corresponding number less than 0 whose sum with the original positive number is 0. these numbers less than 0 are called the negative numbers. the numbers in each such pair are their respective additive inverses. this attribute of a number, being exclusively either zero ( 0 ), positive ( + ), or negative ( βˆ’ ), is called its sign, and is often encoded to the real numbers 0, 1, and βˆ’1, respectively ( similar to the way the sign function is defined ). since rational and real numbers are also ordered rings ( in fact ordered fields ), the sign attribute also applies to these number systems. when a minus sign is used in between two numbers, it represents the binary operation of subtraction. when a minus sign is written before a single number, it represents the unary operation of yielding the additive inverse ( sometimes called negation ) of the operand. abstractly then, the difference of two number is the sum of the minuend with the additive inverse of the subtrahend. while 0 is its own additive inverse ( βˆ’0 = 0 ), the additive inverse of a positive number is negative, and the additive inverse of a negative number is positive. a double application of this operation is written as βˆ’ ( βˆ’3 ) = 3. the plus sign is predominantly used in algebra to denote the binary operation of addition, and only rarely to emphasize the positivity of an expression. in common numeral notation ( used in arithmetic and elsewhere ), the sign of a number is often made explicit by placing a plus or a minus sign before the number. for example, + 3 denotes " positive three ", and βˆ’3 denotes " negative three " ( algebraically : the additive inverse of 3 ). without specific context ( or when no explicit sign is given ), a number is interpreted per default as positive. this notation establishes a strong association of the minus sign " βˆ’ " with negative numbers, and the plus sign " + " with positive numbers. = = = sign of zero = = = within the convention of zero being neither positive nor negative, the r - process of nucleosynthesis requires a large neutron - to - seed nucleus ratio. this does not, however, that there be an excess of neutrons over protons. if the expansion of the material is sufficiently rapid and the entropy per nucleon is sufficiently high, the nucleosynthesis enters a heavy - element synthesis regime heretofore unexplored. in this extreme regime, characterized by a persistent disequilibrium between free nucleons and the abundant alpha particles, heavy r - process nuclei can form even in matter with more protons than neutrons. this observation bears on the issue of the site of the r - process, on the variability of abundance yields from r - process events, and on cnstraints on neutrino physics derived from nucleosynthesis. it also clarifies the difference between nucleosynthesis in the early universe and that in less extreme stellar explosive environments. Β§ other meanings below. = = sign of a number = = numbers from various number systems, like integers, rationals, complex numbers, quaternions, octonions,... may have multiple attributes, that fix certain properties of a number. a number system that bears the structure of an ordered ring contains a unique number that when added with any number leaves the latter unchanged. this unique number is known as the system ' s additive identity element. for example, the integers has the structure of an ordered ring. this number is generally denoted as 0. because of the total order in this ring, there are numbers greater than zero, called the positive numbers. another property required for a ring to be ordered is that, for each positive number, there exists a unique corresponding number less than 0 whose sum with the original positive number is 0. these numbers less than 0 are called the negative numbers. the numbers in each such pair are their respective additive inverses. this attribute of a number, being exclusively either zero ( 0 ), positive ( + ), or negative ( βˆ’ ), is called its sign, and is often encoded to the real numbers 0, 1, and βˆ’1, respectively ( similar to the way the sign function is defined ). since rational and real numbers are also ordered rings ( in fact ordered fields ), the sign attribute also applies to these number systems. when a minus sign is used in between two numbers, it represents the binary operation of subtraction. when a minus sign is written before a single number, it represents the unary operation of yielding the additive inverse ( sometimes called negation ) of the operand. abstractly then, the difference of two number is the sum of the minuend with the additive inverse of the subtrahend. while 0 is its own additive inverse ( βˆ’0 = 0 ), the additive inverse of a positive number is negative, and the additive inverse of a negative number is positive. a double application of this operation is written as βˆ’ ( βˆ’3 ) = 3. the plus sign is predominantly used in algebra to denote the binary operation of addition, and only rarely to emphasize the positivity of an expression. in common numeral notation ( used in arithmetic and elsewhere ), the sign of a number is often made explicit by placing a plus or a minus sign before the number. for example, + 3 denotes " positive three ", and βˆ’3 denotes " negative three " ( algebraically : the additive inverse of 3 ). without specific context ( or when Question: What number is the sum of the numbers of protons and neutrons present in the nucleus of an atom? A) combined number B) mass total C) mass number D) nuclear number
C) mass number