input
stringlengths 2.6k
28.8k
| output
stringlengths 4
150
|
---|---|
Context:
##ctonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s
three major planets, venus, earth, and mercury formed out of the solar nebula. a fourth planetesimal, theia, also formed near earth where it collided in a giant impact, rebounding as the planet mars. during this impact earth lost $ { \ approx } 4 $ \ % of its crust and mantle that is now is found on mars and the moon. at the antipode of the giant impact, $ \ approx $ 60 \ % of earth ' s crust, atmosphere, and a large amount of mantle were ejected into space forming the moon. the lost crust never reformed and became the earth ' s ocean basins. the theia impact site corresponds to indian ocean gravitational anomaly on earth and the hellas basin on mars. the dynamics of the giant impact are consistent with the rotational rates and axial tilts of both earth and mars. the giant impact removed sufficient co $ _ 2 $ from earth ' s atmosphere to avoid a runaway greenhouse effect, initiated plate tectonics, and gave life time to form near geothermal vents at the continental margins. mercury formed near venus where on a close approach it was slingshot into the sun ' s convective zone losing 94 \ % of its mass, much of which remains there today. black carbon, from co $ _ 2 $ decomposed by the intense heat, is still found on the surface of mercury. arriving at 616 km / s, mercury dramatically altered the sun ' s rotational energy, explaining both its anomalously slow rotation rate and axial tilt. these results are quantitatively supported by mass balances, the current locations of the terrestrial planets, and the orientations of their major orbital axes.
##das, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc β 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using inductive reasoning in his works physics and meteorology. while aristotle considered natural philosophy more seriously than his predecessors, he approached it as a theoretical branch of science. still, inspired by his work, ancient roman philosophers of the early 1st century ad, including lucretius, seneca and pliny the elder, wrote treatise
radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is not the only deadly component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. civilian nuclear and radiological accidents primarily involve nuclear power plants. most common are nuclear leaks that expose workers to hazardous material. a nuclear meltdown refers to the more serious hazard of releasing nuclear material into the surrounding environment. the most significant meltdowns occurred at three mile island in pennsylvania and chernobyl in the soviet ukraine. the earthquake and tsunami on march 11, 2011 caused serious damage to three nuclear reactors and a spent fuel storage pond at the fukushima daiichi nuclear power plant in japan. military reactors that experienced similar accidents were windscale in the united kingdom and sl - 1 in the united states. military accidents usually involve the loss or unexpected detonation of nuclear weapons. the castle bravo test in 1954 produced a larger yield than expected, which contaminated nearby islands, a japanese fishing boat ( with one fatality ), and raised concerns about contaminated fish in japan. in the 1950s through 1970s, several nuclear bombs were lost from submarines and aircraft, some of which have never been recovered. the last twenty years have seen a marked decline in such accidents. = = examples of environmental benefits = = proponents of nuclear energy note that annually, nuclear - generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels. additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed / recycled for other energy uses. proponents of nuclear energy also bring to attention the opportunity cost of utilizing other forms of electricity. for example, the environmental protection agency estimates that coal kills 30, 000 people a year, as a result of its environmental impact, while 60 people died in the chernobyl disaster. a real world example of impact provided by proponents of nuclear energy is the 650, 000 ton increase in carbon emissions in the two months following the closure of the vermont yankee nuclear plant. = = see also = = atomic age lists of nuclear disasters and radioactive incidents nuclear power debate outline of nuclear technology radiology = = references = = = = external links = = nuclear energy institute β beneficial uses
, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest
the social web has linked people on a global scale, transforming how we communicate and interact. the massive interconnectedness has created new vulnerabilities in the form of social manipulation and misinformation. as the social web matures, we are entering a new phase, where people share their private feelings and emotions. this so - called social emotional web creates new opportunities for human flourishing, but also exposes new vulnerabilities. to reap the benefits of the social emotional web, and reduce potential harms, we must anticipate how it will evolve and create policies that minimize risks.
##morphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to
difficult. = = nuclear weapons = = a nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion. both reactions release vast quantities of energy from relatively small amounts of matter. even small nuclear devices can devastate a city by blast, fire and radiation. nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality ( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february
team of physicists who were concerned that nazi germany might also be seeking to build a bomb based on nuclear fission. ( the earliest known nuclear reaction on earth occurred naturally, 1. 7 billion years ago, in oklo, gabon, africa. ) the second artificial nuclear reactor, the x - 10 graphite reactor, was also a part of the manhattan project, as were the plutonium - producing reactors of the hanford engineer works. the first nuclear reactor to generate electricity was experimental breeder reactor i ( ebr - i ), which did so near arco, idaho, in 1951. ebr - i was a standalone facility, not connected to a grid, but a later idaho research reactor in the borax series did briefly supply power to the town of arco in 1955. the first commercial nuclear power plant, built to be connected to an electrical grid, is the obninsk nuclear power plant, which began operation in 1954. the second is the shippingport atomic power station, which produced electricity in 1957. for a chronology, from the discovery of uranium to the current era, see outline history of nuclear energy or history of nuclear power. also see history of nuclear engineering part 1 : radioactivity, part 2 : building the bomb, and part 3 : atoms for peace. see list of commercial nuclear reactors for a comprehensive listing of nuclear power reactors and iaea power reactor information system ( pris ) for worldwide and country - level statistics on nuclear power generation. = = sub - disciplines = = nuclear engineers work in such areas as the following : nuclear reactor design, which has evolved from the generation i, proof - of concept, reactors of the 1950s and 1960s, to generation ii, generation iii, and generation iv concepts thermal hydraulics and heat transfer. in a typical nuclear power plant, heat generates steam that drives a steam turbine and a generator that produces electricity materials science as it relates to nuclear power applications managing the nuclear fuel cycle, in which fissile material is obtained, formed into fuel, removed when depleted, and safely stored or reprocessed nuclear propulsion, mainly for military naval vessels, but there have been concepts for aircraft and missiles. nuclear power has been used in space since the 1960s plasma physics, which is integral to the development of fusion power weapons development and management generation of radionuclides, which have applications in industry, medicine, and many other areas nuclear waste management health physics nuclear medicine and medical physics health and safety instrumentation and control engineering process engineering project management quality engineering reactor operations nuclear security ( detection of
let $ p \ in ( 1, n ) $. if $ \ omega $ is a convex domain in $ \ rn $ whose $ p $ - capacitary potential function $ u $ is $ ( 1 - p ) / ( n - p ) $ - concave ( i. e. $ u ^ { ( 1 - p ) / ( n - p ) } $ is convex ), then $ \ omega $ is a ball.
Question: What type of earthquake creates a tsunami?
A) volcanic
B) collapse
C) underwater
D) Tectonic
|
C) underwater
|
Context:
the origin of the martian moons deimos and phobos is controversial. one hypothesis for their origin is that they are captured asteroids, but the mechanism requires an extremely dense martian atmosphere, and the mechanism by which an asteroid in solar orbit could shed sufficient orbital energy to be captured into mars orbit has not been well elucidated. since the discovery by the space probe galileo that the asteroid ida has a moon " dactyl ", a significant number of asteroids have been discovered to have smaller asteroids in orbit about them. the existence of asteroid moons provides a mechanism for the capture of the martian moons ( and the small moons of the outer planets ). when a binary asteroid makes a close approach to a planet, tidal forces can strip the moon from the asteroid. depending on the phasing, the asteroid can then be captured. clearly, the same process can be used to explain the origin of any of the small moons in the solar system.
the gas giant planets in the solar system have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. if a jupiter - like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. the hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. at some planet - star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. this runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. however, for icy moons of ganymede ' s size around a sun - like star we found that surface water ( either ice or liquid ) can persist indefinitely outside the runaway greenhouse orbital distance. in contrast, the surface water on smaller moons of europa ' s size will only persist on timescales greater than 1 gyr at distances ranging 1. 49 to 0. 74 au around a sun - like star for bond albedos of 0. 2 and 0. 8, where the lower albedo becomes relevant if ice melts. consequently, small moons can lose their icy shells, which would create a torus of h atoms around their host planet that might be detectable in future observations.
are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the
venus flytrap and bladderworts, and the pollinia of orchids. the hypothesis that plant growth and development is coordinated by plant hormones or plant growth regulators first emerged in the late 19th century. darwin experimented on the movements of plant shoots and roots towards light and gravity, and concluded " it is hardly an exaggeration to say that the tip of the radicle.. acts like the brain of one of the lower animals.. directing the several movements ". about the same time, the role of auxins ( from the greek auxein, to grow ) in control of plant growth was first outlined by the dutch scientist frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission,
and measuring radiation levels. the surveyor program conducted uncrewed lunar landings and takeoffs, as well as taking surface and regolith observations. despite the setback caused by the apollo 1 fire, which killed three astronauts, the program proceeded. apollo 8 was the first crewed spacecraft to leave low earth orbit and the first human spaceflight to reach the moon. the crew orbited the moon ten times on december 24 and 25, 1968, and then traveled safely back to earth. the three apollo 8 astronauts β frank borman, james lovell, and william anders β were the first humans to see the earth as a globe in space, the first to witness an earthrise, and the first to see and manually photograph the far side of the moon. the first lunar landing was conducted by apollo 11. commanded by neil armstrong with astronauts buzz aldrin and michael collins, apollo 11 was one of the most significant missions in nasa ' s history, marking the end of the space race when the soviet union gave up its lunar ambitions. as the first human to step on the surface of the moon, neil armstrong uttered the now famous words : that ' s one small step for man, one giant leap for mankind. nasa would conduct six total lunar landings as part of the apollo program, with apollo 17 concluding the program in 1972. = = = = end of apollo = = = = wernher von braun had advocated for nasa to develop a space station since the agency was created. in 1973, following the end of the apollo lunar missions, nasa launched its first space station, skylab, on the final launch of the saturn v. skylab reused a significant amount of apollo and saturn hardware, with a repurposed saturn v third stage serving as the primary module for the space station. damage to skylab during its launch required spacewalks to be performed by the first crew to make it habitable and operational. skylab hosted nine missions and was decommissioned in 1974 and deorbited in 1979, two years prior to the first launch of the space shuttle and any possibility of boosting its orbit. in 1975, the apollo β soyuz mission was the first ever international spaceflight and a major diplomatic accomplishment between the cold war rivals, which also marked the last flight of the apollo capsule. flown in 1975, a us apollo spacecraft docked with a soviet soyuz capsule. = = = interplanetary exploration and space science = = = during the 1960s, nasa started its space science and interplanetary probe program. the mariner program was its flagship
, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the widespread application of the factory system. this was followed a century later by the second industrial revolution which led to rapid scientific discovery, standardization, and mass production. new technologies were developed, including sewage systems, electricity, light bulbs, electric motors, railroads, automobiles, and airplanes. these technological advances led to significant developments in medicine
smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short generation times. corn has been used to study mechanisms of photosynthesis and phloem loading of sugar in c4 plants. the single celled green alga chlamydomonas reinhardtii, while not an embryophyte itself, contains a green - pigmented chloroplast related to that of land plants, making it useful for study. a red alga cyanidioschyzon merolae has also been used to study some basic chloroplast functions. spinach, peas, soybeans and a moss physcomitrella patens are commonly used to study plant cell biology. agrobacterium tumefaciens, a soil rhizosphere bacterium, can attach to plant cells and infect them with a callus - inducing ti plasmid by horizontal gene transfer, causing a callus infection called crown gall disease. schell and van montagu ( 1977 ) hypothesised that the ti plasmid could be a natural vector for introducing the nif gene responsible for nitrogen fixation in the root nodules of legumes and other plant species. today, genetic modification of the ti plasmid is one of the main techniques for introduction of transgenes to plants and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added
fuel cells instead of batteries, and conducted the first american spacewalks and rendezvous operations. the ranger program was started in the 1950s as a response to soviet lunar exploration, however most missions ended in failure. the lunar orbiter program had greater success, mapping the surface in preparation for apollo landings, conducting meteoroid detection, and measuring radiation levels. the surveyor program conducted uncrewed lunar landings and takeoffs, as well as taking surface and regolith observations. despite the setback caused by the apollo 1 fire, which killed three astronauts, the program proceeded. apollo 8 was the first crewed spacecraft to leave low earth orbit and the first human spaceflight to reach the moon. the crew orbited the moon ten times on december 24 and 25, 1968, and then traveled safely back to earth. the three apollo 8 astronauts β frank borman, james lovell, and william anders β were the first humans to see the earth as a globe in space, the first to witness an earthrise, and the first to see and manually photograph the far side of the moon. the first lunar landing was conducted by apollo 11. commanded by neil armstrong with astronauts buzz aldrin and michael collins, apollo 11 was one of the most significant missions in nasa ' s history, marking the end of the space race when the soviet union gave up its lunar ambitions. as the first human to step on the surface of the moon, neil armstrong uttered the now famous words : that ' s one small step for man, one giant leap for mankind. nasa would conduct six total lunar landings as part of the apollo program, with apollo 17 concluding the program in 1972. = = = = end of apollo = = = = wernher von braun had advocated for nasa to develop a space station since the agency was created. in 1973, following the end of the apollo lunar missions, nasa launched its first space station, skylab, on the final launch of the saturn v. skylab reused a significant amount of apollo and saturn hardware, with a repurposed saturn v third stage serving as the primary module for the space station. damage to skylab during its launch required spacewalks to be performed by the first crew to make it habitable and operational. skylab hosted nine missions and was decommissioned in 1974 and deorbited in 1979, two years prior to the first launch of the space shuttle and any possibility of boosting its orbit. in 1975, the apollo β soyuz mission was the first ever international spaceflight and a major diplomatic accomplishment between the cold war
light and cold extrasolar planets such as ogle 2005 - blg - 390lb, a 5. 5 earth - mass planet detected via microlensing, could be frequent in the galaxy according to some preliminary results from microlensing experiments. these planets can be frozen rocky - or ocean - planets, situated beyond the snow line and, therefore, beyond the habitable zone of their system. they can nonetheless host a layer of liquid water, heated by radiogenic energy, underneath an ice shell surface for billions of years, before freezing completely. these results suggest that oceans under ice, like those suspected to be present on icy moons in the solar system, could be a common feature of cold low - mass extrasolar planets.
also launched missions to mercury in 2004, with the messenger probe demonstrating as the first use of a solar sail. nasa also launched probes to the outer solar system starting in the 1960s. pioneer 10 was the first probe to the outer planets, flying by jupiter, while pioneer 11 provided the first close up view of the planet. both probes became the first objects to leave the solar system. the voyager program launched in 1977, conducting flybys of jupiter and saturn, neptune, and uranus on a trajectory to leave the solar system. the galileo spacecraft, deployed from the space shuttle flight sts - 34, was the first spacecraft to orbit jupiter, discovering evidence of subsurface oceans on the europa and observed that the moon may hold ice or liquid water. a joint nasa - european space agency - italian space agency mission, cassini β huygens, was sent to saturn ' s moon titan, which, along with mars and europa, are the only celestial bodies in the solar system suspected of being capable of harboring life. cassini discovered three new moons of saturn and the huygens probe entered titan ' s atmosphere. the mission discovered evidence of liquid hydrocarbon lakes on titan and subsurface water oceans on the moon of enceladus, which could harbor life. finally launched in 2006, the new horizons mission was the first spacecraft to visit pluto and the kuiper belt. beyond interplanetary probes, nasa has launched many space telescopes. launched in the 1960s, the orbiting astronomical observatory were nasa ' s first orbital telescopes, providing ultraviolet, gamma - ray, x - ray, and infrared observations. nasa launched the orbiting geophysical observatory in the 1960s and 1970s to look down at earth and observe its interactions with the sun. the uhuru satellite was the first dedicated x - ray telescope, mapping 85 % of the sky and discovering a large number of black holes. launched in the 1990s and early 2000s, the great observatories program are among nasa ' s most powerful telescopes. the hubble space telescope was launched in 1990 on sts - 31 from the discovery and could view galaxies 15 billion light years away. a major defect in the telescope ' s mirror could have crippled the program, had nasa not used computer enhancement to compensate for the imperfection and launched five space shuttle servicing flights to replace the damaged components. the compton gamma ray observatory was launched from the atlantis on sts - 37 in 1991, discovering a possible source of antimatter at the center of the milky way and observing that the majority of gamma - ray bursts
Question: What is the smallest of the galilean moons?
A) phoebe
B) demos
C) europa
D) aura
|
C) europa
|
Context:
is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged
a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water.
with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of
electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase
activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by
. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be
current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the
analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (
are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom
in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction
Question: What is the term for a combination of substances in which there is no chemical reaction?
A) a mixture
B) a solution
C) a solute
D) a combination
|
A) a mixture
|
Context:
is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged
analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (
a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water.
other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle
with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of
. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be
the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then
energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction.
methods may be used in all subdisciplines of chemistry, excluding purely theoretical chemistry. biochemistry is the study of the chemicals, chemical reactions and interactions that take place at a molecular level in living organisms. biochemistry is highly interdisciplinary, covering medicinal chemistry, neurochemistry, molecular biology, forensics, plant science and genetics. inorganic chemistry is the study of the properties and reactions of inorganic compounds, such as metals and minerals. the distinction between organic and inorganic disciplines is not absolute and there is much overlap, most importantly in the sub - discipline of organometallic chemistry. materials chemistry is the preparation, characterization, and understanding of solid state components or devices with a useful current or future function. the field is a new breadth of study in graduate programs, and it integrates elements from all classical areas of chemistry like organic chemistry, inorganic chemistry, and crystallography with a focus on fundamental issues that are unique to materials. primary systems of study include the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but
the walls of a victim ' s stomach. toxicology, a subfield of forensic chemistry, focuses on detecting and identifying drugs, poisons, and other toxic substances in biological samples. forensic toxicologists work on cases involving drug overdoses, poisoning, and substance abuse. their work is critical in determining whether harmful substances play a role in a person β s death or impairment. read more james marsh was the first to apply this new science to the art of forensics. he was called by the prosecution in a murder trial to give evidence as a chemist in 1832. the defendant, john bodle, was accused of poisoning his grandfather with arsenic - laced coffee. marsh performed the standard test by mixing a suspected sample with hydrogen sulfide and hydrochloric acid. while he was able to detect arsenic as yellow arsenic trisulfide, when it was shown to the jury it had deteriorated, allowing the suspect to be acquitted due to reasonable doubt. annoyed by that, marsh developed a much better test. he combined a sample containing arsenic with sulfuric acid and arsenic - free zinc, resulting in arsine gas. the gas was ignited, and it decomposed to pure metallic arsenic, which, when passed to a cold surface, would appear as a silvery - black deposit. so sensitive was the test, known formally as the marsh test, that it could detect as little as one - fiftieth of a milligram of arsenic. he first described this test in the edinburgh philosophical journal in 1836. = = = ballistics and firearms = = = ballistics is " the science of the motion of projectiles in flight ". in forensic science, analysts examine the patterns left on bullets and cartridge casings after being ejected from a weapon. when fired, a bullet is left with indentations and markings that are unique to the barrel and firing pin of the firearm that ejected the bullet. this examination can help scientists identify possible makes and models of weapons connected to a crime. henry goddard at scotland yard pioneered the use of bullet comparison in 1835. he noticed a flaw in the bullet that killed the victim and was able to trace this back to the mold that was used in the manufacturing process. = = = anthropometry = = = the french police officer alphonse bertillon was the first to apply the anthropological technique of anthropometry to law enforcement, thereby creating an identification system based on physical measurements. before that time, criminals could be identified only by name or photograph. dissatisfied with the ad hoc methods used to identify captured
Question: Where does the majority of chemical digestion occur?
A) stomach
B) large intestine
C) small intestine
D) mouth
|
C) small intestine
|
Context:
parametric excitation of rotons by oscillating electric field exhibits a narrow resonance at the roton minimum frequency. the resonance width is in good agreement with experimental results on the microwave absorption in superfluid helium.
as a traditional tool of external assistance, crutches play an important role in society. they have a wide range of applications to help either the elderly and disabled to walk or to treat certain illnesses or for post - operative rehabilitation. but there are many different types of crutches, including shoulder crutches and elbow crutches. how to choose has become an issue that deserves to be debated. because while crutches help people walk, they also have an impact on the body. inappropriate choice of crutches or long - term misuse can lead to problems such as scoliosis. previous studies were mainly experimental measurements or the construction of dynamic models to calculate the load on joints with crutches. these studies focus only on the level of the joints, ignoring the role that muscles play in this process. although some also take into account the degree of muscle activation, there is still a lack of quantitative analysis. the traditional dynamic model can be used to calculate the load on each joint. however, due to the activation of the muscle, this situation only causes part of the load transmitted to the joint, and the work of the chair will compensate the other part of the load. analysis at the muscle level allows a better understanding of the impact of crutches on the body. by comparing the levels of activation of the trunk muscles, it was found that the use of crutches for walking, especially a single crutch, can cause a large difference in the activation of the back muscles on the left and right sides, and this difference will cause muscle degeneration for a long time, leading to scoliosis. in this article taking scoliosis as an example, by analyzing the muscles around the spine, we can better understand the pathology and can better prevent diseases. the objective of this article is to analyze normal walking compared to walking with one or two crutches using opensim software to obtain the degree of activation of different muscles in order to analyze the impact of crutches on the body.
any two generating systems of the fundamental group of a closed surface are nielsen equivalent.
the divergence found by nesterenko, lambiase and scarpetta in the casimir energy on a semi - circular cylinder is attributed to the existence of edges.
symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that
penner coordinates are extended to the teichm \ " uller spaces of oriented closed surfaces.
assuming that the e ( 38 ) boson candidate recently observed at the jinr nuclotron is produced in a bremsstrahlung - like manner and decays only to two photons, its coupling constant to light quarks is estimated to be $ \ sim 10 ^ { - 4 } $.
development and interaction of starting vortices initiated by dielectric barrier discharge ( dbd ) plasma actuators in quiescent air are illustrated in the attached fluid dynamics videos. these include a series of smoke flow visualisations, showing the starting vortices moving parallel or normal to the wall at several different actuator configurations.
. additionally, there are more sophisticated vr systems being developed which allow the user to use their entire body in their recovery. it also has sophisticated sensors that would allow medical professionals to collect data on muscle engagement and tension. it uses electrical impedance tomography, a form of noninvasive imaging to view muscle usage. another concern is the lack of major funding by big companies and the government into the field. many of these vr sets are off the shelf items, and not properly made for medical use. external add - ones are usually 3d printed or made from spare parts from other electronics. this lack of support means that patients who want to try this method have to be technically savvy, which is unlikely as many ailments only appear later in life. additionally, certain parts of vr like haptic feedback and tracking are still not advanced enough to be used reliably in a medical setting. another issue is the amount of vr devices that are available for purchase. while this does increase the options available, the differences between vr systems could impact patient recovery. the vast number of vr devices also makes it difficult for medical professionals to give and interpret information, as they might not have had practice with the specific model, which could lead to faulty advice being given out. = = = applications = = = currently other applications within healthcare are being explored, such as : applications for monitoring of glucose, alcohol, and lactate or blood oxygen, breath monitoring, heartbeat, heart rate and its variability, electromyography ( emg ), electrocardiogram ( ecg ) and electroencephalogram ( eeg ), body temperature, pressure ( e. g. in shoes ), sweat rate or sweat loss, levels of uric acid and ions β e. g. for preventing fatigue or injuries or for optimizing training patterns, including via " human - integrated electronics " forecasting changes in mood, stress, and health measuring blood alcohol content measuring athletic performance monitoring how sick the user is detecting early signs of infection long - term monitoring of patients with heart and circulatory problems that records an electrocardiogram and is self - moistening health risk assessment applications, including measures of frailty and risks of age - dependent diseases automatic documentation of care activities days - long continuous imaging of diverse organs via a wearable bioadhesive stretchable high - resolution ultrasound imaging patch or e. g. a wearable continuous heart ultrasound imager. ( potential novel diagnostic and monitoring tools ) sleep tracking cortisol monitoring for measuring stress measuring relaxation or alert
the kinematic moment of inertia of the rare earth even - even nuclei was calculated using three parametric energy based expression. the plot of kinematic moment of inertia versus nuclear spin shows a better sensitivity to back bending than energy plot.
Question: The vertebrate endoskeleton includes a vertebral column, cranium, limbs, and what else?
A) blood girdles
B) tissue girdles
C) limb girdles
D) Skin Girdles
|
C) limb girdles
|
Context:
a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 β 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 β 2 ), or a downshift maneuver in passing ( 4 β 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new part in the design must support the development and manufacturing schedule of the model. design for manufacturability ( dfm ) : dfm refers to designing vehicular components in such a way that they are not only feasible to manufacture, but also such that they are cost - efficient to produce while resulting in acceptable
there are no limits for the speeds of light and particles in general relativity ( gr ). four examples illustrate this basic result, which is too often neglected.
missiles, ships, vehicles, and also to map weather patterns and terrain. a radar set consists of a transmitter and receiver. the transmitter emits a narrow beam of radio waves which is swept around the surrounding space. when the beam strikes a target object, radio waves are reflected back to the receiver. the direction of the beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it
beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar β an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical
earth. each satellite has an onboard atomic clock and transmits a continuous radio signal containing a precise time signal as well as its current position. two frequencies are used, 1. 2276 and 1. 57542 ghz. since the velocity of radio waves is virtually constant, the delay of the radio signal from a satellite is proportional to the distance of the receiver from the satellite. by receiving the signals from at least four satellites a gps receiver can calculate its position on earth by comparing the arrival time of the radio signals. since each satellite ' s position is known precisely at any given time, from the delay the position of the receiver can be calculated by a microprocessor in the receiver. the position can be displayed as latitude and longitude, or as a marker on an electronic map. gps receivers are incorporated in almost all cellphones and in vehicles such as automobiles, aircraft, and ships, and are used to guide drones, missiles, cruise missiles, and even artillery shells to their target, and handheld gps receivers are produced for hikers and the military. radio beacon β a fixed location terrestrial radio transmitter which transmits a continuous radio signal used by aircraft and ships for navigation. the locations of beacons are plotted on navigational maps used by aircraft and ships. vhf omnidirectional range ( vor ) β a worldwide aircraft radio navigation system consisting of fixed ground radio beacons transmitting between 108. 00 and 117. 95 mhz in the very high frequency ( vhf ) band. an automated navigational instrument on the aircraft displays a bearing to a nearby vor transmitter. a vor beacon transmits two signals simultaneously on different frequencies. a directional antenna transmits a beam of radio waves that rotates like a lighthouse at a fixed rate, 30 times per second. when the directional beam is facing north, an omnidirectional antenna transmits a pulse. by measuring the difference in phase of these two signals, an aircraft can determine its bearing ( or " radial " ) from the station accurately. by taking a bearing on two vor beacons an aircraft can determine its position ( called a " fix " ) to an accuracy of about 90 metres ( 300 ft ). most vor beacons also have a distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate
systems are responsible for operational controls such as the throttle, brake and steering controls ; as well as many comfort - and - convenience systems such as the hvac, infotainment, and lighting systems. it would not be possible for automobiles to meet modern safety and fuel - economy requirements without electronic controls. performance : performance is a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 β 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 β 2 ), or a downshift maneuver in passing ( 4 β 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new
and bad nvh qualities. the nvh engineer works to either eliminate bad nvh or change the " bad nvh " to good ( i. e., exhaust tones ). vehicle electronics : automotive electronics is an increasingly important aspect of automotive engineering. modern vehicles employ dozens of electronic systems. these systems are responsible for operational controls such as the throttle, brake and steering controls ; as well as many comfort - and - convenience systems such as the hvac, infotainment, and lighting systems. it would not be possible for automobiles to meet modern safety and fuel - economy requirements without electronic controls. performance : performance is a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 β 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 β 2 ), or a downshift maneuver in passing ( 4 β 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect
electromagnetic induction. the transmission speed ranges from 2 mbit / s to 10 gbit / s. twisted pair cabling comes in two forms : unshielded twisted pair ( utp ) and shielded twisted - pair ( stp ). each form comes in several category ratings, designed for use in various scenarios. an optical fiber is a glass fiber. it carries pulses of light that represent data via lasers and optical amplifiers. some advantages of optical fibers over metal wires are very low transmission loss and immunity to electrical interference. using dense wave division multiplexing, optical fibers can simultaneously carry multiple streams of data on different wavelengths of light, which greatly increases the rate that data can be sent to up to trillions of bits per second. optic fibers can be used for long runs of cable carrying very high data rates, and are used for undersea communications cables to interconnect continents. there are two basic types of fiber optics, single - mode optical fiber ( smf ) and multi - mode optical fiber ( mmf ). single - mode fiber has the advantage of being able to sustain a coherent signal for dozens or even a hundred kilometers. multimode fiber is cheaper to terminate but is limited to a few hundred or even only a few dozens of meters, depending on the data rate and cable grade. = = = wireless = = = network connections can be established wirelessly using radio or other electromagnetic means of communication. terrestrial microwave β terrestrial microwave communication uses earth - based transmitters and receivers resembling satellite dishes. terrestrial microwaves are in the low gigahertz range, which limits all communications to line - of - sight. relay stations are spaced approximately 40 miles ( 64 km ) apart. communications satellites β satellites also communicate via microwave. the satellites are stationed in space, typically in geosynchronous orbit 35, 400 km ( 22, 000 mi ) above the equator. these earth - orbiting systems are capable of receiving and relaying voice, data, and tv signals. cellular networks use several radio communications technologies. the systems divide the region covered into multiple geographic areas. each area is served by a low - power transceiver. radio and spread spectrum technologies β wireless lans use a high - frequency radio technology similar to digital cellular. wireless lans use spread spectrum technology to enable communication between multiple devices in a limited area. ieee 802. 11 defines a common flavor of open - standards wireless radio - wave technology known as wi - fi. free - space optical communication uses visible or invisible light for communications. in most cases, line - of
, its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the amount of control in inclement weather ( snow, ice, rain ). shift quality : shift quality is the driver ' s perception of the vehicle to an automatic transmission shift event. this is influenced by the powertrain ( internal combustion engine, transmission ), and the vehicle ( driveline, suspension, engine and powertrain mounts, etc. ) shift feel is both a tactile ( felt ) and audible ( heard ) response of the vehicle. shift quality is experienced as various events : transmission shifts are felt as an upshift at acceleration ( 1 β 2 ), or a downshift maneuver in passing ( 4 β 2 ). shift engagements of the vehicle are also evaluated, as in park to reverse, etc. durability / corrosion engineering : durability and corrosion engineering is the evaluation testing of a vehicle for its useful life. tests include mileage accumulation, severe driving conditions, and corrosive salt baths. drivability : drivability is the vehicle ' s response to general driving conditions. cold starts and stalls, rpm dips, idle response, launch hesitations and stumbles, and performance levels all contribute to the overall drivability of any given vehicle. cost : the cost of a vehicle program is typically split into the effect on the variable cost of the vehicle, and the up - front tooling and fixed costs associated with developing the vehicle. there are also costs associated with warranty reductions and marketing. program timing : to some extent programs are timed with respect to the market, and also to the production - schedules of assembly plants. any new part in the design must support the development and manufacturing schedule of the model. design for manufacturability ( dfm ) : dfm refers to designing vehicular components in such a way that they are not only feasible to manufacture, but also such that they are cost - efficient to produce while resulting in acceptable quality that meets design specifications and engineering tolerances. this requires coordination between the design engineers and the assembly / manufacturing teams. quality management : quality control is an important factor within the production process, as high quality is needed to meet customer requirements and to avoid expensive recall campaigns. the complexity of components involved in the production process requires
or magnitude. magnitudes are always non - negative real numbers, and to any non - zero number there belongs a positive real number, its absolute value. for example, the absolute value of β3 and the absolute value of 3 are both equal to 3. this is written in symbols as | β3 | = 3 and | 3 | = 3. in general, any arbitrary real value can be specified by its magnitude and its sign. using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. this relation can be generalized to define a sign for complex numbers. since the real and complex numbers both form a field and contain the positive reals, they also contain the reciprocals of the magnitudes of all non - zero numbers. this means that any non - zero number may be multiplied with the reciprocal of its magnitude, that is, divided by its magnitude. it is immediate that the quotient of any non - zero real number by its magnitude yields exactly its sign. by analogy, the sign of a complex number z can be defined as the quotient of z and its magnitude | z |. the sign of a complex number is the exponential of the product of its argument with the imaginary unit. represents in some sense its complex argument. this is to be compared to the sign of real numbers, except with e i Ο = β 1. { \ displaystyle e ^ { i \ pi } = - 1. } for the definition of a complex sign - function. see Β§ complex sign function below. = = = sign functions = = = when dealing with numbers, it is often convenient to have their sign available as a number. this is accomplished by functions that extract the sign of any number, and map it to a predefined value before making it available for further calculations. for example, it might be advantageous to formulate an intricate algorithm for positive values only, and take care of the sign only afterwards. = = = = real sign function = = = = the sign function or signum function extracts the sign of a real number, by mapping the set of real numbers to the set of the three reals { β 1, 0, 1 }. { \ displaystyle \ { - 1, \ ; 0, \ ; 1 \ }. } it can be defined as follows : sgn : r β { β 1, 0, 1 } x β¦ sgn ( x ) = { β 1 if x < 0, 0 if x = 0
Question: What is defined as the velocity of the object at a given moment?
A) instantaneous velocity
B) relativistic velocity
C) specific gravity
D) inertia
|
A) instantaneous velocity
|
Context:
a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water.
. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be
in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid
endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer
. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of
factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic
, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive
energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction.
analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (
options ( e. g., voting behavior, choice of a punishment for another participant ). reaction time. the time between the presentation of a stimulus and an appropriate response can indicate differences between two cognitive processes, and can indicate some things about their nature. for example, if in a search task the reaction times vary proportionally with the number of elements, then it is evident that this cognitive process of searching involves serial instead of parallel processing. psychophysical responses. psychophysical experiments are an old psychological technique, which has been adopted by cognitive psychology. they typically involve making judgments of some physical property, e. g. the loudness of a sound. correlation of subjective scales between individuals can show cognitive or sensory biases as compared to actual physical measurements. some examples include : sameness judgments for colors, tones, textures, etc. threshold differences for colors, tones, textures, etc. eye tracking. this methodology is used to study a variety of cognitive processes, most notably visual perception and language processing. the fixation point of the eyes is linked to an individual ' s focus of attention. thus, by monitoring eye movements, we can study what information is being processed at a given time. eye tracking allows us to study cognitive processes on extremely short time scales. eye movements reflect online decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygen
Question: What is the term for an expression showing the relationship of the reaction rate to the concentrations of each reactant?
A) decay law
B) rate law
C) flow law
D) concentric law
|
B) rate law
|
Context:
single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division
not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic (
, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment processes such as quenching and tempering can significantly change these properties, however. in contrast, certain metal alloys exhibit unique properties where their size and density remain unchanged across a range of temperatures. cast iron is defined as an iron β carbon alloy with more than 2. 00 %, but less than 6. 67 %
( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment
the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment processes such as quenching and tempering can significantly change these properties, however. in contrast, certain metal alloys exhibit unique properties where their size and density remain unchanged across a range of temperatures. cast iron is defined as an iron β carbon alloy with more than 2. 00 %, but less than 6. 67 % carbon. stainless steel is defined as a regular steel alloy with greater than 10 % by weight alloying content of chromium. nickel and molybdenum are typically also added in stainless steels. other significant metallic alloys are those of aluminium, titanium, copper and magnesium. copper alloys have been known for a
it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes
##spersion. these additions may be termed reinforcing fibers, or dispersants, depending on their purpose. = = = polymers = = = polymers are chemical compounds made up of a large number of identical components linked together like chains. polymers are the raw materials ( the resins ) used to make what are commonly called plastics and rubber. plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. plastics in former and in current widespread use include polyethylene, polypropylene, polyvinyl chloride ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip
##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids,
three families of quarks and leptons, one higgs to rule them all, and in the darkness bind them.
commonly called plastics and rubber. plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. plastics in former and in current widespread use include polyethylene, polypropylene, polyvinyl chloride ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an
Question: How many pi bonds are found in a triple bond?
A) two
B) four
C) six
D) 10
|
A) two
|
Context:
according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in
polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly,
ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their
. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be
scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws, which have become fundamental concepts in chemistry. some of them are : = = history = = the history of chemistry spans a period from the ancient past to the present. since several millennia bc, civilizations were using technologies that would eventually form the basis of the various branches of chemistry. examples include extracting metals from ores
classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron
or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron donor. oxidation and reduction properly refer to a change in oxidation number β the actual transfer of electrons may never occur. thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. = = = equilibrium = = = although the concept of equilibrium is widely used across sciences, in the context of chemistry, it arises whenever a number of different states of the chemical composition are possible, as for example, in a mixture of several chemical compounds that can react with one another, or when a substance can be present in more than one kind of phase. a system of chemical substances at equilibrium, even though having an unchanging composition, is most often not static ; molecules of the substances continue to react with one another thus giving rise to a dynamic equilibrium. thus the concept describes the state in which the parameters such as chemical composition remain unchanged over time. = = = chemical laws = = = chemical reactions are governed by certain laws
i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an
a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water.
, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid
Question: What is formed when an acidic solution and a basic solution react together in a neutralization reaction?
A) seawater
B) Sodium
C) salt
D) shallow
|
C) salt
|
Context:
) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice,
listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves,
oil umbrella ) ; for calculating the time of death ( allowing for weather and insect activity ) ; described how to wash and examine the dead body to ascertain the reason for death. at that time the book had described methods for distinguishing between suicide and faked suicide. he wrote the book on forensics stating that all wounds or dead bodies should be examined, not avoided. the book became the first form of literature to help determine the cause of death. in one of song ci ' s accounts ( washing away of wrongs ), the case of a person murdered with a sickle was solved by an investigator who instructed each suspect to bring his sickle to one location. ( he realized it was a sickle by testing various blades on an animal carcass and comparing the wounds. ) flies, attracted by the smell of blood, eventually gathered on a single sickle. in light of this, the owner of that sickle confessed to the murder. the book also described how to distinguish between a drowning ( water in the lungs ) and strangulation ( broken neck cartilage ), and described evidence from examining corpses to determine if a death was caused by murder, suicide or accident. methods from around the world involved saliva and examination of the mouth and tongue to determine innocence or guilt, as a precursor to the polygraph test. in ancient india, some suspects were made to fill their mouths with dried rice and spit it back out. similarly, in ancient china, those accused of a crime would have rice powder placed in their mouths. in ancient middle - eastern cultures, the accused were made to lick hot metal rods briefly. it is thought that these tests had some validity since a guilty person would produce less saliva and thus have a drier mouth ; the accused would be considered guilty if rice was sticking to their mouths in abundance or if their tongues were severely burned due to lack of shielding from saliva. = = education and training = = initial glance, forensic intelligence may appear as a nascent facet of forensic science facilitated by advancements in information technologies such as computers, databases, and data - flow management software. however, a more profound examination reveals that forensic intelligence represents a genuine and emerging inclination among forensic practitioners to actively participate in investigative and policing strategies. in doing so, it elucidates existing practices within scientific literature, advocating for a paradigm shift from the prevailing conception of forensic science as a conglomerate of disciplines merely aiding the criminal justice system. instead, it urges a perspective that views forensic science as a discipline studying the informative potential of
his sickle to one location. ( he realized it was a sickle by testing various blades on an animal carcass and comparing the wounds. ) flies, attracted by the smell of blood, eventually gathered on a single sickle. in light of this, the owner of that sickle confessed to the murder. the book also described how to distinguish between a drowning ( water in the lungs ) and strangulation ( broken neck cartilage ), and described evidence from examining corpses to determine if a death was caused by murder, suicide or accident. methods from around the world involved saliva and examination of the mouth and tongue to determine innocence or guilt, as a precursor to the polygraph test. in ancient india, some suspects were made to fill their mouths with dried rice and spit it back out. similarly, in ancient china, those accused of a crime would have rice powder placed in their mouths. in ancient middle - eastern cultures, the accused were made to lick hot metal rods briefly. it is thought that these tests had some validity since a guilty person would produce less saliva and thus have a drier mouth ; the accused would be considered guilty if rice was sticking to their mouths in abundance or if their tongues were severely burned due to lack of shielding from saliva. = = education and training = = initial glance, forensic intelligence may appear as a nascent facet of forensic science facilitated by advancements in information technologies such as computers, databases, and data - flow management software. however, a more profound examination reveals that forensic intelligence represents a genuine and emerging inclination among forensic practitioners to actively participate in investigative and policing strategies. in doing so, it elucidates existing practices within scientific literature, advocating for a paradigm shift from the prevailing conception of forensic science as a conglomerate of disciplines merely aiding the criminal justice system. instead, it urges a perspective that views forensic science as a discipline studying the informative potential of traces β remnants of criminal activity. embracing this transformative shift poses a significant challenge for education, necessitating a shift in learners ' mindset to accept concepts and methodologies in forensic intelligence. recent calls advocating for the integration of forensic scientists into the criminal justice system, as well as policing and intelligence missions, underscore the necessity for the establishment of educational and training initiatives in the field of forensic intelligence. this article contends that a discernible gap exists between the perceived and actual comprehension of forensic intelligence among law enforcement and forensic science managers, positing that this asymmetry can be rectified only through educational interventions.
you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ),
medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on
the walls of a victim ' s stomach. toxicology, a subfield of forensic chemistry, focuses on detecting and identifying drugs, poisons, and other toxic substances in biological samples. forensic toxicologists work on cases involving drug overdoses, poisoning, and substance abuse. their work is critical in determining whether harmful substances play a role in a person β s death or impairment. read more james marsh was the first to apply this new science to the art of forensics. he was called by the prosecution in a murder trial to give evidence as a chemist in 1832. the defendant, john bodle, was accused of poisoning his grandfather with arsenic - laced coffee. marsh performed the standard test by mixing a suspected sample with hydrogen sulfide and hydrochloric acid. while he was able to detect arsenic as yellow arsenic trisulfide, when it was shown to the jury it had deteriorated, allowing the suspect to be acquitted due to reasonable doubt. annoyed by that, marsh developed a much better test. he combined a sample containing arsenic with sulfuric acid and arsenic - free zinc, resulting in arsine gas. the gas was ignited, and it decomposed to pure metallic arsenic, which, when passed to a cold surface, would appear as a silvery - black deposit. so sensitive was the test, known formally as the marsh test, that it could detect as little as one - fiftieth of a milligram of arsenic. he first described this test in the edinburgh philosophical journal in 1836. = = = ballistics and firearms = = = ballistics is " the science of the motion of projectiles in flight ". in forensic science, analysts examine the patterns left on bullets and cartridge casings after being ejected from a weapon. when fired, a bullet is left with indentations and markings that are unique to the barrel and firing pin of the firearm that ejected the bullet. this examination can help scientists identify possible makes and models of weapons connected to a crime. henry goddard at scotland yard pioneered the use of bullet comparison in 1835. he noticed a flaw in the bullet that killed the victim and was able to trace this back to the mold that was used in the manufacturing process. = = = anthropometry = = = the french police officer alphonse bertillon was the first to apply the anthropological technique of anthropometry to law enforcement, thereby creating an identification system based on physical measurements. before that time, criminals could be identified only by name or photograph. dissatisfied with the ad hoc methods used to identify captured
wounds or dead bodies should be examined, not avoided. the book became the first form of literature to help determine the cause of death. in one of song ci ' s accounts ( washing away of wrongs ), the case of a person murdered with a sickle was solved by an investigator who instructed each suspect to bring his sickle to one location. ( he realized it was a sickle by testing various blades on an animal carcass and comparing the wounds. ) flies, attracted by the smell of blood, eventually gathered on a single sickle. in light of this, the owner of that sickle confessed to the murder. the book also described how to distinguish between a drowning ( water in the lungs ) and strangulation ( broken neck cartilage ), and described evidence from examining corpses to determine if a death was caused by murder, suicide or accident. methods from around the world involved saliva and examination of the mouth and tongue to determine innocence or guilt, as a precursor to the polygraph test. in ancient india, some suspects were made to fill their mouths with dried rice and spit it back out. similarly, in ancient china, those accused of a crime would have rice powder placed in their mouths. in ancient middle - eastern cultures, the accused were made to lick hot metal rods briefly. it is thought that these tests had some validity since a guilty person would produce less saliva and thus have a drier mouth ; the accused would be considered guilty if rice was sticking to their mouths in abundance or if their tongues were severely burned due to lack of shielding from saliva. = = education and training = = initial glance, forensic intelligence may appear as a nascent facet of forensic science facilitated by advancements in information technologies such as computers, databases, and data - flow management software. however, a more profound examination reveals that forensic intelligence represents a genuine and emerging inclination among forensic practitioners to actively participate in investigative and policing strategies. in doing so, it elucidates existing practices within scientific literature, advocating for a paradigm shift from the prevailing conception of forensic science as a conglomerate of disciplines merely aiding the criminal justice system. instead, it urges a perspective that views forensic science as a discipline studying the informative potential of traces β remnants of criminal activity. embracing this transformative shift poses a significant challenge for education, necessitating a shift in learners ' mindset to accept concepts and methodologies in forensic intelligence. recent calls advocating for the integration of forensic scientists into the criminal justice system, as well as policing and intelligence missions, undersco
so mars below means blood and war ", is a false cause fallacy. : 26 many astrologers claim that astrology is scientific. if one were to attempt to try to explain it scientifically, there are only four fundamental forces ( conventionally ), limiting the choice of possible natural mechanisms. : 65 some astrologers have proposed conventional causal agents such as electromagnetism and gravity. the strength of these forces drops off with distance. : 65 scientists reject these proposed mechanisms as implausible since, for example, the magnetic field, when measured from earth, of a large but distant planet such as jupiter is far smaller than that produced by ordinary household appliances. astronomer phil plait noted that in terms of magnitude, the sun is the only object with an electromagnetic field of note, but astrology isn ' t based just off the sun alone. : 65 while astrologers could try to suggest a fifth force, this is inconsistent with the trends in physics with the unification of electromagnetism and the weak force into the electroweak force. if the astrologer insisted on being inconsistent with the current understanding and evidential basis of physics, that would be an extraordinary claim. : 65 it would also be inconsistent with the other forces which drop off with distance. : 65 if distance is irrelevant, then, logically, all objects in space should be taken into account. : 66 carl jung sought to invoke synchronicity, the claim that two events have some sort of acausal connection, to explain the lack of statistically significant results on astrology from a single study he conducted. however, synchronicity itself is considered neither testable nor falsifiable. the study was subsequently heavily criticised for its non - random sample and its use of statistics and also its lack of consistency with astrology. = = psychology = = psychological studies have not found any robust relationship between astrological signs and life outcomes. for example, a study showed that zodiac signs are no more effective than random numbers in predicting subjective well - being and quality of life. it has also been shown that confirmation bias is a psychological factor that contributes to belief in astrology. : 344 : 180 β 181 : 42 β 48 confirmation bias is a form of cognitive bias. : 553 from the literature, astrology believers often tend to selectively remember those predictions that turned out to be true and do not remember those that turned out false. another, separate, form of confirmation bias also plays a role, where believers often fail to
) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system
Question: What is the causative agent of sleeping sickness in humans?
A) pseudomonas asplenii
B) escherichia coli
C) trypanosoma brucei
D) bacillus aerophilus
|
C) trypanosoma brucei
|
Context:
energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photos
##physical processes which take place in human beings as they make sense of information received through the visual system. the subject of the image. when developing an imaging system, designers must consider the observables associated with the subjects which will be imaged. these observables generally take the form of emitted or reflected energy, such as electromagnetic energy or mechanical energy. the capture device. once the observables associated with the subject are characterized, designers can then identify and integrate the technologies needed to capture those observables. for example, in the case of consumer digital cameras, those technologies include optics for collecting energy in the visible portion of the electromagnetic spectrum, and electronic detectors for converting the electromagnetic energy into an electronic signal. the processor. for all digital imaging systems, the electronic signals produced by the capture device must be manipulated by an algorithm which formats the signals so they can be displayed as an image. in practice, there are often multiple processors involved in the creation of a digital image. the display. the display takes the electronic signals which have been manipulated by the processor and renders them on some visual medium. examples include paper ( for printed, or " hard copy " images ), television, computer monitor, or projector. note that some imaging scientists will include additional " links " in their description of the imaging chain. for example, some will include the " source " of the energy which " illuminates " or interacts with the subject of the image. others will include storage and / or transmission systems. = = subfields = = subfields within imaging science include : image processing, computer vision, 3d computer graphics, animations, atmospheric optics, astronomical imaging, biological imaging, digital image restoration, digital imaging, color science, digital photography, holography, magnetic resonance imaging, medical imaging, microdensitometry, optics, photography, remote sensing, radar imaging, radiometry, silver halide, ultrasound imaging, photoacoustic imaging, thermal imaging, visual perception, and various printing technologies. = = methodologies = = acoustic imaging coherent imaging uses an active coherent illumination source, such as in radar, synthetic aperture radar ( sar ), medical ultrasound and optical coherence tomography ; non - coherent imaging systems include fluorescent microscopes, optical microscopes, and telescopes. chemical imaging, the simultaneous measurement of spectra and pictures digital imaging, creating digital images, generally by scanning or through digital photography disk image, a file which contains the exact content of a data storage medium document imaging, replicating documents commonly
participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithosphere, atmosphere, and hydrosphere ) compartments of earth. there are biogeochemical cycles for nitrogen, carbon, and water. = = = conservation = = = conservation biology is the study of the conservation of earth ' s biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. it is concerned with factors that influence the maintenance, loss, and restoration of biodiversity and the science of sustaining evolutionary processes that engender genetic, population, species, and ecosystem diversity. the concern stems from estimates suggesting that up to 50 % of all species on the planet
the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the
horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology )
eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of the major staple foods, such as hemp, teff, maize, rice, wheat and other cereal grasses, pulses, bananas and plantains, as well as hemp, flax and cotton grown for their fibres, are the outcome of prehistoric selection over thousands of years from among wild ancestral plants with the most desirable characteristics. botanists study how plants produce food and how to increase yields, for example through plant breeding, making their work important to humanity ' s ability to feed the world and provide food security for future generations. botanists also study weeds, which are a considerable problem in agriculture, and the biology and control of plant pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant β people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour
species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos
##nosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. heterotrophs including all animals, all fungi, all completely parasitic plants, and non - photosynthetic bacteria take in organic molecules produced by photoautotrophs and respire them or use them in the construction of cells and tissues. respiration is the oxidation of carbon compounds by breaking them down into simpler structures to release the energy they contain, essentially the opposite of photosynthesis. molecules are moved within plants by transport processes that operate at a variety of spatial scales. subcellular transport of ions, electrons and molecules such as water and enzymes occurs across cell membranes. minerals and water are transported from roots to other parts of the plant in the transpiration stream. diffusion, osmosis, and active transport and mass flow are all different ways transport can occur. examples of elements that plants need to transport are nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. in vascular plants, these elements are extracted from the soil as soluble ions by the roots and transported throughout the plant in the xylem. most of the elements required for plant nutrition come from the chemical breakdown of soil minerals. sucrose produced by photosynthesis is transported from the leaves to other parts of the plant in the phloem and plant hormones are transported by a variety of processes. = = = plant hormones = = = plants are not passive, but respond to external signals such as light, touch, and injury by moving or growing towards or away from the stimulus, as appropriate. tangible evidence of touch sensitivity is the almost instantaneous collapse of leaflets of mimosa pudica, the insect traps of
in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and biofuels. in the current decades, significant progress has been done in creating genetically modified organisms ( gmos ) that enhance the diversity of applications and economical viability of industrial biotechnology. by using renewable raw materials to produce a variety of chemicals and fuels, industrial biotechnology is actively advancing towards lowering greenhouse gas emissions and moving away from a petrochemical - based economy. synthetic biology is considered one of the essential cornerstones in industrial biotechnology due to its financial and sustainable contribution to the manufacturing sector. jointly biotechnology and synthetic biology play a crucial role in generating cost - effective products with nature - friendly features by using bio - based
have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and biofuels. in the current decades, significant progress has been done in creating genetically modified organisms ( gmos ) that enhance the diversity of applications and economical viability of industrial biotechnology. by using renewable raw materials to produce a variety of chemicals and fuels, industrial biotechnology is actively advancing towards lowering greenhouse
Question: Living things that use energy to make food, both for themselves and other living things, are what part of an ecosystem?
A) consumers
B) producers
C) decomposers
D) growers
|
B) producers
|
Context:
interventions lacked sufficient evidence to support either benefit or harm. in modern clinical practice, physicians and physician assistants personally assess patients to diagnose, prognose, treat, and prevent disease using clinical judgment. the doctor - patient relationship typically begins with an interaction with an examination of the patient ' s medical history and medical record, followed by a medical interview and a physical examination. basic diagnostic medical devices ( e. g., stethoscope, tongue depressor ) are typically used. after examining for signs and interviewing for symptoms, the doctor may order medical tests ( e. g., blood tests ), take a biopsy, or prescribe pharmaceutical drugs or other therapies. differential diagnosis methods help to rule out conditions based on the information provided. during the encounter, properly informing the patient of all relevant facts is an important part of the relationship and the development of trust. the medical encounter is then documented in the medical record, which is a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have
astronomy uses methods from astronomy to determine past celestial constellations for forensic purposes. forensic botany is the study of plant life in order to gain information regarding possible crimes. forensic chemistry is the study of detection and identification of illicit drugs, accelerants used in arson cases, explosive and gunshot residue. forensic dactyloscopy is the study of fingerprints. forensic document examination or questioned document examination answers questions about a disputed document using a variety of scientific processes and methods. many examinations involve a comparison of the questioned document, or components of the document, with a set of known standards. the most common type of examination involves handwriting, whereby the examiner tries to address concerns about potential authorship. forensic dna analysis takes advantage of the uniqueness of an individual ' s dna to answer forensic questions such as paternity / maternity testing and placing a suspect at a crime scene, e. g. in a rape investigation. forensic engineering is the scientific examination and analysis of structures and products relating to their failure or cause of damage. forensic entomology deals with the examination of insects in, on and around human remains to assist in determination of time or location of death. it is also possible to determine if the body was moved after death using entomology. forensic geology deals with trace evidence in the form of soils, minerals and petroleum. forensic geomorphology is the study of the ground surface to look for potential location ( s ) of buried object ( s ). forensic geophysics is the application of geophysical techniques such as radar for detecting objects hidden underground or underwater. forensic intelligence process starts with the collection of data and ends with the integration of results within into the analysis of crimes under investigation. forensic interviews are conducted using the science of professionally using expertise to conduct a variety of investigative interviews with victims, witnesses, suspects or other sources to determine the facts regarding suspicions, allegations or specific incidents in either public or private sector settings. forensic histopathology is the application of histological techniques and examination to forensic pathology practice. forensic limnology is the analysis of evidence collected from crime scenes in or around fresh - water sources. examination of biological organisms, in particular diatoms, can be useful in connecting suspects with victims. forensic linguistics deals with issues in the legal system that requires linguistic expertise. forensic meteorology is a site - specific analysis of past weather conditions for a point of loss. forensic metrology is the application of metrology to assess the reliability of scientific evidence obtained through measurements forensic microbiology is the study of the necrobiome. forensic nursing
, followed by a medical interview and a physical examination. basic diagnostic medical devices ( e. g., stethoscope, tongue depressor ) are typically used. after examining for signs and interviewing for symptoms, the doctor may order medical tests ( e. g., blood tests ), take a biopsy, or prescribe pharmaceutical drugs or other therapies. differential diagnosis methods help to rule out conditions based on the information provided. during the encounter, properly informing the patient of all relevant facts is an important part of the relationship and the development of trust. the medical encounter is then documented in the medical record, which is a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history
##copy is the study of fingerprints. forensic document examination or questioned document examination answers questions about a disputed document using a variety of scientific processes and methods. many examinations involve a comparison of the questioned document, or components of the document, with a set of known standards. the most common type of examination involves handwriting, whereby the examiner tries to address concerns about potential authorship. forensic dna analysis takes advantage of the uniqueness of an individual ' s dna to answer forensic questions such as paternity / maternity testing and placing a suspect at a crime scene, e. g. in a rape investigation. forensic engineering is the scientific examination and analysis of structures and products relating to their failure or cause of damage. forensic entomology deals with the examination of insects in, on and around human remains to assist in determination of time or location of death. it is also possible to determine if the body was moved after death using entomology. forensic geology deals with trace evidence in the form of soils, minerals and petroleum. forensic geomorphology is the study of the ground surface to look for potential location ( s ) of buried object ( s ). forensic geophysics is the application of geophysical techniques such as radar for detecting objects hidden underground or underwater. forensic intelligence process starts with the collection of data and ends with the integration of results within into the analysis of crimes under investigation. forensic interviews are conducted using the science of professionally using expertise to conduct a variety of investigative interviews with victims, witnesses, suspects or other sources to determine the facts regarding suspicions, allegations or specific incidents in either public or private sector settings. forensic histopathology is the application of histological techniques and examination to forensic pathology practice. forensic limnology is the analysis of evidence collected from crime scenes in or around fresh - water sources. examination of biological organisms, in particular diatoms, can be useful in connecting suspects with victims. forensic linguistics deals with issues in the legal system that requires linguistic expertise. forensic meteorology is a site - specific analysis of past weather conditions for a point of loss. forensic metrology is the application of metrology to assess the reliability of scientific evidence obtained through measurements forensic microbiology is the study of the necrobiome. forensic nursing is the application of nursing sciences to abusive crimes, like child abuse, or sexual abuse. categorization of wounds and traumas, collection of bodily fluids and emotional support are some of the duties of forensic nurses. forensic odontology is the study of the uniqueness of dentition, better known as the study of
sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetic
these samples by using specific research instruments. the instruments used for data collection must be valid and reliable. analysis of data : involves breaking down the individual pieces of data to draw conclusions about it. data interpretation : this can be represented through tables, figures, and pictures, and then described in words. test, revising of hypothesis conclusion, reiteration if necessary a common misconception is that a hypothesis will be proven ( see, rather, null hypothesis ). generally, a hypothesis is used to make predictions that can be tested by observing the outcome of an experiment. if the outcome is inconsistent with the hypothesis, then the hypothesis is rejected ( see falsifiability ). however, if the outcome is consistent with the hypothesis, the experiment is said to support the hypothesis. this careful language is used because researchers recognize that alternative hypotheses may also be consistent with the observations. in this sense, a hypothesis can never be proven, but rather only supported by surviving rounds of scientific testing and, eventually, becoming widely thought of as true. a useful hypothesis allows prediction and within the accuracy of observation of the time, the prediction will be verified. as the accuracy of observation improves with time, the hypothesis may no longer provide an accurate prediction. in this case, a new hypothesis will arise to challenge the old, and to the extent that the new hypothesis makes more accurate predictions than the old, the new will supplant it. researchers can also use a null hypothesis, which states no relationship or difference between the independent or dependent variables. = = = research in the humanities = = = research in the humanities involves different methods such as for example hermeneutics and semiotics. humanities scholars usually do not search for the ultimate correct answer to a question, but instead, explore the issues and details that surround it. context is always important, and context can be social, historical, political, cultural, or ethnic. an example of research in the humanities is historical research, which is embodied in historical method. historians use primary sources and other evidence to systematically investigate a topic, and then to write histories in the form of accounts of the past. other studies aim to merely examine the occurrence of behaviours in societies and communities, without particularly looking for reasons or motivations to explain these. these studies may be qualitative or quantitative, and can use a variety of approaches, such as queer theory or feminist theory. = = = artistic research = = = artistic research, also seen as ' practice - based research ', can take form when
behavioral responses to different stimuli, one can understand something about how those stimuli are processed. lewandowski & strohmetz ( 2009 ) reviewed a collection of innovative uses of behavioral measurement in psychology including behavioral traces, behavioral observations, and behavioral choice. behavioral traces are pieces of evidence that indicate behavior occurred, but the actor is not present ( e. g., litter in a parking lot or readings on an electric meter ). behavioral observations involve the direct witnessing of the actor engaging in the behavior ( e. g., watching how close a person sits next to another person ). behavioral choices are when a person selects between two or more options ( e. g., voting behavior, choice of a punishment for another participant ). reaction time. the time between the presentation of a stimulus and an appropriate response can indicate differences between two cognitive processes, and can indicate some things about their nature. for example, if in a search task the reaction times vary proportionally with the number of elements, then it is evident that this cognitive process of searching involves serial instead of parallel processing. psychophysical responses. psychophysical experiments are an old psychological technique, which has been adopted by cognitive psychology. they typically involve making judgments of some physical property, e. g. the loudness of a sound. correlation of subjective scales between individuals can show cognitive or sensory biases as compared to actual physical measurements. some examples include : sameness judgments for colors, tones, textures, etc. threshold differences for colors, tones, textures, etc. eye tracking. this methodology is used to study a variety of cognitive processes, most notably visual perception and language processing. the fixation point of the eyes is linked to an individual ' s focus of attention. thus, by monitoring eye movements, we can study what information is being processed at a given time. eye tracking allows us to study cognitive processes on extremely short time scales. eye movements reflect online decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream
, cash flow statement. forensic aerial photography is the study and interpretation of aerial photographic evidence. forensic anthropology is the application of physical anthropology in a legal setting, usually for the recovery and identification of skeletonized human remains. forensic archaeology is the application of a combination of archaeological techniques and forensic science, typically in law enforcement. forensic astronomy uses methods from astronomy to determine past celestial constellations for forensic purposes. forensic botany is the study of plant life in order to gain information regarding possible crimes. forensic chemistry is the study of detection and identification of illicit drugs, accelerants used in arson cases, explosive and gunshot residue. forensic dactyloscopy is the study of fingerprints. forensic document examination or questioned document examination answers questions about a disputed document using a variety of scientific processes and methods. many examinations involve a comparison of the questioned document, or components of the document, with a set of known standards. the most common type of examination involves handwriting, whereby the examiner tries to address concerns about potential authorship. forensic dna analysis takes advantage of the uniqueness of an individual ' s dna to answer forensic questions such as paternity / maternity testing and placing a suspect at a crime scene, e. g. in a rape investigation. forensic engineering is the scientific examination and analysis of structures and products relating to their failure or cause of damage. forensic entomology deals with the examination of insects in, on and around human remains to assist in determination of time or location of death. it is also possible to determine if the body was moved after death using entomology. forensic geology deals with trace evidence in the form of soils, minerals and petroleum. forensic geomorphology is the study of the ground surface to look for potential location ( s ) of buried object ( s ). forensic geophysics is the application of geophysical techniques such as radar for detecting objects hidden underground or underwater. forensic intelligence process starts with the collection of data and ends with the integration of results within into the analysis of crimes under investigation. forensic interviews are conducted using the science of professionally using expertise to conduct a variety of investigative interviews with victims, witnesses, suspects or other sources to determine the facts regarding suspicions, allegations or specific incidents in either public or private sector settings. forensic histopathology is the application of histological techniques and examination to forensic pathology practice. forensic limnology is the analysis of evidence collected from crime scenes in or around fresh - water sources. examination of biological organisms, in particular diatoms, can be useful in connecting suspects with victims. forensic linguistics deals
. forensic histopathology is the application of histological techniques and examination to forensic pathology practice. forensic limnology is the analysis of evidence collected from crime scenes in or around fresh - water sources. examination of biological organisms, in particular diatoms, can be useful in connecting suspects with victims. forensic linguistics deals with issues in the legal system that requires linguistic expertise. forensic meteorology is a site - specific analysis of past weather conditions for a point of loss. forensic metrology is the application of metrology to assess the reliability of scientific evidence obtained through measurements forensic microbiology is the study of the necrobiome. forensic nursing is the application of nursing sciences to abusive crimes, like child abuse, or sexual abuse. categorization of wounds and traumas, collection of bodily fluids and emotional support are some of the duties of forensic nurses. forensic odontology is the study of the uniqueness of dentition, better known as the study of teeth. forensic optometry is the study of glasses and other eyewear relating to crime scenes and criminal investigations. forensic pathology is a field in which the principles of medicine and pathology are applied to determine a cause of death or injury in the context of a legal inquiry. forensic podiatry is an application of the study of feet footprint or footwear and their traces to analyze scene of crime and to establish personal identity in forensic examinations. forensic psychiatry is a specialized branch of psychiatry as applied to and based on scientific criminology. forensic psychology is the study of the mind of an individual, using forensic methods. usually it determines the circumstances behind a criminal ' s behavior. forensic seismology is the study of techniques to distinguish the seismic signals generated by underground nuclear explosions from those generated by earthquakes. forensic serology is the study of the body fluids. forensic social work is the specialist study of social work theories and their applications to a clinical, criminal justice or psychiatric setting. practitioners of forensic social work connected with the criminal justice system are often termed social supervisors, whilst the remaining use the interchangeable titles forensic social worker, approved mental health professional or forensic practitioner and they conduct specialist assessments of risk, care planning and act as an officer of the court. forensic toxicology is the study of the effect of drugs and poisons on / in the human body. forensic video analysis is the scientific examination, comparison and evaluation of video in legal matters. mobile device forensics is the scientific examination and evaluation of evidence found in mobile phones, e. g. call history and deleted sms, and includes sim card forensics
, or prescribe pharmaceutical drugs or other therapies. differential diagnosis methods help to rule out conditions based on the information provided. during the encounter, properly informing the patient of all relevant facts is an important part of the relationship and the development of trust. the medical encounter is then documented in the medical record, which is a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses
Question: In science, what process produces evidence that helps answer questions and solve problems?
A) investigation
B) suspension
C) information
D) manipulation
|
A) investigation
|
Context:
shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration
oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and
, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which
the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a
, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in
cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short generation times. corn has been used to study mechanisms of photosynthesis and phloem loading of sugar in c4 plants. the single celled green alga chlamydomonas reinhardtii, while not an embryophyte itself, contains a green - pigmented chloroplast related to that of land plants, making it useful for study. a red alga cyanidioschyzon merolae has also been used to study some basic chloroplast functions. spinach, peas, soybeans and a moss physcomitrella patens are commonly used to study plant cell biology. agrobacterium tumefaciens, a soil rhizosphere bacterium, can attach to plant cells and infect them with a callus - inducing ti plasmid by horizontal gene transfer, causing a callus infection called crown gall disease. schell and van montagu ( 1977 ) hypothesised that the ti plasmid could be a natural vector for introducing the nif gene responsible for nitrogen fixation in the root nodules of legumes and other plant species. today, genetic modification of the ti plasmid is one of the main techniques for introduction of transgenes to plants and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of
within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with
are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its
medical purposes. cells are often ' seeded ' into these structures capable of supporting three - dimensional tissue formation. scaffolds mimic the extracellular matrix of the native tissue, recapitulating the in vivo milieu and allowing cells to influence their own microenvironments. they usually serve at least one of the following purposes : allowing cell attachment and migration, delivering and retaining cells and biochemical factors, enabling diffusion of vital cell nutrients and expressed products, and exerting certain mechanical and biological influences to modify the behaviour of the cell phase. in 2009, an interdisciplinary team led by the thoracic surgeon thorsten walles implanted the first bioartificial transplant that provides an innate vascular network for post - transplant graft supply successfully into a patient awaiting tracheal reconstruction. to achieve the goal of tissue reconstruction, scaffolds must meet some specific requirements. high porosity and adequate pore size are necessary to facilitate cell seeding and diffusion throughout the whole structure of both cells and nutrients. biodegradability is often an essential factor since scaffolds should preferably be absorbed by the surrounding tissues without the necessity of surgical removal. the rate at which degradation occurs has to coincide as much as possible with the rate of tissue formation : this means that while cells are fabricating their own natural matrix structure around themselves, the scaffold is able to provide structural integrity within the body and eventually it will break down leaving the newly formed tissue which will take over the mechanical load. injectability is also important for clinical uses. recent research on organ printing is showing how crucial a good control of the 3d environment is to ensure reproducibility of experiments and offer better results. = = = materials = = = material selection is an essential aspect of producing a scaffold. the materials utilized can be natural or synthetic and can be biodegradable or non - biodegradable. additionally, they must be biocompatible, meaning that they do not cause any adverse effects to cells. silicone, for example, is a synthetic, non - biodegradable material commonly used as a drug delivery material, while gelatin is a biodegradable, natural material commonly used in cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ),
. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support
Question: What cellular structure is used during endocytosis to allow molecules to enter the cell?
A) vesicles
B) membranes
C) tissues
D) nucleus
|
A) vesicles
|
Context:
. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support
, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which
are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its
shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration
##ochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals
the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a
oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and
likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β of which around 1 million are insects β but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms,
plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of
prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mit
Question: What are unique about prokaryotic cells' organelles?
A) no cell walls
B) no epidermis
C) only membrane - bound
D) not membrane-bound
|
D) not membrane-bound
|
Context:
have evolved from the earliest emergence of life to present day. earth formed about 4. 5 billion years ago and all life on earth, both living and extinct, descended from a last universal common ancestor that lived about 3. 5 billion years ago. geologists have developed a geologic time scale that divides the history of the earth into major divisions, starting with four eons ( hadean, archean, proterozoic, and phanerozoic ), the first three of which are collectively known as the precambrian, which lasted approximately 4 billion years. each eon can be divided into eras, with the phanerozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became
they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea
. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of
, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive
##rozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokar
into major divisions, starting with four eons ( hadean, archean, proterozoic, and phanerozoic ), the first three of which are collectively known as the precambrian, which lasted approximately 4 billion years. each eon can be divided into eras, with the phanerozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off
##ning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures developed music and engaged in organized warfare. stone age humans developed ocean - worthy outrigger canoe technology, leading to migration across the malay archipelago, across the indian ocean to madagascar and also across the pacific ocean, which required knowledge of the ocean currents, weather patterns, sailing, and celestial navigation. although paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. such evidence includes ancient tools, cave paintings, and other prehistoric art, such as the venus of willendorf. human remains also provide direct evidence, both through the examination of bones, and
##wi, turkana, dating from 3. 3 million years ago. stone tools diversified through the pleistocene period, which ended ~ 12, 000 years ago. the earliest evidence of warfare between two groups is recorded at the site of nataruk in turkana, kenya, where human skeletons with major traumatic injuries to the head, neck, ribs, knees and hands, including an embedded obsidian bladelet on a skull, are evidence of inter - group conflict between groups of nomadic hunter - gatherers 10, 000 years ago. humans entered the bronze age as they learned to smelt copper into an alloy with tin to make weapons. in asia where copper - tin ores are rare, this development was delayed until trading in bronze began in the third millennium bce. in the middle east and southern european regions, the bronze age follows the neolithic period, but in other parts of the world, the copper age is a transition from neolithic to the bronze age. although the iron age generally follows the bronze age, in some areas the iron age intrudes directly on the neolithic from outside the region, with the exception of sub - saharan africa where it was developed independently. the first large - scale use of iron weapons began in asia minor around the 14th century bce and in central europe around the 11th century bce followed by the middle east ( about 1000 bce ) and india and china. the assyrians are credited with the introduction of horse cavalry in warfare and the extensive use of iron weapons by 1100 bce. assyrians were also the first to use iron - tipped arrows. = = = post - classical technology = = = the wujing zongyao ( essentials of the military arts ), written by zeng gongliang, ding du, and others at the order of emperor renzong around 1043 during the song dynasty illustrate the eras focus on advancing intellectual issues and military technology due to the significance of warfare between the song and the liao, jin, and yuan to their north. the book covers topics of military strategy, training, and the production and employment of advanced weaponry. advances in military technology aided the song dynasty in its defense against hostile neighbors to the north. the flamethrower found its origins in byzantine - era greece, employing greek fire ( a chemically complex, highly flammable petrol fluid ) in a device with a siphon hose by the 7th century. : 77 the earliest reference to greek fire in china was made in 917, written by wu renchen in his spring and autumn annals of the ten kingdoms. : 80 in 91
( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. clive stace describes this as having " direct access to the genetic basis of evolution. " as a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants than animals. genetic evidence suggests that the true evolutionary relationship of multicelled organisms is as shown in the cladogram below β fungi are more closely related to animals than to plants. in 1998, the angiosperm phylogeny group published a phylogeny for flowering plants based on an analysis of
. the first major technologies were tied to survival, hunting, and food preparation. stone tools and weapons, fire, and clothing were technological developments of major importance during this period. human ancestors have been using stone and other tools since long before the emergence of homo sapiens approximately 300, 000 years ago. the earliest direct evidence of tool usage was found in ethiopia within the great rift valley, dating back to 2. 5 million years ago. the earliest methods of stone tool making, known as the oldowan " industry ", date back to at least 2. 3 million years ago. this era of stone tool use is called the paleolithic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period,
Question: How long ago did the ancestors of mammals evolve?
A) 10 million
B) 100 million
C) 50,900 million years
D) 300 million years
|
D) 300 million years
|
Context:
an oscillation with a period of around 500 kb in guanine and cytosine content ( gc % ) is observed in the dna sequence of human chromosome 21. this oscillation is localized in the rightmost one - eighth region of the chromosome, from 43. 5 mb to 46. 5 mb. five cycles of oscillation are observed in this region with six gc - rich peaks and five gc - poor valleys. the gc - poor valleys comprise regions with low density of cpg islands and, alternating between the two dna strands, low gene density regions. consequently, the long - range oscillation of gc % result in spacing patterns of both cpg island density, and to a lesser extent, gene densities.
a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectrometry facilitates screening and ranking of clones which bind to the native ( non - denaturated ) forms of antigen proteins. flow cytometry screening has been used for primary screening of a large number ( ~ 1000 ) of hybridoma clones recognizing the native form of the antigen on the cell surface. in the flow cytometry - based screening, a mixture of antigen - negative cells and antigen - positive cells is used as the antigen to be tested for each hybridoma supernatant sample. the b cell that produces the desired antibodies can be cloned to produce many identical daughter clones. supplemental media containing interleukin - 6 ( such as briclone ) are essential for this step. once a hybridoma colony is established, it will continually grow in culture medium like rpmi - 1640 ( with antibiotics and fetal bovine serum ) and produce antibodies. multiwell plates are used initially to grow the hybridomas, and after selection, are changed to larger tissue culture flasks. this maintains the well - being of the hybridomas and provides enough cells for cryopreservation and supernatant for subsequent investigations. the culture supernatant can yield 1 to 60 ΞΌg / ml of monoclonal antibody, which is maintained at - 20 Β°c or lower until required. by using culture supernatant or a purified immunoglobulin preparation, further analysis of a potential monoclonal antibody producing hybridoma can be made in terms of reactivity, specificity, and cross - reactivity. = = applications = = the use of mono
in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid
organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae,
one may identify the general properties of the neutrino mass matrix by generating many random mass matrices and testing them against the results of the neutrino experiments.
thesis submitted for the degree of phd, queens university belfast, uk
the theoretical reasons at the root of ligo ' s experimental failure in searching gravitational waves ( gw ' s ) from binary black hole ( bbh ) inspirals.
a graviton laser works, in principle, by the stimulated emission of coherent gravitons from a lasing medium. for significant amplification, we must have a very long path length and / or very high densities. black holes and the existence of weakly interacting sub - ev dark matter particles ( wisps ) solve both of these obstacles. orbiting trajectories for massless particles around black holes are well understood \ cite { mtw } and allow for arbitrarily long graviton path lengths. superradiance from kerr black holes of wisps can provide the sufficiently high density \ cite { abh }. this suggests that black holes can act as efficient graviton lasers. thus directed graviton laser beams have been emitted since the beginning of the universe and give rise to new sources of gravitational wave signals. to be in the path of particularly harmfully amplified graviton death rays will not be pleasant.
##nik, in present - day serbia. the site of plocnik has produced a smelted copper axe dating from 5, 500 bc, belonging to the vinca culture. the balkans and adjacent carpathian region were the location of major chalcolithic cultures including vinca, varna, karanovo, gumelnita and hamangia, which are often grouped together under the name of ' old europe '. with the carpatho - balkan region described as the ' earliest metallurgical province in eurasia ', its scale and technical quality of metal production in the 6th β 5th millennia bc totally overshadowed that of any other contemporary production centre. the earliest documented use of lead ( possibly native or smelted ) in the near east dates from the 6th millennium bc, is from the late neolithic settlements of yarim tepe and arpachiyah in iraq. the artifacts suggest that lead smelting may have predated copper smelting. metallurgy of lead has also been found in the balkans during the same period. copper smelting is documented at sites in anatolia and at the site of tal - i iblis in southeastern iran from c. 5000 bc. copper smelting is first documented in the delta region of northern egypt in c. 4000 bc, associated with the maadi culture. this represents the earliest evidence for smelting in africa. the varna necropolis, bulgaria, is a burial site located in the western industrial zone of varna, approximately 4 km from the city centre, internationally considered one of the key archaeological sites in world prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin
the work is a study of the geometry of the molecules via molecular mechanics of the main alkaloids found in the seeds of argemone mexicana linn, a prickly poppy, which is considered one of the most important species of plants in traditional mexican and indian medicine system. the seeds have toxic properties as well as bactericide, hallucinogenic, fungicide, insecticide, in isoquinolines and sanguinarine alkaloids such as berberine. a computational study of the molecular geometry of the molecules through molecular mechanics of the main alkaloids compounds present in plant seeds is described in a computer simulation. the plant has active ingredients compounds : allocryptopine, berberine, chelerythrine, copsitine, dihydrosanguinarine, protopine and sanguinarine. the studied alkaloids form two groups having similar charge distribution among themselves, which have dipole moments of these two times higher than in the other group.
Question: A d. melanogaster population has an average heterozygosity of what?
A) 19 %
B) 22 %
C) 14%
D) 21 %
|
C) 14%
|
Context:
is the scientific study of inheritance. mendelian inheritance, specifically, is the process by which genes and traits are passed on from parents to offspring. it has several principles. the first is that genetic characteristics, alleles, are discrete and have alternate forms ( e. g., purple vs. white or tall vs. dwarf ), each inherited from one of two parents. based on the law of dominance and uniformity, which states that some alleles are dominant while others are recessive ; an organism with at least one dominant allele will display the phenotype of that dominant allele. during gamete formation, the alleles for each gene segregate, so that each gamete carries only one allele for each gene. heterozygotic individuals produce gametes with an equal frequency of two alleles. finally, the law of independent assortment, states that genes of different traits can segregate independently during the formation of gametes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can
##tes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna
new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper
best - known and controversial applications of genetic engineering is the creation and use of genetically modified crops or genetically modified livestock to produce genetically modified food. crops have been developed to increase production, increase tolerance to abiotic stresses, alter the composition of the food, or to produce novel products. the first crops to be released commercially on a large scale provided protection from insect pests or tolerance to herbicides. fungal and virus resistant crops have also been developed or are in development. this makes the insect and weed management of crops easier and can indirectly increase crop yield. gm crops that directly improve yield by accelerating growth or making the plant more hardy ( by improving salt, cold or drought tolerance ) are also under development. in 2016 salmon have been genetically modified with growth hormones to reach normal adult size much faster. gmos have been developed that modify the quality of produce by increasing the nutritional value or providing more industrially useful qualities or quantities. the amflora potato produces a more industrially useful blend of starches. soybeans and canola have been genetically modified to produce more healthy oils. the first commercialised gm food was a tomato that had delayed ripening, increasing its shelf life. plants and animals have been engineered to produce materials they do not normally make. pharming uses crops and animals as bioreactors to produce vaccines, drug intermediates, or the drugs themselves ; the useful product is purified from the harvest and then used in the standard pharmaceutical production process. cows and goats have been engineered to express drugs and other proteins in their milk, and in 2009 the fda approved a drug produced in goat milk. = = = other applications = = = genetic engineering has potential applications in conservation and natural area management. gene transfer through viral vectors has been proposed as a means of controlling invasive species as well as vaccinating threatened fauna from disease. transgenic trees have been suggested as a way to confer resistance to pathogens in wild populations. with the increasing risks of maladaptation in organisms as a result of climate change and other perturbations, facilitated adaptation through gene tweaking could be one solution to reducing extinction risks. applications of genetic engineering in conservation are thus far mostly theoretical and have yet to be put into practice. genetic engineering is also being used to create microbial art. some bacteria have been genetically engineered to create black and white photographs. novelty items such as lavender - colored carnations, blue roses, and glowing fish, have also been produced through genetic engineering. = = regulation = = the regulation of genetic engineering
genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and
can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population,
process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing, translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon, found mainly in prokaryotes and some lower eukaryotes ( e. g., caenorhabditis elegans ). in positive regulation of gene expression, the activator is the transcription factor that stimulates transcription when it binds to the sequence near or at the promoter. negative regulation occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem
##s can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool for natural scientists, with the creation of transgenic organisms one of the most important tools for analysis of gene function. genes and other genetic information from a wide range of organisms can be inserted into bacteria for storage and modification, creating genetically modified bacteria in the process. bacteria are cheap, easy to grow, clonal, multi
and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next,
of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an
Question: Traits that are affected by more than one gene are what type of traits?
A) monogenetic
B) recessive
C) polygenic traits
D) dominant
|
C) polygenic traits
|
Context:
. biophysics is an interdisciplinary science that uses the methods of physics and physical chemistry to study biological systems. biostatistics is the application of statistics to biological fields in the broadest sense. a knowledge of biostatistics is essential in the planning, evaluation, and interpretation of medical research. it is also fundamental to epidemiology and evidence - based medicine. cytology is the microscopic study of individual cells. embryology is the study of the early development of organisms. endocrinology is the study of hormones and their effect throughout the body of animals. epidemiology is the study of the demographics of disease processes, and includes, but is not limited to, the study of epidemics. genetics is the study of genes, and their role in biological inheritance. gynecology is the study of female reproductive system. histology is the study of the structures of biological tissues by light microscopy, electron microscopy and immunohistochemistry. immunology is the study of the immune system, which includes the innate and adaptive immune system in humans, for example. lifestyle medicine is the study of the chronic conditions, and how to prevent, treat and reverse them. medical physics is the study of the applications of physics principles in medicine. microbiology is the study of microorganisms, including protozoa, bacteria, fungi, and viruses. molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. neuroscience includes those disciplines of science that are related to the study of the nervous system. a main focus of neuroscience is the biology and physiology of the human brain and spinal cord. some related clinical specialties include neurology, neurosurgery and psychiatry. nutrition science ( theoretical focus ) and dietetics ( practical focus ) is the study of the relationship of food and drink to health and disease, especially in determining an optimal diet. medical nutrition therapy is done by dietitians and is prescribed for diabetes, cardiovascular diseases, weight and eating disorders, allergies, malnutrition, and neoplastic diseases. pathology as a science is the study of disease β the causes, course, progression and resolution thereof. pharmacology is the study of drugs and their actions. photobiology is the study of the interactions between non - ionizing radiation and living organisms. physiology is the study of the normal functioning of the body and the underlying regulatory mechanisms. radiobiology is the study of the interactions between ionizing radiation and living organisms.
judgments to the practice of medicine. medical humanities includes the humanities ( literature, philosophy, ethics, history and religion ), social science ( anthropology, cultural studies, psychology, sociology ), and the arts ( literature, theater, film, and visual arts ) and their application to medical education and practice. nosokinetics is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of
sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetic
the term most responsible physician ( mrp ) or attending physician is also used interchangeably to describe this role. laser medicine involves the use of lasers in the diagnostics or treatment of various conditions. many other health science fields, e. g. dietetics medical ethics deals with ethical and moral principles that apply values and judgments to the practice of medicine. medical humanities includes the humanities ( literature, philosophy, ethics, history and religion ), social science ( anthropology, cultural studies, psychology, sociology ), and the arts ( literature, theater, film, and visual arts ) and their application to medical education and practice. nosokinetics is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around
medicine are : basic sciences of medicine ; this is what every physician is educated in, and some return to in biomedical research. interdisciplinary fields, where different medical specialties are mixed to function in certain occasions. medical specialties = = = basic sciences = = = anatomy is the study of the physical structure of organisms. in contrast to macroscopic or gross anatomy, cytology and histology are concerned with microscopic structures. biochemistry is the study of the chemistry taking place in living organisms, especially the structure and function of their chemical components. biomechanics is the study of the structure and function of biological systems by means of the methods of mechanics. biophysics is an interdisciplinary science that uses the methods of physics and physical chemistry to study biological systems. biostatistics is the application of statistics to biological fields in the broadest sense. a knowledge of biostatistics is essential in the planning, evaluation, and interpretation of medical research. it is also fundamental to epidemiology and evidence - based medicine. cytology is the microscopic study of individual cells. embryology is the study of the early development of organisms. endocrinology is the study of hormones and their effect throughout the body of animals. epidemiology is the study of the demographics of disease processes, and includes, but is not limited to, the study of epidemics. genetics is the study of genes, and their role in biological inheritance. gynecology is the study of female reproductive system. histology is the study of the structures of biological tissues by light microscopy, electron microscopy and immunohistochemistry. immunology is the study of the immune system, which includes the innate and adaptive immune system in humans, for example. lifestyle medicine is the study of the chronic conditions, and how to prevent, treat and reverse them. medical physics is the study of the applications of physics principles in medicine. microbiology is the study of microorganisms, including protozoa, bacteria, fungi, and viruses. molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. neuroscience includes those disciplines of science that are related to the study of the nervous system. a main focus of neuroscience is the biology and physiology of the human brain and spinal cord. some related clinical specialties include neurology, neurosurgery and psychiatry. nutrition science ( theoretical focus ) and dietetics ( practical focus ) is the study of the relationship of food and drink to health and disease, especially
also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a rapid rate, many regulatory authorities require continuing medical education. medical practitioners upgrade their knowledge in various ways, including medical journals, seminars, conferences, and online programs. a database of objectives covering medical knowledge, as suggested by national societies across the united states, can be searched at http : / / data. medobjectives
biotechnology is a multidisciplinary field that involves the integration of natural sciences and engineering sciences in order to achieve the application of organisms and parts thereof for products and services. specialists in the field are known as biotechnologists. the term biotechnology was first used by karoly ereky in 1919 to refer to the production of products from raw materials with the aid of living organisms. the core principle of biotechnology involves harnessing biological systems and organisms, such as bacteria, yeast, and plants, to perform specific tasks or produce valuable substances. biotechnology had a significant impact on many areas of society, from medicine to agriculture to environmental science. one of the key techniques used in biotechnology is genetic engineering, which allows scientists to modify the genetic makeup of organisms to achieve desired outcomes. this can involve inserting genes from one organism into another, and consequently, create new traits or modifying existing ones. other important techniques used in biotechnology include tissue culture, which allows researchers to grow cells and tissues in the lab for research and medical purposes, and fermentation, which is used to produce a wide range of products such as beer, wine, and cheese. the applications of biotechnology are diverse and have led to the development of products like life - saving drugs, biofuels, genetically modified crops, and innovative materials. it has also been used to address environmental challenges, such as developing biodegradable plastics and using microorganisms to clean up contaminated sites. biotechnology is a rapidly evolving field with significant potential to address pressing global challenges and improve the quality of life for people around the world ; however, despite its numerous benefits, it also poses ethical and societal challenges, such as questions around genetic modification and intellectual property rights. as a result, there is ongoing debate and regulation surrounding the use and application of biotechnology in various industries and fields. = = definition = = the concept of biotechnology encompasses a wide range of procedures for modifying living organisms for human purposes, going back to domestication of animals, cultivation of plants, and " improvements " to these through breeding programs that employ artificial selection and hybridization. modern usage also includes genetic engineering, as well as cell and tissue culture technologies. the american chemical society defines biotechnology as the application of biological organisms, systems, or processes by various industries to learning about the science of life and the improvement of the value of materials and organisms, such as pharmaceuticals, crops, and livestock. as per the european federation of biotechnology, biotechnology is the integration of natural science and organisms, cells, parts thereof, and molecular analogues for products and
technology developed, medicine became more reliant upon medications. throughout history and in europe right until the late 18th century, not only plant products were used as medicine, but also animal ( including human ) body parts and fluids. pharmacology developed in part from herbalism and some drugs are still derived from plants ( atropine, ephedrine, warfarin, aspirin, digoxin, vinca alkaloids, taxol, hyoscine, etc. ). vaccines were discovered by edward jenner and louis pasteur. the first antibiotic was arsphenamine ( salvarsan ) discovered by paul ehrlich in 1908 after he observed that bacteria took up toxic dyes that human cells did not. the first major class of antibiotics was the sulfa drugs, derived by german chemists originally from azo dyes. pharmacology has become increasingly sophisticated ; modern biotechnology allows drugs targeted towards specific physiological processes to be developed, sometimes designed for compatibility with the body to reduce side - effects. genomics and knowledge of human genetics and human evolution is having increasingly significant influence on medicine, as the causative genes of most monogenic genetic disorders have now been identified, and the development of techniques in molecular biology, evolution, and genetics are influencing medical technology, practice and decision - making. evidence - based medicine is a contemporary movement to establish the most effective algorithms of practice ( ways of doing things ) through the use of systematic reviews and meta - analysis. the movement is facilitated by modern global information science, which allows as much of the available evidence as possible to be collected and analyzed according to standard protocols that are then disseminated to healthcare providers. the cochrane collaboration leads this movement. a 2001 review of 160 cochrane systematic reviews revealed that, according to two readers, 21. 3 % of the reviews concluded insufficient evidence, 20 % concluded evidence of no effect, and 22. 5 % concluded positive effect. = = quality, efficiency, and access = = evidence - based medicine, prevention of medical error ( and other " iatrogenesis " ), and avoidance of unnecessary health care are a priority in modern medical systems. these topics generate significant political and public policy attention, particularly in the united states where healthcare is regarded as excessively costly but population health metrics lag similar nations. globally, many developing countries lack access to care and access to medicines. as of 2015, most wealthy developed countries provide health care to all citizens, with a few exceptions such as the united states where lack of health insurance
; kitasato shibasaburo ( japan ) ; jean - martin charcot, claude bernard, paul broca ( france ) ; adolfo lutz ( brazil ) ; nikolai korotkov ( russia ) ; sir william osler ( canada ) ; and harvey cushing ( united states ). as science and technology developed, medicine became more reliant upon medications. throughout history and in europe right until the late 18th century, not only plant products were used as medicine, but also animal ( including human ) body parts and fluids. pharmacology developed in part from herbalism and some drugs are still derived from plants ( atropine, ephedrine, warfarin, aspirin, digoxin, vinca alkaloids, taxol, hyoscine, etc. ). vaccines were discovered by edward jenner and louis pasteur. the first antibiotic was arsphenamine ( salvarsan ) discovered by paul ehrlich in 1908 after he observed that bacteria took up toxic dyes that human cells did not. the first major class of antibiotics was the sulfa drugs, derived by german chemists originally from azo dyes. pharmacology has become increasingly sophisticated ; modern biotechnology allows drugs targeted towards specific physiological processes to be developed, sometimes designed for compatibility with the body to reduce side - effects. genomics and knowledge of human genetics and human evolution is having increasingly significant influence on medicine, as the causative genes of most monogenic genetic disorders have now been identified, and the development of techniques in molecular biology, evolution, and genetics are influencing medical technology, practice and decision - making. evidence - based medicine is a contemporary movement to establish the most effective algorithms of practice ( ways of doing things ) through the use of systematic reviews and meta - analysis. the movement is facilitated by modern global information science, which allows as much of the available evidence as possible to be collected and analyzed according to standard protocols that are then disseminated to healthcare providers. the cochrane collaboration leads this movement. a 2001 review of 160 cochrane systematic reviews revealed that, according to two readers, 21. 3 % of the reviews concluded insufficient evidence, 20 % concluded evidence of no effect, and 22. 5 % concluded positive effect. = = quality, efficiency, and access = = evidence - based medicine, prevention of medical error ( and other " iatrogenesis " ), and avoidance of unnecessary health care are a priority in modern medical systems. these topics generate significant political and public policy attention, particularly in
diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation and management. diving medicine ( or hyperbaric medicine ) is the prevention and treatment of diving - related problems. evolutionary medicine is a perspective on medicine derived through applying evolutionary theory. forensic medicine deals with medical questions in legal context, such as determination of the time and cause of death, type of weapon used to inflict
Question: Pharmacist and surveyor are two career options based in what type of science?
A) Business
B) physical
C) visible
D) obvious
|
B) physical
|
Context:
no offspring, to reduce the population. in industrial and food applications, radiation is used for sterilization of tools and equipment. an advantage is that the object may be sealed in plastic before sterilization. an emerging use in food production is the sterilization of food using food irradiation. food irradiation is the process of exposing food to ionizing radiation in order to destroy microorganisms, bacteria, viruses, or insects that might be present in the food. the radiation sources used include radioisotope gamma ray sources, x - ray generators and electron accelerators. further applications include sprout inhibition, delay of ripening, increase of juice yield, and improvement of re - hydration. irradiation is a more general term of deliberate exposure of materials to radiation to achieve a technical goal ( in this context ' ionizing radiation ' is implied ). as such it is also used on non - food items, such as medical hardware, plastics, tubes for gas - pipelines, hoses for floor - heating, shrink - foils for food packaging, automobile parts, wires and cables ( isolation ), tires, and even gemstones. compared to the amount of food irradiated, the volume of those every - day applications is huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however
##tion, and pasteurization in order to become products that can be sold. there are three levels of food processing : primary, secondary, and tertiary. primary food processing involves turning agricultural products into other products that can be turned into food, secondary food processing is the making of food from readily available ingredients, and tertiary food processing is commercial production of ready - to eat or heat - and - serve foods. drying, pickling, salting, and fermenting foods were some of the oldest food processing techniques used to preserve food by preventing yeasts, molds, and bacteria to cause spoiling. methods for preserving food have evolved to meet current standards of food safety but still use the same processes as the past. biochemical engineers also work to improve the nutritional value of food products, such as in golden rice, which was developed to prevent vitamin a deficiency in certain areas where this was an issue. efforts to advance preserving technologies can also ensure lasting retention of nutrients as foods are stored. packaging plays a key role in preserving as well as ensuring the safety of the food by protecting the product from contamination, physical damage, and tampering. packaging can also make it easier to transport and serve food. a common job for biochemical engineers working in the food industry is to design ways to perform all these processes on a large scale in order to meet the demands of the population. responsibilities for this career path include designing and performing experiments, optimizing processes, consulting with groups to develop new technologies, and preparing project plans for equipment and facilities. = = = pharmaceuticals = = = in the pharmaceutical industry, bioprocess engineering plays a crucial role in the large - scale production of biopharmaceuticals, such as monoclonal antibodies, vaccines, and therapeutic proteins. the development and optimization of bioreactors and fermentation systems are essential for the mass production of these products, ensuring consistent quality and high yields. for example, recombinant proteins like insulin and erythropoietin are produced through cell culture systems using genetically modified cells. the bioprocess engineer β s role is to optimize variables like temperature, ph, nutrient availability, and oxygen levels to maximize the efficiency of these systems. the growing field of gene therapy also relies on bioprocessing techniques to produce viral vectors, which are used to deliver therapeutic genes to patients. this involves scaling up processes from laboratory to industrial scale while maintaining safety and regulatory compliance. as the demand for biopharmaceutical products increases, advancements
10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is
huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number
##iation is the process of exposing food to ionizing radiation in order to destroy microorganisms, bacteria, viruses, or insects that might be present in the food. the radiation sources used include radioisotope gamma ray sources, x - ray generators and electron accelerators. further applications include sprout inhibition, delay of ripening, increase of juice yield, and improvement of re - hydration. irradiation is a more general term of deliberate exposure of materials to radiation to achieve a technical goal ( in this context ' ionizing radiation ' is implied ). as such it is also used on non - food items, such as medical hardware, plastics, tubes for gas - pipelines, hoses for floor - heating, shrink - foils for food packaging, automobile parts, wires and cables ( isolation ), tires, and even gemstones. compared to the amount of food irradiated, the volume of those every - day applications is huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioact
molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is not the only deadly component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. civilian nuclear and radiological accidents primarily involve nuclear power plants. most common are nuclear leaks that expose workers to hazardous material. a nuclear meltdown refers to the more serious hazard of
as medical hardware, plastics, tubes for gas - pipelines, hoses for floor - heating, shrink - foils for food packaging, automobile parts, wires and cables ( isolation ), tires, and even gemstones. compared to the amount of food irradiated, the volume of those every - day applications is huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation
do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal
in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and biofuels. in the current decades, significant progress has been done in creating genetically modified organisms ( gmos ) that enhance the diversity of applications and economical viability of industrial biotechnology. by using renewable raw materials to produce a variety of chemicals and fuels, industrial biotechnology is actively advancing towards lowering greenhouse gas emissions and moving away from a petrochemical - based economy. synthetic biology is considered one of the essential cornerstones in industrial biotechnology due to its financial and sustainable contribution to the manufacturing sector. jointly biotechnology and synthetic biology play a crucial role in generating cost - effective products with nature - friendly features by using bio - based
new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper
Question: What is another term for foodborne illness?
A) cancer
B) pathogen
C) food poisoning
D) disease
|
C) food poisoning
|
Context:
electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, perform tasks that are either too dangerous or too precise for humans to perform them economically, and to ensure better quality. many companies employ assembly lines of robots, especially in automotive industries and some factories are so robotized that they can run by themselves. outside the factory, robots have been employed in bomb disposal, space exploration, and many other fields. robots are also sold for various residential applications, from recreation to domestic applications. = = = structural analysis = = = structural analysis is the branch of mechanical engineering ( and also civil engineering ) devoted to examining why and how objects fail and to fix the objects and their performance. structural failures occur in two general modes : static failure, and fatigue failure. static structural failure occurs when, upon being loaded ( having a force applied ) the object being analyzed either breaks or is deformed plastically, depending on the criterion for failure. fatigue failure occurs when an object fails after a number of repeated loading and unloading cycles. fatigue failure occurs because of imperfections in the object : a microscopic crack on the surface of the object, for instance, will grow slightly with each cycle ( propagation ) until the crack is large enough to cause ultimate failure. failure is not simply defined as when a part breaks, however ; it is defined as when a part does not operate as intended. some systems, such as the perforated top sections of some plastic bags, are designed to break. if these systems do not break, failure analysis might be employed to determine the cause. structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure
material. silicon nitride parts are used in ceramic ball bearings. their higher hardness means that they are much less susceptible to wear and can offer more than triple lifetimes. they also deform less under load meaning they have less contact with the bearing retainer walls and can roll faster. in very high speed applications, heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are
in 1738. the spinning jenny, invented in 1764, was a machine that used multiple spinning wheels ; however, it produced low quality thread. the water frame patented by richard arkwright in 1767, produced a better quality thread than the spinning jenny. the spinning mule, patented in 1779 by samuel crompton, produced a high quality thread. the power loom was invented by edmund cartwright in 1787. in the mid - 1750s, the steam engine was applied to the water power - constrained iron, copper and lead industries for powering blast bellows. these industries were located near the mines, some of which were using steam engines for mine pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress
##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently
is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemical
classical mechanics is based upon a mechanical picture of nature that is fundamentally incorrect. it has been replaced at the basic level by a radically different theory : quantum mechanics. this change entails an enormous shift in our basic conception of nature, one that can profoundly alter the scientific image of man himself. self - image is the foundation of values, and the replacement of the mechanistic self - image derived from classical mechanics by one concordant with quantum mechanics may provide the foundation of a moral order better suited to our times, a self - image that endows human life with meaning, responsibility, and a deeper linkage to nature as a whole.
be a low - cost, feasible, and accessible way for promoting pa. " essentially, this insinuates that wearable technology can be beneficial to everyone and really is not cost prohibited. also, when consistently seeing wearable technology being actually utilized and worn by other people, it promotes the idea of physical activity and pushes more individuals to take part. wearable technology also helps with chronic disease development and monitoring physical activity in terms of context. for example, according to the american journal of preventive medicine, " wearables can be used across different chronic disease trajectory phases ( e. g., pre - versus post - surgery ) and linked to medical record data to obtain granular data on how activity frequency, intensity, and duration changes over the disease course and with different treatments. " wearable technology can be beneficial in tracking and helping analyze data in terms of how one is performing as time goes on, and how they may be performing with different changes in their diet, workout routine, or sleep patterns. also, not only can wearable technology be helpful in measuring results pre and post surgery, but it can also help measure results as someone may be rehabbing from a chronic disease such as cancer, or heart disease, etc. wearable technology has the potential to create new and improved ways of how we look at health and how we actually interpret that science behind our health. it can propel us into higher levels of medicine and has already made a significant impact on how patients are diagnosed, treated, and rehabbed over time. however, extensive research still needs to be continued on how to properly integrate wearable technology into health care and how to best utilize it. in addition, despite the reaping benefits of wearable technology, a lot of research still also has to be completed in order to start transitioning wearable technology towards very sick high risk patients. = = = sense - making of the data = = = while wearables can collect data in aggregate form, most of them are limited in their ability to analyze or make conclusions based on this data β thus, most are used primarily for general health information. end user perception of how their data is used plays a big role in how such datasets can be fully optimized. exception include seizure - alerting wearables, which continuously analyze the wearer ' s data and make a decision about calling for help β the data collected can then provide doctors with objective evidence that they may find useful in diagnoses. wearables can account for individual differences, although most
three of what is called the six simple machines, from which all machines are based. these machines are the inclined plane, the wedge, and the lever, which allowed the ancient egyptians to move millions of limestone blocks which weighed approximately 3. 5 tons ( 7, 000 lbs. ) each into place to create structures like the great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu
high quality thread. the power loom was invented by edmund cartwright in 1787. in the mid - 1750s, the steam engine was applied to the water power - constrained iron, copper and lead industries for powering blast bellows. these industries were located near the mines, some of which were using steam engines for mine pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress was made in water supply and sanitation and the engineering skills of the romans were largely neglected throughout europe. the first documented use of sand filters to purify the water supply dates to 1804, when the owner of a bleachery in paisley, scotland, john gibb, installed an experimental filter, selling his unwanted
temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β batching β mixing β forming β drying β firing β assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first,
Question: The mechanical advantage of a machine is related to how it changes what?
A) nature
B) example
C) force
D) pressure
|
C) force
|
Context:
grasping an object is a matter of first moving a prehensile organ at some position in the world, and then managing the contact relationship between the prehensile organ and the object. once the contact relationship has been established and made stable, the object is part of the body and it can move in the world. as any action, the action of grasping is ontologically anchored in the physical space while the correlative movement originates in the space of the body. evolution has found amazing solutions that allow organisms to rapidly and efficiently manage the relationship between their body and the world. it is then natural that roboticists consider taking inspiration of these natural solutions, while contributing to better understand their origin.
affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor,
education, science, in fact the whole society, extensively use images. between us and the world are the visual displays. screens, small and large, individual or not, are everywhere. images are increasingly the 2d substrate of our virtual interaction with reality. however images will never support a complete representation of the reality. three - dimensional representations will not change that. images are primarily a spatial representation of our world dedicated to our sight. key aspects such as energy and the associated forces are not spatially materialized. in classical physics, interaction description is based on newton equations with trajectory and force as the dual central concepts. images can in real time show all aspects of trajectories but not the associated dynamical aspects described by forces and energies. contrary to the real world, the world of images opposes no constrain, nor resistance to our actions. only the physical quantities, that do not contain mass in their dimension can be satisfactory represented by images. often symbols such as arrows are introduced to visualize the force vectors.
the gravitational poynting vector provides a mechanism for the transfer of gravitational energy to a system of falling objects. in the following we will show that the gravitational poynting vector together with the gravitational larmor theorem also provides a mechanism to explain how massive bodies acquire rotational kinetic energy when external mechanical forces are applied on them.
forces and their effect upon matter. typically, engineering mechanics is used to analyze and predict the acceleration and deformation ( both elastic and plastic ) of objects under known forces ( also called loads ) or stresses. subdisciplines of mechanics include statics, the study of non - moving bodies under known loads, how forces affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are
the project consists to determine, mathematically, the trajectory that will take an artificial satellite to fight against the air resistance. during our work, we had to consider that our satellite will crash to the surface of our planet. we started our study by understanding the system of forces that are acting between our satellite and the earth. in this work, we had to study the second law of newton by taking knowledge of the air friction, the speed of the satellite which helped us to find the equation that relates the trajectory of the satellite itself, its speed and the density of the air depending on the altitude. finally, we had to find a mathematic relation that links the density with the altitude and then we had to put it into our movement equation. in order to verify our model, we ' ll see what happens if we give a zero velocity to the satellite.
beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar β an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical
the belief that three dimensional space is infinite and flat in the absence of matter is a canon of physics that has been in place since the time of newton. the assumption that space is flat at infinity has guided several modern physical theories. but what do we actually know to support this belief? a simple argument, called the " telescope principle ", asserts that all that we can know about space is bounded by observations. physical theories are best when they can be verified by observations, and that should also apply to the geometry of space. the telescope principle is simple to state, but it leads to very interesting insights into relativity and yang - mills theory via projective equivalences of their respective spaces.
al - kimia is derived from the ancient greek ΟΞ·ΞΌΞΉΞ±, which is in turn derived from the word kemet, which is the ancient name of egypt in the egyptian language. alternately, al - kimia may derive from ΟημΡια ' cast together '. = = modern principles = = the current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = =
of a point on the object, including whole - body translations and rotations ( rigid transformations ). deformation are changes in the relative position between internals points on the object, excluding rigid transformations, causing the body to change shape or size. strain is the relative internal deformation, the dimensionless change in shape of an infinitesimal cube of material relative to a reference configuration. mechanical strains are caused by mechanical stress, see stress - strain curve. the relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic. elasticity in materials occurs when applied stress does not surpass the energy required to break molecular bonds, allowing the material to deform reversibly and return to its original shape once the stress is removed. the linear relationship for a material is known as young ' s modulus. above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation. the determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis. in the above figure, it can be seen that the compressive loading ( indicated by the arrow ) has caused deformation in the cylinder so that the original shape ( dashed lines ) has changed ( deformed ) into one with bulging sides. the sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change. as a result, the material is forced out laterally. internal forces ( in this case at right angles to the deformation ) resist the applied load. = = types of deformation = = depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. the image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel. different deformation modes may occur under different conditions, as can be depicted using a deformation mechanism map. permanent deformation is irreversible ; the deformation stays even after removal of the applied forces, while the temporary deformation is recoverable as it disappears after the removal of applied forces. temporary deformation is also called elastic deformation, while the permanent deformation is called plastic deformation. = = = elastic deformation = = = the study of temporary or elastic deformation in the case of engineering strain is applied to materials used in mechanical and structural engineering, such as concrete and steel, which are subjected to very small deformations. engineering strain is modeled by infinitesimal strain theory, also called
Question: What term in physics refers to the use of force to move an object?
A) momentum
B) work
C) velocity
D) mass
|
B) work
|
Context:
oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and
, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which
within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with
shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration
the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a
are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its
and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell
sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabino
transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy from the proton motive force drives the enzyme atp synthase to synthesize more atps by phosphorylating adps. the transfer of electrons terminates with molecular oxygen being the final electron acceptor. if oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes a process of fermentation. the pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. this serves the purpose of oxidizing the electron carriers so that they can perform glycolysis again and removing the excess pyruvate. fermentation oxidizes nadh to nad + so it can be re - used in glycolysis. in the absence of oxygen, fermentation prevents the buildup of nadh in the cytoplasm and provides nad + for glycolysis. this waste product varies depending on the organism. in skeletal muscles, the waste product is lactic acid. this type of fermentation is called lactic acid fermentation. in strenuous exercise, when energy demands exceed energy supply, the respiratory chain cannot process all of the hydrogen atoms joined by nadh. during anaerobic glycolysis, nad + regenerates when pairs of hydrogen combine with pyruvate to form lactate. lactate formation is catalyzed by lactate dehydrogenase in a reversible reaction. lactate can also be used as an indirect precursor for liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy
. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support
Question: What is the name of the organelle that helps make and transport proteins and lipids?
A) mitochondria
B) endoplasmic reticulum
C) plasma membrane
D) nucleus
|
B) endoplasmic reticulum
|
Context:
is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemical
high quality thread. the power loom was invented by edmund cartwright in 1787. in the mid - 1750s, the steam engine was applied to the water power - constrained iron, copper and lead industries for powering blast bellows. these industries were located near the mines, some of which were using steam engines for mine pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress was made in water supply and sanitation and the engineering skills of the romans were largely neglected throughout europe. the first documented use of sand filters to purify the water supply dates to 1804, when the owner of a bleachery in paisley, scotland, john gibb, installed an experimental filter, selling his unwanted
process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states supreme court ruled that a genetically modified microorganism could be patented in the case of diamond v. chakrabarty. indian - born ananda chakrabarty, working for general electric, had modified a bacterium ( of the genus pseudomonas ) capable of breaking down crude oil, which he proposed to
pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress was made in water supply and sanitation and the engineering skills of the romans were largely neglected throughout europe. the first documented use of sand filters to purify the water supply dates to 1804, when the owner of a bleachery in paisley, scotland, john gibb, installed an experimental filter, selling his unwanted surplus to the public. the first treated public water supply in the world was installed by engineer james simpson for the chelsea waterworks company in london in 1829. the first screw - down water tap was patented in 1845 by guest and chrimes, a brass foundry in rotherham. the practice of water treatment soon became mainstream,
, heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials
##ent governmental regulations. some of these requirements include : seat belt and air bag functionality testing, front and side - impact testing, and tests of rollover resistance. assessments are done with various methods and tools, including computer crash simulation ( typically finite element analysis ), crash - test dummy, and partial system sled and full vehicle crashes. fuel economy / emissions : fuel economy is the measured fuel efficiency of the vehicle in miles per gallon or kilometers per liter. emissions - testing covers the measurement of vehicle emissions, including hydrocarbons, nitrogen oxides ( nox ), carbon monoxide ( co ), carbon dioxide ( co2 ), and evaporative emissions. nvh engineering ( noise, vibration, and harshness ) : nvh involves customer feedback ( both tactile [ felt ] and audible [ heard ] ) concerning a vehicle. while sound can be interpreted as a rattle, squeal, or hot, a tactile response can be seat vibration or a buzz in the steering wheel. this feedback is generated by components either rubbing, vibrating, or rotating. nvh response can be classified in various ways : powertrain nvh, road noise, wind noise, component noise, and squeak and rattle. note, there are both good and bad nvh qualities. the nvh engineer works to either eliminate bad nvh or change the " bad nvh " to good ( i. e., exhaust tones ). vehicle electronics : automotive electronics is an increasingly important aspect of automotive engineering. modern vehicles employ dozens of electronic systems. these systems are responsible for operational controls such as the throttle, brake and steering controls ; as well as many comfort - and - convenience systems such as the hvac, infotainment, and lighting systems. it would not be possible for automobiles to meet modern safety and fuel - economy requirements without electronic controls. performance : performance is a measurable and testable value of a vehicle ' s ability to perform in various conditions. performance can be considered in a wide variety of tasks, but it generally considers how quickly a car can accelerate ( e. g. standing start 1 / 4 mile elapsed time, 0 β 60 mph, etc. ), its top speed, how short and quickly a car can come to a complete stop from a set speed ( e. g. 70 - 0 mph ), how much g - force a car can generate without losing grip, recorded lap - times, cornering speed, brake fade, etc. performance can also reflect the
and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states
options ( e. g., voting behavior, choice of a punishment for another participant ). reaction time. the time between the presentation of a stimulus and an appropriate response can indicate differences between two cognitive processes, and can indicate some things about their nature. for example, if in a search task the reaction times vary proportionally with the number of elements, then it is evident that this cognitive process of searching involves serial instead of parallel processing. psychophysical responses. psychophysical experiments are an old psychological technique, which has been adopted by cognitive psychology. they typically involve making judgments of some physical property, e. g. the loudness of a sound. correlation of subjective scales between individuals can show cognitive or sensory biases as compared to actual physical measurements. some examples include : sameness judgments for colors, tones, textures, etc. threshold differences for colors, tones, textures, etc. eye tracking. this methodology is used to study a variety of cognitive processes, most notably visual perception and language processing. the fixation point of the eyes is linked to an individual ' s focus of attention. thus, by monitoring eye movements, we can study what information is being processed at a given time. eye tracking allows us to study cognitive processes on extremely short time scales. eye movements reflect online decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygen
by charles darwin as " possibly the greatest ever made by man ". archaeological, dietary, and social evidence point to " continuous [ human ] fire - use " at least 1. 5 mya. fire, fueled with wood and charcoal, allowed early humans to cook their food to increase its digestibility, improving its nutrient value and broadening the number of foods that could be eaten. the cooking hypothesis proposes that the ability to cook promoted an increase in hominid brain size, though some researchers find the evidence inconclusive. archaeological evidence of hearths was dated to 790 kya ; researchers believe this is likely to have intensified human socialization and may have contributed to the emergence of language. other technological advances made during the paleolithic era include clothing and shelter. no consensus exists on the approximate time of adoption of either technology, but archaeologists have found archaeological evidence of clothing 90 - 120 kya and shelter 450 kya. as the paleolithic era progressed, dwellings became more sophisticated and more elaborate ; as early as 380 kya, humans were constructing temporary wood huts. clothing, adapted from the fur and hides of hunted animals, helped humanity expand into colder regions ; humans began to migrate out of africa around 200 kya, initially moving to eurasia. = = = neolithic = = = the neolithic revolution ( or first agricultural revolution ) brought about an acceleration of technological innovation, and a consequent increase in social complexity. the invention of the polished stone axe was a major advance that allowed large - scale forest clearance and farming. this use of polished stone axes increased greatly in the neolithic but was originally used in the preceding mesolithic in some areas such as ireland. agriculture fed larger populations, and the transition to sedentism allowed for the simultaneous raising of more children, as infants no longer needed to be carried around by nomads. additionally, children could contribute labor to the raising of crops more readily than they could participate in hunter - gatherer activities. with this increase in population and availability of labor came an increase in labor specialization. what triggered the progression from early neolithic villages to the first cities, such as uruk, and the first civilizations, such as sumer, is not specifically known ; however, the emergence of increasingly hierarchical social structures and specialized labor, of trade and war among adjacent cultures, and the need for collective action to overcome environmental challenges such as irrigation, are all thought to have played a role. the invention of writing led to the spread of cultural knowledge and became the basis for history, libraries, schools,
casting, foundry methods, blast furnace extraction, and electrolytic extraction are all part of the required knowledge of a materials engineer. often the presence, absence, or variation of minute quantities of secondary elements and compounds in a bulk material will greatly affect the final properties of the materials produced. for example, steels are classified based on 1 / 10 and 1 / 100 weight percentages of the carbon and other alloying elements they contain. thus, the extracting and purifying methods used to extract iron in a blast furnace can affect the quality of steel that is produced. solid materials are generally grouped into three basic classifications : ceramics, metals, and polymers. this broad classification is based on the empirical makeup and atomic structure of the solid materials, and most solids fall into one of these broad categories. an item that is often made from each of these materials types is the beverage container. the material types used for beverage containers accordingly provide different advantages and disadvantages, depending on the material used. ceramic ( glass ) containers are optically transparent, impervious to the passage of carbon dioxide, relatively inexpensive, and are easily recycled, but are also heavy and fracture easily. metal ( aluminum alloy ) is relatively strong, is a good barrier to the diffusion of carbon dioxide, and is easily recycled. however, the cans are opaque, expensive to produce, and are easily dented and punctured. polymers ( polyethylene plastic ) are relatively strong, can be optically transparent, are inexpensive and lightweight, and can be recyclable, but are not as impervious to the passage of carbon dioxide as aluminum and glass. = = = ceramics and glasses = = = another application of materials science is the study of ceramics and glasses, typically the most brittle materials with industrial relevance. many ceramics and glasses exhibit covalent or ionic - covalent bonding with sio2 ( silica ) as a fundamental building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and
Question: What machine is used to determine the calories in food, as well as the average heat yield from burning various grades of coal and oil?
A) radio telescope
B) alethiometer
C) thermometer
D) calorimeter
|
D) calorimeter
|
Context:
kidneys and the majority of those currently in use are extracorporeal, such as with hemodialysis, which filters blood directly, or peritoneal dialysis, which filters via a fluid in the abdomen. in order to contribute to the biological functions of a kidney such as producing metabolic factors or hormones, some artificial kidneys incorporate renal cells. there has been progress in the way of making these devices smaller and more transportable, or even implantable. one challenge still to be faced in these smaller devices is countering the limited volume and therefore limited filtering capabilities. bioscaffolds have also been introduced to provide a framework upon which normal kidney tissue can be regenerated. these scaffolds encompass natural scaffolds ( e. g., decellularized kidneys, collagen hydrogel, or silk fibroin ), synthetic scaffolds ( e. g., poly [ lactic - co - glycolic acid ] or other polymers ), or a combination of two or more natural and synthetic scaffolds. these scaffolds can be implanted into the body either without cell treatment or after a period of stem cell seeding and incubation. in vitro and in vivo studies are being conducted to compare and optimize the type of scaffold and to assess whether cell seeding prior to implantation adds to the viability, regeneration and effective function of the kidneys. a recent systematic review and meta - analysis compared the results of published animal studies and identified that improved outcomes are reported with the use of hybrid ( mixed ) scaffolds and cell seeding ; however, the meta - analysis of these results were not in agreement with the evaluation of descriptive results from the review. therefore, further studies involving larger animals and novel scaffolds, and more transparent reproduction of previous studies are advisable. = = = biomimetics = = = biomimetics is a field that aims to produce materials and systems that replicate those present in nature. in the context of tissue engineering, this is a common approach used by engineers to create materials for these applications that are comparable to native tissues in terms of their structure, properties, and biocompatibility. material properties are largely dependent on physical, structural, and chemical characteristics of that material. subsequently, a biomimetic approach to system design will become significant in material integration, and a sufficient understanding of biological processes and interactions will be necessary. replication of biological systems and
and were considered among the seven wonders of the ancient world. the six classic simple machines were known in the ancient near east. the wedge and the inclined plane ( ramp ) were known since prehistoric times. the wheel, along with the wheel and axle mechanism, was invented in mesopotamia ( modern iraq ) during the 5th millennium bc. the lever mechanism first appeared around 5, 000 years ago in the near east, where it was used in a simple balance scale, and to move large objects in ancient egyptian technology. the lever was also used in the shadoof water - lifting device, the first crane machine, which appeared in mesopotamia c. 3000 bc, and then in ancient egyptian technology c. 2000 bc. the earliest evidence of pulleys date back to mesopotamia in the early 2nd millennium bc, and ancient egypt during the twelfth dynasty ( 1991 β 1802 bc ). the screw, the last of the simple machines to be invented, first appeared in mesopotamia during the neo - assyrian period ( 911 β 609 ) bc. the egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever, to create structures like the great pyramid of giza. the earliest civil engineer known by name is imhotep. as one of the officials of the pharaoh, djoser, he probably designed and supervised the construction of the pyramid of djoser ( the step pyramid ) at saqqara in egypt around 2630 β 2611 bc. the earliest practical water - powered machines, the water wheel and watermill, first appeared in the persian empire, in what are now iraq and iran, by the early 4th century bc. kush developed the sakia during the 4th century bc, which relied on animal power instead of human energy. hafirs were developed as a type of reservoir in kush to store and contain water as well as boost irrigation. sappers were employed to build causeways during military campaigns. kushite ancestors built speos during the bronze age between 3700 and 3250 bc. bloomeries and blast furnaces were also created during the 7th centuries bc in kush. ancient greece developed machines in both civilian and military domains. the antikythera mechanism, an early known mechanical analog computer, and the mechanical inventions of archimedes, are examples of greek mechanical engineering. some of archimedes ' inventions, as well as the antikythera mechanism, required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory
##ate flux which is the volumetric flow rate per unit of membrane area. the solute sieving coefficient and hydraulic permeability allow the quick assessment of the synthetic membrane performance. = = membrane separation processes = = membrane separation processes have a very important role in the separation industry. nevertheless, they were not considered technically important until the mid - 1970s. membrane separation processes differ based on separation mechanisms and size of the separated particles. the widely used membrane processes include microfiltration, ultrafiltration, nanofiltration, reverse osmosis, electrolysis, dialysis, electrodialysis, gas separation, vapor permeation, pervaporation, membrane distillation, and membrane contactors. all processes except for pervaporation involve no phase change. all processes except electrodialysis are pressure driven. microfiltration and ultrafiltration is widely used in food and beverage processing ( beer microfiltration, apple juice ultrafiltration ), biotechnological applications and pharmaceutical industry ( antibiotic production, protein purification ), water purification and wastewater treatment, the microelectronics industry, and others. nanofiltration and reverse osmosis membranes are mainly used for water purification purposes. dense membranes are utilized for gas separations ( removal of co2 from natural gas, separating n2 from air, organic vapor removal from air or a nitrogen stream ) and sometimes in membrane distillation. the later process helps in the separation of azeotropic compositions reducing the costs of distillation processes. = = pore size and selectivity = = the pore sizes of technical membranes are specified differently depending on the manufacturer. one common distinction is by nominal pore size. it describes the maximum pore size distribution and gives only vague information about the retention capacity of a membrane. the exclusion limit or " cut - off " of the membrane is usually specified in the form of nmwc ( nominal molecular weight cut - off, or mwco, molecular weight cut off, with units in dalton ). it is defined as the minimum molecular weight of a globular molecule that is retained to 90 % by the membrane. the cut - off, depending on the method, can by converted to so - called d90, which is then expressed in a metric unit. in practice the mwco of the membrane should be at least 20 % lower than the molecular weight of the molecule that is to be separated. using track etched mica membranes beck and schultz demonstrated that hindered diffusion of molecules in pores can be described by the rankin equation. filter membranes are divided into four
observed solar neutrino fluxes are employed to constrain the interior composition of the sun. including the effects of neutrino flavor mixing, the results from homestake, sudbury, and gallium experiments constrain the mg, si, and fe abundances in the solar interior to be within a factor 0. 89 to 1. 34 of the surface values with 68 % confidence. if the o and / or ne abundances are increased in the interior to resolve helioseismic discrepancies with recent standard solar models, then the nominal interior mg, si, and fe abundances are constrained to a range of 0. 83 to 1. 24 relative to the surface. additional research is needed to determine whether the sun ' s interior is metal poor relative to its surface.
cortisol, corticosterone and aldosterone activate full - length glucocorticoid receptor ( gr ) from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates. activation by aldosterone a mineralocorticoid, indicates partial divergence of elephant shark gr from the mr. progesterone activates elephant shark mr, but not elephant shark gr. progesterone inhibits steroid binding to elephant shark gr, but not to human gr. deletion of the n - terminal domain ( ntd ) from elephant shark gr ( truncated gr ) reduced the response to corticosteroids, while truncated and full - length elephant shark mr had similar responses to corticosteroids. chimeras of elephant shark gr ntd fused to mr dbd + lbd had increased activation by corticosteroids and progesterone compared to full - length elephant shark mr. elephant shark mr ntd fused to gr dbd + lbd had similar activation as full - length elephant shark mr, indicating that activation of human gr by the ntd evolved early in gr divergence from the mr.
antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture, on the ground that the earth is suspended within the concavity of the sky, and that it has as much room on the one side of it as on the other : hence they say that the part that is beneath must also be inhabited. but they do not remark that, although it be supposed or scientifically demonstrated that the world is of a round and spherical form, yet it does not follow that the other side of the earth is bare of water ; nor even, though it be bare, does it immediately follow that it is peopled. for scripture, which proves the truth of its historical statements by the accomplishment of its prophecies, gives no false information ; and it is too absurd to say, that some men might have taken ship and traversed the whole wide ocean, and crossed from this side of the world to the other, and that thus even the inhabitants of that distant region are descended from that one first man. some historians do not view augustine ' s scriptural commentaries as endorsing any particular cosmological model, endorsing instead the view that augustine shared the common view of his contemporaries that the earth is spherical, in line with his endorsement of science in de genesi ad litteram. c. p. e. nothaft, responding to writers like leo ferrari who described augustine as endorsing a flat earth, says that "... other recent writers on the subject treat augustine ' s acceptance of the earth ' s spherical shape as a well - established fact ". while it always remained a minority view, from the mid - fourth to the seventh centuries ad, the flat - earth view experienced a revival, around the time when diodorus of tarsus founded the exegetical school known as the school of antioch, which sought to counter what he saw as the pagan cosmology of the greeks with a return to the traditional cosmology. the writings of diodorus did not survive, but are reconstructed from later criticism. this revival primarily took place in the east syriac world ( with little influence on the latin west ) where it gained proponents such as ephrem the syrian and in the popular hexaemeral homilies of jacob of serugh. chrys
i discuss the possible instanton - induced multiparticle production in hard processes in qcd figures are available upon request
in the year 1598 philipp uffenbach published a printed diptych sundial, which is a forerunner of franz ritters horizantal sundial. uffenbach ' s sundial contains apart from the usual information on a sundial ascending signs of the zodiac, several brigthest stars, an almucantar and most important the oldest gnomonic world map known so far. the sundial is constructed for the polar height of 50 1 / 6 degrees, the height of frankfurt / main the town of his citizenship.
modeling of the x - ray spectra of the galactic superluminal jet sources grs 1915 + 105 and gro j1655 - 40 reveal a three - layered atmospheric structure in the inner region of their accretion disks. above the cold and optically thick disk of a temperature 0. 2 - 0. 5 kev, there is a warm layer with a temperature of 1. 0 - 1. 5 kev and an optical depth around 10. sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kev or higher and an optical depth around unity. the structural similarity between the accretion disks and the solar atmosphere suggest that similar physical processes may be operating in these different systems.
bc, and then in ancient egyptian technology c. 2000 bc. the earliest evidence of pulleys date back to mesopotamia in the early 2nd millennium bc, and ancient egypt during the twelfth dynasty ( 1991 β 1802 bc ). the screw, the last of the simple machines to be invented, first appeared in mesopotamia during the neo - assyrian period ( 911 β 609 ) bc. the egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever, to create structures like the great pyramid of giza. the earliest civil engineer known by name is imhotep. as one of the officials of the pharaoh, djoser, he probably designed and supervised the construction of the pyramid of djoser ( the step pyramid ) at saqqara in egypt around 2630 β 2611 bc. the earliest practical water - powered machines, the water wheel and watermill, first appeared in the persian empire, in what are now iraq and iran, by the early 4th century bc. kush developed the sakia during the 4th century bc, which relied on animal power instead of human energy. hafirs were developed as a type of reservoir in kush to store and contain water as well as boost irrigation. sappers were employed to build causeways during military campaigns. kushite ancestors built speos during the bronze age between 3700 and 3250 bc. bloomeries and blast furnaces were also created during the 7th centuries bc in kush. ancient greece developed machines in both civilian and military domains. the antikythera mechanism, an early known mechanical analog computer, and the mechanical inventions of archimedes, are examples of greek mechanical engineering. some of archimedes ' inventions, as well as the antikythera mechanism, required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the industrial revolution, and are widely used in fields such as robotics and automotive engineering. ancient chinese, greek, roman and hunnic armies employed military machines and inventions such as artillery which was developed by the greeks around the 4th century bc, the trireme, the ballista and the catapult, the trebuchet by chinese circa 6th - 5th century bce. = = = middle ages = = = the earliest practical wind - powered machines, the windmill and wind pump, first appeared in the muslim world during the islamic golden age, in what are now iran, afghanistan, and pakistan, by
Question: What is the name of the outer part of the adrenal gland located above the kidneys?
A) mitochondria
B) spleen
C) cortex
D) nucleus
|
C) cortex
|
Context:
high quality thread. the power loom was invented by edmund cartwright in 1787. in the mid - 1750s, the steam engine was applied to the water power - constrained iron, copper and lead industries for powering blast bellows. these industries were located near the mines, some of which were using steam engines for mine pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress was made in water supply and sanitation and the engineering skills of the romans were largely neglected throughout europe. the first documented use of sand filters to purify the water supply dates to 1804, when the owner of a bleachery in paisley, scotland, john gibb, installed an experimental filter, selling his unwanted
is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemical
in 1738. the spinning jenny, invented in 1764, was a machine that used multiple spinning wheels ; however, it produced low quality thread. the water frame patented by richard arkwright in 1767, produced a better quality thread than the spinning jenny. the spinning mule, patented in 1779 by samuel crompton, produced a high quality thread. the power loom was invented by edmund cartwright in 1787. in the mid - 1750s, the steam engine was applied to the water power - constrained iron, copper and lead industries for powering blast bellows. these industries were located near the mines, some of which were using steam engines for mine pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress
world made wide use of hydropower, along with early uses of tidal power, wind power, fossil fuels such as petroleum, and large factory complexes ( tiraz in arabic ). a variety of industrial mills were employed in the islamic world, including fulling mills, gristmills, hullers, sawmills, ship mills, stamp mills, steel mills, and tide mills. by the 11th century, every province throughout the islamic world had these industrial mills in operation. muslim engineers also employed water turbines and gears in mills and water - raising machines, and pioneered the use of dams as a source of water power, used to provide additional power to watermills and water - raising machines. many of these technologies were transferred to medieval europe. wind - powered machines used to grind grain and pump water, the windmill and wind pump, first appeared in what are now iran, afghanistan and pakistan by the 9th century. they were used to grind grains and draw up water, and used in the gristmilling and sugarcane industries. sugar mills first appeared in the medieval islamic world. they were first driven by watermills, and then windmills from the 9th and 10th centuries in what are today afghanistan, pakistan and iran. crops such as almonds and citrus fruit were brought to europe through al - andalus, and sugar cultivation was gradually adopted across europe. arab merchants dominated trade in the indian ocean until the arrival of the portuguese in the 16th century. the muslim world adopted papermaking from china. the earliest paper mills appeared in abbasid - era baghdad during 794 β 795. the knowledge of gunpowder was also transmitted from china via predominantly islamic countries, where formulas for pure potassium nitrate were developed. the spinning wheel was invented in the islamic world by the early 11th century. it was later widely adopted in europe, where it was adapted into the spinning jenny, a key device during the industrial revolution. the crankshaft was invented by al - jazari in 1206, and is central to modern machinery such as the steam engine, internal combustion engine and automatic controls. the camshaft was also first described by al - jazari in 1206. early programmable machines were also invented in the muslim world. the first music sequencer, a programmable musical instrument, was an automated flute player invented by the banu musa brothers, described in their book of ingenious devices, in the 9th century. in 1206, al - jazari invented programmable automata / robots. he described four automaton musicians, including two
pumping. steam engines were too powerful for leather bellows, so cast iron blowing cylinders were developed in 1768. steam powered blast furnaces achieved higher temperatures, allowing the use of more lime in iron blast furnace feed. ( lime rich slag was not free - flowing at the previously used temperatures. ) with a sufficient lime ratio, sulfur from coal or coke fuel reacts with the slag so that the sulfur does not contaminate the iron. coal and coke were cheaper and more abundant fuel. as a result, iron production rose significantly during the last decades of the 18th century. coal converted to coke fueled higher temperature blast furnaces and produced cast iron in much larger amounts than before, allowing the creation of a range of structures such as the iron bridge. cheap coal meant that industry was no longer constrained by water resources driving the mills, although it continued as a valuable source of power. the steam engine helped drain the mines, so more coal reserves could be accessed, and the output of coal increased. the development of the high - pressure steam engine made locomotives possible, and a transport revolution followed. the steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. the liverpool and manchester railway, the first purpose - built railway line, opened in 1830, the rocket locomotive of robert stephenson being one of its first working locomotives used. manufacture of ships ' pulley blocks by all - metal machines at the portsmouth block mills in 1803 instigated the age of sustained mass production. machine tools used by engineers to manufacture parts began in the first decade of the century, notably by richard roberts and joseph whitworth. the development of interchangeable parts through what is now called the american system of manufacturing began in the firearms industry at the u. s. federal arsenals in the early 19th century, and became widely used by the end of the century. until the enlightenment era, little progress was made in water supply and sanitation and the engineering skills of the romans were largely neglected throughout europe. the first documented use of sand filters to purify the water supply dates to 1804, when the owner of a bleachery in paisley, scotland, john gibb, installed an experimental filter, selling his unwanted surplus to the public. the first treated public water supply in the world was installed by engineer james simpson for the chelsea waterworks company in london in 1829. the first screw - down water tap was patented in 1845 by guest and chrimes, a brass foundry in rotherham. the practice of water treatment soon became mainstream,
10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is
. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. =
to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei
, heat from friction during rolling can cause problems for metal bearings ; problems which are reduced by the use of ceramics. ceramics are also more chemically resistant and can be used in wet environments where steel bearings would rust. the major drawback to using ceramics is a significantly higher cost. in many cases their electrically insulating properties may also be valuable in bearings. in the early 1980s, toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 Β°f ( 3300 Β°c ). ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. fuel efficiency of the engine is also higher at high temperature, as shown by carnot ' s theorem. in a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts. despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. such engines are possible in laboratory settings, but mass - production is not feasible with current technology. work is being done in developing ceramic parts for gas turbine engines. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials
building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another material. cermets are ceramic particles containing some metals. the wear resistance of tools is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties. ceramics can be significantly strengthened for engineering applications using the principle of crack deflection. this process involves the strategic addition of second - phase particles within a ceramic matrix, optimizing their shape, size, and distribution to direct and control crack propagation. this approach enhances fracture toughness, paving the way for the creation of advanced, high - performance ceramics in various industries. = = = composites = = = another application of materials science in industry is making composite materials. these are structured materials composed of two or more macroscopic phases. applications range from structural elements such as steel - reinforced concrete, to the thermal insulating tiles, which play a key and integral role in nasa ' s space shuttle thermal protection system, which is used to protect the surface of the shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap. rcc is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. after curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfuryl alcohol in a
Question: What kind of energy used heat from magma within the earth to heat homes or produce steam that turns turbines?
A) renewable energy
B) thermal energy
C) geothermal energy
D) robust energy
|
C) geothermal energy
|
Context:
great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu shastra ', suggests a thorough understanding of materials engineering, hydrology, and sanitation. = = = = china = = = = the chinese made many first - known discoveries and developments. major technological contributions from china include the earliest known form of the binary code and epigenetic sequencing, early seismological detectors,
proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle
, even if the idempotence property is lost. an everyday example of a projection is the casting of shadows onto a plane ( sheet of paper ) : the projection of a point is its shadow on the sheet of paper, and the projection ( shadow ) of a point on the sheet of paper is that point itself ( idempotency ). the shadow of a three - dimensional sphere is a disk. originally, the notion of projection was introduced in euclidean geometry to denote the projection of the three - dimensional euclidean space onto a plane in it, like the shadow example. the two main projections of this kind are : the projection from a point onto a plane or central projection : if c is a point, called the center of projection, then the projection of a point p different from c onto a plane that does not contain c is the intersection of the line cp with the plane. the points p such that the line cp is parallel to the plane does not have any image by the projection, but one often says that they project to a point at infinity of the plane ( see projective geometry for a formalization of this terminology ). the projection of the point c itself is not defined. the projection parallel to a direction d, onto a plane or parallel projection : the image of a point p is the intersection of the plane with the line parallel to d passing through p. see affine space Β§ projection for an accurate definition, generalized to any dimension. the concept of projection in mathematics is a very old one, and most likely has its roots in the phenomenon of the shadows cast by real - world objects on the ground. this rudimentary idea was refined and abstracted, first in a geometric context and later in other branches of mathematics. over time different versions of the concept developed, but today, in a sufficiently abstract setting, we can unify these variations. in cartography, a map projection is a map of a part of the surface of the earth onto a plane, which, in some cases, but not always, is the restriction of a projection in the above meaning. the 3d projections are also at the basis of the theory of perspective. the need for unifying the two kinds of projections and of defining the image by a central projection of any point different of the center of projection are at the origin of projective geometry. = = definition = = generally, a mapping where the domain and codomain are the same set ( or mathematical structure ) is a projection if the mapping is idempotent, which means that a projection is
protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate ( rubp ) in a sequence of light - independent ( or dark ) reactions called the calvin cycle. = = = cell signaling = = = cell signaling ( or communication ) is the ability of cells to receive, process, and transmit signals with its environment and with itself. signals can be non - chemical such as light, electrical impulses, and heat, or chemical signals ( or ligands ) that interact with receptors, which can be found embedded in the cell membrane of another cell or located deep inside a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause
to block. all three types of radiation occur naturally in certain elements. it has also become clear that the ultimate source of most terrestrial energy is nuclear, either through radiation from the sun caused by stellar thermonuclear reactions or by radioactive decay of uranium within the earth, the principal source of geothermal energy. = = = nuclear fission = = = in natural nuclear radiation, the byproducts are very small compared to the nuclei from which they originate. nuclear fission is the process of splitting a nucleus into roughly equal parts, and releasing energy and neutrons in the process. if these neutrons are captured by another unstable nucleus, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei
from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable
##nita and hamangia, which are often grouped together under the name of ' old europe '. with the carpatho - balkan region described as the ' earliest metallurgical province in eurasia ', its scale and technical quality of metal production in the 6th β 5th millennia bc totally overshadowed that of any other contemporary production centre. the earliest documented use of lead ( possibly native or smelted ) in the near east dates from the 6th millennium bc, is from the late neolithic settlements of yarim tepe and arpachiyah in iraq. the artifacts suggest that lead smelting may have predated copper smelting. metallurgy of lead has also been found in the balkans during the same period. copper smelting is documented at sites in anatolia and at the site of tal - i iblis in southeastern iran from c. 5000 bc. copper smelting is first documented in the delta region of northern egypt in c. 4000 bc, associated with the maadi culture. this represents the earliest evidence for smelting in africa. the varna necropolis, bulgaria, is a burial site located in the western industrial zone of varna, approximately 4 km from the city centre, internationally considered one of the key archaeological sites in world prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and
team of physicists who were concerned that nazi germany might also be seeking to build a bomb based on nuclear fission. ( the earliest known nuclear reaction on earth occurred naturally, 1. 7 billion years ago, in oklo, gabon, africa. ) the second artificial nuclear reactor, the x - 10 graphite reactor, was also a part of the manhattan project, as were the plutonium - producing reactors of the hanford engineer works. the first nuclear reactor to generate electricity was experimental breeder reactor i ( ebr - i ), which did so near arco, idaho, in 1951. ebr - i was a standalone facility, not connected to a grid, but a later idaho research reactor in the borax series did briefly supply power to the town of arco in 1955. the first commercial nuclear power plant, built to be connected to an electrical grid, is the obninsk nuclear power plant, which began operation in 1954. the second is the shippingport atomic power station, which produced electricity in 1957. for a chronology, from the discovery of uranium to the current era, see outline history of nuclear energy or history of nuclear power. also see history of nuclear engineering part 1 : radioactivity, part 2 : building the bomb, and part 3 : atoms for peace. see list of commercial nuclear reactors for a comprehensive listing of nuclear power reactors and iaea power reactor information system ( pris ) for worldwide and country - level statistics on nuclear power generation. = = sub - disciplines = = nuclear engineers work in such areas as the following : nuclear reactor design, which has evolved from the generation i, proof - of concept, reactors of the 1950s and 1960s, to generation ii, generation iii, and generation iv concepts thermal hydraulics and heat transfer. in a typical nuclear power plant, heat generates steam that drives a steam turbine and a generator that produces electricity materials science as it relates to nuclear power applications managing the nuclear fuel cycle, in which fissile material is obtained, formed into fuel, removed when depleted, and safely stored or reprocessed nuclear propulsion, mainly for military naval vessels, but there have been concepts for aircraft and missiles. nuclear power has been used in space since the 1960s plasma physics, which is integral to the development of fusion power weapons development and management generation of radionuclides, which have applications in industry, medicine, and many other areas nuclear waste management health physics nuclear medicine and medical physics health and safety instrumentation and control engineering process engineering project management quality engineering reactor operations nuclear security ( detection of
this note adds one diminimal map on the torus to the published set of 55. it also raises to 15 the number of vertices for which all diminimal maps on the torus are known.
high temperature superconducting ( hts ) tape can be cut and stacked to generate large magnetic fields at cryogenic temperatures after inducing persistent currents in the superconducting layers. a field of 17. 7 t was trapped between two stacks of hts tape at 8 k with no external mechanical reinforcement. 17. 6 t could be sustained when warming the stack up to 14 k. a new type of hybrid stack was used consisting of a 12 mm square insert stack embedded inside a larger 34. 4 mm diameter stack made from different tape. the magnetic field generated is the largest for any trapped field magnet reported and 30 % greater than previously achieved in a stack of hts tapes. such stacks are being considered for superconducting motors as rotor field poles where the cryogenic penalty is justified by the increased power to weight ratio. the sample reported can be considered the strongest permanent magnet ever created.
Question: The primary output of the basal nuclei is to the thalamus, which relays that output to where?
A) suffering cortex
B) cerebral cortex
C) Back cortex
D) effect cortex
|
B) cerebral cortex
|
Context:
the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also
and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygenated blood in a particular region is assumed to correlate with an increase in neural activity in that part of the brain. this allows us to localize particular functions within different brain regions. fmri has moderate spatial and temporal resolution. optical imaging. this technique uses infrared transmitters and receivers to measure the amount of light reflectance by blood near different areas of the brain. since oxygenated and deoxygenated blood reflects light by different amounts, we can study which areas are more active ( i. e., those that have more oxygenated blood ). optical imaging has moderate temporal resolution, but poor spatial resolution. it also has the advantage that it is extremely safe and can be used to study infants ' brains. magnetoencephalography. meg measures magnetic fields resulting from cortical activity. it is similar to eeg, except that it has improved spatial resolution since the magnetic fields it measures are not as blurred or attenuated by the scalp, meninges and so forth as the electrical activity measured in eeg is. meg uses squid sensors to detect tiny magnetic fields. = = = computational modeling = = = computational models require a mathematically and logically formal representation of a problem. computer models are used in the simulation and experimental verification of different specific and general properties of intelligence. computational modeling can help us understand the functional organization of a particular cognitive phenomenon. approaches to cognitive modeling can be categorized as : ( 1 ) symbolic, on abstract mental functions of an intelligent mind by means of symbols ; ( 2 ) subsymbolic, on the neural and associative properties of the human brain ; and ( 3 ) across the symbolic β subsymbolic border, including hybrid. symbolic modeling evolved from the computer science paradigms using the technologies of knowledge - based systems, as well as a philosophical perspective ( e. g. " good old - fashioned artificial intelligence " ( gofa
of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygenated blood in a particular region is assumed to correlate with an increase in neural activity in that part of the brain. this allows us to localize particular functions within different brain regions. fmri has moderate spatial and temporal resolution. optical imaging. this technique uses infrared transmitters and receivers to measure the amount of light reflectance by blood near different areas of the brain. since oxygenated and deoxygenated blood reflects light by different amounts, we can study which areas are more active ( i. e., those that have more oxygenated blood ). optical imaging has moderate temporal resolution, but poor spatial resolution. it also has the advantage that it is extremely safe and can be used to study infants ' brains. magnetoencephalography. meg measures magnetic fields resulting from cortical activity. it is similar to eeg, except that it has improved spatial resolution since the magnetic fields it measures are not as blurred or attenuated by the scalp, meninges and so forth as the electrical activity measured in eeg is. meg uses squid sensors to detect tiny magnetic fields. = = = computational modeling = = = computational models require a mathematically and logically formal representation of a problem. computer models are used in the simulation and experimental verification of different specific and general properties of intelligence. computational modeling can help us understand the functional organization of a particular cognitive phenomenon. approaches to cognitive modeling can be categorized as : ( 1 ) symbolic, on abstract mental functions of an intelligent mind by means of symbols ; ( 2 ) subsymbolic, on the neural and associa
generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygenated blood in a particular region is assumed to correlate with an increase in neural activity in that part of the brain. this allows us to localize particular functions within different brain regions. fmri has moderate spatial and temporal resolution. optical imaging. this technique uses infrared transmitters and receivers to measure the amount of light reflectance by blood near different areas of the brain. since oxygenated and deoxygenated blood reflects light by different amounts, we can study which areas are more active ( i. e., those that have more oxygenated blood ). optical imaging has moderate temporal resolution, but poor spatial resolution. it also has the advantage that it is extremely safe and can be used to study infants ' brains. magnetoencephalography. meg measures magnetic fields resulting from cortical activity. it is similar to eeg, except that it has improved spatial resolution since the magnetic fields it measures are not as blurred or attenuated by the scalp, meninges and so forth as the electrical activity measured in eeg is. meg uses squid sensors to detect tiny magnetic fields. = = = computational modeling = = = computational models require a mathematically and logically formal representation of a problem. computer models are used in the simulation and experimental verification of different specific and general properties of intelligence. computational modeling can help us understand the functional organization of a particular cognitive phenomenon. approaches to cognitive modeling can be categorized as : ( 1 ) symbolic, on abstract mental functions of an intelligent mind by means of symbols ; ( 2 ) subsymbolic, on the neural and associative properties of the human brain ; and ( 3 ) across the symbolic β subsymbolic border, including hybrid. symbolic modeling evolved from the computer science paradigms using the technologies of knowledge - based systems, as well as a philosophical perspective ( e. g. " good old - fashioned artificial intelligence " ( gofai ) ). they were developed by the first cognitive researchers and later used in information engineering for expert systems. since the early 1990s it was generalized in systemics for the investigation of functional human - like intelligence models, such as personoids, and, in parallel, developed as the soar environment. recently, especially in
cross - fertilization that takes place among the various fields. psychology differs from biology and neuroscience in that it is primarily concerned with the interaction of mental processes and behaviour, and of the overall processes of a system, and not simply the biological or neural processes themselves, though the subfield of neuropsychology combines the study of the actual neural processes with the study of the mental effects they have subjectively produced. many people associate psychology with clinical psychology, which focuses on assessment and treatment of problems in living and psychopathology. in reality, psychology has myriad specialties including social psychology, developmental psychology, cognitive psychology, educational psychology, industrial - organizational psychology, mathematical psychology, neuropsychology, and quantitative analysis of behaviour. psychology is a very broad science that is rarely tackled as a whole, major block. although some subfields encompass a natural science base and a social science application, others can be clearly distinguished as having little to do with the social sciences or having a lot to do with the social sciences. for example, biological psychology is considered a natural science with a social scientific application ( as is clinical medicine ), social and occupational psychology are, generally speaking, purely social sciences, whereas neuropsychology is a natural science that lacks application out of the scientific tradition entirely. in british universities, emphasis on what tenet of psychology a student has studied and / or concentrated is communicated through the degree conferred : bpsy indicates a balance between natural and social sciences, bsc indicates a strong ( or entire ) scientific concentration, whereas a ba underlines a majority of social science credits. this is not always necessarily the case however, and in many uk institutions students studying the bpsy, bsc, and ba follow the same curriculum as outlined by the british psychological society and have the same options of specialism open to them regardless of whether they choose a balance, a heavy science basis, or heavy social science basis to their degree. if they applied to read the ba. for example, but specialized in heavily science - based modules, then they will still generally be awarded the ba. = = = sociology = = = sociology is the systematic study of society, individuals ' relationship to their societies, the consequences of difference, and other aspects of human social action. the meaning of the word comes from the suffix - logy, which means " study of ", derived from ancient greek, and the stem soci -, which is from the latin word socius, meaning " companion ", or society in general. auguste comte ( 1798 β 1857 ) coined
the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice
decision making during a task, and they provide us with some insight into the ways in which those decisions may be processed. = = = brain imaging = = = brain imaging involves analyzing activity within the brain while performing various tasks. this allows us to link behavior and brain function to help understand how information is processed. different types of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygenated blood in a particular region is assumed to correlate with an increase in neural activity in that part of the brain. this allows us to localize particular functions within different brain regions. fmri has moderate spatial and temporal resolution. optical imaging. this technique uses infrared transmitters and receivers to measure the amount of light reflectance by blood near different areas of the brain. since oxygenated and deoxygenated blood reflects light by different amounts, we can study which areas are more active ( i. e., those that have more oxygenated blood ). optical imaging has moderate temporal resolution, but poor spatial resolution. it also has the advantage that it is extremely safe and can be used to study infants ' brains. magnetoencephalography. meg measures magnetic fields resulting from cortical activity. it is similar to eeg, except that it has improved spatial resolution since the magnetic fields it measures are not as blurred or attenuated by the scalp, meninges and so forth as the electrical activity measured in eeg is. meg uses squid sensors to detect tiny magnetic fields. = = = computational modeling = = = computational models require a mathematically and logically formal representation of a problem. computer models are used in the simulation and experimental verification of different
the nervous system. these kinds of tests can be divided into recordings of : ( 1 ) spontaneous or continuously running electrical activity, or ( 2 ) stimulus evoked responses. subspecialties include electroencephalography, electromyography, evoked potential, nerve conduction study and polysomnography. sometimes these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of
as you read these words you are using a complex biological neural network. you have a highly interconnected set of some neurons to facilitate your reading, breathing, motion and thinking. each of your biological neurons, a rich assembly of tissue and chemistry, has the complexity, if not the speed, of a microprocessor. some of your neural structure was with you at birth. other parts have been established by experience.
? if the latter, an important question is how the internal experiences of others can be measured. self - reports of feelings and beliefs may not be reliable because, even in cases in which there is no apparent incentive for subjects to intentionally deceive in their answers, self - deception or selective memory may affect their responses. then even in the case of accurate self - reports, how can responses be compared across individuals? even if two individuals respond with the same answer on a likert scale, they may be experiencing very different things. other issues in philosophy of psychology are philosophical questions about the nature of mind, brain, and cognition, and are perhaps more commonly thought of as part of cognitive science, or philosophy of mind. for example, are humans rational creatures? is there any sense in which they have free will, and how does that relate to the experience of making choices? philosophy of psychology also closely monitors contemporary work conducted in cognitive neuroscience, psycholinguistics, and artificial intelligence, questioning what they can and cannot explain in psychology. philosophy of psychology is a relatively young field, because psychology only became a discipline of its own in the late 1800s. in particular, neurophilosophy has just recently become its own field with the works of paul churchland and patricia churchland. philosophy of mind, by contrast, has been a well - established discipline since before psychology was a field of study at all. it is concerned with questions about the very nature of mind, the qualities of experience, and particular issues like the debate between dualism and monism. = = = philosophy of social science = = = the philosophy of social science is the study of the logic and method of the social sciences, such as sociology and cultural anthropology. philosophers of social science are concerned with the differences and similarities between the social and the natural sciences, causal relationships between social phenomena, the possible existence of social laws, and the ontological significance of structure and agency. the french philosopher, auguste comte ( 1798 β 1857 ), established the epistemological perspective of positivism in the course in positivist philosophy, a series of texts published between 1830 and 1842. the first three volumes of the course dealt chiefly with the natural sciences already in existence ( geoscience, astronomy, physics, chemistry, biology ), whereas the latter two emphasised the inevitable coming of social science : " sociologie ". for comte, the natural sciences had to necessarily arrive first, before humanity could adequately channel its efforts into the most challenging and complex " queen science " of human society
Question: The central nervous system is composed of the brain and what else?
A) the dynamic cord
B) the lateral cord
C) the sclerotic cord
D) the spinal cord
|
D) the spinal cord
|
Context:
is the scientific study of inheritance. mendelian inheritance, specifically, is the process by which genes and traits are passed on from parents to offspring. it has several principles. the first is that genetic characteristics, alleles, are discrete and have alternate forms ( e. g., purple vs. white or tall vs. dwarf ), each inherited from one of two parents. based on the law of dominance and uniformity, which states that some alleles are dominant while others are recessive ; an organism with at least one dominant allele will display the phenotype of that dominant allele. during gamete formation, the alleles for each gene segregate, so that each gamete carries only one allele for each gene. heterozygotic individuals produce gametes with an equal frequency of two alleles. finally, the law of independent assortment, states that genes of different traits can segregate independently during the formation of gametes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can
prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as
##tes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna
of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics,
genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and
cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing
monoclonal antibodies, antihemophilic factors, vaccines and many other drugs. mouse hybridomas, cells fused together to create monoclonal antibodies, have been adapted through genetic engineering to create human monoclonal antibodies. genetically engineered viruses are being developed that can still confer immunity, but lack the infectious sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of
with the lambda virus. as well as inserting genes, the process can be used to remove, or " knock out ", genes. the new dna can be inserted randomly, or targeted to a specific part of the genome. an organism that is generated through genetic engineering is considered to be genetically modified ( gm ) and the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential
genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism ' s genes using technology. it is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. new dna is obtained by either isolating and copying the genetic material of interest using recombinant dna methods or by artificially synthesising the dna. a construct is usually created and used to insert this dna into the host organism. the first recombinant dna molecule was made by paul berg in 1972 by combining dna from the monkey virus sv40 with the lambda virus. as well as inserting genes, the process can be used to remove, or " knock out ", genes. the new dna can be inserted randomly, or targeted to a specific part of the genome. an organism that is generated through genetic engineering is considered to be genetically modified ( gm ) and the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such
new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper
Question: A group of genetically identical individuals is called what?
A) brother
B) a man
C) replicant
D) a clone
|
D) a clone
|
Context:
earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of glaciology include access to glacial freshwater, mitigation of glacial hazards, obtaining resources that exist beneath frozen land, and addressing the effects of climate change on the cryosphere. = = ecology = = ecology is the study of the biosphere. this includes the study of nature and of how living things interact with the earth and one another and the consequences of that. it considers how living things use resources such as oxygen, water, and nutrients from the earth to sustain themselves. it also considers how humans and other living creatures cause changes to nature. = = physical geography = = physical geography is the study of earth ' s systems and how they interact with one another as part of a single self - contained system. it incorporates astronomy, mathematical geography, meteorology, climatology, geology, geomorphology, biology, biogeography, pedology, and soils geography. physical geography is distinct from human geography, which studies the human populations on earth, though it does include human effects on the environment. = = methodology = = methodologies vary depending on the nature of the subjects being studied. studies typically fall into one of three categories : observational, experimental, or theoretical. earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena (
snake called jormungandr. the norse creation account preserved in gylfaginning ( viii ) states that during the creation of the earth, an impassable sea was placed around it : and jafnharr said : " of the blood, which ran and welled forth freely out of his wounds, they made the sea, when they had formed and made firm the earth together, and laid the sea in a ring round. about her ; and it may well seem a hard thing to most men to cross over it. " the late norse konungs skuggsja, on the other hand, explains earth ' s shape as a sphere : if you take a lighted candle and set it in a room, you may expect it to light up the entire interior, unless something should hinder, though the room be quite large. but if you take an apple and hang it close to the flame, so near that it is heated, the apple will darken nearly half the room or even more. however, if you hang the apple near the wall, it will not get hot ; the candle will light up the whole house ; and the shadow on the wall where the apple hangs will be scarcely half as large as the apple itself. from this you may infer that the earth - circle is round like a ball and not equally near the sun at every point. but where the curved surface lies nearest the sun ' s path, there will the greatest heat be ; and some of the lands that lie continuously under the unbroken rays cannot be inhabited. = = = = east asia = = = = in ancient china, the prevailing belief was that the earth was flat and square, while the heavens were round, an assumption virtually unquestioned until the introduction of european astronomy in the 17th century. the english sinologist cullen emphasizes the point that there was no concept of a round earth in ancient chinese astronomy : chinese thought on the form of the earth remained almost unchanged from early times until the first contacts with modern science through the medium of jesuit missionaries in the seventeenth century. while the heavens were variously described as being like an umbrella covering the earth ( the kai tian theory ), or like a sphere surrounding it ( the hun tian theory ), or as being without substance while the heavenly bodies float freely ( the hsuan yeh theory ), the earth was at all times flat, although perhaps bulging up slightly. the model of an egg was often used by chinese astronomers such as zhang heng ( 78 β 139 ad ) to
have evolved from the earliest emergence of life to present day. earth formed about 4. 5 billion years ago and all life on earth, both living and extinct, descended from a last universal common ancestor that lived about 3. 5 billion years ago. geologists have developed a geologic time scale that divides the history of the earth into major divisions, starting with four eons ( hadean, archean, proterozoic, and phanerozoic ), the first three of which are collectively known as the precambrian, which lasted approximately 4 billion years. each eon can be divided into eras, with the phanerozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became
all christian authors held that the earth was round. athenagoras, an eastern christian writing around the year 175 ad, said that the earth was spherical. methodius ( c. 290 ad ), an eastern christian writing against " the theory of the chaldeans and the egyptians " said : " let us first lay bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture
variation in total solar irradiance is thought to have little effect on the earth ' s surface temperature because of the thermal time constant - - the characteristic response time of the earth ' s global surface temperature to changes in forcing. this time constant is large enough to smooth annual variations but not necessarily variations having a longer period such as those due to solar inertial motion ; the magnitude of these surface temperature variations is estimated.
the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o β h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a
three major planets, venus, earth, and mercury formed out of the solar nebula. a fourth planetesimal, theia, also formed near earth where it collided in a giant impact, rebounding as the planet mars. during this impact earth lost $ { \ approx } 4 $ \ % of its crust and mantle that is now is found on mars and the moon. at the antipode of the giant impact, $ \ approx $ 60 \ % of earth ' s crust, atmosphere, and a large amount of mantle were ejected into space forming the moon. the lost crust never reformed and became the earth ' s ocean basins. the theia impact site corresponds to indian ocean gravitational anomaly on earth and the hellas basin on mars. the dynamics of the giant impact are consistent with the rotational rates and axial tilts of both earth and mars. the giant impact removed sufficient co $ _ 2 $ from earth ' s atmosphere to avoid a runaway greenhouse effect, initiated plate tectonics, and gave life time to form near geothermal vents at the continental margins. mercury formed near venus where on a close approach it was slingshot into the sun ' s convective zone losing 94 \ % of its mass, much of which remains there today. black carbon, from co $ _ 2 $ decomposed by the intense heat, is still found on the surface of mercury. arriving at 616 km / s, mercury dramatically altered the sun ' s rotational energy, explaining both its anomalously slow rotation rate and axial tilt. these results are quantitatively supported by mass balances, the current locations of the terrestrial planets, and the orientations of their major orbital axes.
antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture, on the ground that the earth is suspended within the concavity of the sky, and that it has as much room on the one side of it as on the other : hence they say that the part that is beneath must also be inhabited. but they do not remark that, although it be supposed or scientifically demonstrated that the world is of a round and spherical form, yet it does not follow that the other side of the earth is bare of water ; nor even, though it be bare, does it immediately follow that it is peopled. for scripture, which proves the truth of its historical statements by the accomplishment of its prophecies, gives no false information ; and it is too absurd to say, that some men might have taken ship and traversed the whole wide ocean, and crossed from this side of the world to the other, and that thus even the inhabitants of that distant region are descended from that one first man. some historians do not view augustine ' s scriptural commentaries as endorsing any particular cosmological model, endorsing instead the view that augustine shared the common view of his contemporaries that the earth is spherical, in line with his endorsement of science in de genesi ad litteram. c. p. e. nothaft, responding to writers like leo ferrari who described augustine as endorsing a flat earth, says that "... other recent writers on the subject treat augustine ' s acceptance of the earth ' s spherical shape as a well - established fact ". while it always remained a minority view, from the mid - fourth to the seventh centuries ad, the flat - earth view experienced a revival, around the time when diodorus of tarsus founded the exegetical school known as the school of antioch, which sought to counter what he saw as the pagan cosmology of the greeks with a return to the traditional cosmology. the writings of diodorus did not survive, but are reconstructed from later criticism. this revival primarily took place in the east syriac world ( with little influence on the latin west ) where it gained proponents such as ephrem the syrian and in the popular hexaemeral homilies of jacob of serugh. chrys
depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform
becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under
Question: Where on the earth's surface does the water cycle takes place?
A) for , above , and below
B) inside,under,above
C) on , below , and below
D) on, above, and below
|
D) on, above, and below
|
Context:
##yotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life.
. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer
the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form
and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states
waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial
liver glycogen. during recovery, when oxygen becomes available, nad + attaches to hydrogen from lactate to form atp. in yeast, the waste products are ethanol and carbon dioxide. this type of fermentation is known as alcoholic or ethanol fermentation. the atp generated in this process is made by substrate - level phosphorylation, which does not require oxygen. = = = photosynthesis = = = photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism ' s metabolic activities via cellular respiration. this chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. in most cases, oxygen is released as a waste product. most plants, algae, and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the earth ' s atmosphere, and supplies most of the energy necessary for life on earth. photosynthesis has four stages : light absorption, electron transport, atp synthesis, and carbon fixation. light absorption is the initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes. the absorbed light energy is used to remove electrons from a donor ( water ) to a primary electron acceptor, a quinone designated as q. in the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach a final electron acceptor, which is usually the oxidized form of nadp +, which is reduced to nadph, a process that takes place in a protein complex called photosystem i ( psi ). the transport of electrons is coupled to the movement of protons ( or hydrogen ) from the stroma to the thylakoid membrane, which forms a ph gradient across the membrane as hydrogen becomes more concentrated in the lumen than in the stroma. this is analogous to the proton - motive force generated across the inner mitochondrial membrane in aerobic respiration. during the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the atp synthase is coupled to the synthesis of atp by that same atp synthase. the nadph and atps generated by the light - dependent reactions in the second and third stages, respectively, provide the energy and
process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states supreme court ruled that a genetically modified microorganism could be patented in the case of diamond v. chakrabarty. indian - born ananda chakrabarty, working for general electric, had modified a bacterium ( of the genus pseudomonas ) capable of breaking down crude oil, which he proposed to
prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea are further divided into multiple recognized phyla. archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat and square cells of haloquadratum walsbyi. despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mit
the broad definition of " utilizing a biotechnological system to make products ". indeed, the cultivation of plants may be viewed as the earliest biotechnological enterprise. agriculture has been theorized to have become the dominant way of producing food since the neolithic revolution. through early biotechnology, the earliest farmers selected and bred the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united
, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive
Question: Under which conditions do many bacteria carry out alcohol fermentation?
A) melting
B) enzymatic
C) anaerobic
D) photosynthesis
|
C) anaerobic
|
Context:
it was the best of times ; it was the worst of times is the way dickens begins the tale of two cities. the line is appropriate to our time in particle physics. it is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. it is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. my task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. it is a time when we cannot afford the merely good, but must give first priority to the really important.
why has the problematic of complexity appeared so late? and why would it be justified?
are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the
the decay rate for isotopes subject to extreme pressures, those differences were too small to significantly impact date estimates. the constancy of the decay rates is also governed by first principles in quantum mechanics, wherein any deviation in the rate would require a change in the fundamental constants. according to these principles, a change in the fundamental constants could not influence different elements uniformly, and a comparison between each of the elements ' resulting unique chronological timescales would then give inconsistent time estimates. in refutation of young earth claims of inconstant decay rates affecting the reliability of radiometric dating, roger c. wiens, a physicist specializing in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionucl
the fundamental constants could not influence different elements uniformly, and a comparison between each of the elements ' resulting unique chronological timescales would then give inconsistent time estimates. in refutation of young earth claims of inconstant decay rates affecting the reliability of radiometric dating, roger c. wiens, a physicist specializing in isotope dating states : there are only three quite technical instances where a half - life changes, and these do not affect the dating methods : " only one technical exception occurs under terrestrial conditions, and this is not for an isotope used for dating.... the artificially - produced isotope, beryllium - 7 has been shown to change by up to 1. 5 %, depending on its chemical environment.... heavier atoms are even less subject to these minute changes, so the dates of rocks made by electron - capture decays would only be off by at most a few hundredths of a percent. " "... another case is material inside of stars, which is in a plasma state where electrons are not bound to atoms. in the extremely hot stellar environment, a completely different kind of decay can occur. ' bound - state beta decay ' occurs when the nucleus emits an electron into a bound electronic state close to the nucleus.... all normal matter, such as everything on earth, the moon, meteorites, etc. has electrons in normal positions, so these instances never apply to rocks, or anything colder than several hundred thousand degrees. " " the last case also involves very fast - moving matter. it has been demonstrated by atomic clocks in very fast spacecraft. these atomic clocks slow down very slightly ( only a second or so per year ) as predicted by einstein ' s theory of relativity. no rocks in our solar system are going fast enough to make a noticeable change in their dates. " = = = = radiohaloes = = = = in the 1970s, young earth creationist robert v. gentry proposed that radiohaloes in certain granites represented evidence for the earth being created instantaneously rather than gradually. this idea has been criticized by physicists and geologists on many grounds including that the rocks gentry studied were not primordial and that the radionuclides in question need not have been in the rocks initially. thomas a. baillieul, a geologist and retired senior environmental scientist with the united states department of energy, disputed gentry ' s claims in an article entitled, " ' polonium haloes ' refuted : a review of ' radioactive halos in a radio
given invariant percolation on a regular tree, where the probability of an edge to be open equals $ p $, is it always possible to find an infinite self - avoiding path along which the density of open edges is bigger then $ p $?
cobalt nanowires with a diameter in the range between 50 to 100nm can be prepared as single - crystal wires with the easy axis ( the c - axis ) perpendicular to the wire axis. the competition between the crystal anisotropy and demagnetization energy frustrates the magnetization direction. a periodic modulation of the angle between m and the wire axis yields a lower energy.
the extremely small probability of tunneling through an almost classical potential barrier may become not small under the action of the specially adapted non - stationary signal which selects the certain particle energy e _ r. for particle energies close to this value, the tunneling rate is not small during a finite interval of time and has a very sharp peak at the energy e _ r. after entering inside the barrier, the particle emits electromagnetic quanta and exits the barrier with a lower energy. the signal amplitude can be much less compared to the field of the static barrier. this phenomenon can be called the euclidean resonance since the under - barrier motion occurs in imaginary time. the resonance may stimulate chemical and biochemical reactions in a selective way by adapting the signal to a certain particular chemical bond. the resonance may be used in search of the soft alpha - decay for which a conventional observation is impossible due to an extremely small decay rate.
the project consists to determine, mathematically, the trajectory that will take an artificial satellite to fight against the air resistance. during our work, we had to consider that our satellite will crash to the surface of our planet. we started our study by understanding the system of forces that are acting between our satellite and the earth. in this work, we had to study the second law of newton by taking knowledge of the air friction, the speed of the satellite which helped us to find the equation that relates the trajectory of the satellite itself, its speed and the density of the air depending on the altitude. finally, we had to find a mathematic relation that links the density with the altitude and then we had to put it into our movement equation. in order to verify our model, we ' ll see what happens if we give a zero velocity to the satellite.
can the apparent complexity we observe in the real world be generated from simple initial conditions via simple, deterministic rules?
Question: Fermat's principle states that what will always take the path that takes the least amount of time?
A) sound
B) electricity
C) light
D) wind
|
C) light
|
Context:
weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the po river in italy, for instance, pebbles and gravel are found for about 140 miles below turin, sand along the next 100 miles, and silt and mud in the last 110 miles ( 176 km ). = = channelization = = the removal of obstructions, natural or artificial
light and cold extrasolar planets such as ogle 2005 - blg - 390lb, a 5. 5 earth - mass planet detected via microlensing, could be frequent in the galaxy according to some preliminary results from microlensing experiments. these planets can be frozen rocky - or ocean - planets, situated beyond the snow line and, therefore, beyond the habitable zone of their system. they can nonetheless host a layer of liquid water, heated by radiogenic energy, underneath an ice shell surface for billions of years, before freezing completely. these results suggest that oceans under ice, like those suspected to be present on icy moons in the solar system, could be a common feature of cold low - mass extrasolar planets.
navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods ; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding sea
variation in total solar irradiance is thought to have little effect on the earth ' s surface temperature because of the thermal time constant - - the characteristic response time of the earth ' s global surface temperature to changes in forcing. this time constant is large enough to smooth annual variations but not necessarily variations having a longer period such as those due to solar inertial motion ; the magnitude of these surface temperature variations is estimated.
the gas giant planets in the solar system have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. if a jupiter - like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. the hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. at some planet - star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. this runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. however, for icy moons of ganymede ' s size around a sun - like star we found that surface water ( either ice or liquid ) can persist indefinitely outside the runaway greenhouse orbital distance. in contrast, the surface water on smaller moons of europa ' s size will only persist on timescales greater than 1 gyr at distances ranging 1. 49 to 0. 74 au around a sun - like star for bond albedos of 0. 2 and 0. 8, where the lower albedo becomes relevant if ice melts. consequently, small moons can lose their icy shells, which would create a torus of h atoms around their host planet that might be detectable in future observations.
becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under
uv ice photodesorption is an important non - thermal desorption pathway in many interstellar environments that has been invoked to explain observations of cold molecules in disks, clouds and cloud cores. systematic laboratory studies of the photodesorption rates, between 7 and 14 ev, from co : n2 binary ices, have been performed at the desirs vacuum uv beamline of the synchrotron facility soleil. the photodesorption spectral analysis demonstrates that the photodesorption process is indirect, i. e. the desorption is induced by a photon absorption in sub - surface molecular layers, while only surface molecules are actually desorbing. the photodesorption spectra of co and n2 in binary ices therefore depend on the absorption spectra of the dominant species in the subsurface ice layer, which implies that the photodesorption efficiency and energy dependence are dramatically different for mixed and layered ices compared to pure ices. in particular, a thin ( 1 - 2 ml ) n2 ice layer on top of co will effectively quench co photodesorption, while enhancing n2 photodesorption by a factors of a few ( compared to the pure ices ) when the ice is exposed to a typical dark cloud uv field, which may help to explain the different distributions of co and n2h + in molecular cloud cores. this indirect photodesorption mechanism may also explain observations of small amounts of complex organics in cold interstellar environments.
water content and the internal evolution of terrestrial planets and icy bodies are closely linked. the distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. this results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. the internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short - lived 26al decay may govern the amount of hydrous silicates and leftover rock - ice mixtures available in the late stages of their evolution. in turn, water content may affect the early internal evolution of the planetesimals and in particular metal - silicate separation processes. moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of solar system objects. finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.
onset of electro - chemical corrosion. similar problems are encountered in coastal and offshore structures. = = = anti - fouling = = = anti - fouling is the process of eliminating obstructive organisms from essential components of seawater systems. depending on the nature and location of marine growth, this process is performed in a number of different ways : marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. electro - chlorination involves running high electrical current through sea water, altering the water ' s chemical composition to create sodium hypochlorite, purging any bio - matter. an electrolytic method of anti - fouling involves running electrical current through two anodes ( scardino, 2009 ). these anodes typically consist of copper and aluminum ( or alternatively, iron ). the first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio - matter. the second metal, aluminum, coats the inside of the pipes to prevent corrosion. other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship ' s hull. this growth interferes with the smoothness and uniformity of the ship ' s hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel - efficient. marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms. = = = pollution control = = = = = = = sulfur emission = = = = the burning of marine fuels releases harmful pollutants into the atmosphere. ships burn marine diesel in addition to heavy fuel oil. heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. however, heavy fuel oil may only be burned in international waters due to the pollution created. it is commercially advantageous due to the cost effectiveness compared to other marine fuels. it is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 ( smith, 2018 ). = = = = oil and water discharge = = = = water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm ( parts per million ) of oil to be discharged. water is tested
due to its location and climate, antarctica offers unique conditions for long - period observations across a broad wavelength regime, where important diagnostic lines for molecules and ions can be found, that are essential to understand the chemical properties of the interstellar medium. in addition to the natural benefits of the site, new technologies, resulting from astrophotonics, may allow miniaturised instruments, that are easier to winterise and advanced filters to further reduce the background in the infrared.
Question: What trend is occurring involving the extent of arctic sea ice in summer?
A) Ice growth
B) water decrease
C) rapid decrease
D) slow decrease
|
C) rapid decrease
|
Context:
into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches
##ilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with
cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra
this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic
reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral ( two plates ) or a trihedral ( three orthogonal plates ). this configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 '
sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool
angles. stealth aircraft such as the f - 117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. a more radical method is to omit the tail, as in the b - 2 spirit. the b - 2 ' s clean, low - drag flying wing configuration gives it exceptional range and reduces its radar profile. the flying wing design most closely resembles a so - called infinite flat plate ( as vertical control surfaces dramatically increase rcs ), the perfect stealth shape, as it would have no angles to reflect back radar waves. in addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit
founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. these concerns have led to the development of a regulatory framework, which started in 1975. it has led to an international treaty, the cartagena protocol on biosafety, that was adopted in 2000. individual countries have developed their own regulatory systems regarding gmos, with the most marked differences occurring between the united states and europe. = = overview = = genetic engineering is a process that alters the genetic structure of an organism by either removing or introducing dna, or modifying existing genetic material in situ. unlike traditional animal and plant breeding, which involves doing multiple crosses and then selecting for the organism with the desired phenotype,
capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function
the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. these concerns have led to the development of a regulatory framework, which started in 1975. it has led to an international treaty, the cartagena protocol on biosafety, that was adopted in 2000. individual countries have developed their own regulatory systems regarding gmos, with the most marked differences occurring between the
Question: In vertebrates, cholesterol is synthesized in which organ and obtained from the diet?
A) the brain
B) the bone
C) heart
D) the liver
|
D) the liver
|
Context:
by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the
small category. any ordinal number can be seen as a category when viewed as an ordered set. any monoid ( any algebraic structure with a single associative binary operation and an identity element ) forms a small category with a single object x. ( here, x is any fixed set. ) the morphisms from x to x are precisely the elements of the monoid, the identity morphism of x is the identity of the monoid, and the categorical composition of morphisms is given by the monoid operation. several definitions and theorems about monoids may be generalized for categories. similarly any group can be seen as a category with a single object in which every morphism is invertible, that is, for every morphism f there is a morphism g that is both left and right inverse to f under composition. a morphism that is invertible in this sense is called an isomorphism. a groupoid is a category in which every morphism is an isomorphism. groupoids are generalizations of groups, group actions and equivalence relations. actually, in the view of category the only difference between groupoid and group is that a groupoid may have more than one object but the group must have only one. consider a topological space x and fix a base point x 0 { \ displaystyle x _ { 0 } } of x, then Ο 1 ( x, x 0 ) { \ displaystyle \ pi _ { 1 } ( x, x _ { 0 } ) } is the fundamental group of the topological space x and the base point x 0 { \ displaystyle x _ { 0 } }, and as a set it has the structure of group ; if then let the base point x 0 { \ displaystyle x _ { 0 } } runs over all points of x, and take the union of all Ο 1 ( x, x 0 ) { \ displaystyle \ pi _ { 1 } ( x, x _ { 0 } ) }, then the set we get has only the structure of groupoid ( which is called as the fundamental groupoid of x ) : two loops ( under equivalence relation of homotopy ) may not have the same base point so they cannot multiply with each other. in the language of category, this means here two morphisms may not have the same source object ( or target object, because in this case for any morphism the source object and the target object are same : the base point ) so
prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as
i suggest that the main process that amplifies magnetic fields in cooling flows in clusters and group of galaxies is a jet - driven dynamo ( jedd ). the main processes that are behind the jedd is the turbulence that is formed by the many vortices formed in the inflation processes of bubbles, and the large scale shear formed by the propagating jet. it is sufficient that a strong turbulence exits in the vicinity of the jets and bubbles, just where the shear is large. the typical amplification time of magnetic fields by the jedd near the jets and bubbles is approximately hundred million years. the amplification time in the entire cooling flow region is somewhat longer. the vortices that create the turbulence are those that also transfer energy from the jets to the intra - cluster medium, by mixing shocked jet gas with the intra - cluster medium gas, and by exciting sound waves. the jedd model adds magnetic fields to the cyclical behavior of energy and mass in the jet - feedback mechanism ( jfm ) in cooling flows.
pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form
missiles, ships, vehicles, and also to map weather patterns and terrain. a radar set consists of a transmitter and receiver. the transmitter emits a narrow beam of radio waves which is swept around the surrounding space. when the beam strikes a target object, radio waves are reflected back to the receiver. the direction of the beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it
pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant β people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to star
three families of quarks and leptons, one higgs to rule them all, and in the darkness bind them.
##ta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. hetero
if a fintie group g acts topologically and faithfully on r ^ 3, then g is a subgroup of o ( 3 )
Question: What is a group of lions called?
A) bevy
B) pride
C) coven
D) herd
|
B) pride
|
Context:
##sphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as
##ctonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s
consisting of several distinct layers, often referred to as spheres : the lithosphere, the hydrosphere, the atmosphere, and the biosphere, this concept of spheres is a useful tool for understanding the earth ' s surface and its various processes these correspond to rocks, water, air and life. also included by some are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth
a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth '
are the cryosphere ( corresponding to ice ) as a distinct portion of the hydrosphere and the pedosphere ( corresponding to soil ) as an active and intermixed sphere. the following fields of science are generally categorized within the earth sciences : geology describes the rocky parts of the earth ' s crust ( or lithosphere ) and its historic development. major subdisciplines are mineralogy and petrology, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology. physical geography focuses on geography as an earth science. physical geography is the study of earth ' s seasons, climate, atmosphere, soil, streams, landforms, and oceans. physical geography can be divided into several branches or related fields, as follows : geomorphology, biogeography, environmental geography, palaeogeography, climatology, meteorology, coastal geography, hydrology, ecology, glaciology. geophysics and geodesy investigate the shape of the earth, its reaction to forces and its magnetic and gravity fields. geophysicists explore the earth ' s core and mantle as well as the tectonic and seismic activity of the lithosphere. geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. seismologists use geophysics to understand plate tectonic movement, as well as predict seismic activity. geochemistry studies the processes that control the abundance, composition, and distribution of chemical compounds and isotopes in geologic environments. geochemists use the tools and principles of chemistry to study the earth ' s composition, structure, processes, and other physical aspects. major subdisciplines are aqueous geochemistry, cosmochemistry, isotope geochemistry and biogeochemistry. soil science covers the outermost layer of the earth ' s crust that is subject to soil formation processes ( or pedosphere ). major subdivisions in this field of study include edaphology and pedology. ecology covers the interactions between organisms and their environment. this field of study differentiates the study of earth from other planets in the solar system, earth being the only planet teeming with life. hydrology, oceanography and limnology are studies which focus on the movement, distribution, and quality of the water and involve all the components of the hydrologic cycle on the earth and its atmosphere ( or hydrosphere ). "
, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform ( or conservative ) boundaries. earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction. plate tectonics might be thought of as the process by which the earth is resurfaced. as the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest
cools and solidifies. through subduction, oceanic crust and lithosphere vehemently returns to the convecting mantle. volcanoes result primarily from the melting of subducted crust material. crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make
earth science or geoscience includes all fields of natural science related to the planet earth. this is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of earth ' s four spheres : the biosphere, hydrosphere / cryosphere, atmosphere, and geosphere ( or lithosphere ). earth science can be considered to be a branch of planetary science but with a much older history. = = geology = = geology is broadly the study of earth ' s structure, substance, and processes. geology is largely the study of the lithosphere, or earth ' s surface, including the crust and rocks. it includes the physical characteristics and processes that occur in the lithosphere as well as how they are affected by geothermal energy. it incorporates aspects of chemistry, physics, and biology as elements of geology interact. historical geology is the application of geology to interpret earth history and how it has changed over time. geochemistry studies the chemical components and processes of the earth. geophysics studies the physical properties of the earth. paleontology studies fossilized biological material in the lithosphere. planetary geology studies geoscience as it pertains to extraterrestrial bodies. geomorphology studies the origin of landscapes. structural geology studies the deformation of rocks to produce mountains and lowlands. resource geology studies how energy resources can be obtained from minerals. environmental geology studies how pollution and contaminants affect soil and rock. mineralogy is the study of minerals and includes the study of mineral formation, crystal structure, hazards associated with minerals, and the physical and chemical properties of minerals. petrology is the study of rocks, including the formation and composition of rocks. petrography is a branch of petrology that studies the typology and classification of rocks. = = earth ' s interior = = plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the earth ' s crust. beneath the earth ' s crust lies the mantle which is heated by the radioactive decay of heavy elements. the mantle is not quite solid and consists of magma which is in a state of semi - perpetual convection. this convection process causes the lithospheric plates to move, albeit slowly. the resulting process is known as plate tectonics. areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the earth are convergent boundaries and
light and cold extrasolar planets such as ogle 2005 - blg - 390lb, a 5. 5 earth - mass planet detected via microlensing, could be frequent in the galaxy according to some preliminary results from microlensing experiments. these planets can be frozen rocky - or ocean - planets, situated beyond the snow line and, therefore, beyond the habitable zone of their system. they can nonetheless host a layer of liquid water, heated by radiogenic energy, underneath an ice shell surface for billions of years, before freezing completely. these results suggest that oceans under ice, like those suspected to be present on icy moons in the solar system, could be a common feature of cold low - mass extrasolar planets.
enough to rise to the surface β giving birth to volcanoes. = = atmospheric science = = atmospheric science initially developed in the late - 19th century as a means to forecast the weather through meteorology, the study of weather. atmospheric chemistry was developed in the 20th century to measure air pollution and expanded in the 1970s in response to acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the
Question: Which layer is found below the lithosphere?
A) asthenosphere
B) stratosphere
C) troposphere
D) magnetosphere
|
A) asthenosphere
|
Context:
and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. plants compete with other organisms in their ecosystem for resources. they interact with their neighbours at a variety of spatial scales in groups, populations and communities that collectively constitute vegetation. regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest. herbivores eat plants, but plants can defend themselves and some species are parasitic or even carnivorous. other organisms form mutually beneficial relationships with plants. for example, mycorrhizal fungi and rhizobia provide plants with nutrients in exchange for food, ants are recruited by ant plants to provide protection, honey bees, bats and other animals pollinate flowers and humans and other animals act as dispersal vectors to spread spores and seeds. = = = plants, climate and environmental change = = = plant responses to climate and other environmental changes can inform our understanding of how these changes affect ecosystem function and productivity. for example, plant phenology can be a useful proxy for temperature in historical climatology, and the biological impact of climate change and global warming. palynology, the analysis of fossil pollen deposits in sediments from thousands or millions of years ago allows the reconstruction of past climates. estimates of atmospheric co2 concentrations since the palaeozoic have been obtained from stomatal densities and the leaf shapes and sizes of ancient land plants. ozone depletion can expose plants to higher levels of ultraviolet radiation - b ( uv - b ), resulting in lower growth rates. moreover, information from studies of community ecology, plant systematics, and taxonomy is essential to understanding vegetation change, habitat destruction and species extinction. = = genetics = = inheritance in plants follows the same fundamental principles of genetics as in other multicellular organisms. gregor mendel discovered the genetic laws of inheritance by studying
##ta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form the basis of all plant metabolism. the energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life. photoautotrophs, including all green plants, algae and cyanobacteria gather energy directly from sunlight by photosynthesis. hetero
species occupying the same geographical area at the same time. a biological interaction is the effect that a pair of organisms living together in a community have on each other. they can be either of the same species ( intraspecific interactions ), or of different species ( interspecific interactions ). these effects may be short - term, like pollination and predation, or long - term ; both often strongly influence the evolution of the species involved. a long - term interaction is called a symbiosis. symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners. every species participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithos
the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants. brown biotechnology is related to the management of arid lands and deserts. one application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources. violet biotechnology is related to law, ethical and philosophical issues around biotechnology. micro
with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gym
the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the
pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form
industrial applications. this branch of biotechnology is the most used for the industries of refining and combustion principally on the production of bio - oils with photosynthetic micro - algae. green biotechnology is biotechnology applied to agricultural processes. an example would be the selection and domestication of plants via micropropagation. another example is the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of poll
denoted as | |. Β± ( plus β minus sign ) 1. denotes either a plus sign or a minus sign. 2. denotes the range of values that a measured quantity may have ; for example, 10 Β± 2 denotes an unknown value that lies between 8 and 12. [UNK] ( minus - plus sign ) used paired with Β±, denotes the opposite sign ; that is, + if Β± is β, and β if Β± is +. Γ· ( division sign ) widely used for denoting division in anglophone countries, it is no longer in common use in mathematics and its use is " not recommended ". in some countries, it can indicate subtraction. : ( colon ) 1. denotes the ratio of two quantities. 2. in some countries, may denote division. 3. in set - builder notation, it is used as a separator meaning " such that " ; see { [UNK] : [UNK] }. / ( slash ) 1. denotes division and is read as divided by or over. often replaced by a horizontal bar. for example, 3 / 2 or 3 2 { \ displaystyle { \ frac { 3 } { 2 } } }. 2. denotes a quotient structure. for example, quotient set, quotient group, quotient category, etc. 3. in number theory and field theory, f / e { \ displaystyle f / e } denotes a field extension, where f is an extension field of the field e. 4. in probability theory, denotes a conditional probability. for example, p ( a / b ) { \ displaystyle p ( a / b ) } denotes the probability of a, given that b occurs. usually denoted p ( a [UNK] b ) { \ displaystyle p ( a \ mid b ) } : see " | ". β ( square - root symbol ) denotes square root and is read as the square root of. rarely used in modern mathematics without a horizontal bar delimiting the width of its argument ( see the next item ). for example, β2. β ( radical symbol ) 1. denotes square root and is read as the square root of. for example, 3 + 2 { \ displaystyle { \ sqrt { 3 + 2 } } }. 2. with an integer greater than 2 as a left superscript, denotes an nth root. for example, 3 7 { \ displaystyle { \ sqrt [ { 7 } ] { 3 } } } denotes the 7th root of 3. ^ ( caret
or homogeneous distribution of the dispersed particle or fiber phase. consider first the processing of particulate composites. the particulate phase of greatest interest is tetragonal zirconia because of the toughening that can be achieved from the phase transformation from the metastable tetragonal to the monoclinic crystalline phase, aka transformation toughening. there is also substantial interest in dispersion of hard, non - oxide phases such as sic, tib, tic, boron, carbon and especially oxide matrices like alumina and mullite. there is also interest too incorporating other ceramic particulates, especially those of highly anisotropic thermal expansion. examples include al2o3, tio2, graphite, and boron nitride. in processing particulate composites, the issue is not only homogeneity of the size and spatial distribution of the dispersed and matrix phases, but also control of the matrix grain size. however, there is some built - in self - control due to inhibition of matrix grain growth by the dispersed phase. particulate composites, though generally offer increased resistance to damage, failure, or both, are still quite sensitive to inhomogeneities of composition as well as other processing defects such as pores. thus they need good processing to be effective. particulate composites have been made on a commercial basis by simply mixing powders of the two constituents. although this approach is inherently limited in the homogeneity that can be achieved, it is the most readily adaptable for existing ceramic production technology. however, other approaches are of interest. from the technological standpoint, a particularly desirable approach to fabricating particulate composites is to coat the matrix or its precursor onto fine particles of the dispersed phase with good control of the starting dispersed particle size and the resultant matrix coating thickness. one should in principle be able to achieve the ultimate in homogeneity of distribution and thereby optimize composite performance. this can also have other ramifications, such as allowing more useful composite performance to be achieved in a body having porosity, which might be desired for other factors, such as limiting thermal conductivity. there are also some opportunities to utilize melt processing for fabrication of ceramic, particulate, whisker and short - fiber, and continuous - fiber composites. both particulate and whisker composites are conceivable by solid - state precipitation after solidification of the melt. this can also be obtained in some cases by sintering,
Question: What is the name for the nonliving parts of ecosystems?
A) diverse factors
B) Dead factors
C) abiotic factors
D) nucleic factors
|
C) abiotic factors
|
Context:
the mechanism leading to an auger transition is based on the residual coulomb interaction between the valence electron and the core electrons. on the assumption that the wave field is switched on adiabatically, the probability of the auger effect of the inner electrons of the atom is determined.
regge - pole calculated low - energy electron elastic total cross sections ( tcss ) for complex heavy atoms and fullerene molecules are characterized generally by ground, metastable, and excited negative - ion formation, shape resonances and ramsauer - townsend minima. here the extracted anionic binding energies ( bes ) from the tcss of various atoms and fullerenes are used to highlight the ambiguous meaning of some current electron affinities ( eas ) of heavy complex atomic systems. the crucial question is : does the ea correspond to the be of the attached electron in the ground or excited state of the formed anion during the collision?
. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of
, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive
the motion and photon emission of electrons in a superlattice may be described as in an undulator. therefore, there is a close analogy between ballistic electrons in a superlattice and electrons in a free electron laser ( fel ). touching upon this analogy the intensity of photon emission in the ir region and the gain are calculated. it is shown that the amplification can be significant, reaching tens of percent.
1. quantized conductance 2. when 1 mode = 1 atom 3. photons and cooper pairs 4. thermal analogues 5. shot noise 6. solid - state electron optics 7. ultimate confinement 8. landauer formulas
the connection between the quantum frequency of radiation by the transition of the electron from orbit n to orbit k and frequencies of circling of electron in these orbits for the atom of hydrogen is determined.
an electron inside liquid helium forms a bubble of 17 \ aa in radius. in an external magnetic field, the two - level system of a spin 1 / 2 electron is ideal for the implementation of a qubit for quantum computing. the electron spin is well isolated from other thermal reservoirs so that the qubit should have very long coherence time. by confining a chain of single electron bubbles in a linear rf quadrupole trap, a multi - bit quantum register can be implemented. all spins in the register can be initialized to the ground state either by establishing thermal equilibrium at a temperature around 0. 1 k and at a magnetic field of 1 t or by sorting the bubbles to be loaded into the trap with magnetic separation. schemes are designed to address individual spins and to do two - qubit cnot operations between the neighboring spins. the final readout can be carried out through a measurement similar to the stern - gerlach experiment.
the cross section of elastic electron - proton scattering taking place in an electron gas is calculated within the closed time path method. it is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. the other term is due to the scattering particles - electron gas entanglement. this term dominates the usual one when the exchange energy is in the vicinity of the fermi energy. furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime.
the extremely small probability of tunneling through an almost classical potential barrier may become not small under the action of the specially adapted non - stationary signal which selects the certain particle energy e _ r. for particle energies close to this value, the tunneling rate is not small during a finite interval of time and has a very sharp peak at the energy e _ r. after entering inside the barrier, the particle emits electromagnetic quanta and exits the barrier with a lower energy. the signal amplitude can be much less compared to the field of the static barrier. this phenomenon can be called the euclidean resonance since the under - barrier motion occurs in imaginary time. the resonance may stimulate chemical and biochemical reactions in a selective way by adapting the signal to a certain particular chemical bond. the resonance may be used in search of the soft alpha - decay for which a conventional observation is impossible due to an extremely small decay rate.
Question: What do you call the electrons in the outermost energy level of an atom?
A) shell electrons
B) valence electrons
C) Proper electrons
D) Inner electrons
|
B) valence electrons
|
Context:
a statistical study of the environment around polar ring galaxies is presented. two kinds of search are performed : 1 ) a study of the concentration and diameters of all the objects surrounding the polar rings, within a search field 5 times the ring diameter. new magnitudes for polar ring galaxies are presented. 2 ) a search, in a wider field, for galaxies of similar size that may have encountered the polar ring host galaxy in a time of the order of 1 gyr. differently from the results of similar searches in the fields of active galaxies, the environment of the polar ring galaxies seems to be similar to that of normal galaxies. this result may give support to the models suggesting long times for formation and evolution of the rings. if the rings are old ( and stable or in equilibrium ), no traces of the past interaction are expected in their surroundings. in addition, the formation of massive polar rings, too big to derive from the ingestion of a present - day dwarf galaxy, may be easily placed in epochs with a higher number of gas - rich galaxies.
on a large scale provided protection from insect pests or tolerance to herbicides. fungal and virus resistant crops have also been developed or are in development. this makes the insect and weed management of crops easier and can indirectly increase crop yield. gm crops that directly improve yield by accelerating growth or making the plant more hardy ( by improving salt, cold or drought tolerance ) are also under development. in 2016 salmon have been genetically modified with growth hormones to reach normal adult size much faster. gmos have been developed that modify the quality of produce by increasing the nutritional value or providing more industrially useful qualities or quantities. the amflora potato produces a more industrially useful blend of starches. soybeans and canola have been genetically modified to produce more healthy oils. the first commercialised gm food was a tomato that had delayed ripening, increasing its shelf life. plants and animals have been engineered to produce materials they do not normally make. pharming uses crops and animals as bioreactors to produce vaccines, drug intermediates, or the drugs themselves ; the useful product is purified from the harvest and then used in the standard pharmaceutical production process. cows and goats have been engineered to express drugs and other proteins in their milk, and in 2009 the fda approved a drug produced in goat milk. = = = other applications = = = genetic engineering has potential applications in conservation and natural area management. gene transfer through viral vectors has been proposed as a means of controlling invasive species as well as vaccinating threatened fauna from disease. transgenic trees have been suggested as a way to confer resistance to pathogens in wild populations. with the increasing risks of maladaptation in organisms as a result of climate change and other perturbations, facilitated adaptation through gene tweaking could be one solution to reducing extinction risks. applications of genetic engineering in conservation are thus far mostly theoretical and have yet to be put into practice. genetic engineering is also being used to create microbial art. some bacteria have been genetically engineered to create black and white photographs. novelty items such as lavender - colored carnations, blue roses, and glowing fish, have also been produced through genetic engineering. = = regulation = = the regulation of genetic engineering concerns the approaches taken by governments to assess and manage the risks associated with the development and release of gmos. the development of a regulatory framework began in 1975, at asilomar, california. the asilomar meeting recommended a set of voluntary guidelines regarding the use of recombinant technology. as the technology improved
snake called jormungandr. the norse creation account preserved in gylfaginning ( viii ) states that during the creation of the earth, an impassable sea was placed around it : and jafnharr said : " of the blood, which ran and welled forth freely out of his wounds, they made the sea, when they had formed and made firm the earth together, and laid the sea in a ring round. about her ; and it may well seem a hard thing to most men to cross over it. " the late norse konungs skuggsja, on the other hand, explains earth ' s shape as a sphere : if you take a lighted candle and set it in a room, you may expect it to light up the entire interior, unless something should hinder, though the room be quite large. but if you take an apple and hang it close to the flame, so near that it is heated, the apple will darken nearly half the room or even more. however, if you hang the apple near the wall, it will not get hot ; the candle will light up the whole house ; and the shadow on the wall where the apple hangs will be scarcely half as large as the apple itself. from this you may infer that the earth - circle is round like a ball and not equally near the sun at every point. but where the curved surface lies nearest the sun ' s path, there will the greatest heat be ; and some of the lands that lie continuously under the unbroken rays cannot be inhabited. = = = = east asia = = = = in ancient china, the prevailing belief was that the earth was flat and square, while the heavens were round, an assumption virtually unquestioned until the introduction of european astronomy in the 17th century. the english sinologist cullen emphasizes the point that there was no concept of a round earth in ancient chinese astronomy : chinese thought on the form of the earth remained almost unchanged from early times until the first contacts with modern science through the medium of jesuit missionaries in the seventeenth century. while the heavens were variously described as being like an umbrella covering the earth ( the kai tian theory ), or like a sphere surrounding it ( the hun tian theory ), or as being without substance while the heavenly bodies float freely ( the hsuan yeh theory ), the earth was at all times flat, although perhaps bulging up slightly. the model of an egg was often used by chinese astronomers such as zhang heng ( 78 β 139 ad ) to
i suggest that the main process that amplifies magnetic fields in cooling flows in clusters and group of galaxies is a jet - driven dynamo ( jedd ). the main processes that are behind the jedd is the turbulence that is formed by the many vortices formed in the inflation processes of bubbles, and the large scale shear formed by the propagating jet. it is sufficient that a strong turbulence exits in the vicinity of the jets and bubbles, just where the shear is large. the typical amplification time of magnetic fields by the jedd near the jets and bubbles is approximately hundred million years. the amplification time in the entire cooling flow region is somewhat longer. the vortices that create the turbulence are those that also transfer energy from the jets to the intra - cluster medium, by mixing shocked jet gas with the intra - cluster medium gas, and by exciting sound waves. the jedd model adds magnetic fields to the cyclical behavior of energy and mass in the jet - feedback mechanism ( jfm ) in cooling flows.
two types of stars are known to have strong, large scale magnetic fields : the main sequence ap stars and the magnetic white dwarfs. this suggest that the former might be the progenitors of the latter. in order to test this idea, i have carried out a search for large scale magnetic fields in stars with evolutionary states which are intermediate, i. e. in horizontal branch stars and in hot subdwarfs.
still a complex and relatively expensive material to produce. polymers on the other hand can be produced in huge volumes, with a great variety of material characteristics. mems devices can be made from polymers by processes such as injection molding, embossing or stereolithography and are especially well suited to microfluidic applications such as disposable blood testing cartridges. metals metals can also be used to create mems elements. while metals do not have some of the advantages displayed by silicon in terms of mechanical properties, when used within their limitations, metals can exhibit very high degrees of reliability. metals can be deposited by electroplating, evaporation, and sputtering processes. commonly used metals include gold, nickel, aluminium, copper, chromium, titanium, tungsten, platinum, and silver. ceramics the nitrides of silicon, aluminium and titanium as well as silicon carbide and other ceramics are increasingly applied in mems fabrication due to advantageous combinations of material properties. aln crystallizes in the wurtzite structure and thus shows pyroelectric and piezoelectric properties enabling sensors, for instance, with sensitivity to normal and shear forces. tin, on the other hand, exhibits a high electrical conductivity and large elastic modulus, making it possible to implement electrostatic mems actuation schemes with ultrathin beams. moreover, the high resistance of tin against biocorrosion qualifies the material for applications in biogenic environments. the figure shows an electron - microscopic picture of a mems biosensor with a 50 nm thin bendable tin beam above a tin ground plate. both can be driven as opposite electrodes of a capacitor, since the beam is fixed in electrically isolating side walls. when a fluid is suspended in the cavity its viscosity may be derived from bending the beam by electrical attraction to the ground plate and measuring the bending velocity. = = basic processes = = = = = deposition processes = = = one of the basic building blocks in mems processing is the ability to deposit thin films of material with a thickness anywhere from one micrometre to about 100 micrometres. the nems process is the same, although the measurement of film deposition ranges from a few nanometres to one micrometre. there are two types of deposition processes, as follows. = = = = physical deposition = = = = physical vapor deposition ( " pvd " ) consists of a process in which a material is removed from a target, and
the origin of the arc - shaped stellar complexes in the lmc4 region is still unknown. these perfect arcs could not have been formed by o - stars and sne in their centers ; the strong arguments exist also against the possibility of their formation from infalling gas clouds. the origin from microquasars / grb jets is not excluded, because there is the strong concentration of x - ray binaries in the same region and the massive old cluster ngc 1978, probable site of formation of binaries with compact components, is there also. the last possibility is that the source of energy for formation of the stellar arcs and the lmc4 supershell might be the the giant jet from the nucleus of the milky way, which might be active a dozen myr ago.
two local macros are included ( gothic. sty and fleqn. sty )
herbicides. the people ' s republic of china was the first country to commercialise transgenic plants, introducing a virus - resistant tobacco in 1992. in 1994 calgene attained approval to commercially release the first genetically modified food, the flavr savr, a tomato engineered to have a longer shelf life. in 1994, the european union approved tobacco engineered to be resistant to the herbicide bromoxynil, making it the first genetically engineered crop commercialised in europe. in 1995, bt potato was approved safe by the environmental protection agency, after having been approved by the fda, making it the first pesticide producing crop to be approved in the us. in 2009 11 transgenic crops were grown commercially in 25 countries, the largest of which by area grown were the us, brazil, argentina, india, canada, china, paraguay and south africa. in 2010, scientists at the j. craig venter institute created the first synthetic genome and inserted it into an empty bacterial cell. the resulting bacterium, named mycoplasma laboratorium, could replicate and produce proteins. four years later this was taken a step further when a bacterium was developed that replicated a plasmid containing a unique base pair, creating the first organism engineered to use an expanded genetic alphabet. in 2012, jennifer doudna and emmanuelle charpentier collaborated to develop the crispr / cas9 system, a technique which can be used to easily and specifically alter the genome of almost any organism. = = process = = creating a gmo is a multi - step process. genetic engineers must first choose what gene they wish to insert into the organism. this is driven by what the aim is for the resultant organism and is built on earlier research. genetic screens can be carried out to determine potential genes and further tests then used to identify the best candidates. the development of microarrays, transcriptomics and genome sequencing has made it much easier to find suitable genes. luck also plays its part ; the roundup ready gene was discovered after scientists noticed a bacterium thriving in the presence of the herbicide. = = = gene isolation and cloning = = = the next step is to isolate the candidate gene. the cell containing the gene is opened and the dna is purified. the gene is separated by using restriction enzymes to cut the dna into fragments or polymerase chain reaction ( pcr ) to amplify up the gene segment. these segments can then be extracted through gel electrophoresis. if the chosen gene or the donor organism ' s
sumerians in mesopotamia used a complex system of canals and levees to divert water from the tigris and euphrates rivers for irrigation. archaeologists estimate that the wheel was invented independently and concurrently in mesopotamia ( in present - day iraq ), the northern caucasus ( maykop culture ), and central europe. time estimates range from 5, 500 to 3, 000 bce with most experts putting it closer to 4, 000 bce. the oldest artifacts with drawings depicting wheeled carts date from about 3, 500 bce. more recently, the oldest - known wooden wheel in the world as of 2024 was found in the ljubljana marsh of slovenia ; austrian experts have established that the wheel is between 5, 100 and 5, 350 years old. the invention of the wheel revolutionized trade and war. it did not take long to discover that wheeled wagons could be used to carry heavy loads. the ancient sumerians used a potter ' s wheel and may have invented it. a stone pottery wheel found in the city - state of ur dates to around 3, 429 bce, and even older fragments of wheel - thrown pottery have been found in the same area. fast ( rotary ) potters ' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy ( through water wheels, windmills, and even treadmills ) that revolutionized the application of nonhuman power sources. the first two - wheeled carts were derived from travois and were first used in mesopotamia and iran in around 3, 000 bce. the oldest known constructed roadways are the stone - paved streets of the city - state of ur, dating to c. 4, 000 bce, and timber roads leading through the swamps of glastonbury, england, dating to around the same period. the first long - distance road, which came into use around 3, 500 bce, spanned 2, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also
Question: What are some of the giant fairy rings produced by?
A) sporangia
B) mycelia
C) algae
D) fronds
|
B) mycelia
|
Context:
##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently
defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently specialized for specific settings such as in a classroom or nursing home. positioning is often important in seating arrangements to ensure that user ' s body pressure is distributed equally without inhibiting movement in a desired way. positioning devices have been developed to aid in allowing people to stand and bear weight on their legs without risk of a fall.
28 size spectra of extensive air showers from 7 different experiments are analysed consistently. they are fitted by adjusting either 4 or 5 parameters : knee position, power law exponents above and below the knee, overall intensity and, in addition, a parameter describing the smoothness of the bend. the residuals are then normalized to the same knee position and averaged. when 5 parameters are employed no systematic deviation from a single smooth knee is apparent at the 1 % level up to a factor of 4 above the knee. at larger shower sizes a moderately significant deviation can be seen whose shape and position are compatible with a second knee caused by iron group nuclei.
electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor, perform tasks that are either too dangerous or too precise for humans to perform them economically, and to ensure better quality. many companies employ assembly lines of robots, especially in automotive industries and some factories are so robotized that they can run by themselves. outside the factory, robots have been employed in bomb disposal, space exploration, and many other fields. robots are also sold for various residential applications, from recreation to domestic applications. = = = structural analysis = = = structural analysis is the branch of mechanical engineering ( and also civil engineering ) devoted to examining why and how objects fail and to fix the objects and their performance. structural failures occur in two general modes : static failure, and fatigue failure. static structural failure occurs when, upon being loaded ( having a force applied ) the object being analyzed either breaks or is deformed plastically, depending on the criterion for failure. fatigue failure occurs when an object fails after a number of repeated loading and unloading cycles. fatigue failure occurs because of imperfections in the object : a microscopic crack on the surface of the object, for instance, will grow slightly with each cycle ( propagation ) until the crack is large enough to cause ultimate failure. failure is not simply defined as when a part breaks, however ; it is defined as when a part does not operate as intended. some systems, such as the perforated top sections of some plastic bags, are designed to break. if these systems do not break, failure analysis might be employed to determine the cause. structural analysis is often used by mechanical engineers after a failure has occurred, or when designing to prevent failure
as a traditional tool of external assistance, crutches play an important role in society. they have a wide range of applications to help either the elderly and disabled to walk or to treat certain illnesses or for post - operative rehabilitation. but there are many different types of crutches, including shoulder crutches and elbow crutches. how to choose has become an issue that deserves to be debated. because while crutches help people walk, they also have an impact on the body. inappropriate choice of crutches or long - term misuse can lead to problems such as scoliosis. previous studies were mainly experimental measurements or the construction of dynamic models to calculate the load on joints with crutches. these studies focus only on the level of the joints, ignoring the role that muscles play in this process. although some also take into account the degree of muscle activation, there is still a lack of quantitative analysis. the traditional dynamic model can be used to calculate the load on each joint. however, due to the activation of the muscle, this situation only causes part of the load transmitted to the joint, and the work of the chair will compensate the other part of the load. analysis at the muscle level allows a better understanding of the impact of crutches on the body. by comparing the levels of activation of the trunk muscles, it was found that the use of crutches for walking, especially a single crutch, can cause a large difference in the activation of the back muscles on the left and right sides, and this difference will cause muscle degeneration for a long time, leading to scoliosis. in this article taking scoliosis as an example, by analyzing the muscles around the spine, we can better understand the pathology and can better prevent diseases. the objective of this article is to analyze normal walking compared to walking with one or two crutches using opensim software to obtain the degree of activation of different muscles in order to analyze the impact of crutches on the body.
also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat treatment the glass partly crystallizes. in many cases, so - called ' nucleation agents ' are added in order to regulate and control the crystallization process. because there is usually no pressing and sintering, glass - ceramics do not contain the volume fraction of porosity typically present in sintered ceramics. the
river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu shastra ', suggests a thorough understanding of materials engineering, hydrology, and sanitation. = = = = china = = = = the chinese made many first - known discoveries and developments. major technological contributions from china include the earliest known form of the binary code and epigenetic sequencing, early seismological detectors, matches, paper, helicopter rotor, raised - relief map, the double - action piston pump, cast iron, water powered blast furnace bellows, the iron plough, the multi - tube seed drill, the wheelbarrow, the parachute, the compass, the rudder, the crossbow, the south pointing chariot and gunpowder
the realization of karl popper ' s epr - like experiment by shih and kim ( published 1999 ) produced the result that popper hoped for : no ` ` action at a distance ' ' on one photon of an entangled pair when a measurement is made on the other photon. this experimental result is interpretable in local realistic terms : each photon has a definite position and transverse momentum most of the time ; the position measurement on one photon ( localization within a slit ) disturbs the transverse momentum of that photon in a non - predictable way in accordance with the uncertainty principle ; however, there is no effect on the other photon ( the photon that is not in a slit ) no action at a distance. the position measurement ( localization within a slit ) of the one photon destroys the entanglement between the photons ; i. e. decoherence occurs.
industrial applications. this branch of biotechnology is the most used for the industries of refining and combustion principally on the production of bio - oils with photosynthetic micro - algae. green biotechnology is biotechnology applied to agricultural processes. an example would be the selection and domestication of plants via micropropagation. another example is the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of poll
pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant β people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to star
Question: What are ingrowths on arthropod exoskeletons to which muscles attach?
A) joints
B) apodemes
C) rods
D) pores
|
B) apodemes
|
Context:
a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water.
. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be
are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom
is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged
with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of
activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by
analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (
set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature.
chemistry is the scientific study of the properties and behavior of matter. it is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions : their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. chemistry also addresses the nature of chemical bonds in chemical compounds. in the scope of its subject, chemistry occupies an intermediate position between physics and biology. it is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. for example, chemistry explains aspects of plant growth ( botany ), the formation of igneous rocks ( geology ), how atmospheric ozone is formed and how environmental pollutants are degraded ( ecology ), the properties of the soil on the moon ( cosmochemistry ), how medications work ( pharmacology ), and how to collect dna evidence at a crime scene ( forensics ). chemistry has existed under various names since ancient times. it has evolved, and now chemistry encompasses various areas of specialisation, or subdisciplines, that continue to increase in number and interrelate to create further interdisciplinary fields of study. the applications of various fields of chemistry are used frequently for economic purposes in the chemical industry. = = etymology = = the word chemistry comes from a modification during the renaissance of the word alchemy, which referred to an earlier set of practices that encompassed elements of chemistry, metallurgy, philosophy, astrology, astronomy, mysticism, and medicine. alchemy is often associated with the quest to turn lead or other base metals into gold, though alchemists were also interested in many of the questions of modern chemistry. the modern word alchemy in turn is derived from the arabic word al - kimia ( Ψ§ΩΩΫΩ
ΫΨ§Ψ‘ ). this may have egyptian origins since al - kimia is derived from the ancient greek ΟΞ·ΞΌΞΉΞ±, which is in turn derived from the word kemet, which is the ancient name of egypt in the egyptian language. alternately, al - kimia may derive from ΟημΡια ' cast together '. = = modern principles = = the current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that
current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the
Question: Which type of electrons plays the most important role in chemical reactions?
A) noncovalent
B) intermediate
C) transition
D) valence
|
D) valence
|
Context:
= = when 0 is said to be neither positive nor negative, the following phrases may refer to the sign of a number : a number is positive if it is greater than zero. a number is negative if it is less than zero. a number is non - negative if it is greater than or equal to zero. a number is non - positive if it is less than or equal to zero. when 0 is said to be both positive and negative, modified phrases are used to refer to the sign of a number : a number is strictly positive if it is greater than zero. a number is strictly negative if it is less than zero. a number is positive if it is greater than or equal to zero. a number is negative if it is less than or equal to zero. for example, the absolute value of a real number is always " non - negative ", but is not necessarily " positive " in the first interpretation, whereas in the second interpretation, it is called " positive " β though not necessarily " strictly positive ". the same terminology is sometimes used for functions that yield real or other signed values. for example, a function would be called a positive function if its values are positive for all arguments of its domain, or a non - negative function if all of its values are non - negative. = = = complex numbers = = = complex numbers are impossible to order, so they cannot carry the structure of an ordered ring, and, accordingly, cannot be partitioned into positive and negative complex numbers. they do, however, share an attribute with the reals, which is called absolute value or magnitude. magnitudes are always non - negative real numbers, and to any non - zero number there belongs a positive real number, its absolute value. for example, the absolute value of β3 and the absolute value of 3 are both equal to 3. this is written in symbols as | β3 | = 3 and | 3 | = 3. in general, any arbitrary real value can be specified by its magnitude and its sign. using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. this relation can be generalized to define a sign for complex numbers. since the real and complex numbers both form a field and contain the positive reals, they also contain the reciprocals of the magnitudes of all non - zero numbers. this means that any non - zero number may be multiplied with the reciprocal of its magnitude, that is, divided by its magnitude. it is immediate that the quotient
Β§ other meanings below. = = sign of a number = = numbers from various number systems, like integers, rationals, complex numbers, quaternions, octonions,... may have multiple attributes, that fix certain properties of a number. a number system that bears the structure of an ordered ring contains a unique number that when added with any number leaves the latter unchanged. this unique number is known as the system ' s additive identity element. for example, the integers has the structure of an ordered ring. this number is generally denoted as 0. because of the total order in this ring, there are numbers greater than zero, called the positive numbers. another property required for a ring to be ordered is that, for each positive number, there exists a unique corresponding number less than 0 whose sum with the original positive number is 0. these numbers less than 0 are called the negative numbers. the numbers in each such pair are their respective additive inverses. this attribute of a number, being exclusively either zero ( 0 ), positive ( + ), or negative ( β ), is called its sign, and is often encoded to the real numbers 0, 1, and β1, respectively ( similar to the way the sign function is defined ). since rational and real numbers are also ordered rings ( in fact ordered fields ), the sign attribute also applies to these number systems. when a minus sign is used in between two numbers, it represents the binary operation of subtraction. when a minus sign is written before a single number, it represents the unary operation of yielding the additive inverse ( sometimes called negation ) of the operand. abstractly then, the difference of two number is the sum of the minuend with the additive inverse of the subtrahend. while 0 is its own additive inverse ( β0 = 0 ), the additive inverse of a positive number is negative, and the additive inverse of a negative number is positive. a double application of this operation is written as β ( β3 ) = 3. the plus sign is predominantly used in algebra to denote the binary operation of addition, and only rarely to emphasize the positivity of an expression. in common numeral notation ( used in arithmetic and elsewhere ), the sign of a number is often made explicit by placing a plus or a minus sign before the number. for example, + 3 denotes " positive three ", and β3 denotes " negative three " ( algebraically : the additive inverse of 3 ). without specific context ( or when
zero, called the positive numbers. another property required for a ring to be ordered is that, for each positive number, there exists a unique corresponding number less than 0 whose sum with the original positive number is 0. these numbers less than 0 are called the negative numbers. the numbers in each such pair are their respective additive inverses. this attribute of a number, being exclusively either zero ( 0 ), positive ( + ), or negative ( β ), is called its sign, and is often encoded to the real numbers 0, 1, and β1, respectively ( similar to the way the sign function is defined ). since rational and real numbers are also ordered rings ( in fact ordered fields ), the sign attribute also applies to these number systems. when a minus sign is used in between two numbers, it represents the binary operation of subtraction. when a minus sign is written before a single number, it represents the unary operation of yielding the additive inverse ( sometimes called negation ) of the operand. abstractly then, the difference of two number is the sum of the minuend with the additive inverse of the subtrahend. while 0 is its own additive inverse ( β0 = 0 ), the additive inverse of a positive number is negative, and the additive inverse of a negative number is positive. a double application of this operation is written as β ( β3 ) = 3. the plus sign is predominantly used in algebra to denote the binary operation of addition, and only rarely to emphasize the positivity of an expression. in common numeral notation ( used in arithmetic and elsewhere ), the sign of a number is often made explicit by placing a plus or a minus sign before the number. for example, + 3 denotes " positive three ", and β3 denotes " negative three " ( algebraically : the additive inverse of 3 ). without specific context ( or when no explicit sign is given ), a number is interpreted per default as positive. this notation establishes a strong association of the minus sign " β " with negative numbers, and the plus sign " + " with positive numbers. = = = sign of zero = = = within the convention of zero being neither positive nor negative, a specific sign - value 0 may be assigned to the number value 0. this is exploited in the sgn { \ displaystyle \ operatorname { sgn } } - function, as defined for real numbers. in arithmetic, + 0 and β0 both denote the same number 0. there is generally no danger of
mathematical analysis for one - sided limits ( right - sided limit and left - sided limit, respectively ). this notation refers to the behaviour of a function as its real input variable approaches 0 along positive ( resp., negative ) values ; the two limits need not exist or agree. = = = terminology for signs = = = when 0 is said to be neither positive nor negative, the following phrases may refer to the sign of a number : a number is positive if it is greater than zero. a number is negative if it is less than zero. a number is non - negative if it is greater than or equal to zero. a number is non - positive if it is less than or equal to zero. when 0 is said to be both positive and negative, modified phrases are used to refer to the sign of a number : a number is strictly positive if it is greater than zero. a number is strictly negative if it is less than zero. a number is positive if it is greater than or equal to zero. a number is negative if it is less than or equal to zero. for example, the absolute value of a real number is always " non - negative ", but is not necessarily " positive " in the first interpretation, whereas in the second interpretation, it is called " positive " β though not necessarily " strictly positive ". the same terminology is sometimes used for functions that yield real or other signed values. for example, a function would be called a positive function if its values are positive for all arguments of its domain, or a non - negative function if all of its values are non - negative. = = = complex numbers = = = complex numbers are impossible to order, so they cannot carry the structure of an ordered ring, and, accordingly, cannot be partitioned into positive and negative complex numbers. they do, however, share an attribute with the reals, which is called absolute value or magnitude. magnitudes are always non - negative real numbers, and to any non - zero number there belongs a positive real number, its absolute value. for example, the absolute value of β3 and the absolute value of 3 are both equal to 3. this is written in symbols as | β3 | = 3 and | 3 | = 3. in general, any arbitrary real value can be specified by its magnitude and its sign. using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. this relation can be generalized to define a sign for complex numbers. since the real and
empty nor degenerate is said to be proper, and has infinitely many elements. an interval is said to be left - bounded or right - bounded, if there is some real number that is, respectively, smaller than or larger than all its elements. an interval is said to be bounded, if it is both left - and right - bounded ; and is said to be unbounded otherwise. intervals that are bounded at only one end are said to be half - bounded. the empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. bounded intervals are also commonly known as finite intervals. bounded intervals are bounded sets, in the sense that their diameter ( which is equal to the absolute difference between the endpoints ) is finite. the diameter may be called the length, width, measure, range, or size of the interval. the size of unbounded intervals is usually defined as + β, and the size of the empty interval may be defined as 0 ( or left undefined ). the centre ( midpoint ) of a bounded interval with endpoints a and b is ( a + b ) / 2, and its radius is the half - length | a β b | / 2. these concepts are undefined for empty or unbounded intervals. an interval is said to be left - open if and only if it contains no minimum ( an element that is smaller than all other elements ) ; right - open if it contains no maximum ; and open if it contains neither. the interval [ 0, 1 ) = { x | 0 β€ x < 1 }, for example, is left - closed and right - open. the empty set and the set of all reals are both open and closed intervals, while the set of non - negative reals, is a closed interval that is right - open but not left - open. the open intervals are open sets of the real line in its standard topology, and form a base of the open sets. an interval is said to be left - closed if it has a minimum element or is left - unbounded, right - closed if it has a maximum or is right unbounded ; it is simply closed if it is both left - closed and right closed. so, the closed intervals coincide with the closed sets in that topology. the interior of an interval i is the largest open interval that is contained in i ; it is also the set of points in i which are not endpoints of i. the closure of
end { aligned } } } in summary, a set of the real numbers is an interval, if and only if it is an open interval, a closed interval, or a half - open interval. the only intervals that appear twice in the above classification are β
{ \ displaystyle \ emptyset } and r { \ displaystyle \ mathbb { r } } that are both open and closed. a degenerate interval is any set consisting of a single real number ( i. e., an interval of the form [ a, a ] ). some authors include the empty set in this definition. a real interval that is neither empty nor degenerate is said to be proper, and has infinitely many elements. an interval is said to be left - bounded or right - bounded, if there is some real number that is, respectively, smaller than or larger than all its elements. an interval is said to be bounded, if it is both left - and right - bounded ; and is said to be unbounded otherwise. intervals that are bounded at only one end are said to be half - bounded. the empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. bounded intervals are also commonly known as finite intervals. bounded intervals are bounded sets, in the sense that their diameter ( which is equal to the absolute difference between the endpoints ) is finite. the diameter may be called the length, width, measure, range, or size of the interval. the size of unbounded intervals is usually defined as + β, and the size of the empty interval may be defined as 0 ( or left undefined ). the centre ( midpoint ) of a bounded interval with endpoints a and b is ( a + b ) / 2, and its radius is the half - length | a β b | / 2. these concepts are undefined for empty or unbounded intervals. an interval is said to be left - open if and only if it contains no minimum ( an element that is smaller than all other elements ) ; right - open if it contains no maximum ; and open if it contains neither. the interval [ 0, 1 ) = { x | 0 β€ x < 1 }, for example, is left - closed and right - open. the empty set and the set of all reals are both open and closed intervals, while the set of non - negative reals, is a closed interval that is right - open but not left - open.
may not be defined for every possible value of its domain. for example, in the real numbers one cannot divide by zero or take square roots of negative numbers. the values for which an operation is defined form a set called its domain of definition or active domain. the set which contains the values produced is called the codomain, but the set of actual values attained by the operation is its codomain of definition, active codomain, image or range. for example, in the real numbers, the squaring operation only produces non - negative numbers ; the codomain is the set of real numbers, but the range is the non - negative numbers. operations can involve dissimilar objects : a vector can be multiplied by a scalar to form another vector ( an operation known as scalar multiplication ), and the inner product operation on two vectors produces a quantity that is scalar. an operation may or may not have certain properties, for example it may be associative, commutative, anticommutative, idempotent, and so on. the values combined are called operands, arguments, or inputs, and the value produced is called the value, result, or output. operations can have fewer or more than two inputs ( including the case of zero input and infinitely many inputs ). an operator is similar to an operation in that it refers to the symbol or the process used to denote the operation. hence, their point of view is different. for instance, one often speaks of " the operation of addition " or " the addition operation, " when focusing on the operands and result, but one switch to " addition operator " ( rarely " operator of addition " ), when focusing on the process, or from the more symbolic viewpoint, the function + : x Γ x β x ( where x is a set such as the set of real numbers ). = = definition = = an n - ary operation Ο on a set x is a function Ο : xn β x. the set xn is called the domain of the operation, the output set is called the codomain of the operation, and the fixed non - negative integer n ( the number of operands ) is called the arity of the operation. thus a unary operation has arity one, and a binary operation has arity two. an operation of arity zero, called a nullary operation, is simply an element of the codomain y. an n - ary operation can also be viewed
contains a unique number that when added with any number leaves the latter unchanged. this unique number is known as the system ' s additive identity element. for example, the integers has the structure of an ordered ring. this number is generally denoted as 0. because of the total order in this ring, there are numbers greater than zero, called the positive numbers. another property required for a ring to be ordered is that, for each positive number, there exists a unique corresponding number less than 0 whose sum with the original positive number is 0. these numbers less than 0 are called the negative numbers. the numbers in each such pair are their respective additive inverses. this attribute of a number, being exclusively either zero ( 0 ), positive ( + ), or negative ( β ), is called its sign, and is often encoded to the real numbers 0, 1, and β1, respectively ( similar to the way the sign function is defined ). since rational and real numbers are also ordered rings ( in fact ordered fields ), the sign attribute also applies to these number systems. when a minus sign is used in between two numbers, it represents the binary operation of subtraction. when a minus sign is written before a single number, it represents the unary operation of yielding the additive inverse ( sometimes called negation ) of the operand. abstractly then, the difference of two number is the sum of the minuend with the additive inverse of the subtrahend. while 0 is its own additive inverse ( β0 = 0 ), the additive inverse of a positive number is negative, and the additive inverse of a negative number is positive. a double application of this operation is written as β ( β3 ) = 3. the plus sign is predominantly used in algebra to denote the binary operation of addition, and only rarely to emphasize the positivity of an expression. in common numeral notation ( used in arithmetic and elsewhere ), the sign of a number is often made explicit by placing a plus or a minus sign before the number. for example, + 3 denotes " positive three ", and β3 denotes " negative three " ( algebraically : the additive inverse of 3 ). without specific context ( or when no explicit sign is given ), a number is interpreted per default as positive. this notation establishes a strong association of the minus sign " β " with negative numbers, and the plus sign " + " with positive numbers. = = = sign of zero = = = within the convention of zero being neither positive nor negative,
odd numbers. the above definition of parity applies only to integer numbers, hence it cannot be applied to numbers with decimals or fractions like 1 / 2 or 4. 6978. see the section " higher mathematics " below for some extensions of the notion of parity to a larger class of " numbers " or in other more general settings. even and odd numbers have opposite parities, e. g., 22 ( even number ) and 13 ( odd number ) have opposite parities. in particular, the parity of zero is even. any two consecutive integers have opposite parity. a number ( i. e., integer ) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. that is, if the last digit is 1, 3, 5, 7, or 9, then it is odd ; otherwise it is even β as the last digit of any even number is 0, 2, 4, 6, or 8. the same idea will work using any even base. in particular, a number expressed in the binary numeral system is odd if its last digit is 1 ; and it is even if its last digit is 0. in an odd base, the number is even according to the sum of its digits β it is even if and only if the sum of its digits is even. = = definition = = an even number is an integer of the form x = 2 k { \ displaystyle x = 2k } where k is an integer ; an odd number is an integer of the form x = 2 k + 1. { \ displaystyle x = 2k + 1. } an equivalent definition is that an even number is divisible by 2 : 2 | x { \ displaystyle 2 \ | \ x } and an odd number is not : 2 [UNK] | x { \ displaystyle 2 \ not | \ x } the sets of even and odd numbers can be defined as following : { 2 k : k β z } { \ displaystyle \ { 2k : k \ in \ mathbb { z } \ } } { 2 k + 1 : k β z } { \ displaystyle \ { 2k + 1 : k \ in \ mathbb { z } \ } } the set of even numbers is a prime ideal of z { \ displaystyle \ mathbb { z } } and the quotient ring z / 2 z { \ displaystyle \ mathbb { z } / 2 \ mathbb { z }
number is positive if it is greater than or equal to zero. a number is negative if it is less than or equal to zero. for example, the absolute value of a real number is always " non - negative ", but is not necessarily " positive " in the first interpretation, whereas in the second interpretation, it is called " positive " β though not necessarily " strictly positive ". the same terminology is sometimes used for functions that yield real or other signed values. for example, a function would be called a positive function if its values are positive for all arguments of its domain, or a non - negative function if all of its values are non - negative. = = = complex numbers = = = complex numbers are impossible to order, so they cannot carry the structure of an ordered ring, and, accordingly, cannot be partitioned into positive and negative complex numbers. they do, however, share an attribute with the reals, which is called absolute value or magnitude. magnitudes are always non - negative real numbers, and to any non - zero number there belongs a positive real number, its absolute value. for example, the absolute value of β3 and the absolute value of 3 are both equal to 3. this is written in symbols as | β3 | = 3 and | 3 | = 3. in general, any arbitrary real value can be specified by its magnitude and its sign. using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. this relation can be generalized to define a sign for complex numbers. since the real and complex numbers both form a field and contain the positive reals, they also contain the reciprocals of the magnitudes of all non - zero numbers. this means that any non - zero number may be multiplied with the reciprocal of its magnitude, that is, divided by its magnitude. it is immediate that the quotient of any non - zero real number by its magnitude yields exactly its sign. by analogy, the sign of a complex number z can be defined as the quotient of z and its magnitude | z |. the sign of a complex number is the exponential of the product of its argument with the imaginary unit. represents in some sense its complex argument. this is to be compared to the sign of real numbers, except with e i Ο = β 1. { \ displaystyle e ^ { i \ pi } = - 1. } for the definition of a complex sign - function. see Β§ complex sign function below. = = = sign
Question: What level is greater than 7 in a basic solution?
A) ph
B) fh
C) uh
D) gh
|
A) ph
|
Context:
significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 β 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for electronics, in capacitors, inductors, sensors, etc. ) a slurry can be used in place of a powder, and then cast into a desired shape, dried and then sintered. indeed, traditional pottery is done with this type of method, using a plastic mixture worked with the hands. if a mixture of different materials is used together in a ceramic, the sintering temperature is sometimes above the melting point of one minor component β a liquid phase sintering. this results in shorter sintering times compared to solid state sintering. such liquid phase sintering involves in faster diffusion processes and may result in abnormal grain
10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is
which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat treatment the glass partly crystallizes. in many cases, so - called ' nucleation agents ' are added in order to regulate and control the crystallization process. because there is usually no pressing and sintering, glass - ceramics do not contain the volume fraction of porosity typically present in sintered ceramics. the term mainly refers to a mix of lithium and aluminosilicates which yields an array of materials with interesting thermomechanical properties. the most commercially important of these have the distinction of being impervious to thermal shock. thus, glass - ceramics have become extremely useful for countertop cooking. the negative thermal expansion coefficient ( tec ) of the crystalline ceramic phase can be balanced with the positive tec of the glassy phase. at a certain point ( ~ 70 % crystalline ) the glass - ceramic has a net tec near zero. this type of glass - ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β batching β mixing β forming β drying β firing β assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression
molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 β 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for electronics, in capacitors, inductors, sensors, etc. ) a slurry can be used in place of a powder, and then cast into a desired shape, dried and then sintered. indeed, traditional pottery is done with this type of method, using a plastic mixture worked with the hands.
##tering - based methods are simple ( " sinter " has roots in the english " cinder " ). the firing is done at a temperature below the melting point of the ceramic. once a roughly - held - together object called a " green body " is made, it is fired in a kiln, where atomic and molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of significantly greater strength and fracture toughness. another major change in the body during the firing or sintering process will be the establishment of the polycrystalline nature of the solid. significant grain growth tends to occur during sintering, with this growth depending on temperature and duration of the sintering process. the growth of grains will result in some form of grain size distribution, which will have a significant impact on the ultimate physical properties of the material. in particular, abnormal grain growth in which certain grains grow very large in a matrix of finer grains will significantly alter the physical and mechanical properties of the obtained ceramic. in the sintered body, grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 β 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for
temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β batching β mixing β forming β drying β firing β assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first,
assuming only statistical mechanics and general relativity, we calculate the maximal temperature of gas of particles placed in ads space - time. if two particles with a given center of mass energy come close enough, according to classical gravity they will form a black hole. we focus only on the black holes with hawking temperature lower than the environment, because they do not disappear. the number density of such black holes grows with the temperature in the system. at a certain finite temperature, the thermodynamical system will be dominated by black holes. this critical temperature is lower than the planck temperature for the values of the ads vacuum energy density below the planck density. this result might be interesting from the ads / cft correspondence point of view, since it is different from the hawking - page phase transition, and it is not immediately clear what effect dynamically limits the maximal temperature of the thermal state on the cft side of the correspondence.
casting, also called the lost wax process, die casting, centrifugal casting, both vertical and horizontal, and continuous castings. each of these forms has advantages for certain metals and applications considering factors like magnetism and corrosion. forging β a red - hot billet is hammered into shape. rolling β a billet is passed through successively narrower rollers to create a sheet. extrusion β a hot and malleable metal is forced under pressure through a die, which shapes it before it cools. machining β lathes, milling machines and drills cut the cold metal to shape. sintering β a powdered metal is heated in a non - oxidizing environment after being compressed into a die. fabrication β sheets of metal are cut with guillotines or gas cutters and bent and welded into structural shape. laser cladding β metallic powder is blown through a movable laser beam ( e. g. mounted on a nc 5 - axis machine ). the resulting melted metal reaches a substrate to form a melt pool. by moving the laser head, it is possible to stack the tracks and build up a three - dimensional piece. 3d printing β sintering or melting amorphous powder metal in a 3d space to make any object to shape. cold - working processes, in which the product ' s shape is altered by rolling, fabrication or other processes, while the product is cold, can increase the strength of the product by a process called work hardening. work hardening creates microscopic defects in the metal, which resist further changes of shape. = = = heat treatment = = = metals can be heat - treated to alter the properties of strength, ductility, toughness, hardness and resistance to corrosion. common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering : annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft - edged so that, when the metal is hit or stressed it dents or perhaps bends, rather than breaking ; it is also easier to sand, grind, or cut annealed metal. quenching is the process of cooling metal very quickly after heating, thus " freezing " the metal ' s molecules in the very hard martensite form, which makes the metal harder. tempering relieves stresses in the metal that were caused by the hardening process ; tempering makes the metal less hard while making it better able to sustain
do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal
billet is passed through successively narrower rollers to create a sheet. extrusion β a hot and malleable metal is forced under pressure through a die, which shapes it before it cools. machining β lathes, milling machines and drills cut the cold metal to shape. sintering β a powdered metal is heated in a non - oxidizing environment after being compressed into a die. fabrication β sheets of metal are cut with guillotines or gas cutters and bent and welded into structural shape. laser cladding β metallic powder is blown through a movable laser beam ( e. g. mounted on a nc 5 - axis machine ). the resulting melted metal reaches a substrate to form a melt pool. by moving the laser head, it is possible to stack the tracks and build up a three - dimensional piece. 3d printing β sintering or melting amorphous powder metal in a 3d space to make any object to shape. cold - working processes, in which the product ' s shape is altered by rolling, fabrication or other processes, while the product is cold, can increase the strength of the product by a process called work hardening. work hardening creates microscopic defects in the metal, which resist further changes of shape. = = = heat treatment = = = metals can be heat - treated to alter the properties of strength, ductility, toughness, hardness and resistance to corrosion. common heat treatment processes include annealing, precipitation strengthening, quenching, and tempering : annealing process softens the metal by heating it and then allowing it to cool very slowly, which gets rid of stresses in the metal and makes the grain structure large and soft - edged so that, when the metal is hit or stressed it dents or perhaps bends, rather than breaking ; it is also easier to sand, grind, or cut annealed metal. quenching is the process of cooling metal very quickly after heating, thus " freezing " the metal ' s molecules in the very hard martensite form, which makes the metal harder. tempering relieves stresses in the metal that were caused by the hardening process ; tempering makes the metal less hard while making it better able to sustain impacts without breaking. often, mechanical and thermal treatments are combined in what are known as thermo - mechanical treatments for better properties and more efficient processing of materials. these processes are common to high - alloy special steels, superalloys and titanium alloys. = = = plating = = = electroplating is
Question: What happens to volume as the temperature increases?
A) volume decreases
B) volume is unchanged
C) volume increases
D) volume fluctuates
|
C) volume increases
|
Context:
compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar β an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical fan - shaped beam of microwaves around the water surface surrounding the craft out to the horizon. weather radar β a doppler radar which maps weather precipitation intensities and wind speeds with the echoes returned from raindrops and their radial velocity by their doppler shift. phased - array radar β a radar set that uses a phased array, a computer - controlled antenna that can steer the radar beam quickly to point in different directions without moving the antenna. phased - array radars were developed by the military to track fast - moving missiles and aircraft. they are widely used in military equipment and are now spreading to civilian applications. synthetic aperture
even artillery shells to their target, and handheld gps receivers are produced for hikers and the military. radio beacon β a fixed location terrestrial radio transmitter which transmits a continuous radio signal used by aircraft and ships for navigation. the locations of beacons are plotted on navigational maps used by aircraft and ships. vhf omnidirectional range ( vor ) β a worldwide aircraft radio navigation system consisting of fixed ground radio beacons transmitting between 108. 00 and 117. 95 mhz in the very high frequency ( vhf ) band. an automated navigational instrument on the aircraft displays a bearing to a nearby vor transmitter. a vor beacon transmits two signals simultaneously on different frequencies. a directional antenna transmits a beam of radio waves that rotates like a lighthouse at a fixed rate, 30 times per second. when the directional beam is facing north, an omnidirectional antenna transmits a pulse. by measuring the difference in phase of these two signals, an aircraft can determine its bearing ( or " radial " ) from the station accurately. by taking a bearing on two vor beacons an aircraft can determine its position ( called a " fix " ) to an accuracy of about 90 metres ( 300 ft ). most vor beacons also have a distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on
missiles, ships, vehicles, and also to map weather patterns and terrain. a radar set consists of a transmitter and receiver. the transmitter emits a narrow beam of radio waves which is swept around the surrounding space. when the beam strikes a target object, radio waves are reflected back to the receiver. the direction of the beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it
beacon transmits two signals simultaneously on different frequencies. a directional antenna transmits a beam of radio waves that rotates like a lighthouse at a fixed rate, 30 times per second. when the directional beam is facing north, an omnidirectional antenna transmits a pulse. by measuring the difference in phase of these two signals, an aircraft can determine its bearing ( or " radial " ) from the station accurately. by taking a bearing on two vor beacons an aircraft can determine its position ( called a " fix " ) to an accuracy of about 90 metres ( 300 ft ). most vor beacons also have a distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) β legacy fixed radio beacons used before the vo
received within a limited distance of its transmitter. systems that broadcast from satellites can generally be received over an entire country or continent. older terrestrial radio and television are paid for by commercial advertising or governments. in subscription systems like satellite television and satellite radio the customer pays a monthly fee. in these systems, the radio signal is encrypted and can only be decrypted by the receiver, which is controlled by the company and can be deactivated if the customer does not pay. broadcasting uses several parts of the radio spectrum, depending on the type of signals transmitted and the desired target audience. longwave and medium wave signals can give reliable coverage of areas several hundred kilometers across, but have a more limited information - carrying capacity and so work best with audio signals ( speech and music ), and the sound quality can be degraded by radio noise from natural and artificial sources. the shortwave bands have a greater potential range but are more subject to interference by distant stations and varying atmospheric conditions that affect reception. in the very high frequency band, greater than 30 megahertz, the earth ' s atmosphere has less of an effect on the range of signals, and line - of - sight propagation becomes the principal mode. these higher frequencies permit the great bandwidth required for television broadcasting. since natural and artificial noise sources are less present at these frequencies, high - quality audio transmission is possible, using frequency modulation. = = = = audio : radio broadcasting = = = = radio broadcasting means transmission of audio ( sound ) to radio receivers belonging to a public audience. analog audio is the earliest form of radio broadcast. am broadcasting began around 1920. fm broadcasting was introduced in the late 1930s with improved fidelity. a broadcast radio receiver is called a radio. most radios can receive both am and fm. am ( amplitude modulation ) β in am, the amplitude ( strength ) of the radio carrier wave is varied by the audio signal. am broadcasting, the oldest broadcasting technology, is allowed in the am broadcast bands, between 148 and 283 khz in the low frequency ( lf ) band for longwave broadcasts and between 526 and 1706 khz in the medium frequency ( mf ) band for medium - wave broadcasts. because waves in these bands travel as ground waves following the terrain, am radio stations can be received beyond the horizon at hundreds of miles distance, but am has lower fidelity than fm. radiated power ( erp ) of am stations in the us is usually limited to a maximum of 10 kw, although a few ( clear - channel stations ) are allowed to transmit at 50
wave, carrying an information signal, occupies a range of frequencies. the information in a radio signal is usually concentrated in narrow frequency bands called sidebands ( sb ) just above and below the carrier frequency. the width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth ( bw ). for any given signal - to - noise ratio, a given bandwidth can carry the same amount of information regardless of where in the radio frequency spectrum it is located ; bandwidth is a measure of information - carrying capacity. the bandwidth required by a radio transmission depends on the data rate of the information being sent, and the spectral efficiency of the modulation method used ; how much data it can transmit in each unit of bandwidth. different types of information signals carried by radio have different data rates. for example, a television signal has a greater data rate than an audio signal. the radio spectrum, the total range of radio frequencies that can be used for communication in a given area, is a limited resource. each radio transmission occupies a portion of the total bandwidth available. radio bandwidth is regarded as an economic good which has a monetary cost and is in increasing demand. in some parts of the radio spectrum, the right to use a frequency band or even a single radio channel is bought and sold for millions of dollars. so there is an incentive to employ technology to minimize the bandwidth used by radio services. a slow transition from analog to digital radio transmission technologies began in the late 1990s. part of the reason for this is that digital modulation can often transmit more information ( a greater data rate ) in a given bandwidth than analog modulation, by using data compression algorithms, which reduce redundancy in the data to be sent, and more efficient modulation. other reasons for the transition is that digital modulation has greater noise immunity than analog, digital signal processing chips have more power and flexibility than analog circuits, and a wide variety of types of information can be transmitted using the same digital modulation. because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to use it more effectively is driving many additional radio innovations such as trunked radio systems, spread spectrum ( ultra - wideband ) transmission, frequency reuse, dynamic spectrum management, frequency pooling, and cognitive radio. = = = itu frequency bands = = = the itu arbitrarily divides the radio spectrum into 12 bands, each beginning at a wavelength which is a power
. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar β an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical fan - shaped beam of microwaves around the water surface surrounding the craft out to the horizon. weather radar β a doppler radar which maps weather precipitation intensities and wind speeds with the echoes returned from raindrops and their radial velocity by their doppler shift. phased - array radar β a radar set
of measuring methods. x - rays and gamma rays are used in industrial radiography to make images of the inside of solid products, as a means of nondestructive testing and inspection. the piece to be radiographed is placed between the source and a photographic film in a cassette. after a certain exposure time, the film is developed and it shows any internal defects of the material. gauges - gauges use the exponential absorption law of gamma rays level indicators : source and detector are placed at opposite sides of a container, indicating the presence or absence of material in the horizontal radiation path. beta or gamma sources are used, depending on the thickness and the density of the material to be measured. the method is used for containers of liquids or of grainy substances thickness gauges : if the material is of constant density, the signal measured by the radiation detector depends on the thickness of the material. this is useful for continuous production, like of paper, rubber, etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics
i give a brief history of astronomical observatories as an institution. this includes : 1 ) observatories in islam ; 2 ) china and india ; 3 ) early european observatories ; 4 ) the rise of national observatories ; 5 ) private ( amateur ) observatories ; 6 ) mountaintop observatories and the modern era. additional references, to material not cited in the version that will be published in the encyclopedia, are also given.
metres ) by small portable navigation instruments, by timing the arrival of radio signals from the satellites. these are the most widely used navigation systems today. the main satellite navigation systems are the us global positioning system ( gps ), russia ' s glonass, china ' s beidou navigation satellite system ( bds ) and the european union ' s galileo. global positioning system ( gps ) β the most widely used satellite navigation system, maintained by the us air force, which uses a constellation of 31 satellites in low earth orbit. the orbits of the satellites are distributed so at any time at least four satellites are above the horizon over each point on earth. each satellite has an onboard atomic clock and transmits a continuous radio signal containing a precise time signal as well as its current position. two frequencies are used, 1. 2276 and 1. 57542 ghz. since the velocity of radio waves is virtually constant, the delay of the radio signal from a satellite is proportional to the distance of the receiver from the satellite. by receiving the signals from at least four satellites a gps receiver can calculate its position on earth by comparing the arrival time of the radio signals. since each satellite ' s position is known precisely at any given time, from the delay the position of the receiver can be calculated by a microprocessor in the receiver. the position can be displayed as latitude and longitude, or as a marker on an electronic map. gps receivers are incorporated in almost all cellphones and in vehicles such as automobiles, aircraft, and ships, and are used to guide drones, missiles, cruise missiles, and even artillery shells to their target, and handheld gps receivers are produced for hikers and the military. radio beacon β a fixed location terrestrial radio transmitter which transmits a continuous radio signal used by aircraft and ships for navigation. the locations of beacons are plotted on navigational maps used by aircraft and ships. vhf omnidirectional range ( vor ) β a worldwide aircraft radio navigation system consisting of fixed ground radio beacons transmitting between 108. 00 and 117. 95 mhz in the very high frequency ( vhf ) band. an automated navigational instrument on the aircraft displays a bearing to a nearby vor transmitter. a vor beacon transmits two signals simultaneously on different frequencies. a directional antenna transmits a beam of radio waves that rotates like a lighthouse at a fixed rate, 30 times per second. when the directional beam is facing north, an omnidirectional antenna transmits a pulse. by measuring the difference in phase of
Question: What does an array of radio telescopes collect?
A) thermal waves
B) light waves
C) microwaves
D) radio waves
|
D) radio waves
|
Context:
charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change
other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit
##als force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants
to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of
ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their
set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature.
strangelets ( stable lumps of quark matter ) can have masses and charges much higher than those of nuclei, but have very low charge - to - mass ratios. this is confirmed in a relativistic thomas - fermi model. the high charge allows astrophysical strangelet acceleration to energies orders of magnitude higher than for protons. in addition, strangelets are much less susceptible to the interactions with the cosmic microwave background that suppress the flux of cosmic ray protons and nuclei above energies of $ 10 ^ { 19 } $ - - $ 10 ^ { 20 } $ ev ( the gzk - cutoff ). this makes strangelets an interesting possibility for explaining ultra - high energy cosmic rays.
= = when 0 is said to be neither positive nor negative, the following phrases may refer to the sign of a number : a number is positive if it is greater than zero. a number is negative if it is less than zero. a number is non - negative if it is greater than or equal to zero. a number is non - positive if it is less than or equal to zero. when 0 is said to be both positive and negative, modified phrases are used to refer to the sign of a number : a number is strictly positive if it is greater than zero. a number is strictly negative if it is less than zero. a number is positive if it is greater than or equal to zero. a number is negative if it is less than or equal to zero. for example, the absolute value of a real number is always " non - negative ", but is not necessarily " positive " in the first interpretation, whereas in the second interpretation, it is called " positive " β though not necessarily " strictly positive ". the same terminology is sometimes used for functions that yield real or other signed values. for example, a function would be called a positive function if its values are positive for all arguments of its domain, or a non - negative function if all of its values are non - negative. = = = complex numbers = = = complex numbers are impossible to order, so they cannot carry the structure of an ordered ring, and, accordingly, cannot be partitioned into positive and negative complex numbers. they do, however, share an attribute with the reals, which is called absolute value or magnitude. magnitudes are always non - negative real numbers, and to any non - zero number there belongs a positive real number, its absolute value. for example, the absolute value of β3 and the absolute value of 3 are both equal to 3. this is written in symbols as | β3 | = 3 and | 3 | = 3. in general, any arbitrary real value can be specified by its magnitude and its sign. using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. this relation can be generalized to define a sign for complex numbers. since the real and complex numbers both form a field and contain the positive reals, they also contain the reciprocals of the magnitudes of all non - zero numbers. this means that any non - zero number may be multiplied with the reciprocal of its magnitude, that is, divided by its magnitude. it is immediate that the quotient
has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named
or magnitude. magnitudes are always non - negative real numbers, and to any non - zero number there belongs a positive real number, its absolute value. for example, the absolute value of β3 and the absolute value of 3 are both equal to 3. this is written in symbols as | β3 | = 3 and | 3 | = 3. in general, any arbitrary real value can be specified by its magnitude and its sign. using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. this relation can be generalized to define a sign for complex numbers. since the real and complex numbers both form a field and contain the positive reals, they also contain the reciprocals of the magnitudes of all non - zero numbers. this means that any non - zero number may be multiplied with the reciprocal of its magnitude, that is, divided by its magnitude. it is immediate that the quotient of any non - zero real number by its magnitude yields exactly its sign. by analogy, the sign of a complex number z can be defined as the quotient of z and its magnitude | z |. the sign of a complex number is the exponential of the product of its argument with the imaginary unit. represents in some sense its complex argument. this is to be compared to the sign of real numbers, except with e i Ο = β 1. { \ displaystyle e ^ { i \ pi } = - 1. } for the definition of a complex sign - function. see Β§ complex sign function below. = = = sign functions = = = when dealing with numbers, it is often convenient to have their sign available as a number. this is accomplished by functions that extract the sign of any number, and map it to a predefined value before making it available for further calculations. for example, it might be advantageous to formulate an intricate algorithm for positive values only, and take care of the sign only afterwards. = = = = real sign function = = = = the sign function or signum function extracts the sign of a real number, by mapping the set of real numbers to the set of the three reals { β 1, 0, 1 }. { \ displaystyle \ { - 1, \ ; 0, \ ; 1 \ }. } it can be defined as follows : sgn : r β { β 1, 0, 1 } x β¦ sgn ( x ) = { β 1 if x < 0, 0 if x = 0
Question: What kind of compounds contain positively and negatively charged ions in a ratio that results in an overall charge of zero?
A) zero charged compunds
B) zeronic ions
C) ionic compounds
D) neutral compounds
|
C) ionic compounds
|
Context:
building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another material. cermets are ceramic particles containing some metals. the wear resistance of tools is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties. ceramics can be significantly strengthened for engineering applications using the principle of crack deflection. this process involves the strategic addition of second - phase particles within a ceramic matrix, optimizing their shape, size, and distribution to direct and control crack propagation. this approach enhances fracture toughness, paving the way for the creation of advanced, high - performance ceramics in various industries. = = = composites = = = another application of materials science in industry is making composite materials. these are structured materials composed of two or more macroscopic phases. applications range from structural elements such as steel - reinforced concrete, to the thermal insulating tiles, which play a key and integral role in nasa ' s space shuttle thermal protection system, which is used to protect the surface of the shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap. rcc is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. after curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfuryl alcohol in a
which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat treatment the glass partly crystallizes. in many cases, so - called ' nucleation agents ' are added in order to regulate and control the crystallization process. because there is usually no pressing and sintering, glass - ceramics do not contain the volume fraction of porosity typically present in sintered ceramics. the term mainly refers to a mix of lithium and aluminosilicates which yields an array of materials with interesting thermomechanical properties. the most commercially important of these have the distinction of being impervious to thermal shock. thus, glass - ceramics have become extremely useful for countertop cooking. the negative thermal expansion coefficient ( tec ) of the crystalline ceramic phase can be balanced with the positive tec of the glassy phase. at a certain point ( ~ 70 % crystalline ) the glass - ceramic has a net tec near zero. this type of glass - ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β batching β mixing β forming β drying β firing β assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression
high machining costs. there is a possibility for melt casting to be used for many of these approaches. potentially even more desirable is using melt - derived particles. in this method, quenching is done in a solid solution or in a fine eutectic structure, in which the particles are then processed by more typical ceramic powder processing methods into a useful body. there have also been preliminary attempts to use melt spraying as a means of forming composites by introducing the dispersed particulate, whisker, or fiber phase in conjunction with the melt spraying process. other methods besides melt infiltration to manufacture ceramic composites with long fiber reinforcement are chemical vapor infiltration and the infiltration of fiber preforms with organic precursor, which after pyrolysis yield an amorphous ceramic matrix, initially with a low density. with repeated cycles of infiltration and pyrolysis one of those types of ceramic matrix composites is produced. chemical vapor infiltration is used to manufacture carbon / carbon and silicon carbide reinforced with carbon or silicon carbide fibers. besides many process improvements, the first of two major needs for fiber composites is lower fiber costs. the second major need is fiber compositions or coatings, or composite processing, to reduce degradation that results from high - temperature composite exposure under oxidizing conditions. = = applications = = the products of technical ceramics include tiles used in the space shuttle program, gas burner nozzles, ballistic protection, nuclear fuel uranium oxide pellets, bio - medical implants, jet engine turbine blades, and missile nose cones. its products are often made from materials other than clay, chosen for their particular physical properties. these may be classified as follows : oxides : silica, alumina, zirconia non - oxides : carbides, borides, nitrides, silicides composites : particulate or whisker reinforced matrices, combinations of oxides and non - oxides ( e. g. polymers ). ceramics can be used in many technological industries. one application is the ceramic tiles on nasa ' s space shuttle, used to protect it and the future supersonic space planes from the searing heat of re - entry into the earth ' s atmosphere. they are also used widely in electronics and optics. in addition to the applications listed here, ceramics are also used as a coating in various engineering cases. an example would be a ceramic bearing coating over a titanium frame used for an aircraft. recently the field has come to include the studies of single
two possible interpretations of frw cosmologies ( perfect fluid or dissipative fluid ) are considered as consecutive phases of the system. necessary conditions are found, for the transition from perfect fluid to dissipative regime to occur, bringing out the conspicuous role played by a particular state of the system ( the ' ' critical point ' ' ).
##ally, because the natural shapes of crystals reflect the atomic structure. further, physical properties are often controlled by crystalline defects. the understanding of crystal structures is an important prerequisite for understanding crystallographic defects. examples of crystal defects consist of dislocations including edges, screws, vacancies, self inter - stitials, and more that are linear, planar, and three dimensional types of defects. new and advanced materials that are being developed include nanomaterials, biomaterials. mostly, materials do not occur as a single crystal, but in polycrystalline form, as an aggregate of small crystals or grains with different orientations. because of this, the powder diffraction method, which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. most materials have a crystalline structure, but some important materials do not exhibit regular crystal structure. polymers display varying degrees of crystallinity, and many are completely non - crystalline. glass, some ceramics, and many natural materials are amorphous, not possessing any long - range order in their atomic arrangements. the study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic and mechanical descriptions of physical properties. = = = = nanostructure = = = = materials, which atoms and molecules form constituents in the nanoscale ( i. e., they form nanostructures ) are called nanomaterials. nanomaterials are the subject of intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 β 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm. nanotubes have two dimensions on the nanoscale, i. e., the diameter of the tube is between 0. 1 and 100 nm ; its length could be much greater. finally, spherical nanoparticles have three dimensions on the nanoscale, i. e., the particle is between
= glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat treatment the glass partly crystallizes. in many cases, so - called ' nucleation agents ' are added in order to regulate and control the crystallization process. because there is usually no pressing and sintering, glass - ceramics do not contain the volume fraction of porosity typically present in sintered ceramics. the term mainly refers to a mix of lithium and aluminosilicates which yields an array of materials with interesting thermomechanical properties. the most commercially important of these have the distinction of being impervious to thermal shock. thus, glass - ceramics have become extremely useful for countertop cooking. the negative thermal expansion coefficient ( tec ) of the crystalline ceramic phase can be balanced with the positive tec of the glassy phase. at a certain point ( ~ 70 % crystalline ) the glass - ceramic has a net tec near zero. this type of glass - ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β batching β mixing β forming β drying β firing β assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which
material includes the unit cell, which is the smallest unit of a crystal lattice ( space lattice ) that repeats to make up the macroscopic crystal structure. most common structural materials include parallelpiped and hexagonal lattice types. in single crystals, the effects of the crystalline arrangement of atoms is often easy to see macroscopically, because the natural shapes of crystals reflect the atomic structure. further, physical properties are often controlled by crystalline defects. the understanding of crystal structures is an important prerequisite for understanding crystallographic defects. examples of crystal defects consist of dislocations including edges, screws, vacancies, self inter - stitials, and more that are linear, planar, and three dimensional types of defects. new and advanced materials that are being developed include nanomaterials, biomaterials. mostly, materials do not occur as a single crystal, but in polycrystalline form, as an aggregate of small crystals or grains with different orientations. because of this, the powder diffraction method, which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. most materials have a crystalline structure, but some important materials do not exhibit regular crystal structure. polymers display varying degrees of crystallinity, and many are completely non - crystalline. glass, some ceramics, and many natural materials are amorphous, not possessing any long - range order in their atomic arrangements. the study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic and mechanical descriptions of physical properties. = = = = nanostructure = = = = materials, which atoms and molecules form constituents in the nanoscale ( i. e., they form nanostructures ) are called nanomaterials. nanomaterials are the subject of intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 β 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm
ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their
as for precipitation - toughened, partially stabilized zirconia. similarly, it is known that one can directionally solidify ceramic eutectic mixtures and hence obtain uniaxially aligned fiber composites. such composite processing has typically been limited to very simple shapes and thus suffers from serious economic problems due to high machining costs. there is a possibility for melt casting to be used for many of these approaches. potentially even more desirable is using melt - derived particles. in this method, quenching is done in a solid solution or in a fine eutectic structure, in which the particles are then processed by more typical ceramic powder processing methods into a useful body. there have also been preliminary attempts to use melt spraying as a means of forming composites by introducing the dispersed particulate, whisker, or fiber phase in conjunction with the melt spraying process. other methods besides melt infiltration to manufacture ceramic composites with long fiber reinforcement are chemical vapor infiltration and the infiltration of fiber preforms with organic precursor, which after pyrolysis yield an amorphous ceramic matrix, initially with a low density. with repeated cycles of infiltration and pyrolysis one of those types of ceramic matrix composites is produced. chemical vapor infiltration is used to manufacture carbon / carbon and silicon carbide reinforced with carbon or silicon carbide fibers. besides many process improvements, the first of two major needs for fiber composites is lower fiber costs. the second major need is fiber compositions or coatings, or composite processing, to reduce degradation that results from high - temperature composite exposure under oxidizing conditions. = = applications = = the products of technical ceramics include tiles used in the space shuttle program, gas burner nozzles, ballistic protection, nuclear fuel uranium oxide pellets, bio - medical implants, jet engine turbine blades, and missile nose cones. its products are often made from materials other than clay, chosen for their particular physical properties. these may be classified as follows : oxides : silica, alumina, zirconia non - oxides : carbides, borides, nitrides, silicides composites : particulate or whisker reinforced matrices, combinations of oxides and non - oxides ( e. g. polymers ). ceramics can be used in many technological industries. one application is the ceramic tiles on nasa ' s space shuttle, used to protect it and the future supersonic space planes from the searing heat of re - entry into
use less energy than conventional thermal separation processes such as distillation, sublimation or crystallization. the separation process is purely physical and both fractions ( permeate and retentate ) can be obtained as useful products. cold separation using membrane technology is widely used in the food technology, biotechnology and pharmaceutical industries. furthermore, using membranes enables separations to take place that would be impossible using thermal separation methods. for example, it is impossible to separate the constituents of azeotropic liquids or solutes which form isomorphic crystals by distillation or recrystallization but such separations can be achieved using membrane technology. depending on the type of membrane, the selective separation of certain individual substances or substance mixtures is possible. important technical applications include the production of drinking water by reverse osmosis. in waste water treatment, membrane technology is becoming increasingly important. ultra / microfiltration can be very effective in removing colloids and macromolecules from wastewater. this is needed if wastewater is discharged into sensitive waters especially those designated for contact water sports and recreation. about half of the market is in medical applications such as artificial kidneys to remove toxic substances by hemodialysis and as artificial lung for bubble - free supply of oxygen in the blood. the importance of membrane technology is growing in the field of environmental protection ( nano - mem - pro ippc database ). even in modern energy recovery techniques, membranes are increasingly used, for example in fuel cells and in osmotic power plants. = = mass transfer = = two basic models can be distinguished for mass transfer through the membrane : the solution - diffusion model and the hydrodynamic model. in real membranes, these two transport mechanisms certainly occur side by side, especially during ultra - filtration. = = = solution - diffusion model = = = in the solution - diffusion model, transport occurs only by diffusion. the component that needs to be transported must first be dissolved in the membrane. the general approach of the solution - diffusion model is to assume that the chemical potential of the feed and permeate fluids are in equilibrium with the adjacent membrane surfaces such that appropriate expressions for the chemical potential in the fluid and membrane phases can be equated at the solution - membrane interface. this principle is more important for dense membranes without natural pores such as those used for reverse osmosis and in fuel cells. during the filtration process a boundary layer forms on the membrane. this concentration gradient is created by molecules which cannot pass through the membrane. the
Question: What are formed when crystals precipitate out from a liquid?
A) additive sedimentary rocks
B) gaseous sedimentary rocks
C) chemical sedimentary rocks
D) diamonds
|
C) chemical sedimentary rocks
|
Context:
, and carpentry. the trade of the ship - wright. the trade of the wheel - wright. the trade of the wainwright : making wagons. ( the latin word for a two - wheeled wagon is carpentum, the maker of which was a carpenter. ) ( wright is the agent form of the word wrought, which itself is the original past passive participle of the word work, now superseded by the weak verb forms worker and worked respectively. ) blacksmithing and the various related smithing and metal - crafts. folk music played on acoustic instruments. mathematics ( particularly, pure mathematics ) organic farming and animal husbandry ( i. e. ; agriculture as practiced by all american farmers prior to world war ii ). milling in the sense of operating hand - constructed equipment with the intent to either grind grain, or the reduction of timber to lumber as practiced in a saw - mill. fulling, felting, drop spindle spinning, hand knitting, crochet, & similar textile preparation. the production of charcoal by the collier, for use in home heating, foundry operations, smelting, the various smithing trades, and for brushing ones teeth as in colonial america. glass - blowing. various subskills of food preservation : smoking salting pickling drying note : home canning is a counter example of a low technology since some of the supplies needed to pursue this skill rely on a global trade network and an existing manufacturing infrastructure. the production of various alcoholic beverages : wine : poorly preserved fruit juice. beer : a way to preserve the calories of grain products from decay. whiskey : an improved ( distilled ) form of beer. flint - knapping masonry as used in castles, cathedrals, and root cellars. = = = domestic or consumer = = = ( non exhaustive ) list of low - tech in a westerner ' s everyday life : getting around by bike, and repairing it with second - hand materials using a cargo bike to carry loads ( rather than a gasoline vehicle ) drying clothes on a clothesline or on a drying rack washing clothes by hand, or in a human - powered washing machine cooling one ' s home with a fan or an air expander ( rather than electrical appliances such as air conditioners ) using a bell as door bell a cellar, " desert fridge ", or icebox ( rather than a fridge or freezer ) long - distance travel by sailing boat ( rather than by plane ) a wicker bag or a tote bag ( rather than a plastic bag ) to
there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively in future clinical stem cell therapies. mc2 biotek has also developed a bioreactor known as prototissue that uses gas exchange to maintain high oxygen levels within the cell chamber ; improving upon previous bioreactors, since the higher oxygen levels help the cell grow and undergo normal cell respiration. active areas of research on bioreactors includes increasing production scale and refining the physiological environment, both of which could improve the efficiency and efficacy of bioreactors in research or clinical use. bioreactors are currently used to study, among other things, cell and tissue level therapies, cell and tissue response to specific physiological environment changes, and development of disease and injury. = = = long fiber generation = = = in 2013, a group from the university of tokyo developed cell laden fibers up to a meter in length and on the order of 100 ΞΌm in size. these fibers were created using a microfluidic device that forms a
tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biological tissues. tissue engineering often involves the use of cells placed on tissue scaffolds in the formation of new viable tissue for a medical purpose, but is not limited to applications involving cells and tissue scaffolds. while it was once categorized as a sub - field of biomaterials, having grown in scope and importance, it can be considered as a field of its own. while most definitions of tissue engineering cover a broad range of applications, in practice, the term is closely associated with applications that repair or replace portions of or whole tissues ( i. e. organs, bone, cartilage, blood vessels, bladder, skin, muscle etc. ). often, the tissues involved require certain mechanical and structural properties for proper functioning. the term has also been applied to efforts to perform specific biochemical functions using cells within an artificially - created support system ( e. g. an artificial pancreas, or a bio artificial liver ). the term regenerative medicine is often used synonymously with tissue engineering, although those involved in regenerative medicine place more emphasis on the use of stem cells or progenitor cells to produce tissues. = = overview = = a commonly applied definition of tissue engineering, as stated by langer and vacanti, is " an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve [ biological tissue ] function or a whole organ ". in addition, langer and vacanti also state that there are three main types of tissue engineering : cells, tissue - inducing substances, and a cells + matrix approach ( often referred to as a scaffold ). tissue engineering has also been defined as " understanding the principles of tissue growth, and applying this to produce functional replacement tissue for clinical use ". a further description goes on to say that an " underlying supposition of tissue engineering is that the employment of natural biology of the system will allow for greater success in developing therapeutic strategies aimed at the replacement, repair, maintenance, or enhancement of tissue function ". developments in the multidisciplinary field of tissue engineering have yielded a novel set of tissue replacement parts and implementation strategies. scientific advances in biomaterials, stem cells, growth and differentiation factors, and biomimetic environments have created unique opportunities to fabric
##artificial liver device, " temporary liver ", extracorporeal liver assist device ( elad ) : the human hepatocyte cell line ( c3a line ) in a hollow fiber bioreactor can mimic the hepatic function of the liver for acute instances of liver failure. a fully capable elad would temporarily function as an individual ' s liver, thus avoiding transplantation and allowing regeneration of their own liver. artificial pancreas : research involves using islet cells to regulate the body ' s blood sugar, particularly in cases of diabetes. biochemical factors may be used to cause human pluripotent stem cells to differentiate ( turn into ) cells that function similarly to beta cells, which are in an islet cell in charge of producing insulin. artificial bladders : anthony atala ( wake forest university ) has successfully implanted artificial bladders, constructed of cultured cells seeded onto a bladder - shaped scaffold, into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to
all christian authors held that the earth was round. athenagoras, an eastern christian writing around the year 175 ad, said that the earth was spherical. methodius ( c. 290 ad ), an eastern christian writing against " the theory of the chaldeans and the egyptians " said : " let us first lay bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture
organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the
defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently specialized for specific settings such as in a classroom or nursing home. positioning is often important in seating arrangements to ensure that user ' s body pressure is distributed equally without inhibiting movement in a desired way. positioning devices have been developed to aid in allowing people to stand and bear weight on their legs without risk of a fall.
##ration fuel cell operations in a temperature gradient membrane distillation = = membrane shapes and flow geometries = = there are two main flow configurations of membrane processes : cross - flow ( or tangential flow ) and dead - end filtrations. in cross - flow filtration the feed flow is tangential to the surface of the membrane, retentate is removed from the same side further downstream, whereas the permeate flow is tracked on the other side. in dead - end filtration, the direction of the fluid flow is normal to the membrane surface. both flow geometries offer some advantages and disadvantages. generally, dead - end filtration is used for feasibility studies on a laboratory scale. the dead - end membranes are relatively easy to fabricate which reduces the cost of the separation process. the dead - end membrane separation process is easy to implement and the process is usually cheaper than cross - flow membrane filtration. the dead - end filtration process is usually a batch - type process, where the filtering solution is loaded ( or slowly fed ) into the membrane device, which then allows passage of some particles subject to the driving force. the main disadvantage of dead - end filtration is the extensive membrane fouling and concentration polarization. the fouling is usually induced faster at higher driving forces. membrane fouling and particle retention in a feed solution also builds up a concentration gradients and particle backflow ( concentration polarization ). the tangential flow devices are more cost and labor - intensive, but they are less susceptible to fouling due to the sweeping effects and high shear rates of the passing flow. the most commonly used synthetic membrane devices ( modules ) are flat sheets / plates, spiral wounds, and hollow fibers. flat membranes used in filtration and separation processes can be enhanced with surface patterning, where microscopic structures are introduced to improve performance. these patterns increase surface area, optimize water flow, and reduce fouling, leading to higher permeability and longer membrane lifespan. research has shown that such modifications can significantly enhance efficiency in water purification, energy applications, and industrial separations. flat plates are usually constructed as circular thin flat membrane surfaces to be used in dead - end geometry modules. spiral wounds are constructed from similar flat membranes but in the form of a " pocket " containing two membrane sheets separated by a highly porous support plate. several such pockets are then wound around a tube to create a tangential flow geometry and to reduce membrane fouling. hollow fiber modules consist of an
while co - coculturing epithelial and adipocyte cells. the hystem kit is another 3 - d platform containing ecm components and hyaluronic acid that has been used for cancer research. additionally, hydrogel constituents can be chemically modified to assist in crosslinking and enhance their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a
produces. the mastering engineer makes any final adjustments to the overall sound of the record in the final step before commercial duplication. mastering engineers use principles of equalization, compression and limiting to fine - tune the sound timbre and dynamics and to achieve a louder recording. sound designer β broadly an artist who produces soundtracks or sound effects content for media. live sound engineer front of house ( foh ) engineer, or a1. β a person dealing with live sound reinforcement. this usually includes planning and installation of loudspeakers, cabling and equipment and mixing sound during the show. this may or may not include running the foldback sound. a live / sound reinforcement engineer hears source material and tries to correlate that sonic experience with system performance. wireless microphone engineer, or a2. this position is responsible for wireless microphones during a theatre production, a sports event or a corporate event. foldback or monitor engineer β a person running foldback sound during a live event. the term foldback comes from the old practice of folding back audio signals from the front of house ( foh ) mixing console to the stage so musicians can hear themselves while performing. monitor engineers usually have a separate audio system from the foh engineer and manipulate audio signals independently from what the audience hears so they can satisfy the requirements of each performer on stage. in - ear systems, digital and analog mixing consoles, and a variety of speaker enclosures are typically used by monitor engineers. in addition, most monitor engineers must be familiar with wireless or rf ( radio - frequency ) equipment and often must communicate personally with the artist ( s ) during each performance. systems engineer β responsible for the design setup of modern pa systems, which are often very complex. a systems engineer is usually also referred to as a crew chief on tour and is responsible for the performance and day - to - day job requirements of the audio crew as a whole along with the foh audio system. this is a sound - only position concerned with implementation, not to be confused with the interdisciplinary field of system engineering, which typically requires a college degree. re - recording mixer β a person in post - production who mixes audio tracks for feature films or television programs. = = equipment = = an audio engineer is proficient with different types of recording media, such as analog tape, digital multi - track recorders and workstations, plug - ins and computer knowledge. with the advent of the digital age, it is increasingly important for the audio engineer to understand software and hardware integration, from synchronization to analog to digital transfers
Question: Roundworms exemplify what type of organization, where two or more types of tissues work together to perform a particular function as an organ?
A) land-level organization
B) organ-level organization
C) bone-level organization
D) delicate - level organization
|
B) organ-level organization
|
Context:
it is well known and well established by scientific observation that a free neutron radioactively decays into a proton plus an electron plus an anti - neutrino with a mean life time before decay of about 900 seconds. that established fact conflicts sharply with the hypothesis that the neutron is composed of two down plus one up quark and that the proton is composed of one down plus two up quarks. that conflict throws doubt on the entire quark hypothesis.
g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends
has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named
it is believed that there may have been a large number of black holes formed in the very early universe. these would have quantised masses. a charged ` ` elementary black hole ' ' ( with the minimum possible mass ) can capture electrons, protons and other charged particles to form a ` ` black hole atom ' '. we find the spectrum of such an object with a view to laboratory and astronomical observation of them, and estimate the lifetime of the bound states. there is no limit to the charge of the black hole, which gives us the possibility of observing z > 137 bound states and transitions at the lower continuum. negatively charged black holes can capture protons. for z > 1, the orbiting protons will coalesce to form a nucleus ( after beta - decay of some protons to neutrons ), with a stability curve different to that of free nuclei. in this system there is also the distinct possibility of single quark capture. this leads to the formation of a coloured black hole that plays the role of an extremely heavy quark interacting strongly with the other two quarks. finally we consider atoms formed with much larger black holes.
on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union
( create a critical mass ) for detonation. it also is quite difficult to ensure that such a chain reaction consumes a significant fraction of the fuel before the device flies apart. the procurement of a nuclear fuel is also more difficult than it might seem, since sufficiently unstable substances for this process do not currently occur naturally on earth in suitable amounts. one isotope of uranium, namely uranium - 235, is naturally occurring and sufficiently unstable, but it is always found mixed with the more stable isotope uranium - 238. the latter accounts for more than 99 % of the weight of natural uranium. therefore, some method of isotope separation based on the weight of three neutrons must be performed to enrich ( isolate ) uranium - 235. alternatively, the element plutonium possesses an isotope that is sufficiently unstable for this process to be usable. terrestrial plutonium does not currently occur naturally in sufficient quantities for such use, so it must be manufactured in a nuclear reactor. ultimately, the manhattan project manufactured nuclear weapons based on each of these elements. they detonated the first nuclear weapon in a test code - named " trinity ", near alamogordo, new mexico, on july 16, 1945. the test was conducted to ensure that the implosion method of detonation would work, which it did. a uranium bomb, little boy, was dropped on the japanese city hiroshima on august 6, 1945, followed three days later by the plutonium - based fat man on nagasaki. in the wake of unprecedented devastation and casualties from a single weapon, the japanese government soon surrendered, ending world war ii. since these bombings, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non -
the antiproton flux measured by pamela experiment might have originated from galactic sources of cosmic rays. these antiprotons are expected to be produced in the interactions of cosmic ray protons and nuclei with cold protons. gamma rays are also produced in similar interactions inside some of the cosmic acceleratos. we consider a few nearby supernova remnants observed by fermi lat. many of them are associated with molecular clouds. gamma rays have been detected from these sources which most likely originate in decay of neutral pions produced in hadronic interactions. the observed gamma ray fluxes from these snrs are used to find out their contributions to the observed diffuse cosmic ray antiproton flux near the earth.
, they can fission as well, leading to a chain reaction. the average number of neutrons released per nucleus that go on to fission another nucleus is referred to as k. values of k larger than 1 mean that the fission reaction is releasing more neutrons than it absorbs, and therefore is referred to as a self - sustaining chain reaction. a mass of fissile material large enough ( and in a suitable configuration ) to induce a self - sustaining chain reaction is called a critical mass. when a neutron is captured by a suitable nucleus, fission may occur immediately, or the nucleus may persist in an unstable state for a short time. if there are enough immediate decays to carry on the chain reaction, the mass is said to be prompt critical, and the energy release will grow rapidly and uncontrollably, usually leading to an explosion. when discovered on the eve of world war ii, this insight led multiple countries to begin programs investigating the possibility of constructing an atomic bomb β a weapon which utilized fission reactions to generate far more energy than could be created with chemical explosives. the manhattan project, run by the united states with the help of the united kingdom and canada, developed multiple fission weapons which were used against japan in 1945 at hiroshima and nagasaki. during the project, the first fission reactors were developed as well, though they were primarily for weapons manufacture and did not generate electricity. in 1951, the first nuclear fission power plant was the first to produce electricity at the experimental breeder reactor no. 1 ( ebr - 1 ), in arco, idaho, ushering in the " atomic age " of more intensive human energy use. however, if the mass is critical only when the delayed neutrons are included, then the reaction can be controlled, for example by the introduction or removal of neutron absorbers. this is what allows nuclear reactors to be built. fast neutrons are not easily captured by nuclei ; they must be slowed ( slow neutrons ), generally by collision with the nuclei of a neutron moderator, before they can be easily captured. today, this type of fission is commonly used to generate electricity. = = = nuclear fusion = = = if nuclei are forced to collide, they can undergo nuclear fusion. this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleos
##elting. metallurgy of lead has also been found in the balkans during the same period. copper smelting is documented at sites in anatolia and at the site of tal - i iblis in southeastern iran from c. 5000 bc. copper smelting is first documented in the delta region of northern egypt in c. 4000 bc, associated with the maadi culture. this represents the earliest evidence for smelting in africa. the varna necropolis, bulgaria, is a burial site located in the western industrial zone of varna, approximately 4 km from the city centre, internationally considered one of the key archaeological sites in world prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. this includes the ancient and medieval kingdoms and empires of the middle east and near east, ancient iran, ancient egypt, ancient nubia, and anatolia in present - day turkey, ancient nok, carthage, the celts, greeks and romans of ancient europe, medieval europe, ancient and medieval china, ancient and medieval india, ancient and medieval japan, amongst others. a 16th century book by georg agricola, de re metallica, describes the highly developed and complex processes of mining metal ores, metal extraction, and metallurgy of the time. agricola has been described as the " father of metallurgy
, no nuclear weapons have been deployed offensively. nevertheless, they prompted an arms race to develop increasingly destructive bombs to provide a nuclear deterrent. just over four years later, on august 29, 1949, the soviet union detonated its first fission weapon. the united kingdom followed on october 2, 1952 ; france, on february 13, 1960 ; and china component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. a radiological weapon is a type of nuclear weapon designed to distribute hazardous nuclear material in enemy areas. such a weapon would not have the explosive capability of a fission or fusion bomb, but would kill many people and contaminate a large area. a radiological weapon has never been deployed. while considered useless by a conventional military, such a weapon raises concerns over nuclear terrorism. there have been over 2, 000 nuclear tests conducted since 1945. in 1963, all nuclear and many non - nuclear states signed the limited test ban treaty, pledging to refrain from testing nuclear weapons in the atmosphere, underwater, or in outer space. the treaty permitted underground nuclear testing. france continued atmospheric testing until 1974, while china continued up until 1980. the last underground test by the united states was in 1992, the soviet union in 1990, the united kingdom in 1991, and both france and china continued testing until 1996. after signing the comprehensive test ban treaty in 1996 ( which had as of 2011 not entered into force ), all of these states have pledged to discontinue all nuclear testing. non - signatories india and pakistan last tested nuclear weapons in 1998. nuclear weapons are the most destructive weapons known - the archetypal weapons of mass destruction. throughout the cold war, the opposing powers had huge nuclear arsenals, sufficient to kill hundreds of millions of people. generations of people grew up under the shadow of nuclear devastation, portrayed in films such as dr. strangelove and the atomic cafe. however, the tremendous energy release in the detonation of a nuclear weapon also suggested the possibility of a new energy source. = = civilian uses = = = = = nuclear power = = = nuclear power is a type of nuclear technology involving the controlled use of nuclear fission to release energy for work including propulsion, heat, and the generation of electricity. nuclear energy is produced by a controlled nuclear chain reaction which creates heat β and which is used to boil water, produce steam, and drive a steam turbine. the turbine is used to generate electricity and / or to do mechanical work. currently nuclear
Question: Where are protons and neutrons located?
A) electron shell
B) epidermis
C) nucleus
D) radius
|
C) nucleus
|
Context:
##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river
two types of stars are known to have strong, large scale magnetic fields : the main sequence ap stars and the magnetic white dwarfs. this suggest that the former might be the progenitors of the latter. in order to test this idea, i have carried out a search for large scale magnetic fields in stars with evolutionary states which are intermediate, i. e. in horizontal branch stars and in hot subdwarfs.
becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under
there are a few different mechanisms that can cause white dwarf stars to vary in brightness, providing opportunities to probe the physics, structures, and formation of these compact stellar remnants. the observational characteristics of the three most common types of white dwarf variability are summarized : stellar pulsations, rotation, and ellipsoidal variations from tidal distortion in binary systems. stellar pulsations are emphasized as the most complex type of variability, which also has the greatest potential to reveal the conditions of white dwarf interiors.
in the year 1598 philipp uffenbach published a printed diptych sundial, which is a forerunner of franz ritters horizantal sundial. uffenbach ' s sundial contains apart from the usual information on a sundial ascending signs of the zodiac, several brigthest stars, an almucantar and most important the oldest gnomonic world map known so far. the sundial is constructed for the polar height of 50 1 / 6 degrees, the height of frankfurt / main the town of his citizenship.
ultramagnetized neutron stars or magnetars are magnetically powered neutron stars. their strong magnetic fields dominate the physical processes in their crusts and their surroundings. the past few years have seen several advances in our theoretical and observational understanding of these objects. in spite of a surfeit of observations, their spectra are still poorly understood. i will discuss the emission from strongly magnetized condensed matter surfaces of neutron stars, recent advances in our expectations of the surface composition of magnetars and a model for the non - thermal emission from these objects.
are commonly referred to as " cross - hatching ". phantom β ( not shown ) are alternately long - and double short - dashed thin lines used to represent a feature or component that is not part of the specified part or assembly. e. g. billet ends that may be used for testing, or the machined product that is the focus of a tooling drawing. lines can also be classified by a letter classification in which each line is given a letter. type a lines show the outline of the feature of an object. they are the thickest lines on a drawing and done with a pencil softer than hb. type b lines are dimension lines and are used for dimensioning, projecting, extending, or leaders. a harder pencil should be used, such as a 2h pencil. type c lines are used for breaks when the whole object is not shown. these are freehand drawn and only for short breaks. 2h pencil type d lines are similar to type c, except these are zigzagged and only for longer breaks. 2h pencil type e lines indicate hidden outlines of internal features of an object. these are dotted lines. 2h pencil type f lines are type e lines, except these are used for drawings in electrotechnology. 2h pencil type g lines are used for centre lines. these are dotted lines, but a long line of 10 β 20 mm, then a 1 mm gap, then a small line of 2 mm. 2h pencil type h lines are the same as type g, except that every second long line is thicker. these indicate the cutting plane of an object. 2h pencil type k lines indicate the alternate positions of an object and the line taken by that object. these are drawn with a long line of 10 β 20 mm, then a small gap, then a small line of 2 mm, then a gap, then another small line. 2h pencil. = = = multiple views and projections = = = in most cases, a single view is not sufficient to show all necessary features, and several views are used. types of views include the following : = = = = multiview projection = = = = a multiview projection is a type of orthographic projection that shows the object as it looks from the front, right, left, top, bottom, or back ( e. g. the primary views ), and is typically positioned relative to each other according to the rules of either first - angle or third - angle projection. the origin and vector direction of the projectors (
current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers β civil works program river morphology and stream restoration references
, phone lines and power lines ) to create a high - speed local area network. twisted pair cabling is used for wired ethernet and other standards. it typically consists of 4 pairs of copper cabling that can be utilized for both voice and data transmission. the use of two wires twisted together helps to reduce crosstalk and electromagnetic induction. the transmission speed ranges from 2 mbit / s to 10 gbit / s. twisted pair cabling comes in two forms : unshielded twisted pair ( utp ) and shielded twisted - pair ( stp ). each form comes in several category ratings, designed for use in various scenarios. an optical fiber is a glass fiber. it carries pulses of light that represent data via lasers and optical amplifiers. some advantages of optical fibers over metal wires are very low transmission loss and immunity to electrical interference. using dense wave division multiplexing, optical fibers can simultaneously carry multiple streams of data on different wavelengths of light, which greatly increases the rate that data can be sent to up to trillions of bits per second. optic fibers can be used for long runs of cable carrying very high data rates, and are used for undersea communications cables to interconnect continents. there are two basic types of fiber optics, single - mode optical fiber ( smf ) and multi - mode optical fiber ( mmf ). single - mode fiber has the advantage of being able to sustain a coherent signal for dozens or even a hundred kilometers. multimode fiber is cheaper to terminate but is limited to a few hundred or even only a few dozens of meters, depending on the data rate and cable grade. = = = wireless = = = network connections can be established wirelessly using radio or other electromagnetic means of communication. terrestrial microwave β terrestrial microwave communication uses earth - based transmitters and receivers resembling satellite dishes. terrestrial microwaves are in the low gigahertz range, which limits all communications to line - of - sight. relay stations are spaced approximately 40 miles ( 64 km ) apart. communications satellites β satellites also communicate via microwave. the satellites are stationed in space, typically in geosynchronous orbit 35, 400 km ( 22, 000 mi ) above the equator. these earth - orbiting systems are capable of receiving and relaying voice, data, and tv signals. cellular networks use several radio communications technologies. the systems divide the region covered into multiple geographic areas. each area is served by a low - power transceiver. radio and spread spectrum technologies β wireless lans use a high - frequency radio technology similar to
received within a limited distance of its transmitter. systems that broadcast from satellites can generally be received over an entire country or continent. older terrestrial radio and television are paid for by commercial advertising or governments. in subscription systems like satellite television and satellite radio the customer pays a monthly fee. in these systems, the radio signal is encrypted and can only be decrypted by the receiver, which is controlled by the company and can be deactivated if the customer does not pay. broadcasting uses several parts of the radio spectrum, depending on the type of signals transmitted and the desired target audience. longwave and medium wave signals can give reliable coverage of areas several hundred kilometers across, but have a more limited information - carrying capacity and so work best with audio signals ( speech and music ), and the sound quality can be degraded by radio noise from natural and artificial sources. the shortwave bands have a greater potential range but are more subject to interference by distant stations and varying atmospheric conditions that affect reception. in the very high frequency band, greater than 30 megahertz, the earth ' s atmosphere has less of an effect on the range of signals, and line - of - sight propagation becomes the principal mode. these higher frequencies permit the great bandwidth required for television broadcasting. since natural and artificial noise sources are less present at these frequencies, high - quality audio transmission is possible, using frequency modulation. = = = = audio : radio broadcasting = = = = radio broadcasting means transmission of audio ( sound ) to radio receivers belonging to a public audience. analog audio is the earliest form of radio broadcast. am broadcasting began around 1920. fm broadcasting was introduced in the late 1930s with improved fidelity. a broadcast radio receiver is called a radio. most radios can receive both am and fm. am ( amplitude modulation ) β in am, the amplitude ( strength ) of the radio carrier wave is varied by the audio signal. am broadcasting, the oldest broadcasting technology, is allowed in the am broadcast bands, between 148 and 283 khz in the low frequency ( lf ) band for longwave broadcasts and between 526 and 1706 khz in the medium frequency ( mf ) band for medium - wave broadcasts. because waves in these bands travel as ground waves following the terrain, am radio stations can be received beyond the horizon at hundreds of miles distance, but am has lower fidelity than fm. radiated power ( erp ) of am stations in the us is usually limited to a maximum of 10 kw, although a few ( clear - channel stations ) are allowed to transmit at 50
Question: Why do hummingbirds have long narrow bills?
A) to reach the nectar at the bottom of flowers
B) for protection against predators
C) to feed their offspring
D) to store food
|
A) to reach the nectar at the bottom of flowers
|
Context:
kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the pattern of evolutionary branching and descent. from the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly dna sequences, rather than morphological characters like the presence or absence of spines and areoles. the difference is that the genetic code itself is used
pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an ovary. ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms. = = plant physiology = = plant physiology encompasses all the internal chemical and physical activities of plants associated with life. chemicals obtained from the air, soil and water form
with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gym
, fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of the major staple foods, such as hemp, teff, maize, rice, wheat and other cereal grasses, pulses, bananas and plantains, as well as hemp, flax and cotton grown for their fibres, are the outcome of prehistoric selection over thousands of years from among wild ancestral plants with the most desirable characteristics. botanists study how plants produce food and how to increase yields, for example through plant breeding, making their work important to humanity ' s ability to feed the world and provide food security for future generations. botanists also study weeds, which are a considerable problem in agriculture, and the biology and control of plant
diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of the major staple foods, such as hemp, teff, maize, rice, wheat and other cereal grasses, pulses, bananas and plantains, as well as hemp, flax and cotton grown for their fibres, are the outcome of prehistoric selection over thousands of years from among wild ancestral plants with the most
##al nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which have been passed down from innovations in a shared ancestor ( apomorphies ). only derived characters, such as the spine - producing areoles of cacti, provide evidence for descent from a common ancestor. the results of cladistic analyses are expressed as cladograms : tree - like diagrams showing the
by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is : kingdom ; phylum ( or division ) ; class ; order ; family ; genus ( plural genera ) ; species. the scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. for example, the tiger lily is lilium columbianum. lilium is the genus, and columbianum the specific epithet. the combination is the name of the species. when writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. additionally, the entire term is ordinarily italicised ( or underlined when italics are not available ). the evolutionary relationships and heredity of a group of organisms is called its phylogeny. phylogenetic studies attempt to discover phylogenies. the basic approach is to use similarities based on shared inheritance to determine relationships. as an example, species of pereskia are trees or bushes with prominent leaves. they do not obviously resemble a typical leafless cactus such as an echinocactus. however, both pereskia and echinocactus have spines produced from areoles ( highly specialised pad - like structures ) suggesting that the two genera are indeed related. judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. some euphorbias have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. the cladistic method takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history β such as those evolved separately in different groups ( homoplasies ) or those left over from ancestors ( plesiomorphies ) β and derived characters, which
much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost
groups of organisms. divisions related to the broader historical sense of botany include bacteriology, mycology ( or fungology ), and phycology β respectively, the study of bacteria, fungi, and algae β with lichenology as a subfield of mycology. the narrower sense of botany as the study of embryophytes ( land plants ) is called phytology. bryology is the study of mosses ( and in the broader sense also liverworts and hornworts ). pteridology ( or filicology ) is the study of ferns and allied plants. a number of other taxa of ranks varying from family to subgenus have terms for their study, including agrostology ( or graminology ) for the study of grasses, synantherology for the study of composites, and batology for the study of brambles. study can also be divided by guild rather than clade or grade. for example, dendrology is the study of woody plants. many divisions of biology have botanical subfields. these are commonly denoted by prefixing the word plant ( e. g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics ), or prefixing or substituting the prefix phyto - ( e. g. phytochemistry, phytogeography ). the study of fossil plants is called palaeobotany. other fields are denoted by adding or substituting the word botany ( e. g. systematic botany ). phytosociology is a subfield of plant ecology that classifies and studies communities of plants. the intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses. different parts of plants also give rise to their own subfields, including xylology, carpology ( or fructology ), and palynology, these being the study of wood, fruit and pollen / spores respectively. botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical
ancient endosymbiotic relationship between an ancestral eukaryotic cell and a cyanobacterial resident. the algae are a polyphyletic group and are placed in various divisions, some more closely related to plants than others. there are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. the algal division charophyta, sister to the green algal division chlorophyta, is considered to contain the ancestor of true plants. the charophyte class charophyceae and the land plant sub - kingdom embryophyta together form the monophyletic group or clade streptophytina. nonvascular land plants are embryophytes that lack the vascular tissues xylem and phloem. they include mosses, liverworts and hornworts. pteridophytic vascular plants with true xylem and phloem that reproduced by spores germinating into free - living gametophytes evolved during the silurian period and diversified into several lineages during the late silurian and early devonian. representatives of the lycopods have survived to the present day. by the end of the devonian period, several groups, including the lycopods, sphenophylls and progymnosperms, had independently evolved " megaspory " β their spores were of two distinct sizes, larger megaspores and smaller microspores. their reduced gametophytes developed from megaspores retained within the spore - producing organs ( megasporangia ) of the sporophyte, a condition known as endospory. seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers ( integuments ). the young sporophyte develops within the seed, which on germination splits to release it. the earliest known seed plants date from the latest devonian famennian stage. following the evolution of the seed habit, seed plants diversified, giving rise to a number of now - extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. gymnosperms produce " naked seeds " not fully enclosed in an ovary ; modern representatives include conifers, cycads, ginkgo, and gnetales. angiosperms produce seeds enclosed in a structure such as a carpel or an o
Question: Bivalvia and gastropoda are classes of what phylum?
A) diatoms
B) fishes
C) mollusks
D) Insects
|
C) mollusks
|
Context:
temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β batching β mixing β forming β drying β firing β assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first,
nuclear jets containing relativistic ` ` hot ' ' particles close to the central engine cool dramatically by producing high energy radiation. the radiative dissipation is similar to the famous compton drag acting upon ` ` cold ' ' thermal particles in a relativistic bulk flow. highly relativistic protons induce anisotropic showers raining electromagnetic power down onto the putative accretion disk. thus, the radiative signature of hot hadronic jets is x - ray irradiation of cold thermal matter. the synchrotron radio emission of the accelerated electrons is self - absorbed due to the strong magnetic fields close to the magnetic nozzle.
factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic
the cross section of elastic electron - proton scattering taking place in an electron gas is calculated within the closed time path method. it is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. the other term is due to the scattering particles - electron gas entanglement. this term dominates the usual one when the exchange energy is in the vicinity of the fermi energy. furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime.
energy is no doubt an intuitive concept. following a previous analysis on the nature of elementary particles and associated elementary quantum fields, the peculiar status and role of energy is scrutinised further at elementary and larger scales. energy physical characterisation shows that it is a primordial component of reality highlighting the quantum fields natural tendencies to interact, the elementary particles natural tendency to constitute complex bodies and every material thing natural tendency to actualise and be active. energy therefore is a primordial notion in need of a proper assessment.
. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of
a comparison of the sensitivities of methods which allow us to determine the coordinates of a moving hot body is made.
endothermic reactions, the reaction absorbs heat from the surroundings. chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. the speed of a chemical reaction ( at given temperature t ) is related to the activation energy e, by the boltzmann ' s population factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer
assuming only statistical mechanics and general relativity, we calculate the maximal temperature of gas of particles placed in ads space - time. if two particles with a given center of mass energy come close enough, according to classical gravity they will form a black hole. we focus only on the black holes with hawking temperature lower than the environment, because they do not disappear. the number density of such black holes grows with the temperature in the system. at a certain finite temperature, the thermodynamical system will be dominated by black holes. this critical temperature is lower than the planck temperature for the values of the ads vacuum energy density below the planck density. this result might be interesting from the ads / cft correspondence point of view, since it is different from the hawking - page phase transition, and it is not immediately clear what effect dynamically limits the maximal temperature of the thermal state on the cft side of the correspondence.
affect static bodies dynamics, the study of how forces affect moving bodies. dynamics includes kinematics ( about movement, velocity, and acceleration ) and kinetics ( about forces and resulting accelerations ). mechanics of materials, the study of how different materials deform under various types of stress fluid mechanics, the study of how fluids react to forces kinematics, the study of the motion of bodies ( objects ) and systems ( groups of objects ), while ignoring the forces that cause the motion. kinematics is often used in the design and analysis of mechanisms. continuum mechanics, a method of applying mechanics that assumes that objects are continuous ( rather than discrete ) mechanical engineers typically use mechanics in the design or analysis phases of engineering. if the engineering project were the design of a vehicle, statics might be employed to design the frame of the vehicle, in order to evaluate where the stresses will be most intense. dynamics might be used when designing the car ' s engine, to evaluate the forces in the pistons and cams as the engine cycles. mechanics of materials might be used to choose appropriate materials for the frame and engine. fluid mechanics might be used to design a ventilation system for the vehicle ( see hvac ), or to design the intake system for the engine. = = = mechatronics and robotics = = = mechatronics is a combination of mechanics and electronics. it is an interdisciplinary branch of mechanical engineering, electrical engineering and software engineering that is concerned with integrating electrical and mechanical engineering to create hybrid automation systems. in this way, machines can be automated through the use of electric motors, servo - mechanisms, and other electrical systems in conjunction with special software. a common example of a mechatronics system is a cd - rom drive. mechanical systems open and close the drive, spin the cd and move the laser, while an optical system reads the data on the cd and converts it to bits. integrated software controls the process and communicates the contents of the cd to the computer. robotics is the application of mechatronics to create robots, which are often used in industry to perform tasks that are dangerous, unpleasant, or repetitive. these robots may be of any shape and size, but all are preprogrammed and interact physically with the world. to create a robot, an engineer typically employs kinematics ( to determine the robot ' s range of motion ) and mechanics ( to determine the stresses within the robot ). robots are used extensively in industrial automation engineering. they allow businesses to save money on labor,
Question: Kinetic energy of moving particles of matter, measured by their temperatures are known as:
A) atmospheric energy
B) thermal energy
C) solar energy
D) visible energy
|
B) thermal energy
|
Context:
are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom
current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the
is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged
analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (
with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of
a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water.
. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction. an additional caveat is made, in that this definition includes cases where the interconversion of conformers is experimentally observable. such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities ( i. e. ' microscopic chemical events ' ). = = = ions and salts = = = an ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. when an atom loses an electron and thus has more protons than electrons, the atom is a positively charged ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be
= = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling
energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. the sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism. a chemical reaction can be envisioned to take place in a number of steps, each of which may have a different speed. many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. several empirical rules, like the woodward β hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. according to the iupac gold book, a chemical reaction is " a process that results in the interconversion of chemical species. " accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction.
al - kimia is derived from the ancient greek ΟΞ·ΞΌΞΉΞ±, which is in turn derived from the word kemet, which is the ancient name of egypt in the egyptian language. alternately, al - kimia may derive from ΟημΡια ' cast together '. = = modern principles = = the current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of the chemical bonds which hold atoms together. such behaviors are studied in a chemistry laboratory. the chemistry laboratory stereotypically uses various forms of laboratory glassware. however glassware is not central to chemistry, and a great deal of experimental ( as well as applied / industrial ) chemistry is done without it. a chemical reaction is a transformation of some substances into one or more different substances. the basis of such a chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. it can be symbolically depicted through a chemical equation, which usually involves atoms as subjects. the number of atoms on the left and the right in the equation for a chemical transformation is equal. ( when the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay. ) the type of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws. energy and entropy considerations are invariably important in almost all chemical studies. chemical substances are classified in terms of their structure, phase, as well as their chemical compositions. they can be analyzed using the tools of chemical analysis, e. g. spectroscopy and chromatography. scientists engaged in chemical research are known as chemists. most chemists specialize in one or more sub - disciplines. several concepts are essential for the study of chemistry ; some of them are : = = = matter = = = in chemistry, matter is defined as anything that has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = =
Question: What is the term for a process that changes some chemical substances into others?
A) acid reaction
B) toxic reaction
C) chemical reaction
D) chain reaction
|
C) chemical reaction
|
Context:
diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation and management. diving medicine ( or hyperbaric medicine ) is the prevention and treatment of diving - related problems. evolutionary medicine is a perspective on medicine derived through applying evolutionary theory. forensic medicine deals with medical questions in legal context, such as determination of the time and cause of death, type of weapon used to inflict
, or prescribe pharmaceutical drugs or other therapies. differential diagnosis methods help to rule out conditions based on the information provided. during the encounter, properly informing the patient of all relevant facts is an important part of the relationship and the development of trust. the medical encounter is then documented in the medical record, which is a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses
the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice
english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation and management. diving medicine ( or hyperbaric medicine ) is the prevention and treatment of diving - related problems. evolutionary medicine is a perspective on medicine derived through applying evolutionary theory. forensic medicine deals with medical questions in legal context, such as determination of the time and cause of death, type of weapon used to inflict trauma, reconstruction of the facial features using remains of deceased ( skull ) thus aiding identification. gender - based medicine studies the biological and physiological differences between the human sexes and how that affects differences in disease. health informatics is a relatively recent field that deal with the application of computers and information technology to medicine. hospice and pal
listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves,
a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation (
) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice,
practice, general practice or primary care is, in many countries, the first port - of - call for patients with non - emergency medical problems. family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care. medical genetics is concerned with the diagnosis and management of hereditary disorders. neurology is concerned with diseases of the nervous system. in the uk, neurology is a subspecialty of general medicine. obstetrics and gynecology ( often abbreviated as ob / gyn ( american english ) or obs & gynae ( british english ) ) are concerned respectively with childbirth and the female reproductive and associated organs. reproductive medicine and fertility medicine are generally practiced by gynecological specialists. pediatrics ( ae ) or paediatrics ( be ) is devoted to the care of infants, children, and adolescents. like internal medicine, there are many pediatric subspecialties for specific age ranges, organ systems, disease classes, and sites of care delivery. pharmaceutical medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of marketing of medicines for the benefit of patients and public health. physical medicine and rehabilitation ( or physiatry ) is concerned with functional improvement after injury, illness, or congenital disorders. podiatric medicine is the study of, diagnosis, and medical and surgical treatment of disorders of the foot, ankle, lower limb, hip and lower back. preventive medicine is the branch of medicine concerned with preventing disease. community health or public health is an aspect of health services concerned with threats to the overall health of a community based on population health analysis. psychiatry is the branch of medicine concerned with the bio - psycho - social study of the etiology, diagnosis, treatment and prevention of cognitive, perceptual, emotional and behavioral disorders. related fields include psychotherapy and clinical psychology. = = = interdisciplinary fields = = = some interdisciplinary sub - specialties of medicine include : addiction medicine deals with the treatment of addiction. aerospace medicine deals with medical problems related to flying and space travel. biomedical engineering is a field dealing with the application of engineering principles to medical practice. clinical pharmacology is concerned with how systems of therapeutics interact with patients. conservation medicine studies the relationship between human and non - human animal health, and environmental conditions. also known as ecological medicine, environmental medicine, or medical geology. disaster medicine deals with medical aspects of emergency preparedness, disaster mitigation
, followed by a medical interview and a physical examination. basic diagnostic medical devices ( e. g., stethoscope, tongue depressor ) are typically used. after examining for signs and interviewing for symptoms, the doctor may order medical tests ( e. g., blood tests ), take a biopsy, or prescribe pharmaceutical drugs or other therapies. differential diagnosis methods help to rule out conditions based on the information provided. during the encounter, properly informing the patient of all relevant facts is an important part of the relationship and the development of trust. the medical encounter is then documented in the medical record, which is a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history
) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system
Question: The diagnosis of a disease or condition before the baby is born is called?
A) specialized diagnosis
B) immature diagnosis
C) specific diaganosis
D) prenatal diagnosis
|
D) prenatal diagnosis
|
Context:
a discontinuity of a turbulent ideal fluid is considered. it is supposed to be split and dispersed, or spread in the stochastic environment forming a gas without hydrostatic pressure. two equal - mass fragments of a discontinuity are indistinguishable from each other. a gas, that possesses such properties, must behave itself as the madelung medium.
. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond
or homogeneous distribution of the dispersed particle or fiber phase. consider first the processing of particulate composites. the particulate phase of greatest interest is tetragonal zirconia because of the toughening that can be achieved from the phase transformation from the metastable tetragonal to the monoclinic crystalline phase, aka transformation toughening. there is also substantial interest in dispersion of hard, non - oxide phases such as sic, tib, tic, boron, carbon and especially oxide matrices like alumina and mullite. there is also interest too incorporating other ceramic particulates, especially those of highly anisotropic thermal expansion. examples include al2o3, tio2, graphite, and boron nitride. in processing particulate composites, the issue is not only homogeneity of the size and spatial distribution of the dispersed and matrix phases, but also control of the matrix grain size. however, there is some built - in self - control due to inhibition of matrix grain growth by the dispersed phase. particulate composites, though generally offer increased resistance to damage, failure, or both, are still quite sensitive to inhomogeneities of composition as well as other processing defects such as pores. thus they need good processing to be effective. particulate composites have been made on a commercial basis by simply mixing powders of the two constituents. although this approach is inherently limited in the homogeneity that can be achieved, it is the most readily adaptable for existing ceramic production technology. however, other approaches are of interest. from the technological standpoint, a particularly desirable approach to fabricating particulate composites is to coat the matrix or its precursor onto fine particles of the dispersed phase with good control of the starting dispersed particle size and the resultant matrix coating thickness. one should in principle be able to achieve the ultimate in homogeneity of distribution and thereby optimize composite performance. this can also have other ramifications, such as allowing more useful composite performance to be achieved in a body having porosity, which might be desired for other factors, such as limiting thermal conductivity. there are also some opportunities to utilize melt processing for fabrication of ceramic, particulate, whisker and short - fiber, and continuous - fiber composites. both particulate and whisker composites are conceivable by solid - state precipitation after solidification of the melt. this can also be obtained in some cases by sintering,
classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used
. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing ( hip ), 3d printing and others. methods for forming ceramic powders into complex shapes are desirable in many areas of technology. such methods are required for producing advanced, high - temperature structural parts such as heat engine components and turbines. materials other than ceramics which are used in these processes may include : wood, metal, water, plaster and epoxy β most of which will be eliminated upon firing. a ceramic - filled epoxy, such as martyte, is sometimes used to protect structural steel under conditions of rocket exhaust impingement. these forming techniques are well known for providing tools and other components with dimensional stability, surface quality
of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase. the phase of matter is defined by the phase transition, which is when energy put into or taken out of the system goes into rearranging the structure of the system, instead of changing the bulk conditions. sometimes the distinction between phases can be continuous instead of having a discrete boundary ; in this case the matter is considered to be in a supercritical state. when three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. the most familiar examples of phases are solids, liquids, and gases. many substances exhibit multiple solid phases. for example, there are three phases of solid iron ( alpha, gamma, and delta ) that vary based on temperature and pressure. a principal difference between solid phases is the crystal structure, or arrangement, of the atoms. another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution ( that is, in water ). less familiar phases include plasmas, bose β einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. while most familiar phases deal with three - dimensional systems, it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive
as for precipitation - toughened, partially stabilized zirconia. similarly, it is known that one can directionally solidify ceramic eutectic mixtures and hence obtain uniaxially aligned fiber composites. such composite processing has typically been limited to very simple shapes and thus suffers from serious economic problems due to high machining costs. there is a possibility for melt casting to be used for many of these approaches. potentially even more desirable is using melt - derived particles. in this method, quenching is done in a solid solution or in a fine eutectic structure, in which the particles are then processed by more typical ceramic powder processing methods into a useful body. there have also been preliminary attempts to use melt spraying as a means of forming composites by introducing the dispersed particulate, whisker, or fiber phase in conjunction with the melt spraying process. other methods besides melt infiltration to manufacture ceramic composites with long fiber reinforcement are chemical vapor infiltration and the infiltration of fiber preforms with organic precursor, which after pyrolysis yield an amorphous ceramic matrix, initially with a low density. with repeated cycles of infiltration and pyrolysis one of those types of ceramic matrix composites is produced. chemical vapor infiltration is used to manufacture carbon / carbon and silicon carbide reinforced with carbon or silicon carbide fibers. besides many process improvements, the first of two major needs for fiber composites is lower fiber costs. the second major need is fiber compositions or coatings, or composite processing, to reduce degradation that results from high - temperature composite exposure under oxidizing conditions. = = applications = = the products of technical ceramics include tiles used in the space shuttle program, gas burner nozzles, ballistic protection, nuclear fuel uranium oxide pellets, bio - medical implants, jet engine turbine blades, and missile nose cones. its products are often made from materials other than clay, chosen for their particular physical properties. these may be classified as follows : oxides : silica, alumina, zirconia non - oxides : carbides, borides, nitrides, silicides composites : particulate or whisker reinforced matrices, combinations of oxides and non - oxides ( e. g. polymers ). ceramics can be used in many technological industries. one application is the ceramic tiles on nasa ' s space shuttle, used to protect it and the future supersonic space planes from the searing heat of re - entry into
ceramic constituents, the greatest attention is on composites in which all constituents are ceramic. these typically comprise two ceramic constituents : a continuous matrix, and a dispersed phase of ceramic particles, whiskers, or short ( chopped ) or continuous ceramic fibers. the challenge, as in wet chemical processing, is to obtain a uniform or homogeneous distribution of the dispersed particle or fiber phase. consider first the processing of particulate composites. the particulate phase of greatest interest is tetragonal zirconia because of the toughening that can be achieved from the phase transformation from the metastable tetragonal to the monoclinic crystalline phase, aka transformation toughening. there is also substantial interest in dispersion of hard, non - oxide phases such as sic, tib, tic, boron, carbon and especially oxide matrices like alumina and mullite. there is also interest too incorporating other ceramic particulates, especially those of highly anisotropic thermal expansion. examples include al2o3, tio2, graphite, and boron nitride. in processing particulate composites, the issue is not only homogeneity of the size and spatial distribution of the dispersed and matrix phases, but also control of the matrix grain size. however, there is some built - in self - control due to inhibition of matrix grain growth by the dispersed phase. particulate composites, though generally offer increased resistance to damage, failure, or both, are still quite sensitive to inhomogeneities of composition as well as other processing defects such as pores. thus they need good processing to be effective. particulate composites have been made on a commercial basis by simply mixing powders of the two constituents. although this approach is inherently limited in the homogeneity that can be achieved, it is the most readily adaptable for existing ceramic production technology. however, other approaches are of interest. from the technological standpoint, a particularly desirable approach to fabricating particulate composites is to coat the matrix or its precursor onto fine particles of the dispersed phase with good control of the starting dispersed particle size and the resultant matrix coating thickness. one should in principle be able to achieve the ultimate in homogeneity of distribution and thereby optimize composite performance. this can also have other ramifications, such as allowing more useful composite performance to be achieved in a body having porosity, which might be desired for other factors, such as limiting thermal conductivity. there are also some opportunities to
this is an expository paper about the topics listed in the title.
that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is
Question: A heterogeneous mixture of particles of one substance distributed throughout a second substance in a different phase is known as what?
A) disruption
B) fluid
C) suspension
D) solution
|
C) suspension
|
Context:
also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in
a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern
becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. accordingly, under
approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform discharge than most rivers, as the summer floods of the arve are counteracted to a great extent by the low stage of the saone flowing into the rhone at lyon, which has its floods in the winter when the arve, on the contrary, is low. another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood - time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. the power of a current to transport materials varies with its velocity, so that torrents with
depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform
from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their
equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers β civil works program river morphology and stream restoration references - wildland hydrology at the library of congress web archives ( archived 2002 - 08 - 13 )
##ructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models
current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers β civil works program river morphology and stream restoration references
above any tidal limit and their average freshwater discharge are proportionate to the extent of their basins and the amount of rain which, after falling over these basins, reaches the river channels in the bottom of the valleys, by which it is conveyed to the sea. the drainage basin of a river is the expanse of country bounded by a watershed ( called a " divide " in north america ) over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. river basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer
Question: On what type of land does runoff cause more erosion?
A) mountainous
B) grassy
C) bare
D) metallic
|
C) bare
|
Context:
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ),
, characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc β 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using
covid - 19, also known as novel coronavirus disease, is a highly contagious disease that first surfaced in china in late 2019. sars - cov - 2 is a coronavirus that belongs to the vast family of coronaviruses that causes this disease. the sickness originally appeared in wuhan, china in december 2019 and quickly spread to over 213 nations, becoming a global pandemic. fever, dry cough, and tiredness are the most typical covid - 19 symptoms. aches, pains, and difficulty breathing are some of the other symptoms that patients may face. the majority of these symptoms are indicators of respiratory infections and lung abnormalities, which radiologists can identify. chest x - rays of covid - 19 patients seem similar, with patchy and hazy lungs rather than clear and healthy lungs. on x - rays, however, pneumonia and other chronic lung disorders can resemble covid - 19. trained radiologists must be able to distinguish between covid - 19 and an illness that is less contagious. our ai algorithm seeks to give doctors a quantitative estimate of the risk of deterioration. so that patients at high risk of deterioration can be triaged and treated efficiently. the method could be particularly useful in pandemic hotspots when screening upon admission is important for allocating limited resources like hospital beds.
listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to
to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthala
required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the
such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of tissue engineering. it is the first bioreactor in the world to have a spherical glass chamber with biaxial rotation ; specifically to mimic the rotation of the fetus in the womb ; which provides a conducive environment for the growth of tissues. multiple forms of mechanical stimulation have also been combined into a single bioreactor. using gene expression analysis, one academic study found that applying a combination of cyclic strain and ultrasound stimulation to pre - osteoblast cells in a bioreactor accelerated matrix maturation and differentiation. the technology of this combined stimulation bioreactor could be used to grow bone cells more quickly and effectively
managing blood lipid levels is important for the treatment and prevention of diabetes, cardiovascular disease, and obesity. an easy - to - use, portable lipid blood test will accelerate more frequent testing by patients and at - risk populations. we used smartphone systems that are already familiar to many people. because smartphone systems can be carried around everywhere, blood can be measured easily and frequently. we compared the results of lipid tests with those of existing clinical diagnostic laboratory methods. we found that smartphone - based point - of - care lipid blood tests are as accurate as hospital - grade laboratory tests. our system will be useful for those who need to manage blood lipid levels to motivate them to track and control their behavior.
new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper
Question: What kind of fats have been implicated in the presence of heart disease?
A) trans fats
B) animal fats
C) key fats
D) plant fats
|
A) trans fats
|
Context:
can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population,
other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle
a cell. there are generally four types of chemical signals : autocrine, paracrine, juxtacrine, and hormones. in autocrine signaling, the ligand affects the same cell that releases it. tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self - division. in paracrine signaling, the ligand diffuses to nearby cells and affects them. for example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares
cell. in juxtacrine signaling, there is direct contact between the signaling and responding cells. finally, hormones are ligands that travel through the circulatory systems of animals or vascular systems of plants to reach their target cells. once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions
organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the
the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then
is opened and the dna is purified. the gene is separated by using restriction enzymes to cut the dna into fragments or polymerase chain reaction ( pcr ) to amplify up the gene segment. these segments can then be extracted through gel electrophoresis. if the chosen gene or the donor organism ' s genome has been well studied it may already be accessible from a genetic library. if the dna sequence is known, but no copies of the gene are available, it can also be artificially synthesised. once isolated the gene is ligated into a plasmid that is then inserted into a bacterium. the plasmid is replicated when the bacteria divide, ensuring unlimited copies of the gene are available. the rk2 plasmid is notable for its ability to replicate in a wide variety of single - celled organisms, which makes it suitable as a genetic engineering tool. before the gene is inserted into the target organism it must be combined with other genetic elements. these include a promoter and terminator region, which initiate and end transcription. a selectable marker gene is added, which in most cases confers antibiotic resistance, so researchers can easily determine which cells have been successfully transformed. the gene can also be modified at this stage for better expression or effectiveness. these manipulations are carried out using recombinant dna techniques, such as restriction digests, ligations and molecular cloning. = = = inserting dna into the host genome = = = there are a number of techniques used to insert genetic material into the host genome. some bacteria can naturally take up foreign dna. this ability can be induced in other bacteria via stress ( e. g. thermal or electric shock ), which increases the cell membrane ' s permeability to dna ; up - taken dna can either integrate with the genome or exist as extrachromosomal dna. dna is generally inserted into animal cells using microinjection, where it can be injected through the cell ' s nuclear envelope directly into the nucleus, or through the use of viral vectors. plant genomes can be engineered by physical methods or by use of agrobacterium for the delivery of sequences hosted in t - dna binary vectors. in plants the dna is often inserted using agrobacterium - mediated transformation, taking advantage of the agrobacteriums t - dna sequence that allows natural insertion of genetic material into plant cells. other methods include biolistics, where particles of gold or tungsten are coated with dna and then shot into
elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmos
, depending on the type of receptor. for instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. other types of receptors include protein kinase receptors ( e. g., receptor for the hormone insulin ) and g protein - coupled receptors. activation of g protein - coupled receptors can initiate second messenger cascades. the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction. = = = cell cycle = = = the cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. these events include the duplication of its dna and some of its organelles, and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division. in eukaryotes ( i. e., animal, plant, fungal, and protist cells ), there are two distinct types of cell division : mitosis and meiosis. mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. in general, mitosis ( division of the nucleus ) is preceded by the s stage of interphase ( during which the dna is replicated ) and is often followed by telophase and cytokinesis ; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. the different stages of mitosis all together define the mitotic phase of an animal cell cycle β the division of the mother cell into two genetically identical daughter cells. the cell cycle is a vital process by which a single - celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. after cell division, each of the daughter cells begin the interphase of a new cycle. in contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of dna replication followed by two divisions. homologous chromosomes are separated in the first division ( meiosis i ), and sister chromatids are separated in the second division ( meiosis ii ). both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. both are believed to be present in
. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world
Question: Inducible enzymes usually function in what type of pathways?
A) catabolic
B) enzymatic
C) biogenic
D) anabolic
|
A) catabolic
|
Context:
an electron inside liquid helium forms a bubble of 17 \ aa in radius. in an external magnetic field, the two - level system of a spin 1 / 2 electron is ideal for the implementation of a qubit for quantum computing. the electron spin is well isolated from other thermal reservoirs so that the qubit should have very long coherence time. by confining a chain of single electron bubbles in a linear rf quadrupole trap, a multi - bit quantum register can be implemented. all spins in the register can be initialized to the ground state either by establishing thermal equilibrium at a temperature around 0. 1 k and at a magnetic field of 1 t or by sorting the bubbles to be loaded into the trap with magnetic separation. schemes are designed to address individual spins and to do two - qubit cnot operations between the neighboring spins. the final readout can be carried out through a measurement similar to the stern - gerlach experiment.
charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change
other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit
a theory is put forward that the electronic phase transition at 0. 2 k in ni - doped bi $ _ { 2 } $ sr $ _ { 2 } $ cacu $ _ { 2 } $ o $ _ { 8 } $ is result of the formation of a spin density wave in the system of ni impurities. the driving force for the transition is the exchange interaction between the impurity spins and the spins of the conduction electrons. this creates a small gap at two of the four nodes of the superconducting gap. the effect is to reduce the thermal conductivity by a factor of two, as observed.
insights from stripe incommensurabilities and antiferromagnetic stability indicate that the magnetic moments of both host cu ^ 2 + ions and cu atoms from electron doping support the thermal hall effect in cuprates, whereas those of o atoms from hole doping oppose it.
various charge pairings in strongly correlated electron systems are interpreted as quantum entanglement of a composite system. particles in the intermediate phase have a tendency to form the coherent superposition state of the localized state and the itinerant state, which induces the entanglement of both particles in the bipartite subsystems for increasing the entropy of the system. the correction to the entropic coulomb force becomes an immediate cause of charge pairing.
to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes, valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. = = = energy = = = in the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. a reaction is said to be exergonic if the final state is lower on the energy scale than the initial state ; in the case of endergonic reactions the situation is the reverse. a reaction is said to be exothermic if the reaction releases heat to the surroundings ; in the case of
the united rest mass and charge of a particle correspond to the two forms of the same regularity of the unified nature of its ultimate structure. each of them contains the electric, weak, strong and the gravitational contributions. as a consequence, the force of an attraction among the two neutrinos and force of their repulsion must be defined from the point of view of any of the existing types of the actions. therefore, to understand the nature of the micro world interaction at the fundamental level, one must use the fact that each of the four types of well known forces includes both a kind of the newton and a kind of the coulomb components. the opinion has been spoken that the existence of the gravitational parts of the united rest mass and charge would imply the availability of such a fifth force which come forwards in the system as a unified whole.
set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature.
it is believed that there may have been a large number of black holes formed in the very early universe. these would have quantised masses. a charged ` ` elementary black hole ' ' ( with the minimum possible mass ) can capture electrons, protons and other charged particles to form a ` ` black hole atom ' '. we find the spectrum of such an object with a view to laboratory and astronomical observation of them, and estimate the lifetime of the bound states. there is no limit to the charge of the black hole, which gives us the possibility of observing z > 137 bound states and transitions at the lower continuum. negatively charged black holes can capture protons. for z > 1, the orbiting protons will coalesce to form a nucleus ( after beta - decay of some protons to neutrons ), with a stability curve different to that of free nuclei. in this system there is also the distinct possibility of single quark capture. this leads to the formation of a coloured black hole that plays the role of an extremely heavy quark interacting strongly with the other two quarks. finally we consider atoms formed with much larger black holes.
Question: Since electrons are charged, their intrinsic spin creates a what?
A) magnified rupulsed field
B) suppressed electrical field
C) intrinsic magnetic field
D) intrinsic electrical field
|
C) intrinsic magnetic field
|
Context:
beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar β an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical
missiles, ships, vehicles, and also to map weather patterns and terrain. a radar set consists of a transmitter and receiver. the transmitter emits a narrow beam of radio waves which is swept around the surrounding space. when the beam strikes a target object, radio waves are reflected back to the receiver. the direction of the beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it
of imaging techniques vary in their temporal ( time - based ) and spatial ( location - based ) resolution. brain imaging is often used in cognitive neuroscience. single - photon emission computed tomography and positron emission tomography. spect and pet use radioactive isotopes, which are injected into the subject ' s bloodstream and taken up by the brain. by observing which areas of the brain take up the radioactive isotope, we can see which areas of the brain are more active than other areas. pet has similar spatial resolution to fmri, but it has extremely poor temporal resolution. electroencephalography. eeg measures the electrical fields generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygenated blood in a particular region is assumed to correlate with an increase in neural activity in that part of the brain. this allows us to localize particular functions within different brain regions. fmri has moderate spatial and temporal resolution. optical imaging. this technique uses infrared transmitters and receivers to measure the amount of light reflectance by blood near different areas of the brain. since oxygenated and deoxygenated blood reflects light by different amounts, we can study which areas are more active ( i. e., those that have more oxygenated blood ). optical imaging has moderate temporal resolution, but poor spatial resolution. it also has the advantage that it is extremely safe and can be used to study infants ' brains. magnetoencephalography. meg measures magnetic fields resulting from cortical activity. it is similar to eeg, except that it has improved spatial resolution since the magnetic fields it measures are not as blurred or attenuated by the scalp, meninges and so forth as the electrical activity measured in eeg is. meg uses squid sensors to detect tiny magnetic fields. = = = computational modeling = = = computational models require a mathematically and logically formal representation of a problem. computer models are used in the simulation and experimental verification of different specific and general properties of intelligence. computational modeling can help us understand the functional organization of a particular cognitive phenomenon. approaches to cognitive modeling can be categorized as : ( 1 ) symbolic, on abstract mental functions of an intelligent mind by means of symbols ; ( 2 ) subsymbolic, on the neural and associa
as subjects perceive the sensory world, different stimuli elicit a number of neural representations. here, a subjective distance between stimuli is defined, measuring the degree of similarity between the underlying representations. as an example, the subjective distance between different locations in space is calculated from the activity of rodent hippocampal place cells, and lateral septal cells. such a distance is compared to the real distance, between locations. as the number of sampled neurons increases, the subjective distance shows a tendency to resemble the metrics of real space.
three separate questions of relevance to major league baseball are investigated from a physics perspective. first, can a baseball be hit farther with a corked bat? second, is there evidence that the baseball is more lively today than in earlier years? third, can storing baseballs in a temperature - or humidity - controlled environment significantly affect home run production? each of these questions is subjected to a physics analysis, including an experiment, an interpretation of the data, and a definitive answer. the answers to the three questions are no, no, and yes.
generated by large populations of neurons in the cortex by placing a series of electrodes on the scalp of the subject. this technique has an extremely high temporal resolution, but a relatively poor spatial resolution. functional magnetic resonance imaging. fmri measures the relative amount of oxygenated blood flowing to different parts of the brain. more oxygenated blood in a particular region is assumed to correlate with an increase in neural activity in that part of the brain. this allows us to localize particular functions within different brain regions. fmri has moderate spatial and temporal resolution. optical imaging. this technique uses infrared transmitters and receivers to measure the amount of light reflectance by blood near different areas of the brain. since oxygenated and deoxygenated blood reflects light by different amounts, we can study which areas are more active ( i. e., those that have more oxygenated blood ). optical imaging has moderate temporal resolution, but poor spatial resolution. it also has the advantage that it is extremely safe and can be used to study infants ' brains. magnetoencephalography. meg measures magnetic fields resulting from cortical activity. it is similar to eeg, except that it has improved spatial resolution since the magnetic fields it measures are not as blurred or attenuated by the scalp, meninges and so forth as the electrical activity measured in eeg is. meg uses squid sensors to detect tiny magnetic fields. = = = computational modeling = = = computational models require a mathematically and logically formal representation of a problem. computer models are used in the simulation and experimental verification of different specific and general properties of intelligence. computational modeling can help us understand the functional organization of a particular cognitive phenomenon. approaches to cognitive modeling can be categorized as : ( 1 ) symbolic, on abstract mental functions of an intelligent mind by means of symbols ; ( 2 ) subsymbolic, on the neural and associative properties of the human brain ; and ( 3 ) across the symbolic β subsymbolic border, including hybrid. symbolic modeling evolved from the computer science paradigms using the technologies of knowledge - based systems, as well as a philosophical perspective ( e. g. " good old - fashioned artificial intelligence " ( gofai ) ). they were developed by the first cognitive researchers and later used in information engineering for expert systems. since the early 1990s it was generalized in systemics for the investigation of functional human - like intelligence models, such as personoids, and, in parallel, developed as the soar environment. recently, especially in
a comparison of the sensitivities of methods which allow us to determine the coordinates of a moving hot body is made.
beacon transmits two signals simultaneously on different frequencies. a directional antenna transmits a beam of radio waves that rotates like a lighthouse at a fixed rate, 30 times per second. when the directional beam is facing north, an omnidirectional antenna transmits a pulse. by measuring the difference in phase of these two signals, an aircraft can determine its bearing ( or " radial " ) from the station accurately. by taking a bearing on two vor beacons an aircraft can determine its position ( called a " fix " ) to an accuracy of about 90 metres ( 300 ft ). most vor beacons also have a distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on the runway, and the glideslope ( 329. 15 to 335 mhz ) for vertical guidance, to keep the aircraft descending at the proper rate for a smooth touchdown at the correct point on the runway. each aircraft has a receiver instrument and antenna which receives the beams, with an indicator to tell the pilot whether he is on the correct horizontal and vertical approach. the ils beams are receivable for at least 15 miles, and have a radiated power of 25 watts. ils systems at airports are being replaced by systems that use satellite navigation. non - directional beacon ( ndb ) β legacy fixed radio beacons used before the vo
of the device. examples of radio remote control : unmanned aerial vehicle ( uav, drone ) β a drone is an aircraft without an onboard pilot, flown by remote control by a pilot in another location, usually in a piloting station on the ground. they are used by the military for reconnaissance and ground attack, and more recently by the civilian world for news reporting and aerial photography. the pilot uses aircraft controls like a joystick or steering wheel, which create control signals which are transmitted to the drone by radio to control the flight surfaces and engine. a telemetry system transmits back a video image from a camera in the drone to allow the pilot to see where the aircraft is going, and data from a gps receiver giving the real - time position of the aircraft. uavs have sophisticated onboard automatic pilot systems that maintain stable flight and only require manual control to change directions. keyless entry system β a short - range handheld battery powered key fob transmitter, included with most modern cars, which can lock and unlock the doors of a vehicle from outside, eliminating the need to use a key. when a button is pressed, the transmitter sends a coded radio signal to a receiver in the vehicle, operating the locks. the fob must be close to the vehicle, typically within 5 to 20 meters. north america and japan use a frequency of 315 mhz, while europe uses 433. 92 and 868 mhz. some models can also remotely start the engine, to warm up the car. a security concern with all keyless entry systems is a replay attack, in which a thief uses a special receiver ( " code grabber " ) to record the radio signal during opening, which can later be replayed to open the door. to prevent this, keyless systems use a rolling code system in which a pseudorandom number generator in the remote control generates a different random key each time it is used. to prevent thieves from simulating the pseudorandom generator to calculate the next key, the radio signal is also encrypted. garage door opener β a short - range handheld transmitter which can open or close a building ' s electrically operated garage door from outside, so the owner can open the door upon arrival, and close it after departure. when a button is pressed the control transmits a coded fsk radio signal to a receiver in the opener, raising or lowering the door. modern openers use 310, 315 or 390 mhz. to prevent a thief using a replay attack, modern openers use a rolling code system. radio - controlled models
even artillery shells to their target, and handheld gps receivers are produced for hikers and the military. radio beacon β a fixed location terrestrial radio transmitter which transmits a continuous radio signal used by aircraft and ships for navigation. the locations of beacons are plotted on navigational maps used by aircraft and ships. vhf omnidirectional range ( vor ) β a worldwide aircraft radio navigation system consisting of fixed ground radio beacons transmitting between 108. 00 and 117. 95 mhz in the very high frequency ( vhf ) band. an automated navigational instrument on the aircraft displays a bearing to a nearby vor transmitter. a vor beacon transmits two signals simultaneously on different frequencies. a directional antenna transmits a beam of radio waves that rotates like a lighthouse at a fixed rate, 30 times per second. when the directional beam is facing north, an omnidirectional antenna transmits a pulse. by measuring the difference in phase of these two signals, an aircraft can determine its bearing ( or " radial " ) from the station accurately. by taking a bearing on two vor beacons an aircraft can determine its position ( called a " fix " ) to an accuracy of about 90 metres ( 300 ft ). most vor beacons also have a distance measuring capability, called distance measuring equipment ( dme ) ; these are called vor / dme ' s. the aircraft transmits a radio signal to the vor / dme beacon and a transponder transmits a return signal. from the propagation delay between the transmitted and received signal the aircraft can calculate its distance from the beacon. this allows an aircraft to determine its location " fix " from only one vor beacon. since line - of - sight vhf frequencies are used vor beacons have a range of about 200 miles for aircraft at cruising altitude. tacan is a similar military radio beacon system which transmits in 962 β 1213 mhz, and a combined vor and tacan beacon is called a vortac. the number of vor beacons is declining as aviation switches to the rnav system that relies on global positioning system satellite navigation. instrument landing system ( ils ) - a short range radio navigation aid at airports which guides aircraft landing in low visibility conditions. it consists of multiple antennas at the end of each runway that radiate two beams of radio waves along the approach to the runway : the localizer ( 108 to 111. 95 mhz frequency ), which provides horizontal guidance, a heading line to keep the aircraft centered on
Question: What do bats use to determine the location of objects?
A) infrared light
B) UV light
C) echolocation
D) syncopation
|
C) echolocation
|
Context:
others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly ferment
##l ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol
. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world
a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment,
; however, a successful large - scale industrial application of the process was the development of continuous freeze drying of coffee. high - temperature short time processing β these processes, for the most part, are characterized by rapid heating and cooling, holding for a short time at a relatively high temperature and filling aseptically into sterile containers. decaffeination of coffee and tea β decaffeinated coffee and tea was first developed on a commercial basis in europe around 1900. the process is described in u. s. patent 897, 763. green coffee beans are treated with water, heat and solvents to remove the caffeine from the beans. process optimization β food technology now allows production of foods to be more efficient, oil saving technologies are now available on different forms. production methods and methodology have also become increasingly sophisticated. aseptic packaging β the process of filling a commercially sterile product into a sterile container and hermetically sealing the containers so that re - infection is prevented. thus, this results into a shelf stable product at ambient conditions. food irradiation β the process of exposing food and food packaging to ionizing radiation can effectively destroy organisms responsible for spoilage and foodborne illness and inhibit sprouting, extending shelf life. commercial fruit ripening rooms using ethylene as a plant hormone. food delivery β an order is typically made either through a restaurant or grocer ' s website or mobile app, or through a food ordering company. the ordered food is typically delivered in boxes or bags to the customer ' s doorsteps. = = categories = = technology has innovated these categories from the food industry : agricultural technology β or agtech, it is the use of technology in agriculture, horticulture, and aquaculture with the aim of improving yield, efficiency, and profitability. agricultural technology can be products, services or applications derived from agriculture that improve various input / output processes. food science β technology in this sector focuses on the development of new functional ingredients and alternative proteins. foodservice β technology innovated the way establishments prepare, supply, and serve food outside the home. there ' s a tendency to create the conditions for the restaurant of the future with robotics and cloudkitchens. consumer tech β technology allows what we call consumer electronics, which is the equipment of consumers with devices that facilitates the cooking process. food delivery β as the food delivery market is growing, companies and startups are rapidly revolutionizing the communication process between consumers and food establishments, with platform - to - consumer delivery as the
; kitasato shibasaburo ( japan ) ; jean - martin charcot, claude bernard, paul broca ( france ) ; adolfo lutz ( brazil ) ; nikolai korotkov ( russia ) ; sir william osler ( canada ) ; and harvey cushing ( united states ). as science and technology developed, medicine became more reliant upon medications. throughout history and in europe right until the late 18th century, not only plant products were used as medicine, but also animal ( including human ) body parts and fluids. pharmacology developed in part from herbalism and some drugs are still derived from plants ( atropine, ephedrine, warfarin, aspirin, digoxin, vinca alkaloids, taxol, hyoscine, etc. ). vaccines were discovered by edward jenner and louis pasteur. the first antibiotic was arsphenamine ( salvarsan ) discovered by paul ehrlich in 1908 after he observed that bacteria took up toxic dyes that human cells did not. the first major class of antibiotics was the sulfa drugs, derived by german chemists originally from azo dyes. pharmacology has become increasingly sophisticated ; modern biotechnology allows drugs targeted towards specific physiological processes to be developed, sometimes designed for compatibility with the body to reduce side - effects. genomics and knowledge of human genetics and human evolution is having increasingly significant influence on medicine, as the causative genes of most monogenic genetic disorders have now been identified, and the development of techniques in molecular biology, evolution, and genetics are influencing medical technology, practice and decision - making. evidence - based medicine is a contemporary movement to establish the most effective algorithms of practice ( ways of doing things ) through the use of systematic reviews and meta - analysis. the movement is facilitated by modern global information science, which allows as much of the available evidence as possible to be collected and analyzed according to standard protocols that are then disseminated to healthcare providers. the cochrane collaboration leads this movement. a 2001 review of 160 cochrane systematic reviews revealed that, according to two readers, 21. 3 % of the reviews concluded insufficient evidence, 20 % concluded evidence of no effect, and 22. 5 % concluded positive effect. = = quality, efficiency, and access = = evidence - based medicine, prevention of medical error ( and other " iatrogenesis " ), and avoidance of unnecessary health care are a priority in modern medical systems. these topics generate significant political and public policy attention, particularly in
technology developed, medicine became more reliant upon medications. throughout history and in europe right until the late 18th century, not only plant products were used as medicine, but also animal ( including human ) body parts and fluids. pharmacology developed in part from herbalism and some drugs are still derived from plants ( atropine, ephedrine, warfarin, aspirin, digoxin, vinca alkaloids, taxol, hyoscine, etc. ). vaccines were discovered by edward jenner and louis pasteur. the first antibiotic was arsphenamine ( salvarsan ) discovered by paul ehrlich in 1908 after he observed that bacteria took up toxic dyes that human cells did not. the first major class of antibiotics was the sulfa drugs, derived by german chemists originally from azo dyes. pharmacology has become increasingly sophisticated ; modern biotechnology allows drugs targeted towards specific physiological processes to be developed, sometimes designed for compatibility with the body to reduce side - effects. genomics and knowledge of human genetics and human evolution is having increasingly significant influence on medicine, as the causative genes of most monogenic genetic disorders have now been identified, and the development of techniques in molecular biology, evolution, and genetics are influencing medical technology, practice and decision - making. evidence - based medicine is a contemporary movement to establish the most effective algorithms of practice ( ways of doing things ) through the use of systematic reviews and meta - analysis. the movement is facilitated by modern global information science, which allows as much of the available evidence as possible to be collected and analyzed according to standard protocols that are then disseminated to healthcare providers. the cochrane collaboration leads this movement. a 2001 review of 160 cochrane systematic reviews revealed that, according to two readers, 21. 3 % of the reviews concluded insufficient evidence, 20 % concluded evidence of no effect, and 22. 5 % concluded positive effect. = = quality, efficiency, and access = = evidence - based medicine, prevention of medical error ( and other " iatrogenesis " ), and avoidance of unnecessary health care are a priority in modern medical systems. these topics generate significant political and public policy attention, particularly in the united states where healthcare is regarded as excessively costly but population health metrics lag similar nations. globally, many developing countries lack access to care and access to medicines. as of 2015, most wealthy developed countries provide health care to all citizens, with a few exceptions such as the united states where lack of health insurance
considered the father of modern neuroscience. from new zealand and australia came maurice wilkins, howard florey, and frank macfarlane burnet. others that did significant work include william williams keen, william coley, james d. watson ( united states ) ; salvador luria ( italy ) ; alexandre yersin ( switzerland ) ; kitasato shibasaburo ( japan ) ; jean - martin charcot, claude bernard, paul broca ( france ) ; adolfo lutz ( brazil ) ; nikolai korotkov ( russia ) ; sir william osler ( canada ) ; and harvey cushing ( united states ). as science and technology developed, medicine became more reliant upon medications. throughout history and in europe right until the late 18th century, not only plant products were used as medicine, but also animal ( including human ) body parts and fluids. pharmacology developed in part from herbalism and some drugs are still derived from plants ( atropine, ephedrine, warfarin, aspirin, digoxin, vinca alkaloids, taxol, hyoscine, etc. ). vaccines were discovered by edward jenner and louis pasteur. the first antibiotic was arsphenamine ( salvarsan ) discovered by paul ehrlich in 1908 after he observed that bacteria took up toxic dyes that human cells did not. the first major class of antibiotics was the sulfa drugs, derived by german chemists originally from azo dyes. pharmacology has become increasingly sophisticated ; modern biotechnology allows drugs targeted towards specific physiological processes to be developed, sometimes designed for compatibility with the body to reduce side - effects. genomics and knowledge of human genetics and human evolution is having increasingly significant influence on medicine, as the causative genes of most monogenic genetic disorders have now been identified, and the development of techniques in molecular biology, evolution, and genetics are influencing medical technology, practice and decision - making. evidence - based medicine is a contemporary movement to establish the most effective algorithms of practice ( ways of doing things ) through the use of systematic reviews and meta - analysis. the movement is facilitated by modern global information science, which allows as much of the available evidence as possible to be collected and analyzed according to standard protocols that are then disseminated to healthcare providers. the cochrane collaboration leads this movement. a 2001 review of 160 cochrane systematic reviews revealed that, according to two readers, 21. 3 % of the reviews concluded insufficient evidence, 20 % concluded evidence of no effect,
pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant β people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to star
cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla β polylactic acid. this is a polyester which degrades within the human body to form lactic acid, a naturally occurring chemical which is easily removed from the body. similar materials are polyglycolic acid ( pga ) and polycaprolactone ( pcl ) : their degradation mechanism is similar to that of pla, but pcl degrades slower and pga degrades faster. pla is commonly combined with pga to create poly - lactic - co - glycolic acid ( plga ). this is especially useful because the degradation of plga can be tailored by altering the weight percentages of pla and pga : more pla β slower degradation, more pga β faster degradation. this tunability, along with its biocompatibility, makes it an extremely useful material for scaffold creation. scaffolds may also be constructed from natural materials : in particular different derivatives of the extracellular matrix have been studied to evaluate their ability to support cell growth. protein based materials β such as collagen, or fibrin, and polysaccharidic materials - like chitosan or glycosaminoglycans ( gags ), have all proved suitable in terms of cell compatibility. among gags, hyaluronic acid, possibly in combination with cross linking agents ( e. g. glutaraldehyde, water - soluble carbodiimide, etc. ), is one of the possible choices as scaffold material. due to the covalent attachment of thiol groups to these polymers, they can crosslink via disulfide bond formation. the use of thiolated polymers ( thiomers ) as scaffold material for tissue engineering was initially introduced at the 4th central european symposium on pharmaceutical technology in vienna 2001. as thiomers are biocompatible, exhibit cellular mimicking properties and efficiently support proliferation and differentiation of various cell types,
Question: Caffeine is an example of what type of drug?
A) depressant
B) psychoactive
C) nicotine
D) barbiturate
|
B) psychoactive
|
Context:
genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism ' s genes using technology. it is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. new dna is obtained by either isolating and copying the genetic material of interest using recombinant dna methods or by artificially synthesising the dna. a construct is usually created and used to insert this dna into the host organism. the first recombinant dna molecule was made by paul berg in 1972 by combining dna from the monkey virus sv40 with the lambda virus. as well as inserting genes, the process can be used to remove, or " knock out ", genes. the new dna can be inserted randomly, or targeted to a specific part of the genome. an organism that is generated through genetic engineering is considered to be genetically modified ( gm ) and the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such
sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool
include the manufacturing of drugs, creation of model animals that mimic human conditions and gene therapy. one of the earliest uses of genetic engineering was to mass - produce human insulin in bacteria. this application has now been applied to human growth hormones, follicle stimulating hormones ( for treating infertility ), human albumin, monoclonal antibodies, antihemophilic factors, vaccines and many other drugs. mouse hybridomas, cells fused together to create monoclonal antibodies, have been adapted through genetic engineering to create human monoclonal antibodies. genetically engineered viruses are being developed that can still confer immunity, but lack the infectious sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous,
genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and
for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals ( cattle or pigs ). the genetically engineered bacteria are able to produce large quantities of synthetic human insulin at relatively low cost. biotechnology has also enabled emerging therapeutics like gene therapy. the application of biotechnology to basic science ( for example through the human genome project ) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well. genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child ' s parentage ( genetic mother and father ) or in general a person ' s ancestry. in addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. genetic testing identifies changes in chromosomes, genes, or proteins. most of the time, testing is used to find changes that are associated with inherited disorders. the results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person ' s chance of developing or passing on a genetic disorder. as of 2011 several hundred genetic tests were in use. since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling. = = = agriculture = = = genetically modified crops ( " gm crops ", or " biotech crops " ) are plants used in agriculture, the dna of which has been modified with genetic engineering techniques. in most cases, the main aim is to introduce a new trait that does not occur naturally in the species. biotechnology firms can contribute to future food security by improving the nutrition and viability of urban agriculture. furthermore, the protection of intellectual property rights encourages private sector investment in agrobiotechnology. examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments ( e. g. resistance to a herbicide ), reduction of spoilage, or improving the nutrient profile of the crop. examples in non - food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation. farmers have widely adopted gm technology. between 1996 and 2011, the total surface area of land cultivated with gm crops had increased by a factor of 94, from 17, 000 to 1, 600, 000 square
used to manufacture existing medicines relatively easily and cheaply. the first genetically engineered products were medicines designed to treat human diseases. to cite one example, in 1978 genentech developed synthetic humanized insulin by joining its gene with a plasmid vector inserted into the bacterium escherichia coli. insulin, widely used for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals ( cattle or pigs ). the genetically engineered bacteria are able to produce large quantities of synthetic human insulin at relatively low cost. biotechnology has also enabled emerging therapeutics like gene therapy. the application of biotechnology to basic science ( for example through the human genome project ) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well. genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child ' s parentage ( genetic mother and father ) or in general a person ' s ancestry. in addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. genetic testing identifies changes in chromosomes, genes, or proteins. most of the time, testing is used to find changes that are associated with inherited disorders. the results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person ' s chance of developing or passing on a genetic disorder. as of 2011 several hundred genetic tests were in use. since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling. = = = agriculture = = = genetically modified crops ( " gm crops ", or " biotech crops " ) are plants used in agriculture, the dna of which has been modified with genetic engineering techniques. in most cases, the main aim is to introduce a new trait that does not occur naturally in the species. biotechnology firms can contribute to future food security by improving the nutrition and viability of urban agriculture. furthermore, the protection of intellectual property rights encourages private sector investment in agrobiotechnology. examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments ( e. g. resistance to a herbicide ), reduction of spoilage, or improving the nutrient profile of the crop. examples in non - food crops include production of
monoclonal antibodies, antihemophilic factors, vaccines and many other drugs. mouse hybridomas, cells fused together to create monoclonal antibodies, have been adapted through genetic engineering to create human monoclonal antibodies. genetically engineered viruses are being developed that can still confer immunity, but lack the infectious sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of
be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and mutations has only existed since the 1970s. the term " genetic engineering " was coined by the russian - born geneticist nikolay timofeev - ressovsky in his 1934 paper " the experimental production of mutations ", published in the british journal biological reviews. jack williamson used the term in his science fiction novel dragon ' s island, published in 1951 β one year before dna ' s role in heredity was confirmed by alfred hershey and martha chase, and two years before james watson and francis crick showed that the dna molecule has a double - helix structure β though the general concept of direct genetic manipulation was explored in rudimentary form
for natural scientists, with the creation of transgenic organisms one of the most important tools for analysis of gene function. genes and other genetic information from a wide range of organisms can be inserted into bacteria for storage and modification, creating genetically modified bacteria in the process. bacteria are cheap, easy to grow, clonal, multiply quickly, relatively easy to transform and can be stored at - 80 Β°c almost indefinitely. once a gene is isolated it can be stored inside the bacteria providing an unlimited supply for research. organisms are genetically engineered to discover the functions of certain genes. this could be the effect on the phenotype of the organism, where the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition
defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and mutations has only existed since the 1970s. the term " genetic engineering " was coined by the russian - born geneticist nikolay timofeev - ressovsky in his 1934 paper " the experimental production of mutations ", published in the british journal biological reviews. jack williamson used the term in his science fiction novel dragon '
Question: What is the use of technology to change the genetic makeup of living things for human purposes?
A) biological utility
B) genetic employing
C) genetic engineering
D) biological engineering
|
C) genetic engineering
|
Context:
to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing, translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon,
classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their oxidation state changed by either gaining electrons ( reduction ) or losing electrons ( oxidation ). substances that have the ability to oxidize other substances are said to be oxidative and are known as oxidizing agents, oxidants or oxidizers. an oxidant removes electrons from another substance. similarly, substances that have the ability to reduce other substances are said to be reductive and are known as reducing agents, reductants, or reducers. a reductant transfers electrons to another substance and is thus oxidized itself. and because it " donates " electrons it is also called an electron
##tes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna
an oscillation with a period of around 500 kb in guanine and cytosine content ( gc % ) is observed in the dna sequence of human chromosome 21. this oscillation is localized in the rightmost one - eighth region of the chromosome, from 43. 5 mb to 46. 5 mb. five cycles of oscillation are observed in this region with six gc - rich peaks and five gc - poor valleys. the gc - poor valleys comprise regions with low density of cpg islands and, alternating between the two dna strands, low gene density regions. consequently, the long - range oscillation of gc % result in spacing patterns of both cpg island density, and to a lesser extent, gene densities.
cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing
28 size spectra of extensive air showers from 7 different experiments are analysed consistently. they are fitted by adjusting either 4 or 5 parameters : knee position, power law exponents above and below the knee, overall intensity and, in addition, a parameter describing the smoothness of the bend. the residuals are then normalized to the same knee position and averaged. when 5 parameters are employed no systematic deviation from a single smooth knee is apparent at the 1 % level up to a factor of 4 above the knee. at larger shower sizes a moderately significant deviation can be seen whose shape and position are compatible with a second knee caused by iron group nuclei.
development of a tumor is known to be a result of accumulation of dna changes in somatic cells. however, the processes of how dna changes are produced and how they accumulate in somatic cells are not clear. dna changes include two types : point dna mutations and chromosome changes. however, point dna mutations ( dna mutations ) are the main type of dna changes that can remain and accumulate in cells. severe dna injuries are the causes for dna mutations. however, misrepair of dna is an essential process for transforming a dna injury into a survivable and inheritable dna mutation. in somatic cells, misrepair of dna is the main source of dna mutations. since the surviving chance of a cell by misrepair of dna is low, accumulation of dna mutations can take place only possibly in the cells that can proliferate. tumors can only develop in the tissues that are regenerable. the accumulation of misrepairs of dna needs to proceed in many generations of cells, and cell transformation from a normal cell into a tumor cell is a slow and long process. however, once a cell is transformed especially when it is malignantly transformed, the deficiency of dna repair and the rapid cell proliferation will accelerate the accumulation of dna mutations. the process of accumulation of dna mutations is actually the process of aging of a genome dna. repeated cell injuries and repeated cell regenerations are the two preconditions for tumor - development. for cancer prevention, a moderate and flexible living style is advised.
thesis submitted for the degree of phd, queens university belfast, uk
. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations at endogenous genes that generate a gene knockout. = = applications = = genetic engineering has applications in medicine, research, industry and agriculture and can be used on a wide range of plants, animals and microorganisms. bacteria, the first organisms to be genetically modified, can have plasmid dna inserted
of epigenetic change is the marking of the genes by dna methylation which determines whether they will be expressed or not. gene expression can also be controlled by repressor proteins that attach to silencer regions of the dna and prevent that region of the dna code from being expressed. epigenetic marks may be added or removed from the dna during programmed stages of development of the plant, and are responsible, for example, for the differences between anthers, petals and normal leaves, despite the fact that they all have the same underlying genetic code. epigenetic changes may be temporary or may remain through successive cell divisions for the remainder of the cell ' s life. some epigenetic changes have been shown to be heritable, while others are reset in the germ cells. epigenetic changes in eukaryotic biology serve to regulate the process of cellular differentiation. during morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. a single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, xylem vessel elements, phloem sieve tubes, guard cells of the epidermis, etc. as it continues to divide. the process results from the epigenetic activation of some genes and inhibition of others. unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. while plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate. epigenetic changes can lead to paramutations, which do not follow the mendelian heritage rules. these epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other. = = plant evolution = = the chloroplasts of plants have a number of biochemical, structural and genetic similarities to cyanobacteria, ( commonly but incorrectly known as " blue - green algae " ) and are thought to be derived from an
Question: What distinctive configuration of dna demonstrates the base-pairing nature of the bases?
A) double helix
B) triple helix
C) single helix
D) double loop
|
A) double helix
|
Context:
and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell
the manufacturer. one common distinction is by nominal pore size. it describes the maximum pore size distribution and gives only vague information about the retention capacity of a membrane. the exclusion limit or " cut - off " of the membrane is usually specified in the form of nmwc ( nominal molecular weight cut - off, or mwco, molecular weight cut off, with units in dalton ). it is defined as the minimum molecular weight of a globular molecule that is retained to 90 % by the membrane. the cut - off, depending on the method, can by converted to so - called d90, which is then expressed in a metric unit. in practice the mwco of the membrane should be at least 20 % lower than the molecular weight of the molecule that is to be separated. using track etched mica membranes beck and schultz demonstrated that hindered diffusion of molecules in pores can be described by the rankin equation. filter membranes are divided into four classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filt
##d product that is the focus of a tooling drawing. lines can also be classified by a letter classification in which each line is given a letter. type a lines show the outline of the feature of an object. they are the thickest lines on a drawing and done with a pencil softer than hb. type b lines are dimension lines and are used for dimensioning, projecting, extending, or leaders. a harder pencil should be used, such as a 2h pencil. type c lines are used for breaks when the whole object is not shown. these are freehand drawn and only for short breaks. 2h pencil type d lines are similar to type c, except these are zigzagged and only for longer breaks. 2h pencil type e lines indicate hidden outlines of internal features of an object. these are dotted lines. 2h pencil type f lines are type e lines, except these are used for drawings in electrotechnology. 2h pencil type g lines are used for centre lines. these are dotted lines, but a long line of 10 β 20 mm, then a 1 mm gap, then a small line of 2 mm. 2h pencil type h lines are the same as type g, except that every second long line is thicker. these indicate the cutting plane of an object. 2h pencil type k lines indicate the alternate positions of an object and the line taken by that object. these are drawn with a long line of 10 β 20 mm, then a small gap, then a small line of 2 mm, then a gap, then another small line. 2h pencil. = = = multiple views and projections = = = in most cases, a single view is not sufficient to show all necessary features, and several views are used. types of views include the following : = = = = multiview projection = = = = a multiview projection is a type of orthographic projection that shows the object as it looks from the front, right, left, top, bottom, or back ( e. g. the primary views ), and is typically positioned relative to each other according to the rules of either first - angle or third - angle projection. the origin and vector direction of the projectors ( also called projection lines ) differs, as explained below. in first - angle projection, the parallel projectors originate as if radiated from behind the viewer and pass through the 3d object to project a 2d image onto the orthogonal plane behind it. the 3d object is projected into 2d " paper " space as if you were looking at
prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as
##thic, or " old stone age ", and spans all of human history up to the development of agriculture approximately 12, 000 years ago. to make a stone tool, a " core " of hard stone with specific flaking properties ( such as flint ) was struck with a hammerstone. this flaking produced sharp edges which could be used as tools, primarily in the form of choppers or scrapers. these tools greatly aided the early humans in their hunter - gatherer lifestyle to perform a variety of tasks including butchering carcasses ( and breaking bones to get at the marrow ) ; chopping wood ; cracking open nuts ; skinning an animal for its hide, and even forming other tools out of softer materials such as bone and wood. the earliest stone tools were irrelevant, being little more than a fractured rock. in the acheulian era, beginning approximately 1. 65 million years ago, methods of working these stones into specific shapes, such as hand axes emerged. this early stone age is described as the lower paleolithic. the middle paleolithic, approximately 300, 000 years ago, saw the introduction of the prepared - core technique, where multiple blades could be rapidly formed from a single core stone. the upper paleolithic, beginning approximately 40, 000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely. the end of the last ice age about 10, 000 years ago is taken as the end point of the upper paleolithic and the beginning of the epipaleolithic / mesolithic. the mesolithic technology included the use of microliths as composite stone tools, along with wood, bone, and antler tools. the later stone age, during which the rudiments of agricultural technology were developed, is called the neolithic period. during this period, polished stone tools were made from a variety of hard rocks such as flint, jade, jadeite, and greenstone, largely by working exposures as quarries, but later the valuable rocks were pursued by tunneling underground, the first steps in mining technology. the polished axes were used for forest clearance and the establishment of crop farming and were so effective as to remain in use when bronze and iron appeared. these stone axes were used alongside a continued use of stone tools such as a range of projectiles, knives, and scrapers, as well as tools, made from organic materials such as wood, bone, and antler. stone age cultures
within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with
sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabino
the decomposition theorem is deduced from local purity.
three of what is called the six simple machines, from which all machines are based. these machines are the inclined plane, the wedge, and the lever, which allowed the ancient egyptians to move millions of limestone blocks which weighed approximately 3. 5 tons ( 7, 000 lbs. ) each into place to create structures like the great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu
mwco, molecular weight cut off, with units in dalton ). it is defined as the minimum molecular weight of a globular molecule that is retained to 90 % by the membrane. the cut - off, depending on the method, can by converted to so - called d90, which is then expressed in a metric unit. in practice the mwco of the membrane should be at least 20 % lower than the molecular weight of the molecule that is to be separated. using track etched mica membranes beck and schultz demonstrated that hindered diffusion of molecules in pores can be described by the rankin equation. filter membranes are divided into four classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation )
Question: Lipids are broken down by what?
A) hydrolysis
B) amino acids
C) triglycerides
D) lipases
|
D) lipases
|
Context:
chemistry is the scientific study of the properties and behavior of matter. it is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions : their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. chemistry also addresses the nature of chemical bonds in chemical compounds. in the scope of its subject, chemistry occupies an intermediate position between physics and biology. it is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. for example, chemistry explains aspects of plant growth ( botany ), the formation of igneous rocks ( geology ), how atmospheric ozone is formed and how environmental pollutants are degraded ( ecology ), the properties of the soil on the moon ( cosmochemistry ), how medications work ( pharmacology ), and how to collect dna evidence at a crime scene ( forensics ). chemistry has existed under various names since ancient times. it has evolved, and now chemistry encompasses various areas of specialisation, or subdisciplines, that continue to increase in number and interrelate to create further interdisciplinary fields of study. the applications of various fields of chemistry are used frequently for economic purposes in the chemical industry. = = etymology = = the word chemistry comes from a modification during the renaissance of the word alchemy, which referred to an earlier set of practices that encompassed elements of chemistry, metallurgy, philosophy, astrology, astronomy, mysticism, and medicine. alchemy is often associated with the quest to turn lead or other base metals into gold, though alchemists were also interested in many of the questions of modern chemistry. the modern word alchemy in turn is derived from the arabic word al - kimia ( Ψ§ΩΩΫΩ
ΫΨ§Ψ‘ ). this may have egyptian origins since al - kimia is derived from the ancient greek ΟΞ·ΞΌΞΉΞ±, which is in turn derived from the word kemet, which is the ancient name of egypt in the egyptian language. alternately, al - kimia may derive from ΟημΡια ' cast together '. = = modern principles = = the current model of atomic structure is the quantum mechanical model. traditional chemistry starts with the study of elementary particles, atoms, molecules, substances, metals, crystals and other aggregates of matter. matter can be studied in solid, liquid, gas and plasma states, in isolation or in combination. the interactions, reactions and transformations that
logical and mathematical aspects of the basic concepts of thermodynamics are considered.
or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales of us $ 980. 5 billion with a profit margin of 10. 3 %. = = = professional societies = = = = = see also = = = = references = = = = bibliography = = = = further reading = = popular reading atkins, p. w. galileo ' s finger ( oxford university press )
energy is no doubt an intuitive concept. following a previous analysis on the nature of elementary particles and associated elementary quantum fields, the peculiar status and role of energy is scrutinised further at elementary and larger scales. energy physical characterisation shows that it is a primordial component of reality highlighting the quantum fields natural tendencies to interact, the elementary particles natural tendency to constitute complex bodies and every material thing natural tendency to actualise and be active. energy therefore is a primordial notion in need of a proper assessment.
quantum mechanics is nonlocal. classical mechanics is local. consequently classical mechanics can not explain all quantum phenomena. conversely, it is cumbersome to use quantum mechanics to describe classical phenomena. not only are the computations more complex, but - and this is the main point - it is conceptually more difficult : one has to argue that nonlocality, entanglement and the principle of superposition can be set aside when crossing the " quantum $ \ rightarrow $ classical " border. clearly, nonlocality, entanglement and the principle of superposition should become irrelevant in the classical limit. but why should one argue? shouldn ' t it just come out of the equations? does it come out of the equations? this contribution is about the last question. and the answer is : " it depends on which equation ".
some topics which can be easily explained to undergraduate students are presented, with elementary derivations. for a more systematic treatment of heavy - quark physics, see the textbook by manohar and wise.
. biophysics is an interdisciplinary science that uses the methods of physics and physical chemistry to study biological systems. biostatistics is the application of statistics to biological fields in the broadest sense. a knowledge of biostatistics is essential in the planning, evaluation, and interpretation of medical research. it is also fundamental to epidemiology and evidence - based medicine. cytology is the microscopic study of individual cells. embryology is the study of the early development of organisms. endocrinology is the study of hormones and their effect throughout the body of animals. epidemiology is the study of the demographics of disease processes, and includes, but is not limited to, the study of epidemics. genetics is the study of genes, and their role in biological inheritance. gynecology is the study of female reproductive system. histology is the study of the structures of biological tissues by light microscopy, electron microscopy and immunohistochemistry. immunology is the study of the immune system, which includes the innate and adaptive immune system in humans, for example. lifestyle medicine is the study of the chronic conditions, and how to prevent, treat and reverse them. medical physics is the study of the applications of physics principles in medicine. microbiology is the study of microorganisms, including protozoa, bacteria, fungi, and viruses. molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. neuroscience includes those disciplines of science that are related to the study of the nervous system. a main focus of neuroscience is the biology and physiology of the human brain and spinal cord. some related clinical specialties include neurology, neurosurgery and psychiatry. nutrition science ( theoretical focus ) and dietetics ( practical focus ) is the study of the relationship of food and drink to health and disease, especially in determining an optimal diet. medical nutrition therapy is done by dietitians and is prescribed for diabetes, cardiovascular diseases, weight and eating disorders, allergies, malnutrition, and neoplastic diseases. pathology as a science is the study of disease β the causes, course, progression and resolution thereof. pharmacology is the study of drugs and their actions. photobiology is the study of the interactions between non - ionizing radiation and living organisms. physiology is the study of the normal functioning of the body and the underlying regulatory mechanisms. radiobiology is the study of the interactions between ionizing radiation and living organisms.
classical mechanics is based upon a mechanical picture of nature that is fundamentally incorrect. it has been replaced at the basic level by a radically different theory : quantum mechanics. this change entails an enormous shift in our basic conception of nature, one that can profoundly alter the scientific image of man himself. self - image is the foundation of values, and the replacement of the mechanistic self - image derived from classical mechanics by one concordant with quantum mechanics may provide the foundation of a moral order better suited to our times, a self - image that endows human life with meaning, responsibility, and a deeper linkage to nature as a whole.
medicine are : basic sciences of medicine ; this is what every physician is educated in, and some return to in biomedical research. interdisciplinary fields, where different medical specialties are mixed to function in certain occasions. medical specialties = = = basic sciences = = = anatomy is the study of the physical structure of organisms. in contrast to macroscopic or gross anatomy, cytology and histology are concerned with microscopic structures. biochemistry is the study of the chemistry taking place in living organisms, especially the structure and function of their chemical components. biomechanics is the study of the structure and function of biological systems by means of the methods of mechanics. biophysics is an interdisciplinary science that uses the methods of physics and physical chemistry to study biological systems. biostatistics is the application of statistics to biological fields in the broadest sense. a knowledge of biostatistics is essential in the planning, evaluation, and interpretation of medical research. it is also fundamental to epidemiology and evidence - based medicine. cytology is the microscopic study of individual cells. embryology is the study of the early development of organisms. endocrinology is the study of hormones and their effect throughout the body of animals. epidemiology is the study of the demographics of disease processes, and includes, but is not limited to, the study of epidemics. genetics is the study of genes, and their role in biological inheritance. gynecology is the study of female reproductive system. histology is the study of the structures of biological tissues by light microscopy, electron microscopy and immunohistochemistry. immunology is the study of the immune system, which includes the innate and adaptive immune system in humans, for example. lifestyle medicine is the study of the chronic conditions, and how to prevent, treat and reverse them. medical physics is the study of the applications of physics principles in medicine. microbiology is the study of microorganisms, including protozoa, bacteria, fungi, and viruses. molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. neuroscience includes those disciplines of science that are related to the study of the nervous system. a main focus of neuroscience is the biology and physiology of the human brain and spinal cord. some related clinical specialties include neurology, neurosurgery and psychiatry. nutrition science ( theoretical focus ) and dietetics ( practical focus ) is the study of the relationship of food and drink to health and disease, especially
the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include agrochemistry, astrochemistry ( and cosmochemistry ), atmospheric chemistry, chemical engineering, chemical biology, chemo - informatics, environmental chemistry, geochemistry, green chemistry, immunochemistry, marine chemistry, materials science, mechanochemistry, medicinal chemistry, molecular biology, nanotechnology, oenology, pharmacology, phytochemistry, solid - state chemistry, surface science, thermochemistry, and many others. = = = industry = = = the chemical industry represents an important economic activity worldwide. the global top 50 chemical producers in 2013 had sales
Question: What are considered to be the most basic concepts in the field of physical science?
A) matter and energy
B) energy and motion
C) change and energy
D) force and matter
|
A) matter and energy
|
Context:
applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle transition and lose their toughness, becoming more brittle and prone to cracking. metals under continual cyclic loading can suffer from metal fatigue. metals under constant stress at elevated temperatures can creep. = = = metalworking processes = = = casting β molten metal is poured into a shaped mold. variants of casting include sand casting, investment
ultramagnetized neutron stars or magnetars are magnetically powered neutron stars. their strong magnetic fields dominate the physical processes in their crusts and their surroundings. the past few years have seen several advances in our theoretical and observational understanding of these objects. in spite of a surfeit of observations, their spectra are still poorly understood. i will discuss the emission from strongly magnetized condensed matter surfaces of neutron stars, recent advances in our expectations of the surface composition of magnetars and a model for the non - thermal emission from these objects.
cobalt nanowires with a diameter in the range between 50 to 100nm can be prepared as single - crystal wires with the easy axis ( the c - axis ) perpendicular to the wire axis. the competition between the crystal anisotropy and demagnetization energy frustrates the magnetization direction. a periodic modulation of the angle between m and the wire axis yields a lower energy.
the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron β carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle
inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat
torsion oscillations of the neutron star crust are landau damped by the alfven continuum in the bulk. for strong magnetic fields ( in magnetars ), undamped alfven eigenmodes appear.
product of ceramic manufacture, or as an adjective. ceramics is the making of things out of ceramic materials. ceramic engineering, like many sciences, evolved from a different discipline by today ' s standards. materials science engineering is grouped with ceramics engineering to this day. abraham darby first used coke in 1709 in shropshire, england, to improve the yield of a smelting process. coke is now widely used to produce carbide ceramics. potter josiah wedgwood opened the first modern ceramics factory in stoke - on - trent, england, in 1759. austrian chemist carl josef bayer, working for the textile industry in russia, developed a process to separate alumina from bauxite ore in 1888. the bayer process is still used to purify alumina for the ceramic and aluminium industries. brothers pierre and jacques curie discovered piezoelectricity in rochelle salt c. 1880. piezoelectricity is one of the key properties of electroceramics. e. g. acheson heated a mixture of coke and clay in 1893, and invented carborundum, or synthetic silicon carbide. henri moissan also synthesized sic and tungsten carbide in his electric arc furnace in paris about the same time as acheson. karl schroter used liquid - phase sintering to bond or " cement " moissan ' s tungsten carbide particles with cobalt in 1923 in germany. cemented ( metal - bonded ) carbide edges greatly increase the durability of hardened steel cutting tools. w. h. nernst developed cubic - stabilized zirconia in the 1920s in berlin. this material is used as an oxygen sensor in exhaust systems. the main limitation on the use of ceramics in engineering is brittleness. = = = military = = = the military requirements of world war ii encouraged developments, which created a need for high - performance materials and helped speed the development of ceramic science and engineering. throughout the 1960s and 1970s, new types of ceramics were developed in response to advances in atomic energy, electronics, communications, and space travel. the discovery of ceramic superconductors in 1986 has spurred intense research to develop superconducting ceramic parts for electronic devices, electric motors, and transportation equipment. there is an increasing need in the military sector for high - strength, robust materials which have the capability to transmit light around the visible ( 0. 4 β 0. 7 micrometers ) and mid - infrared ( 1 β 5 micrometers ) regions of the spectrum. these materials
as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase
the magnetization of superconducting samples is influenced by their porosity. in addition to structural modifications and improved cooling, the presence of pores also plays a role in trapping magnetic flux. pores have an impact on the irreversibility field, the full penetration field, and the remnant magnetization. generally, as porosity increases, these parameters tend to decrease. however, in the case of mesoscopic samples or samples with low critical current densities, increased porosity can actually enhance the trapping of magnetic flux.
. currently, even blades made of advanced metal alloys used in the engines ' hot section require cooling and careful limiting of operating temperatures. turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. recently, there have been advances in ceramics which include bio - ceramics, such as dental implants and synthetic bones. hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. =
Question: What are materials that can be magnetized called?
A) catalytic materials
B) Metal material
C) interstitial materials
D) ferromagnetic materials
|
D) ferromagnetic materials
|
Context:
= = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling
remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling and the risks of creating more pollution. = = = e - waste recycling = = = the recycling of electronic waste ( e - waste ) has seen significant technological advancements due to increasing environmental concerns and the growing volume of electronic product disposals. traditional e - waste recycling methods, which often involve manual disassemb
. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world
radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is not the only deadly component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. civilian nuclear and radiological accidents primarily involve nuclear power plants. most common are nuclear leaks that expose workers to hazardous material. a nuclear meltdown refers to the more serious hazard of releasing nuclear material into the surrounding environment. the most significant meltdowns occurred at three mile island in pennsylvania and chernobyl in the soviet ukraine. the earthquake and tsunami on march 11, 2011 caused serious damage to three nuclear reactors and a spent fuel storage pond at the fukushima daiichi nuclear power plant in japan. military reactors that experienced similar accidents were windscale in the united kingdom and sl - 1 in the united states. military accidents usually involve the loss or unexpected detonation of nuclear weapons. the castle bravo test in 1954 produced a larger yield than expected, which contaminated nearby islands, a japanese fishing boat ( with one fatality ), and raised concerns about contaminated fish in japan. in the 1950s through 1970s, several nuclear bombs were lost from submarines and aircraft, some of which have never been recovered. the last twenty years have seen a marked decline in such accidents. = = examples of environmental benefits = = proponents of nuclear energy note that annually, nuclear - generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels. additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed / recycled for other energy uses. proponents of nuclear energy also bring to attention the opportunity cost of utilizing other forms of electricity. for example, the environmental protection agency estimates that coal kills 30, 000 people a year, as a result of its environmental impact, while 60 people died in the chernobyl disaster. a real world example of impact provided by proponents of nuclear energy is the 650, 000 ton increase in carbon emissions in the two months following the closure of the vermont yankee nuclear plant. = = see also = = atomic age lists of nuclear disasters and radioactive incidents nuclear power debate outline of nuclear technology radiology = = references = = = = external links = = nuclear energy institute β beneficial uses
the walls of a victim ' s stomach. toxicology, a subfield of forensic chemistry, focuses on detecting and identifying drugs, poisons, and other toxic substances in biological samples. forensic toxicologists work on cases involving drug overdoses, poisoning, and substance abuse. their work is critical in determining whether harmful substances play a role in a person β s death or impairment. read more james marsh was the first to apply this new science to the art of forensics. he was called by the prosecution in a murder trial to give evidence as a chemist in 1832. the defendant, john bodle, was accused of poisoning his grandfather with arsenic - laced coffee. marsh performed the standard test by mixing a suspected sample with hydrogen sulfide and hydrochloric acid. while he was able to detect arsenic as yellow arsenic trisulfide, when it was shown to the jury it had deteriorated, allowing the suspect to be acquitted due to reasonable doubt. annoyed by that, marsh developed a much better test. he combined a sample containing arsenic with sulfuric acid and arsenic - free zinc, resulting in arsine gas. the gas was ignited, and it decomposed to pure metallic arsenic, which, when passed to a cold surface, would appear as a silvery - black deposit. so sensitive was the test, known formally as the marsh test, that it could detect as little as one - fiftieth of a milligram of arsenic. he first described this test in the edinburgh philosophical journal in 1836. = = = ballistics and firearms = = = ballistics is " the science of the motion of projectiles in flight ". in forensic science, analysts examine the patterns left on bullets and cartridge casings after being ejected from a weapon. when fired, a bullet is left with indentations and markings that are unique to the barrel and firing pin of the firearm that ejected the bullet. this examination can help scientists identify possible makes and models of weapons connected to a crime. henry goddard at scotland yard pioneered the use of bullet comparison in 1835. he noticed a flaw in the bullet that killed the victim and was able to trace this back to the mold that was used in the manufacturing process. = = = anthropometry = = = the french police officer alphonse bertillon was the first to apply the anthropological technique of anthropometry to law enforcement, thereby creating an identification system based on physical measurements. before that time, criminals could be identified only by name or photograph. dissatisfied with the ad hoc methods used to identify captured
##nts from the air to reduce the potential adverse effects on humans and the environment. the process of air purification may be performed using methods such as mechanical filtration, ionization, activated carbon adsorption, photocatalytic oxidation, and ultraviolet light germicidal irradiation. = = = sewage treatment = = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the
in space, can adversely affect the earth ' s environment. some hypergolic rocket propellants, such as hydrazine, are highly toxic prior to combustion, but decompose into less toxic compounds after burning. rockets using hydrocarbon fuels, such as kerosene, release carbon dioxide and soot in their exhaust. carbon dioxide emissions are insignificant compared to those from other sources ; on average, the united states consumed 803 million us gal ( 3. 0 million m3 ) of liquid fuels per day in 2014, while a single falcon 9 rocket first stage burns around 25, 000 us gallons ( 95 m3 ) of kerosene fuel per launch. even if a falcon 9 were launched every single day, it would only represent 0. 006 % of liquid fuel consumption ( and carbon dioxide emissions ) for that day. additionally, the exhaust from lox - and lh2 - fueled engines, like the ssme, is almost entirely water vapor. nasa addressed environmental concerns with its canceled constellation program in accordance with the national environmental policy act in 2011. in contrast, ion engines use harmless noble gases like xenon for propulsion. an example of nasa ' s environmental efforts is the nasa sustainability base. additionally, the exploration sciences building was awarded the leed gold rating in 2010. on may 8, 2003, the environmental protection agency recognized nasa as the first federal agency to directly use landfill gas to produce energy at one of its facilities β the goddard space flight center, greenbelt, maryland. in 2018, nasa along with other companies including sensor coating systems, pratt & whitney, monitor coating and utrc launched the project caution ( coatings for ultra high temperature detection ). this project aims to enhance the temperature range of the thermal history coating up to 1, 500 Β°c ( 2, 730 Β°f ) and beyond. the final goal of this project is improving the safety of jet engines as well as increasing efficiency and reducing co2 emissions. = = = climate change = = = nasa also researches and publishes on climate change. its statements concur with the global scientific consensus that the climate is warming. bob walker, who has advised former us president donald trump on space issues, has advocated that nasa should focus on space exploration and that its climate study operations should be transferred to other agencies such as noaa. former nasa atmospheric scientist j. marshall shepherd countered that earth science study was built into nasa ' s mission at its creation in the 1958 national aeronautics and space act. nasa won the 2020 webby people ' s voice award for green in the category
, lightning strikes, tornadoes, building fires, wildfires, and mass shootings disabling most of the system if not the entirety of it. geographic redundancy locations can be more than 621 miles ( 999 km ) continental, more than 62 miles apart and less than 93 miles ( 150 km ) apart, less than 62 miles apart, but not on the same campus, or different buildings that are more than 300 feet ( 91 m ) apart on the same campus. the following methods can reduce the risks of damage by a fire conflagration : large buildings at least 80 feet ( 24 m ) to 110 feet ( 34 m ) apart, but sometimes a minimum of 210 feet ( 64 m ) apart. : 9 high - rise buildings at least 82 feet ( 25 m ) apart : 12 open spaces clear of flammable vegetation within 200 feet ( 61 m ) on each side of objects different wings on the same building, in rooms that are separated by more than 300 feet ( 91 m ) different floors on the same wing of a building in rooms that are horizontally offset by a minimum of 70 feet ( 21 m ) with fire walls between the rooms that are on different floors two rooms separated by another room, leaving at least a 70 - foot gap between the two rooms there should be a minimum of two separated fire walls and on opposite sides of a corridor geographic redundancy is used by amazon web services ( aws ), google cloud platform ( gcp ), microsoft azure, netflix, dropbox, salesforce, linkedin, paypal, twitter, facebook, apple icloud, cisco meraki, and many others to provide geographic redundancy, high availability, fault tolerance and to ensure availability and reliability for their cloud services. as another example, to minimize risk of damage from severe windstorms or water damage, buildings can be located at least 2 miles ( 3. 2 km ) away from the shore, with an elevation of at least 5 feet ( 1. 5 m ) above sea level. for additional protection, they can be located at least 100 feet ( 30 m ) away from flood plain areas. = = functions of redundancy = = the two functions of redundancy are passive redundancy and active redundancy. both functions prevent performance decline from exceeding specification limits without human intervention using extra capacity. passive redundancy uses excess capacity to reduce the impact of component failures. one common form of passive redundancy is the extra strength of cabling and struts used in bridges.
##l ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol
and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is not the only deadly component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. civilian nuclear and radiological accidents primarily involve nuclear power plants. most common are nuclear leaks that expose workers to hazardous material. a nuclear meltdown refers to the more serious hazard of releasing nuclear material into the surrounding environment. the most significant meltdowns occurred at three mile island in pennsylvania and chernobyl in the soviet ukraine. the earthquake and tsunami on march 11, 2011 caused serious damage to three nuclear reactors and a spent fuel storage pond at the fukushima daiichi nuclear power plant in japan. military reactors that experienced similar accidents were windscale in the united kingdom and sl - 1 in the united states. military accidents usually involve the loss or unexpected detonation of nuclear weapons. the castle bravo test in 1954 produced a larger yield than expected, which contaminated nearby islands, a japanese fishing boat ( with one fatality ), and raised concerns about contaminated fish in japan. in the 1950s through 1970s, several nuclear bombs were lost from submarines and aircraft, some of which have never been recovered. the last twenty years have seen a marked decline in such accidents. = = examples of environmental benefits = = proponents of nuclear energy note that annually, nuclear - generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels. additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed / recycled for other energy uses. proponents of nuclear energy also bring to attention the opportunity cost of utilizing other forms of electricity. for example, the environmental protection agency estimates that coal kills 30, 000 people a year, as a result of its environmental impact, while 60 people died in the chernobyl disaster. a real world example of impact provided by proponents of nuclear energy is
Question: Toxic compounds in the environment have the most severe impact on animals that are top-level what?
A) omnivores
B) vegetarian
C) herbivores
D) carnivores
|
D) carnivores
|
Context:
is the scientific study of inheritance. mendelian inheritance, specifically, is the process by which genes and traits are passed on from parents to offspring. it has several principles. the first is that genetic characteristics, alleles, are discrete and have alternate forms ( e. g., purple vs. white or tall vs. dwarf ), each inherited from one of two parents. based on the law of dominance and uniformity, which states that some alleles are dominant while others are recessive ; an organism with at least one dominant allele will display the phenotype of that dominant allele. during gamete formation, the alleles for each gene segregate, so that each gamete carries only one allele for each gene. heterozygotic individuals produce gametes with an equal frequency of two alleles. finally, the law of independent assortment, states that genes of different traits can segregate independently during the formation of gametes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can
##tes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna
for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals ( cattle or pigs ). the genetically engineered bacteria are able to produce large quantities of synthetic human insulin at relatively low cost. biotechnology has also enabled emerging therapeutics like gene therapy. the application of biotechnology to basic science ( for example through the human genome project ) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well. genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child ' s parentage ( genetic mother and father ) or in general a person ' s ancestry. in addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. genetic testing identifies changes in chromosomes, genes, or proteins. most of the time, testing is used to find changes that are associated with inherited disorders. the results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person ' s chance of developing or passing on a genetic disorder. as of 2011 several hundred genetic tests were in use. since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling. = = = agriculture = = = genetically modified crops ( " gm crops ", or " biotech crops " ) are plants used in agriculture, the dna of which has been modified with genetic engineering techniques. in most cases, the main aim is to introduce a new trait that does not occur naturally in the species. biotechnology firms can contribute to future food security by improving the nutrition and viability of urban agriculture. furthermore, the protection of intellectual property rights encourages private sector investment in agrobiotechnology. examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments ( e. g. resistance to a herbicide ), reduction of spoilage, or improving the nutrient profile of the crop. examples in non - food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation. farmers have widely adopted gm technology. between 1996 and 2011, the total surface area of land cultivated with gm crops had increased by a factor of 94, from 17, 000 to 1, 600, 000 square
cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as a chemical ( e. g., nitrous acid, benzopyrene ) or radiation ( e. g., x - ray, gamma ray, ultraviolet radiation, particles emitted by unstable isotopes ). mutations can lead to phenotypic effects such as loss - of - function, gain - of - function, and conditional mutations. some mutations are beneficial, as they are a source of genetic variation for evolution. others are harmful if they were to result in a loss of function of genes needed for survival. = = = gene expression = = = gene expression is the molecular process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing
genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism ' s genes using technology. it is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. new dna is obtained by either isolating and copying the genetic material of interest using recombinant dna methods or by artificially synthesising the dna. a construct is usually created and used to insert this dna into the host organism. the first recombinant dna molecule was made by paul berg in 1972 by combining dna from the monkey virus sv40 with the lambda virus. as well as inserting genes, the process can be used to remove, or " knock out ", genes. the new dna can be inserted randomly, or targeted to a specific part of the genome. an organism that is generated through genetic engineering is considered to be genetically modified ( gm ) and the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such
genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and
can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population,
##s can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool for natural scientists, with the creation of transgenic organisms one of the most important tools for analysis of gene function. genes and other genetic information from a wide range of organisms can be inserted into bacteria for storage and modification, creating genetically modified bacteria in the process. bacteria are cheap, easy to grow, clonal, multi
the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. more sophisticated techniques are now in development that can track protein products without mitigating their function, such as the addition of small sequences that will serve as binding motifs to monoclonal antibodies. expression studies aim to discover where and when specific proteins are produced. in these experiments, the dna sequence before the dna that codes for
defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the genomes of species for thousands of years through selective breeding, or artificial selection : 1 : 1 as contrasted with natural selection. more recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. genetic engineering as the direct manipulation of dna by humans outside breeding and mutations has only existed since the 1970s. the term " genetic engineering " was coined by the russian - born geneticist nikolay timofeev - ressovsky in his 1934 paper " the experimental production of mutations ", published in the british journal biological reviews. jack williamson used the term in his science fiction novel dragon '
Question: In genetics, what do you call characteristics that are passed from a parent to child?
A) mutations
B) similarities
C) traits
D) habits
|
C) traits
|
Context:
the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a
organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the
, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which
when the hydration shell of a protein is filled with at least 0. 6 gram of water per gram of protein, a significant anti - correlation between the vibrational free energy and the potential energy of energy - minimized conformers is observed. this means that low potential energy, well - hydrated, protein conformers tend to be more rigid than high - energy ones. on the other hand, in the case of casp target 624, when its hydration shell is filled, a significant average energy gap is observed between the crystal structure and the best conformers proposed during the prediction experiment, strongly suggesting that including explicit water molecules may help identifying unlikely conformers among good - looking ones.
and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell
other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle
factor e β e / k t { \ displaystyle e ^ { - e / kt } } β that is the probability of a molecule to have energy greater than or equal to e at the given temperature t. this exponential dependence of a reaction rate on temperature is known as the arrhenius equation. the activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound. a related concept free energy, which also incorporates entropy considerations, is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics. a reaction is feasible only if the total change in the gibbs free energy is negative, Ξ΄ g β€ 0 { \ displaystyle \ delta g \ leq 0 \, } ; if it is equal to zero the chemical reaction is said to be at equilibrium. there exist only limited possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic
reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then oxidized into acetyl - coa by the pyruvate dehydrogenase complex, which also generates nadh and carbon dioxide. acetyl - coa enters the citric acid cycle, which takes places inside the mitochondrial matrix. at the end of the cycle, the total yield from 1 glucose ( or 2 pyruvates ) is 6 nadh, 2 fadh2, and 2 atp molecules. finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in the mitochondrial cristae. oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from nadh and fadh2 that is coupled to the pumping of protons ( hydrogen ions ) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force. energy
einstein, when he began working on the general theory of relativity, believed that energy of any kind is the source of the gravitational field. therefore, the energy of gravity, like any energy, must be the source of the field. it was previously discovered that the energy - momentum tensor of the gravitational field is already contained in the ricci tensor. this hypothesis is used to construct a new equation of the gravitational field.
the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then
Question: One gram of proteins provides how many calories of energy?
A) two
B) zero
C) four
D) eight
|
C) four
|
Context:
. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of
have evolved from the earliest emergence of life to present day. earth formed about 4. 5 billion years ago and all life on earth, both living and extinct, descended from a last universal common ancestor that lived about 3. 5 billion years ago. geologists have developed a geologic time scale that divides the history of the earth into major divisions, starting with four eons ( hadean, archean, proterozoic, and phanerozoic ), the first three of which are collectively known as the precambrian, which lasted approximately 4 billion years. each eon can be divided into eras, with the phanerozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became
, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive
they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms. typically a few micrometers in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. bacteria were among the first life forms to appear on earth, and are present in most of its habitats. bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of the earth ' s crust. bacteria also live in symbiotic and parasitic relationships with plants and animals. most bacteria have not been characterised, and only about 27 percent of the bacterial phyla have species that can be grown in the laboratory. archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria ( in the archaebacteria kingdom ), a term that has fallen out of use. archaeal cells have unique properties separating them from the other two domains, bacteria and eukaryota. archaea
##rozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off the non - avian dinosaurs, mammals increased rapidly in size and diversity. such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. = = diversity = = = = = bacteria and archaea = = = bacteria are a type of cell that constitute a large domain of prokar
into major divisions, starting with four eons ( hadean, archean, proterozoic, and phanerozoic ), the first three of which are collectively known as the precambrian, which lasted approximately 4 billion years. each eon can be divided into eras, with the phanerozoic eon that began 539 million years ago being subdivided into paleozoic, mesozoic, and cenozoic eras. these three eras together comprise eleven periods ( cambrian, ordovician, silurian, devonian, carboniferous, permian, triassic, jurassic, cretaceous, tertiary, and quaternary ). the similarities among all known present - day species indicate that they have diverged through the process of evolution from their common ancestor. biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria, archaea, and eukaryotes. microbial mats of coexisting bacteria and archaea were the dominant form of life in the early archean eon and many of the major steps in early evolution are thought to have taken place in this environment. the earliest evidence of eukaryotes dates from 1. 85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. later, around 1. 7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. algae - like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2. 7 billion years ago. microorganisms are thought to have paved the way for the inception of land plants in the ordovician period. land plants were so successful that they are thought to have contributed to the late devonian extinction event. ediacara biota appear during the ediacaran period, while vertebrates, along with most other modern phyla originated about 525 million years ago during the cambrian explosion. during the permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the permian β triassic extinction event 252 million years ago. during the recovery from this catastrophe, archosaurs became the most abundant land vertebrates ; one archosaur group, the dinosaurs, dominated the jurassic and cretaceous periods. after the cretaceous β paleogene extinction event 66 million years ago killed off
, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from
reversing the flow of time between casimir plates raises the question of whether or not a recently deceased, intact organism could be brought back to life. the odds are not good.
cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short
depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their floods occur in the summer from the melting of snow and ice, as exemplified by the rhone above the lake of geneva, and the arve which joins it below. but even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the rhone below lyon has a more uniform
Question: What kind of succession occurs in an area that has never before been colonized?
A) primary succession
B) secondary succession
C) support succession
D) addition succession
|
A) primary succession
|
Context:
##simal cube of material relative to a reference configuration. mechanical strains are caused by mechanical stress, see stress - strain curve. the relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic. elasticity in materials occurs when applied stress does not surpass the energy required to break molecular bonds, allowing the material to deform reversibly and return to its original shape once the stress is removed. the linear relationship for a material is known as young ' s modulus. above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation. the determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis. in the above figure, it can be seen that the compressive loading ( indicated by the arrow ) has caused deformation in the cylinder so that the original shape ( dashed lines ) has changed ( deformed ) into one with bulging sides. the sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change. as a result, the material is forced out laterally. internal forces ( in this case at right angles to the deformation ) resist the applied load. = = types of deformation = = depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. the image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel. different deformation modes may occur under different conditions, as can be depicted using a deformation mechanism map. permanent deformation is irreversible ; the deformation stays even after removal of the applied forces, while the temporary deformation is recoverable as it disappears after the removal of applied forces. temporary deformation is also called elastic deformation, while the permanent deformation is called plastic deformation. = = = elastic deformation = = = the study of temporary or elastic deformation in the case of engineering strain is applied to materials used in mechanical and structural engineering, such as concrete and steel, which are subjected to very small deformations. engineering strain is modeled by infinitesimal strain theory, also called small strain theory, small deformation theory, small displacement theory, or small displacement - gradient theory where strains and rotations are both small. for some materials, e. g. elastomers and polymers, subjected to large deformations, the engineering definition of strain is not applicable, e. g. typical engineering strains
also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a rapid rate, many regulatory authorities require continuing medical education. medical practitioners upgrade their knowledge in various ways, including medical journals, seminars, conferences, and online programs. a database of objectives covering medical knowledge, as suggested by national societies across the united states, can be searched at http : / / data. medobjectives
is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a
of a point on the object, including whole - body translations and rotations ( rigid transformations ). deformation are changes in the relative position between internals points on the object, excluding rigid transformations, causing the body to change shape or size. strain is the relative internal deformation, the dimensionless change in shape of an infinitesimal cube of material relative to a reference configuration. mechanical strains are caused by mechanical stress, see stress - strain curve. the relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic. elasticity in materials occurs when applied stress does not surpass the energy required to break molecular bonds, allowing the material to deform reversibly and return to its original shape once the stress is removed. the linear relationship for a material is known as young ' s modulus. above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation. the determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis. in the above figure, it can be seen that the compressive loading ( indicated by the arrow ) has caused deformation in the cylinder so that the original shape ( dashed lines ) has changed ( deformed ) into one with bulging sides. the sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change. as a result, the material is forced out laterally. internal forces ( in this case at right angles to the deformation ) resist the applied load. = = types of deformation = = depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. the image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel. different deformation modes may occur under different conditions, as can be depicted using a deformation mechanism map. permanent deformation is irreversible ; the deformation stays even after removal of the applied forces, while the temporary deformation is recoverable as it disappears after the removal of applied forces. temporary deformation is also called elastic deformation, while the permanent deformation is called plastic deformation. = = = elastic deformation = = = the study of temporary or elastic deformation in the case of engineering strain is applied to materials used in mechanical and structural engineering, such as concrete and steel, which are subjected to very small deformations. engineering strain is modeled by infinitesimal strain theory, also called
##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently
this extra strength allows some structural components to fail without bridge collapse. the extra strength used in the design is called the margin of safety. eyes and ears provide working examples of passive redundancy. vision loss in one eye does not cause blindness but depth perception is impaired. hearing loss in one ear does not cause deafness but directionality is lost. performance decline is commonly associated with passive redundancy when a limited number of failures occur. active redundancy eliminates performance declines by monitoring the performance of individual devices, and this monitoring is used in voting logic. the voting logic is linked to switching that automatically reconfigures the components. error detection and correction and the global positioning system ( gps ) are two examples of active redundancy. electrical power distribution provides an example of active redundancy. several power lines connect each generation facility with customers. each power line includes monitors that detect overload. each power line also includes circuit breakers. the combination of power lines provides excess capacity. circuit breakers disconnect a power line when monitors detect an overload. power is redistributed across the remaining lines. at the toronto airport, there are 4 redundant electrical lines. each of the 4 lines supply enough power for the entire airport. a spot network substation uses reverse current relays to open breakers to lines that fail, but lets power continue to flow the airport. electrical power systems use power scheduling to reconfigure active redundancy. computing systems adjust the production output of each generating facility when other generating facilities are suddenly lost. this prevents blackout conditions during major events such as an earthquake. = = disadvantages = = charles perrow, author of normal accidents, has said that sometimes redundancies backfire and produce less, not more reliability. this may happen in three ways : first, redundant safety devices result in a more complex system, more prone to errors and accidents. second, redundancy may lead to shirking of responsibility among workers. third, redundancy may lead to increased production pressures, resulting in a system that operates at higher speeds, but less safely. = = voting logic = = voting logic uses performance monitoring to determine how to reconfigure individual components so that operation continues without violating specification limitations of the overall system. voting logic often involves computers, but systems composed of items other than computers may be reconfigured using voting logic. circuit breakers are an example of a form of non - computer voting logic. the simplest voting logic in computing systems involves two components :
under this elastic region is known as resilience. note that not all elastic materials undergo linear elastic deformation ; some, such as concrete, gray cast iron, and many polymers, respond in a nonlinear fashion. for these materials hooke ' s law is inapplicable. = = = plastic deformation = = = this type of deformation is not undone simply by removing the applied force. an object in the plastic deformation range, however, will first have undergone elastic deformation, which is undone simply by removing the applied force, so the object will return part way to its original shape. soft thermoplastics have a rather large plastic deformation range as do ductile metals such as copper, silver, and gold. steel does, too, but not cast iron. hard thermosetting plastics, rubber, crystals, and ceramics have minimal plastic deformation ranges. an example of a material with a large plastic deformation range is wet chewing gum, which can be stretched to dozens of times its original length. under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture ( also called rupture ). during strain hardening the material becomes stronger through the movement of atomic dislocations. the necking phase is indicated by a reduction in cross - sectional area of the specimen. necking begins after the ultimate strength is reached. during necking, the material can no longer withstand the maximum stress and the strain in the specimen rapidly increases. plastic deformation ends with the fracture of the material. = = failure = = = = = compressive failure = = = usually, compressive stress applied to bars, columns, etc. leads to shortening. loading a structural element or specimen will increase the compressive stress until it reaches its compressive strength. according to the properties of the material, failure modes are yielding for materials with ductile behavior ( most metals, some soils and plastics ) or rupturing for brittle behavior ( geomaterials, cast iron, glass, etc. ). in long, slender structural elements β such as columns or truss bars β an increase of compressive force f leads to structural failure due to buckling at lower stress than the compressive strength. = = = fracture = = = a break occurs after the material has reached the end of the elastic, and then plastic, deformation ranges. at this point forces accumulate until they are sufficient to cause a fracture. all materials will eventually fracture, if sufficient forces are applied. = = types of stress and strain =
chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and
judgments to the practice of medicine. medical humanities includes the humanities ( literature, philosophy, ethics, history and religion ), social science ( anthropology, cultural studies, psychology, sociology ), and the arts ( literature, theater, film, and visual arts ) and their application to medical education and practice. nosokinetics is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of
cell - culture scaffolds the material needed for each application is different, and dependent on the desired mechanical properties of the material. tissue engineering of long bone defects for example, will require a rigid scaffold with a compressive strength similar to that of cortical bone ( 100 - 150 mpa ), which is much higher compared to a scaffold for skin regeneration. there are a few versatile synthetic materials used for many different scaffold applications. one of these commonly used materials is polylactic acid ( pla ), a synthetic polymer. pla β polylactic acid. this is a polyester which degrades within the human body to form lactic acid, a naturally occurring chemical which is easily removed from the body. similar materials are polyglycolic acid ( pga ) and polycaprolactone ( pcl ) : their degradation mechanism is similar to that of pla, but pcl degrades slower and pga degrades faster. pla is commonly combined with pga to create poly - lactic - co - glycolic acid ( plga ). this is especially useful because the degradation of plga can be tailored by altering the weight percentages of pla and pga : more pla β slower degradation, more pga β faster degradation. this tunability, along with its biocompatibility, makes it an extremely useful material for scaffold creation. scaffolds may also be constructed from natural materials : in particular different derivatives of the extracellular matrix have been studied to evaluate their ability to support cell growth. protein based materials β such as collagen, or fibrin, and polysaccharidic materials - like chitosan or glycosaminoglycans ( gags ), have all proved suitable in terms of cell compatibility. among gags, hyaluronic acid, possibly in combination with cross linking agents ( e. g. glutaraldehyde, water - soluble carbodiimide, etc. ), is one of the possible choices as scaffold material. due to the covalent attachment of thiol groups to these polymers, they can crosslink via disulfide bond formation. the use of thiolated polymers ( thiomers ) as scaffold material for tissue engineering was initially introduced at the 4th central european symposium on pharmaceutical technology in vienna 2001. as thiomers are biocompatible, exhibit cellular mimicking properties and efficiently support proliferation and differentiation of various cell types,
Question: A sprain is a strain or tear in what part of the body?
A) skeleton
B) stomach
C) torso
D) a ligament
|
D) a ligament
|
Context:
the luminescence of 3 speleothem samples from the acquafredda karst system and 1 from the novella cave ( gessi bolognesi natural park, italy ) has been recorded using excitation by impulse xe - lamp. all these carbonate speleothems are believed to be formed only from active co2 from the air, because the bedrock of the cave consist of gypsum and does not contain carbonates. the obtained photos of luminescence record the climate changes during the speleothem growth. u / th and 14c dating proved that studied speleothems started to grow since about 5, 000 years ago. the detailed analyses of the luminescence records is still in progress.
other contemporary production centre. the earliest documented use of lead ( possibly native or smelted ) in the near east dates from the 6th millennium bc, is from the late neolithic settlements of yarim tepe and arpachiyah in iraq. the artifacts suggest that lead smelting may have predated copper smelting. metallurgy of lead has also been found in the balkans during the same period. copper smelting is documented at sites in anatolia and at the site of tal - i iblis in southeastern iran from c. 5000 bc. copper smelting is first documented in the delta region of northern egypt in c. 4000 bc, associated with the maadi culture. this represents the earliest evidence for smelting in africa. the varna necropolis, bulgaria, is a burial site located in the western industrial zone of varna, approximately 4 km from the city centre, internationally considered one of the key archaeological sites in world prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. this includes the ancient and medieval kingdoms and empires of the middle east and near east, ancient iran, ancient egypt, ancient nubia, and anatolia in present - day turkey, ancient nok, carthage, the celts, greeks and romans of ancient europe, medieval europe, ancient and medieval china, ancient and
two planetary nebulae are shown to belong to the sagittarius dwarf galaxy, on the basis of their radial velocities. this is only the second dwarf spheroidal galaxy, after fornax, found to contain planetary nebulae. their existence confirms that this galaxy is at least as massive as the fornax dwarf spheroidal which has a single planetary nebula, and suggests a mass of a few times 10 * * 7 solar masses. the two planetary nebulae are located along the major axis of the galaxy, near the base of the tidal tail. there is a further candidate, situated at a very large distance along the direction of the tidal tail, for which no velocity measurement is available. the location of the planetary nebulae and globular clusters of the sagittarius dwarf galaxy suggests that a significant fraction of its mass is contained within the tidal tail.
diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of the major staple foods, such as hemp, teff, maize, rice, wheat and other cereal grasses, pulses, bananas and plantains, as well as hemp, flax and cotton grown for their fibres, are the outcome of prehistoric selection over thousands of years from among wild ancestral plants with the most
##nita and hamangia, which are often grouped together under the name of ' old europe '. with the carpatho - balkan region described as the ' earliest metallurgical province in eurasia ', its scale and technical quality of metal production in the 6th β 5th millennia bc totally overshadowed that of any other contemporary production centre. the earliest documented use of lead ( possibly native or smelted ) in the near east dates from the 6th millennium bc, is from the late neolithic settlements of yarim tepe and arpachiyah in iraq. the artifacts suggest that lead smelting may have predated copper smelting. metallurgy of lead has also been found in the balkans during the same period. copper smelting is documented at sites in anatolia and at the site of tal - i iblis in southeastern iran from c. 5000 bc. copper smelting is first documented in the delta region of northern egypt in c. 4000 bc, associated with the maadi culture. this represents the earliest evidence for smelting in africa. the varna necropolis, bulgaria, is a burial site located in the western industrial zone of varna, approximately 4 km from the city centre, internationally considered one of the key archaeological sites in world prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and
##nik, in present - day serbia. the site of plocnik has produced a smelted copper axe dating from 5, 500 bc, belonging to the vinca culture. the balkans and adjacent carpathian region were the location of major chalcolithic cultures including vinca, varna, karanovo, gumelnita and hamangia, which are often grouped together under the name of ' old europe '. with the carpatho - balkan region described as the ' earliest metallurgical province in eurasia ', its scale and technical quality of metal production in the 6th β 5th millennia bc totally overshadowed that of any other contemporary production centre. the earliest documented use of lead ( possibly native or smelted ) in the near east dates from the 6th millennium bc, is from the late neolithic settlements of yarim tepe and arpachiyah in iraq. the artifacts suggest that lead smelting may have predated copper smelting. metallurgy of lead has also been found in the balkans during the same period. copper smelting is documented at sites in anatolia and at the site of tal - i iblis in southeastern iran from c. 5000 bc. copper smelting is first documented in the delta region of northern egypt in c. 4000 bc, associated with the maadi culture. this represents the earliest evidence for smelting in africa. the varna necropolis, bulgaria, is a burial site located in the western industrial zone of varna, approximately 4 km from the city centre, internationally considered one of the key archaeological sites in world prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin
##elting. metallurgy of lead has also been found in the balkans during the same period. copper smelting is documented at sites in anatolia and at the site of tal - i iblis in southeastern iran from c. 5000 bc. copper smelting is first documented in the delta region of northern egypt in c. 4000 bc, associated with the maadi culture. this represents the earliest evidence for smelting in africa. the varna necropolis, bulgaria, is a burial site located in the western industrial zone of varna, approximately 4 km from the city centre, internationally considered one of the key archaeological sites in world prehistory. the oldest gold treasure in the world, dating from 4, 600 bc to 4, 200 bc, was discovered at the site. the gold piece dating from 4, 500 bc, found in 2019 in durankulak, near varna is another important example. other signs of early metals are found from the third millennium bc in palmela, portugal, los millares, spain, and stonehenge, united kingdom. the precise beginnings, however, have not be clearly ascertained and new discoveries are both continuous and ongoing. in approximately 1900 bc, ancient iron smelting sites existed in tamil nadu. in the near east, about 3, 500 bc, it was discovered that by combining copper and tin, a superior metal could be made, an alloy called bronze. this represented a major technological shift known as the bronze age. the extraction of iron from its ore into a workable metal is much more difficult than for copper or tin. the process appears to have been invented by the hittites in about 1200 bc, beginning the iron age. the secret of extracting and working iron was a key factor in the success of the philistines. historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. this includes the ancient and medieval kingdoms and empires of the middle east and near east, ancient iran, ancient egypt, ancient nubia, and anatolia in present - day turkey, ancient nok, carthage, the celts, greeks and romans of ancient europe, medieval europe, ancient and medieval china, ancient and medieval india, ancient and medieval japan, amongst others. a 16th century book by georg agricola, de re metallica, describes the highly developed and complex processes of mining metal ores, metal extraction, and metallurgy of the time. agricola has been described as the " father of metallurgy
inflammatory reactions. because of this, they are of great interest for gene delivery and tissue engineering scaffolds. most hydroxyapatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. they are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. work is being done to make strong, fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic, but naturally occurring, bone mineral. ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones. durable actinide - containing ceramic materials have many applications such as in nuclear fuels for burning excess pu and in chemically - inert sources of alpha irradiation for power supply of unmanned space vehicles or to produce electricity for microelectronic devices. both use and disposal of radioactive actinides require their immobilization in a durable host material. nuclear waste long - lived radionuclides such as actinides are immobilized using chemically - durable crystalline materials based on polycrystalline ceramics and large single crystals. alumina ceramics are widely utilized in the chemical industry due to their excellent chemical stability and high resistance to corrosion. it is used as acid - resistant pump impellers and pump bodies, ensuring long - lasting performance in transferring aggressive fluids. they are also used in acid - carrying pipe linings to prevent contamination and maintain fluid purity, which is crucial in industries like pharmaceuticals and food processing. valves made from alumina ceramics demonstrate exceptional durability and resistance to chemical attack, making them reliable for controlling the flow of corrosive liquids. = = glass - ceramics = = glass - ceramic materials share many properties with both glasses and ceramics. glass - ceramics have an amorphous phase and one or more crystalline phases and are produced by a so - called " controlled crystallization ", which is typically avoided in glass manufacturing. glass - ceramics often contain a crystalline phase which constitutes anywhere from 30 % [ m / m ] to 90 % [ m / m ] of its composition by volume, yielding an array of materials with interesting thermomechanical properties. in the processing of glass - ceramics, molten glass is cooled down gradually before reheating and annealing. in this heat
, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the widespread application of the factory system. this was followed a century later by the second industrial revolution which led to rapid scientific discovery, standardization, and mass production. new technologies were developed, including sewage systems, electricity, light bulbs, electric motors, railroads, automobiles, and airplanes. these technological advances led to significant developments in medicine
hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots.
Question: Which gland is located in the sella turcica of the sphenoid bone within the cranial floor?
A) glucose gland
B) mammalian gland
C) thyroid gland
D) pituitary gland
|
D) pituitary gland
|
Context:
electromagnetic induction. the transmission speed ranges from 2 mbit / s to 10 gbit / s. twisted pair cabling comes in two forms : unshielded twisted pair ( utp ) and shielded twisted - pair ( stp ). each form comes in several category ratings, designed for use in various scenarios. an optical fiber is a glass fiber. it carries pulses of light that represent data via lasers and optical amplifiers. some advantages of optical fibers over metal wires are very low transmission loss and immunity to electrical interference. using dense wave division multiplexing, optical fibers can simultaneously carry multiple streams of data on different wavelengths of light, which greatly increases the rate that data can be sent to up to trillions of bits per second. optic fibers can be used for long runs of cable carrying very high data rates, and are used for undersea communications cables to interconnect continents. there are two basic types of fiber optics, single - mode optical fiber ( smf ) and multi - mode optical fiber ( mmf ). single - mode fiber has the advantage of being able to sustain a coherent signal for dozens or even a hundred kilometers. multimode fiber is cheaper to terminate but is limited to a few hundred or even only a few dozens of meters, depending on the data rate and cable grade. = = = wireless = = = network connections can be established wirelessly using radio or other electromagnetic means of communication. terrestrial microwave β terrestrial microwave communication uses earth - based transmitters and receivers resembling satellite dishes. terrestrial microwaves are in the low gigahertz range, which limits all communications to line - of - sight. relay stations are spaced approximately 40 miles ( 64 km ) apart. communications satellites β satellites also communicate via microwave. the satellites are stationed in space, typically in geosynchronous orbit 35, 400 km ( 22, 000 mi ) above the equator. these earth - orbiting systems are capable of receiving and relaying voice, data, and tv signals. cellular networks use several radio communications technologies. the systems divide the region covered into multiple geographic areas. each area is served by a low - power transceiver. radio and spread spectrum technologies β wireless lans use a high - frequency radio technology similar to digital cellular. wireless lans use spread spectrum technology to enable communication between multiple devices in a limited area. ieee 802. 11 defines a common flavor of open - standards wireless radio - wave technology known as wi - fi. free - space optical communication uses visible or invisible light for communications. in most cases, line - of
there are no limits for the speeds of light and particles in general relativity ( gr ). four examples illustrate this basic result, which is too often neglected.
, phone lines and power lines ) to create a high - speed local area network. twisted pair cabling is used for wired ethernet and other standards. it typically consists of 4 pairs of copper cabling that can be utilized for both voice and data transmission. the use of two wires twisted together helps to reduce crosstalk and electromagnetic induction. the transmission speed ranges from 2 mbit / s to 10 gbit / s. twisted pair cabling comes in two forms : unshielded twisted pair ( utp ) and shielded twisted - pair ( stp ). each form comes in several category ratings, designed for use in various scenarios. an optical fiber is a glass fiber. it carries pulses of light that represent data via lasers and optical amplifiers. some advantages of optical fibers over metal wires are very low transmission loss and immunity to electrical interference. using dense wave division multiplexing, optical fibers can simultaneously carry multiple streams of data on different wavelengths of light, which greatly increases the rate that data can be sent to up to trillions of bits per second. optic fibers can be used for long runs of cable carrying very high data rates, and are used for undersea communications cables to interconnect continents. there are two basic types of fiber optics, single - mode optical fiber ( smf ) and multi - mode optical fiber ( mmf ). single - mode fiber has the advantage of being able to sustain a coherent signal for dozens or even a hundred kilometers. multimode fiber is cheaper to terminate but is limited to a few hundred or even only a few dozens of meters, depending on the data rate and cable grade. = = = wireless = = = network connections can be established wirelessly using radio or other electromagnetic means of communication. terrestrial microwave β terrestrial microwave communication uses earth - based transmitters and receivers resembling satellite dishes. terrestrial microwaves are in the low gigahertz range, which limits all communications to line - of - sight. relay stations are spaced approximately 40 miles ( 64 km ) apart. communications satellites β satellites also communicate via microwave. the satellites are stationed in space, typically in geosynchronous orbit 35, 400 km ( 22, 000 mi ) above the equator. these earth - orbiting systems are capable of receiving and relaying voice, data, and tv signals. cellular networks use several radio communications technologies. the systems divide the region covered into multiple geographic areas. each area is served by a low - power transceiver. radio and spread spectrum technologies β wireless lans use a high - frequency radio technology similar to
carbon chains are sometimes considered as possible carriers of some diffuse interstellar bands. spectroscopic observations in uv band carried by spectrometer stis fed with hst, give us the possibility to detect many interstellar molecules. we focused our attention on c2 molecule and we detected it in spectra of three reddened stars ( hd27778, hd147933, hd207198 ). interstellar molecule c2 was detected as a set of absorption lines around 2313 angstroms.
wave, carrying an information signal, occupies a range of frequencies. the information in a radio signal is usually concentrated in narrow frequency bands called sidebands ( sb ) just above and below the carrier frequency. the width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth ( bw ). for any given signal - to - noise ratio, a given bandwidth can carry the same amount of information regardless of where in the radio frequency spectrum it is located ; bandwidth is a measure of information - carrying capacity. the bandwidth required by a radio transmission depends on the data rate of the information being sent, and the spectral efficiency of the modulation method used ; how much data it can transmit in each unit of bandwidth. different types of information signals carried by radio have different data rates. for example, a television signal has a greater data rate than an audio signal. the radio spectrum, the total range of radio frequencies that can be used for communication in a given area, is a limited resource. each radio transmission occupies a portion of the total bandwidth available. radio bandwidth is regarded as an economic good which has a monetary cost and is in increasing demand. in some parts of the radio spectrum, the right to use a frequency band or even a single radio channel is bought and sold for millions of dollars. so there is an incentive to employ technology to minimize the bandwidth used by radio services. a slow transition from analog to digital radio transmission technologies began in the late 1990s. part of the reason for this is that digital modulation can often transmit more information ( a greater data rate ) in a given bandwidth than analog modulation, by using data compression algorithms, which reduce redundancy in the data to be sent, and more efficient modulation. other reasons for the transition is that digital modulation has greater noise immunity than analog, digital signal processing chips have more power and flexibility than analog circuits, and a wide variety of types of information can be transmitted using the same digital modulation. because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to use it more effectively is driving many additional radio innovations such as trunked radio systems, spread spectrum ( ultra - wideband ) transmission, frequency reuse, dynamic spectrum management, frequency pooling, and cognitive radio. = = = itu frequency bands = = = the itu arbitrarily divides the radio spectrum into 12 bands, each beginning at a wavelength which is a power
two permutations in a class are wilf - equivalent if, for every size, $ n $, the number of permutations in the class of size $ n $ containing each of them is the same. those infinite classes that have only one equivalence class in each size for this relation are characterised provided either that they avoid at least one permutation of size 3, or at least three permutations of size 4.
of a light source can be measured with a spectroradiometer, which works by optically collecting the light, then passing it through a monochromator before reading it in narrow bands of wavelength. reflected color can be measured using a spectrophotometer ( also called spectroreflectometer or reflectometer ), which takes measurements in the visible region ( and a little beyond ) of a given color sample. if the custom of taking readings at 10 nanometer increments is followed, the visible light range of 400 β 700 nm will yield 31 readings. these readings are typically used to draw the sample ' s spectral reflectance curve ( how much it reflects, as a function of wavelength ) β the most accurate data that can be provided regarding its characteristics. the readings by themselves are typically not as useful as their tristimulus values, which can be converted into chromaticity co - ordinates and manipulated through color space transformations. for this purpose, a spectrocolorimeter may be used. a spectrocolorimeter is simply a spectrophotometer that can estimate tristimulus values by numerical integration ( of the color matching functions ' inner product with the illuminant ' s spectral power distribution ). one benefit of spectrocolorimeters over tristimulus colorimeters is that they do not have optical filters, which are subject to manufacturing variance, and have a fixed spectral transmittance curve β until they age. on the other hand, tristimulus colorimeters are purpose - built, cheaper, and easier to use. the cie ( international commission on illumination ) recommends using measurement intervals under 5 nm, even for smooth spectra. sparser measurements fail to accurately characterize spiky emission spectra, such as that of the red phosphor of a crt display, depicted aside. = = = color temperature meter = = = photographers and cinematographers use information provided by these meters to decide what color balancing should be done to make different light sources appear to have the same color temperature. if the user enters the reference color temperature, the meter can calculate the mired difference between the measurement and the reference, enabling the user to choose a corrective color gel or photographic filter with the closest mired factor. internally the meter is typically a silicon photodiode tristimulus colorimeter. the correlated color temperature can be calculated from the tristimulus values by first calculating the chromaticity co - ordinates in the cie 1960 color space, then finding the closest
reflectometer ), which takes measurements in the visible region ( and a little beyond ) of a given color sample. if the custom of taking readings at 10 nanometer increments is followed, the visible light range of 400 β 700 nm will yield 31 readings. these readings are typically used to draw the sample ' s spectral reflectance curve ( how much it reflects, as a function of wavelength ) β the most accurate data that can be provided regarding its characteristics. the readings by themselves are typically not as useful as their tristimulus values, which can be converted into chromaticity co - ordinates and manipulated through color space transformations. for this purpose, a spectrocolorimeter may be used. a spectrocolorimeter is simply a spectrophotometer that can estimate tristimulus values by numerical integration ( of the color matching functions ' inner product with the illuminant ' s spectral power distribution ). one benefit of spectrocolorimeters over tristimulus colorimeters is that they do not have optical filters, which are subject to manufacturing variance, and have a fixed spectral transmittance curve β until they age. on the other hand, tristimulus colorimeters are purpose - built, cheaper, and easier to use. the cie ( international commission on illumination ) recommends using measurement intervals under 5 nm, even for smooth spectra. sparser measurements fail to accurately characterize spiky emission spectra, such as that of the red phosphor of a crt display, depicted aside. = = = color temperature meter = = = photographers and cinematographers use information provided by these meters to decide what color balancing should be done to make different light sources appear to have the same color temperature. if the user enters the reference color temperature, the meter can calculate the mired difference between the measurement and the reference, enabling the user to choose a corrective color gel or photographic filter with the closest mired factor. internally the meter is typically a silicon photodiode tristimulus colorimeter. the correlated color temperature can be calculated from the tristimulus values by first calculating the chromaticity co - ordinates in the cie 1960 color space, then finding the closest point on the planckian locus. = = see also = = color science photometry radiometry = = references = = = = further reading = = schanda, janos d. ( 1997 ). " colorimetry " ( pdf ). in casimer decusatis ( ed. ). handbook
1. quantized conductance 2. when 1 mode = 1 atom 3. photons and cooper pairs 4. thermal analogues 5. shot noise 6. solid - state electron optics 7. ultimate confinement 8. landauer formulas
single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division
Question: What is light that has only a single wavelength called?
A) monochromatic
B) fluorescent
C) primary
D) spectroscopy
|
A) monochromatic
|
Context:
, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase classifications ; however, some more exotic phases are incompatible with certain chemical properties. a phase is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature. physical properties, such as density and refractive index tend to fall within values characteristic of the phase
= = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids
set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature.
the chemistry of condensed phases ( solids, liquids, polymers ) and interfaces between different phases. neurochemistry is the study of neurochemicals ; including transmitters, peptides, proteins, lipids, sugars, and nucleic acids ; their interactions, and the roles they play in forming, maintaining, and modifying the nervous system. nuclear chemistry is the study of how subatomic particles come together and make nuclei. modern transmutation is a large component of nuclear chemistry, and the table of nuclides is an important result and tool for this field. in addition to medical applications, nuclear chemistry encompasses nuclear engineering which explores the topic of using nuclear power sources for generating energy. organic chemistry is the study of the structure, properties, composition, mechanisms, and reactions of organic compounds. an organic compound is defined as any compound based on a carbon skeleton. organic compounds can be classified, organized and understood in reactions by their functional groups, unit atoms or molecules that show characteristic chemical properties in a compound. physical chemistry is the study of the physical and fundamental basis of chemical systems and processes. in particular, the energetics and dynamics of such systems and processes are of interest to physical chemists. important areas of study include chemical thermodynamics, chemical kinetics, electrochemistry, statistical mechanics, spectroscopy, and more recently, astrochemistry. physical chemistry has large overlap with molecular physics. physical chemistry involves the use of infinitesimal calculus in deriving equations. it is usually associated with quantum chemistry and theoretical chemistry. physical chemistry is a distinct discipline from chemical physics, but again, there is very strong overlap. theoretical chemistry is the study of chemistry via fundamental theoretical reasoning ( usually within mathematics or physics ). in particular the application of quantum mechanics to chemistry is called quantum chemistry. since the end of the second world war, the development of computers has allowed a systematic development of computational chemistry, which is the art of developing and applying computer programs for solving chemical problems. theoretical chemistry has large overlap with ( theoretical and experimental ) condensed matter physics and molecular physics. other subdivisions include electrochemistry, femtochemistry, flavor chemistry, flow chemistry, immunohistochemistry, hydrogenation chemistry, mathematical chemistry, molecular mechanics, natural product chemistry, organometallic chemistry, petrochemistry, photochemistry, physical organic chemistry, polymer chemistry, radiochemistry, sonochemistry, supramolecular chemistry, synthetic chemistry, and many others. = = = interdisciplinary = = = interdisciplinary fields include ag
that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is
electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase
single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division
not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic (
other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit
. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world
Question: Combined substances are either compounds or what?
A) combinations
B) solutions
C) concentrations
D) mixtures
|
D) mixtures
|
Context:
prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as
other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle
and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell
organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the
more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation. other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes, including archaeols. archaea use more energy sources than eukaryotes : these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. salt - tolerant archaea ( the haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon, but unlike plants and cyanobacteria, no known species of archaea does both. archaea reproduce asexually by binary fission, fragmentation, or budding ; unlike bacteria, no known species of archaea form endospores. the first observed archaea were extremophiles, living in extreme environments, such as hot springs and salt lakes with no other organisms. improved molecular detection tools led to the discovery of archaea in almost every habitat, including soil, oceans, and marshlands. archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. archaea are a major part of earth ' s life. they are part of the microbiota of all organisms. in the human microbiome, they are important in the gut, mouth, and on the skin. their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles : carbon fixation ; nitrogen cycling ; organic compound turnover ; and maintaining microbial symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is
) of the mass of all organisms, with calcium, phosphorus, sulfur, sodium, chlorine, and magnesium constituting essentially all the remainder. different elements can combine to form compounds such as water, which is fundamental to life. biochemistry is the study of chemical processes within and relating to living organisms. molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o β h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds =
the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then
to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing, translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon, found mainly in prokaryotes and some lower eukaryotes ( e. g., caenorhabditis elegans ). in positive regulation of gene expression, the activator is the transcription factor that stimulates transcription when it binds to the sequence near or at the promoter. negative regulation occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due
conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes
process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing, translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon, found mainly in prokaryotes and some lower eukaryotes ( e. g., caenorhabditis elegans ). in positive regulation of gene expression, the activator is the transcription factor that stimulates transcription when it binds to the sequence near or at the promoter. negative regulation occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem
Question: What are the catalysts that occur naturally in living organisms and are primarily protein molecules?
A) enzymes
B) carbohydrates
C) hormones
D) acids
|
A) enzymes
|
Context:
and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell
it is also possible to define analogs in two - dimensional systems, which has received attention for its relevance to systems in biology. = = = bonding = = = atoms sticking together in molecules or crystals are said to be bonded with one another. a chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. more than simple attraction and repulsion, the energies and distributions characterize the availability of an electron to bond to another atom. the chemical bond can be a covalent bond, an ionic bond, a hydrogen bond or just because of van der waals force. each of these kinds of bonds is ascribed to some potential. these potentials create the interactions which hold atoms together in molecules or crystals. in many simple compounds, valence bond theory, the valence shell electron pair repulsion model ( vsepr ), and the concept of oxidation number can be used to explain molecular structure and composition. an ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non - metal atom, becoming a negatively charged anion. the two oppositely charged ions attract one another, and the ionic bond is the electrostatic force of attraction between them. for example, sodium ( na ), a metal, loses one electron to become an na + cation while chlorine ( cl ), a non - metal, gains this electron to become clβ. the ions are held together due to electrostatic attraction, and that compound sodium chloride ( nacl ), or common table salt, is formed. in a covalent bond, one or more pairs of valence electrons are shared by two atoms : the resulting electrically neutral group of bonded atoms is termed a molecule. atoms will share valence electrons in such a way as to create a noble gas electron configuration ( eight electrons in their outermost shell ) for each atom. atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule. however, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration ; these atoms are said to follow the duet rule, and in this way they are reaching the electron configuration of the noble gas helium, which has two electrons in its outer shell. similarly, theories from classical physics can be used to predict many ionic structures. with more complicated compounds, such as metal complexes
when the hydration shell of a protein is filled with at least 0. 6 gram of water per gram of protein, a significant anti - correlation between the vibrational free energy and the potential energy of energy - minimized conformers is observed. this means that low potential energy, well - hydrated, protein conformers tend to be more rigid than high - energy ones. on the other hand, in the case of casp target 624, when its hydration shell is filled, a significant average energy gap is observed between the crystal structure and the best conformers proposed during the prediction experiment, strongly suggesting that including explicit water molecules may help identifying unlikely conformers among good - looking ones.
water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of
interaction between tannin and bovine serum albumin ( bsa ) was examined by the fluorescent quenching. the process of elimination between bsa and tannin was the one of a stationary state, and the coupling coefficient was one. the working strength between the tannin and the beef serum was hydrophobic one.
to investigate the affinity of acetylated wood for organic liquids, yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. the acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and / or very slowly. on the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. the effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. the easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.
great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu shastra ', suggests a thorough understanding of materials engineering, hydrology, and sanitation. = = = = china = = = = the chinese made many first - known discoveries and developments. major technological contributions from china include the earliest known form of the binary code and epigenetic sequencing, early seismological detectors,
conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes
a number of recently discovered protein structures incorporate a rather unexpected structural feature : a knot in the polypeptide backbone. these knots are extremely rare, but their occurrence is likely connected to protein function in as yet unexplored fashion. our analysis of the complete protein data bank reveals several new knots which, along with previously discovered ones, can shed light on such connections. in particular, we identify the most complex knot discovered to date in human ubiquitin hydrolase, and suggest that its entangled topology protects it against unfolding and degradation by the proteasome. knots in proteins are typically preserved across species and sometimes even across kingdoms. however, we also identify a knot which only appears in some transcarbamylases while being absent in homologous proteins of similar structure. the emergence of the knot is accompanied by a shift in the enzymatic function of the protein. we suggest that the simple insertion of a short dna fragment into the gene may suffice to turn an unknotted into a knotted structure in this protein.
metric unit. in practice the mwco of the membrane should be at least 20 % lower than the molecular weight of the molecule that is to be separated. using track etched mica membranes beck and schultz demonstrated that hindered diffusion of molecules in pores can be described by the rankin equation. filter membranes are divided into four classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation ). ideally, even racemics can be enriched with a suitable membrane. when choosing membranes selectivity has priority over a high permeability, as low flows can easily be offset by increasing the filter surface with a modular structure. in gas phase filtration different deposition mechanisms are operative, so that particles having sizes below the
Question: Amino acid units in a protein are connected by what bonds?
A) peptide
B) covalent
C) acidic
D) ionic
|
A) peptide
|
Context:
cobalt nanowires with a diameter in the range between 50 to 100nm can be prepared as single - crystal wires with the easy axis ( the c - axis ) perpendicular to the wire axis. the competition between the crystal anisotropy and demagnetization energy frustrates the magnetization direction. a periodic modulation of the angle between m and the wire axis yields a lower energy.
the magnetization of superconducting samples is influenced by their porosity. in addition to structural modifications and improved cooling, the presence of pores also plays a role in trapping magnetic flux. pores have an impact on the irreversibility field, the full penetration field, and the remnant magnetization. generally, as porosity increases, these parameters tend to decrease. however, in the case of mesoscopic samples or samples with low critical current densities, increased porosity can actually enhance the trapping of magnetic flux.
torsion oscillations of the neutron star crust are landau damped by the alfven continuum in the bulk. for strong magnetic fields ( in magnetars ), undamped alfven eigenmodes appear.
the large scale pattern in the arrival directions of extragalactic cosmic rays that reach the earth is different from that of the flux arriving to the halo of the galaxy as a result of the propagation through the galactic magnetic field. two different effects are relevant in this process : deflections of trajectories and ( de ) acceleration by the electric field component due to the galactic rotation. the deflection of the cosmic ray trajectories makes the flux intensity arriving to the halo from some direction to appear reaching the earth from another direction. this applies to any intrinsic anisotropy in the extragalactic distribution or, even in the absence of intrinsic anisotropies, to the dipolar compton - getting anisotropy induced when the observer is moving with respect to the cosmic rays rest frame. for an observer moving with the solar system, cosmic rays traveling through far away regions of the galaxy also experience an electric force coming from the relative motion ( due to the rotation of the galaxy ) of the local system in which the field can be considered as being purely magnetic. this produces small changes in the particles momentum that can originate large scale anisotropies even for an isotropic extragalactic flux.
ultramagnetized neutron stars or magnetars are magnetically powered neutron stars. their strong magnetic fields dominate the physical processes in their crusts and their surroundings. the past few years have seen several advances in our theoretical and observational understanding of these objects. in spite of a surfeit of observations, their spectra are still poorly understood. i will discuss the emission from strongly magnetized condensed matter surfaces of neutron stars, recent advances in our expectations of the surface composition of magnetars and a model for the non - thermal emission from these objects.
the theory of paramagnetic limit of superconductivity in metals without inversion center is developed. there is in general the paramagnetic suppression of superconducting state. the effect is strongly dependent on field orientation in respect to crystal axes. the reason for this is that the degeneracy of electronic states with opposite momenta forming of cooper pairs is lifted by magnetic field but for some field directions this lifting can be small or even absent.
applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications. nickel - based superalloys like inconel are used in high - temperature applications such as gas turbines, turbochargers, pressure vessels, and heat exchangers. for extremely high temperatures, single crystal alloys are used to minimize creep. in modern electronics, high purity single crystal silicon is essential for metal - oxide - silicon transistors ( mos ) and integrated circuits. = = production = = in production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. this involves production of alloys, shaping, heat treatment and surface treatment of product. the task of the metallurgist is to achieve balance between material properties, such as cost, weight, strength, toughness, hardness, corrosion, fatigue resistance and performance in temperature extremes. to achieve this goal, the operating environment must be carefully considered. determining the hardness of the metal using the rockwell, vickers, and brinell hardness scales is a commonly used practice that helps better understand the metal ' s elasticity and plasticity for different applications and production processes. in a saltwater environment, most ferrous metals and some non - ferrous alloys corrode quickly. metals exposed to cold or cryogenic conditions may undergo a ductile to brittle transition and lose their toughness, becoming more brittle and prone to cracking. metals under continual cyclic loading can suffer from metal fatigue. metals under constant stress at elevated temperatures can creep. = = = metalworking processes = = = casting β molten metal is poured into a shaped mold. variants of casting include sand casting, investment
an alternative explanation of 1 / f - noise in manganites is suggested and discussed
an electron inside liquid helium forms a bubble of 17 \ aa in radius. in an external magnetic field, the two - level system of a spin 1 / 2 electron is ideal for the implementation of a qubit for quantum computing. the electron spin is well isolated from other thermal reservoirs so that the qubit should have very long coherence time. by confining a chain of single electron bubbles in a linear rf quadrupole trap, a multi - bit quantum register can be implemented. all spins in the register can be initialized to the ground state either by establishing thermal equilibrium at a temperature around 0. 1 k and at a magnetic field of 1 t or by sorting the bubbles to be loaded into the trap with magnetic separation. schemes are designed to address individual spins and to do two - qubit cnot operations between the neighboring spins. the final readout can be carried out through a measurement similar to the stern - gerlach experiment.
insights from stripe incommensurabilities and antiferromagnetic stability indicate that the magnetic moments of both host cu ^ 2 + ions and cu atoms from electron doping support the thermal hall effect in cuprates, whereas those of o atoms from hole doping oppose it.
Question: Magnetism is due to the movement of what within atoms?
A) protons
B) neutrons
C) electrons
D) magnetrons
|
C) electrons
|
Context:
current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river flow and tide needs to be modeled by computer or using scale models, moulded to the configuration of the estuary under consideration and reproducing in miniature the tidal ebb and flow and fresh - water discharge over a bed of fine sand, in which various lines of training walls can be successively inserted. the models should be capable of furnishing valuable indications of the respective effects and comparative merits of the different schemes proposed for works. = = see also = = bridge scour flood control = = references = = = = external links = = u. s. army corps of engineers β civil works program river morphology and stream restoration references
the value of excess charge in the kernel of massive body ( and the opposite in sign excess charge at the surface ) caused by the influence of gravitational forces is determined.
, lightning strikes, tornadoes, building fires, wildfires, and mass shootings disabling most of the system if not the entirety of it. geographic redundancy locations can be more than 621 miles ( 999 km ) continental, more than 62 miles apart and less than 93 miles ( 150 km ) apart, less than 62 miles apart, but not on the same campus, or different buildings that are more than 300 feet ( 91 m ) apart on the same campus. the following methods can reduce the risks of damage by a fire conflagration : large buildings at least 80 feet ( 24 m ) to 110 feet ( 34 m ) apart, but sometimes a minimum of 210 feet ( 64 m ) apart. : 9 high - rise buildings at least 82 feet ( 25 m ) apart : 12 open spaces clear of flammable vegetation within 200 feet ( 61 m ) on each side of objects different wings on the same building, in rooms that are separated by more than 300 feet ( 91 m ) different floors on the same wing of a building in rooms that are horizontally offset by a minimum of 70 feet ( 21 m ) with fire walls between the rooms that are on different floors two rooms separated by another room, leaving at least a 70 - foot gap between the two rooms there should be a minimum of two separated fire walls and on opposite sides of a corridor geographic redundancy is used by amazon web services ( aws ), google cloud platform ( gcp ), microsoft azure, netflix, dropbox, salesforce, linkedin, paypal, twitter, facebook, apple icloud, cisco meraki, and many others to provide geographic redundancy, high availability, fault tolerance and to ensure availability and reliability for their cloud services. as another example, to minimize risk of damage from severe windstorms or water damage, buildings can be located at least 2 miles ( 3. 2 km ) away from the shore, with an elevation of at least 5 feet ( 1. 5 m ) above sea level. for additional protection, they can be located at least 100 feet ( 30 m ) away from flood plain areas. = = functions of redundancy = = the two functions of redundancy are passive redundancy and active redundancy. both functions prevent performance decline from exceeding specification limits without human intervention using extra capacity. passive redundancy uses excess capacity to reduce the impact of component failures. one common form of passive redundancy is the extra strength of cabling and struts used in bridges.
and cell phones are a particular challenge because the stream of data can interfere with focusing and learning. although these technologies affect adults too, young people may be more influenced by it as their developing brains can easily become habituated to switching tasks and become unaccustomed to sustaining attention. too much information, coming too rapidly, can overwhelm thinking. technology is " rapidly and profoundly altering our brains. " high exposure levels stimulate brain cell alteration and release neurotransmitters, which causes the strengthening of some neural pathways and the weakening of others. this leads to heightened stress levels on the brain that, at first, boost energy levels, but, over time, actually augment memory, impair cognition, lead to depression, and alter the neural circuitry of the hippocampus, amygdala and prefrontal cortex. these are the brain regions that control mood and thought. if unchecked, the underlying structure of the brain could be altered. overstimulation due to technology may begin too young. when children are exposed before the age of seven, important developmental tasks may be delayed, and bad learning habits might develop, which " deprives children of the exploration and play that they need to develop. " media psychology is an emerging specialty field that embraces electronic devices and the sensory behaviors occurring from the use of educational technology in learning. = = = sociocultural criticism = = = according to lai, " the learning environment is a complex system where the interplay and interactions of many things impact the outcome of learning. " when technology is brought into an educational setting, the pedagogical setting changes in that technology - driven teaching can change the entire meaning of an activity without adequate research validation. if technology monopolizes an activity, students can begin to develop the sense that " life would scarcely be thinkable without technology. " leo marx considered the word " technology " itself as problematic, susceptible to reification and " phantom objectivity ", which conceals its fundamental nature as something that is only valuable insofar as it benefits the human condition. technology ultimately comes down to affecting the relations between people, but this notion is obfuscated when technology is treated as an abstract notion devoid of good and evil. langdon winner makes a similar point by arguing that the underdevelopment of the philosophy of technology leaves us with an overly simplistic reduction in our discourse to the supposedly dichotomous notions of the " making " versus the " uses " of new technologies and that a narrow focus on " use
##lling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caissons ( sometimes called pressurized caissons ), which penetrate soft mud, are bottomless boxes sealed at the top and filled with compressed air to keep water and mud out at depth. an airlock allows access to the chamber. workers, called sandhogs in american english, move mud and rock debris ( called
##ediment to up - stream navigation, and there are generally variations in water level, and when the discharge becomes small in the dry season. it is impossible to maintain a sufficient depth of water in the low - water channel. the possibility to secure uniformity of depth in a river by lowering the shoals obstructing the channel depends on the nature of the shoals. a soft shoal in the bed of a river is due to deposit from a diminution in velocity of flow, produced by a reduction in fall and by a widening of the channel, or to a loss in concentration of the scour of the main current in passing over from one concave bank to the next on the opposite side. the lowering of such a shoal by dredging merely effects a temporary deepening, for it soon forms again from the causes which produced it. the removal, moreover, of the rocky obstructions at rapids, though increasing the depth and equalizing the flow at these places, produces a lowering of the river above the rapids by facilitating the efflux, which may result in the appearance of fresh shoals at the low stage of the river. where, however, narrow rocky reefs or other hard shoals stretch across the bottom of a river and present obstacles to the erosion by the current of the soft materials forming the bed of the river above and below, their removal may result in permanent improvement by enabling the river to deepen its bed by natural scour. the capability of a river to provide a waterway for navigation during the summer or throughout the dry season depends on the depth that can be secured in the channel at the lowest stage. the problem in the dry season is the small discharge and deficiency in scour during this period. a typical solution is to restrict the width of the low - water channel, concentrate all of the flow in it, and also to fix its position so that it is scoured out every year by the floods which follow the deepest part of the bed along the line of the strongest current. this can be effected by closing subsidiary low - water channels with dikes across them, and narrowing the channel at the low stage by low - dipping cross dikes extending from the river banks down the slope and pointing slightly up - stream so as to direct the water flowing over them into a central channel. = = estuarine works = = the needs of navigation may also require that a stable, continuous, navigable channel is prolonged from the navigable river to deep water at the mouth of the estuary. the interaction of river
from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. the size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it. the rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. when two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. the fall available in a section of a river approximately corresponds to the slope of the country it traverses ; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge. the irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. in tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. in fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from may to october and from november to april in the northern hemisphere respectively ; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. the only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers ; their
and child health in boston, said of the digital generation, " their brains are rewarded not for staying on task, but for jumping to the next thing. the worry is we ' re raising a generation of kids in front of screens whose brains are going to be wired differently. " students have always faced distractions ; computers and cell phones are a particular challenge because the stream of data can interfere with focusing and learning. although these technologies affect adults too, young people may be more influenced by it as their developing brains can easily become habituated to switching tasks and become unaccustomed to sustaining attention. too much information, coming too rapidly, can overwhelm thinking. technology is " rapidly and profoundly altering our brains. " high exposure levels stimulate brain cell alteration and release neurotransmitters, which causes the strengthening of some neural pathways and the weakening of others. this leads to heightened stress levels on the brain that, at first, boost energy levels, but, over time, actually augment memory, impair cognition, lead to depression, and alter the neural circuitry of the hippocampus, amygdala and prefrontal cortex. these are the brain regions that control mood and thought. if unchecked, the underlying structure of the brain could be altered. overstimulation due to technology may begin too young. when children are exposed before the age of seven, important developmental tasks may be delayed, and bad learning habits might develop, which " deprives children of the exploration and play that they need to develop. " media psychology is an emerging specialty field that embraces electronic devices and the sensory behaviors occurring from the use of educational technology in learning. = = = sociocultural criticism = = = according to lai, " the learning environment is a complex system where the interplay and interactions of many things impact the outcome of learning. " when technology is brought into an educational setting, the pedagogical setting changes in that technology - driven teaching can change the entire meaning of an activity without adequate research validation. if technology monopolizes an activity, students can begin to develop the sense that " life would scarcely be thinkable without technology. " leo marx considered the word " technology " itself as problematic, susceptible to reification and " phantom objectivity ", which conceals its fundamental nature as something that is only valuable insofar as it benefits the human condition. technology ultimately comes down to affecting the relations between people, but this notion is obfuscated when technology is treated as an abstract notion devoid of
be the more significant to modern soil theory than fallou ' s. previously, soil had been considered a product of chemical transformations of rocks, a dead substrate from which plants derive nutritious elements. soil and bedrock were in fact equated. dokuchaev considers the soil as a natural body having its own genesis and its own history of development, a body with complex and multiform processes taking place within it. the soil is considered as different from bedrock. the latter becomes soil under the influence of a series of soil - formation factors ( climate, vegetation, country, relief and age ). according to him, soil should be called the " daily " or outward horizons of rocks regardless of the type ; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. a 1914 encyclopedic definition : " the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks ". serves to illustrate the historic view of soil which persisted from the 19th century. dokuchaev ' s late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes. a corollary concept is that soil without a living component is simply a part of earth ' s outer layer. further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. the term is popularly applied to the material on the surface of the earth ' s moon and mars, a usage acceptable within a portion of the scientific community. accurate to this modern understanding of soil is nikiforoff ' s 1959 definition of soil as the " excited skin of the sub aerial part of the earth ' s crust ". = = areas of practice = = academically, soil scientists tend to be drawn to one of five areas of specialization : microbiology, pedology, edaphology, physics, or chemistry. yet the work specifics are very much dictated by the challenges facing our civilization ' s desire to sustain the land that supports it, and the distinctions between the sub - disciplines of soil science often blur in the process. soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines. one exciting effort drawing in soil scientists in the u. s. as of 2004 is the soil quality initiative. central to the soil quality initiative is developing indices of soil health and then monitoring them in a way
. this, he argued, would have been more persuasive and would have produced less controversy. the use of poetic imagery based on the concepts of the macrocosm and microcosm, " as above so below " to decide meaning such as edward w. james ' example of " mars above is red, so mars below means blood and war ", is a false cause fallacy. : 26 many astrologers claim that astrology is scientific. if one were to attempt to try to explain it scientifically, there are only four fundamental forces ( conventionally ), limiting the choice of possible natural mechanisms. : 65 some astrologers have proposed conventional causal agents such as electromagnetism and gravity. the strength of these forces drops off with distance. : 65 scientists reject these proposed mechanisms as implausible since, for example, the magnetic field, when measured from earth, of a large but distant planet such as jupiter is far smaller than that produced by ordinary household appliances. astronomer phil plait noted that in terms of magnitude, the sun is the only object with an electromagnetic field of note, but astrology isn ' t based just off the sun alone. : 65 while astrologers could try to suggest a fifth force, this is inconsistent with the trends in physics with the unification of electromagnetism and the weak force into the electroweak force. if the astrologer insisted on being inconsistent with the current understanding and evidential basis of physics, that would be an extraordinary claim. : 65 it would also be inconsistent with the other forces which drop off with distance. : 65 if distance is irrelevant, then, logically, all objects in space should be taken into account. : 66 carl jung sought to invoke synchronicity, the claim that two events have some sort of acausal connection, to explain the lack of statistically significant results on astrology from a single study he conducted. however, synchronicity itself is considered neither testable nor falsifiable. the study was subsequently heavily criticised for its non - random sample and its use of statistics and also its lack of consistency with astrology. = = psychology = = psychological studies have not found any robust relationship between astrological signs and life outcomes. for example, a study showed that zodiac signs are no more effective than random numbers in predicting subjective well - being and quality of life. it has also been shown that confirmation bias is a psychological factor that contributes to belief in astrology. : 344 : 180 β 181 :
Question: Ground subsidence is a consequences of the overuse of what?
A) topsoil
B) plants
C) chemicals
D) groundwater
|
D) groundwater
|
Context:
unitary recordings in freely - moving pulse weakly electric fish suggest spike timing encoding of electrosensory signals
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
, airline baggage tags and are implanted under the skin in pets and livestock ( microchip implant ) and even people. privacy concerns have been addressed with tags that use encrypted signals and authenticate the reader before responding. passive tags use 125 β 134 khz, 13, 900 mhz and 2. 4 and 5 ghz ism bands and have a short range. active tags, powered by a battery, are larger but can transmit a stronger signal, giving them a range of hundreds of meters. submarine communication β when submerged, submarines are cut off from all ordinary radio communication with their military command authorities by the conductive seawater. however radio waves of low enough frequencies, in the vlf ( 30 to 3 khz ) and elf ( below 3 khz ) bands are able to penetrate seawater. navies operate large shore transmitting stations with power output in the megawatt range to transmit encrypted messages to their submarines in the world ' s oceans. due to the small bandwidth, these systems cannot transmit voice, only text messages at a slow data rate. the communication channel is one - way, since the long antennas needed to transmit vlf or elf waves cannot fit on a submarine. vlf transmitters use miles long wire antennas like umbrella antennas. a few nations use elf transmitters operating around 80 hz, which can communicate with submarines at lower depths. these use even larger antennas called ground dipoles, consisting of two ground ( earth ) connections 23 β 60 km ( 14 β 37 miles ) apart, linked by overhead transmission lines to a power plant transmitter. = = = space communication = = = this is radio communication between a spacecraft and an earth - based ground station, or another spacecraft. communication with spacecraft involves the longest transmission distances of any radio links, up to billions of kilometers for interplanetary spacecraft. in order to receive the weak signals from distant spacecraft, satellite ground stations use large parabolic " dish " antennas up to 25 metres ( 82 ft ) in diameter and extremely sensitive receivers. high frequencies in the microwave band are used, since microwaves pass through the ionosphere without refraction, and at microwave frequencies the high - gain antennas needed to focus the radio energy into a narrow beam pointed at the receiver are small and take up a minimum of space in a satellite. portions of the uhf, l, c, s, ku and ka band are allocated for space communication. a radio link that transmits data from the earth ' s surface to a spacecraft is called an uplink, while a link that transmits data from the spacecraft
onset of electro - chemical corrosion. similar problems are encountered in coastal and offshore structures. = = = anti - fouling = = = anti - fouling is the process of eliminating obstructive organisms from essential components of seawater systems. depending on the nature and location of marine growth, this process is performed in a number of different ways : marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. electro - chlorination involves running high electrical current through sea water, altering the water ' s chemical composition to create sodium hypochlorite, purging any bio - matter. an electrolytic method of anti - fouling involves running electrical current through two anodes ( scardino, 2009 ). these anodes typically consist of copper and aluminum ( or alternatively, iron ). the first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio - matter. the second metal, aluminum, coats the inside of the pipes to prevent corrosion. other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship ' s hull. this growth interferes with the smoothness and uniformity of the ship ' s hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel - efficient. marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms. = = = pollution control = = = = = = = sulfur emission = = = = the burning of marine fuels releases harmful pollutants into the atmosphere. ships burn marine diesel in addition to heavy fuel oil. heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. however, heavy fuel oil may only be burned in international waters due to the pollution created. it is commercially advantageous due to the cost effectiveness compared to other marine fuels. it is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 ( smith, 2018 ). = = = = oil and water discharge = = = = water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm ( parts per million ) of oil to be discharged. water is tested
cortisol, corticosterone and aldosterone activate full - length glucocorticoid receptor ( gr ) from elephant shark, a cartilaginous fish belonging to the oldest group of jawed vertebrates. activation by aldosterone a mineralocorticoid, indicates partial divergence of elephant shark gr from the mr. progesterone activates elephant shark mr, but not elephant shark gr. progesterone inhibits steroid binding to elephant shark gr, but not to human gr. deletion of the n - terminal domain ( ntd ) from elephant shark gr ( truncated gr ) reduced the response to corticosteroids, while truncated and full - length elephant shark mr had similar responses to corticosteroids. chimeras of elephant shark gr ntd fused to mr dbd + lbd had increased activation by corticosteroids and progesterone compared to full - length elephant shark mr. elephant shark mr ntd fused to gr dbd + lbd had similar activation as full - length elephant shark mr, indicating that activation of human gr by the ntd evolved early in gr divergence from the mr.
, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six
subsea engineering and the ability to detect, track and destroy submarines ( anti - submarine warfare ) required the parallel development of a host of marine scientific instrumentation and sensors. visible light is not transferred far underwater, so the medium for transmission of data is primarily acoustic. high - frequency sound is used to measure the depth of the ocean, determine the nature of the seafloor, and detect submerged objects. the higher the frequency, the higher the definition of the data that is returned. sound navigation and ranging or sonar was developed during the first world war to detect submarines, and has been greatly refined through to the present day. submarines similarly use sonar equipment to detect and target other submarines and surface ships, and to detect submerged obstacles such as seamounts that pose a navigational obstacle. simple echo - sounders point straight down and can give an accurate reading of ocean depth ( or look up at the underside of sea - ice ). more advanced echo sounders use a fan - shaped beam or sound, or multiple beams to derive highly detailed images of the ocean floor. high power systems can penetrate the soil and seabed rocks to give information about the geology of the seafloor, and are widely used in geophysics for the discovery of hydrocarbons, or for engineering survey. for close - range underwater communications, optical transmission is possible, mainly using blue lasers. these have a high bandwidth compared with acoustic systems, but the range is usually only a few tens of metres, and ideally at night. as well as acoustic communications and navigation, sensors have been developed to measure ocean parameters such as temperature, salinity, oxygen levels and other properties including nitrate levels, levels of trace chemicals and environmental dna. the industry trend has been towards smaller, more accurate and more affordable systems so that they can be purchased and used by university departments and small companies as well as large corporations, research organisations and governments. the sensors and instruments are fitted to autonomous and remotely - operated systems as well as ships, and are enabling these systems to take on tasks that hitherto required an expensive human - crewed platform. manufacture of marine sensors and instruments mainly takes place in asia, europe and north america. products are advertised in specialist journals, and through trade shows such as oceanology international and ocean business which help raise awareness of the products. = = = environmental engineering = = = in every coastal and offshore project, environmental sustainability is an important consideration for the preservation of ocean ecosystems and natural resources. instances in which marine engineers benefit from knowledge of environmental engineering include creation of fisheries, clean
aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. many fungi are also saprobes, feeding on dead organic matter, making them important decomposers in ecological systems. animals are multicellular eukaryotes. with few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β of which around 1 million are insects β but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β pieces of dna that can move between cells β while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e.
beam reveals the object ' s location. since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received " echo ", the range to the target can be calculated. the targets are often displayed graphically on a map display called a radar screen. doppler radar can measure a moving object ' s velocity, by measuring the change in frequency of the return radio waves due to the doppler effect. radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. parabolic ( dish ) antennas are widely used. in most radars the transmitting antenna also serves as the receiving antenna ; this is called a monostatic radar. a radar which uses separate transmitting and receiving antennas is called a bistatic radar. airport surveillance radar β in aviation, radar is the main tool of air traffic control. a rotating dish antenna sweeps a vertical fan - shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as " blips " of light on a display called a radar screen. airport radar operates at 2. 7 β 2. 9 ghz in the microwave s band. in large airports the radar image is displayed on multiple screens in an operations room called the tracon ( terminal radar approach control ), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation. secondary surveillance radar β aircraft carry radar transponders, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. this causes the aircraft to show up more strongly on the radar screen. the radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. since radar cannot measure an aircraft ' s altitude with any accuracy, the transponder also transmits back the aircraft ' s altitude measured by its altimeter, and an id number identifying the aircraft, which is displayed on the radar screen. electronic countermeasures ( ecm ) β military defensive electronic systems designed to degrade enemy radar effectiveness, or deceive it with false information, to prevent enemies from locating local forces. it often consists of powerful microwave transmitters that can mimic enemy radar signals to create false target indications on the enemy radar screens. marine radar β an s or x band radar on ships used to detect nearby ships and obstructions like bridges. a rotating antenna sweeps a vertical
sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times,
Question: What organ do most fish have that is used to detect movement and vibration in the surrounding water?
A) lateral line
B) eye
C) operculum
D) nares
|
A) lateral line
|
Context:
= = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling
remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the infestation of insects and rodents, contributing to the spread of diseases. some of the most common types of solid waste management include ; landfills, vermicomposting, composting, recycling, and incineration. however, a major barrier for solid waste management practices is the high costs associated with recycling and the risks of creating more pollution. = = = e - waste recycling = = = the recycling of electronic waste ( e - waste ) has seen significant technological advancements due to increasing environmental concerns and the growing volume of electronic product disposals. traditional e - waste recycling methods, which often involve manual disassemb
##nts from the air to reduce the potential adverse effects on humans and the environment. the process of air purification may be performed using methods such as mechanical filtration, ionization, activated carbon adsorption, photocatalytic oxidation, and ultraviolet light germicidal irradiation. = = = sewage treatment = = = = = = environmental remediation = = = environmental remediation is the process through which contaminants or pollutants in soil, water and other media are removed to improve environmental quality. the main focus is the reduction of hazardous substances within the environment. some of the areas involved in environmental remediation include ; soil contamination, hazardous waste, groundwater contamination, oil, gas and chemical spills. there are three most common types of environmental remediation. these include soil, water, and sediment remediation. soil remediation consists of removing contaminants in soil, as these pose great risks to humans and the ecosystem. some examples of this are heavy metals, pesticides, and radioactive materials. depending on the contaminant the remedial processes can be physical, chemical, thermal, or biological. water remediation is one of the most important considering water is an essential natural resource. depending on the source of water there will be different contaminants. surface water contamination mainly consists of agricultural, animal, and industrial waste, as well as acid mine drainage. there has been a rise in the need for water remediation due to the increased discharge of industrial waste, leading to a demand for sustainable water solutions. the market for water remediation is expected to consistently increase to $ 19. 6 billion by 2030. sediment remediation consists of removing contaminated sediments. is it almost similar to soil remediation except it is often more sophisticated as it involves additional contaminants. to reduce the contaminants it is likely to use physical, chemical, and biological processes that help with source control, but if these processes are executed correctly, there ' s a risk of contamination resurfacing. = = = solid waste management = = = solid waste management is the purification, consumption, reuse, disposal, and treatment of solid waste that is undertaken by the government or the ruling bodies of a city / town. it refers to the collection, treatment, and disposal of non - soluble, solid waste material. solid waste is associated with both industrial, institutional, commercial and residential activities. hazardous solid waste, when improperly disposed can encourage the
the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a reaction to proceed more rapidly without being consumed by it β by reducing the amount of activation energy needed to convert reactants into products. enzymes also allow the regulation of the rate of a metabolic reaction, for example in response to changes in the cell ' s environment or to signals from other cells. = = = cellular respiration = = = cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate ( atp ), and then release waste products. the reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy. respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. the overall reaction occurs in a series of biochemical steps, some of which are redox reactions. although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. sugar in the form of glucose is the main nutrient used by animal and plant cells in respiration. cellular respiration involving oxygen is called aerobic respiration, which has four stages : glycolysis, citric acid cycle ( or krebs cycle ), electron transport chain, and oxidative phosphorylation. glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates, with two net molecules of atp being produced at the same time. each pyruvate is then
these tests are performed by techs without a medical degree, but the interpretation of these tests is done by a medical professional. diagnostic radiology is concerned with imaging of the body, e. g. by x - rays, x - ray computed tomography, ultrasonography, and nuclear magnetic resonance tomography. interventional radiologists can access areas in the body under imaging for an intervention or diagnostic sampling. nuclear medicine is concerned with studying human organ systems by administering radiolabelled substances ( radiopharmaceuticals ) to the body, which can then be imaged outside the body by a gamma camera or a pet scanner. each radiopharmaceutical consists of two parts : a tracer that is specific for the function under study ( e. g., neurotransmitter pathway, metabolic pathway, blood flow, or other ), and a radionuclide ( usually either a gamma - emitter or a positron emitter ). there is a degree of overlap between nuclear medicine and radiology, as evidenced by the emergence of combined devices such as the pet / ct scanner. pathology as a medical specialty is the branch of medicine that deals with the study of diseases and the morphologic, physiologic changes produced by them. as a diagnostic specialty, pathology can be considered the basis of modern scientific medical knowledge and plays a large role in evidence - based medicine. many modern molecular tests such as flow cytometry, polymerase chain reaction ( pcr ), immunohistochemistry, cytogenetics, gene rearrangements studies and fluorescent in situ hybridization ( fish ) fall within the territory of pathology. = = = = other major specialties = = = = the following are some major medical specialties that do not directly fit into any of the above - mentioned groups : anesthesiology ( also known as anaesthetics ) : concerned with the perioperative management of the surgical patient. the anesthesiologist ' s role during surgery is to prevent derangement in the vital organs ' ( i. e. brain, heart, kidneys ) functions and postoperative pain. outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine. emergency medicine is concerned with the diagnosis and treatment of acute or life - threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies. family medicine, family
onset of electro - chemical corrosion. similar problems are encountered in coastal and offshore structures. = = = anti - fouling = = = anti - fouling is the process of eliminating obstructive organisms from essential components of seawater systems. depending on the nature and location of marine growth, this process is performed in a number of different ways : marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. electro - chlorination involves running high electrical current through sea water, altering the water ' s chemical composition to create sodium hypochlorite, purging any bio - matter. an electrolytic method of anti - fouling involves running electrical current through two anodes ( scardino, 2009 ). these anodes typically consist of copper and aluminum ( or alternatively, iron ). the first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio - matter. the second metal, aluminum, coats the inside of the pipes to prevent corrosion. other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship ' s hull. this growth interferes with the smoothness and uniformity of the ship ' s hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel - efficient. marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms. = = = pollution control = = = = = = = sulfur emission = = = = the burning of marine fuels releases harmful pollutants into the atmosphere. ships burn marine diesel in addition to heavy fuel oil. heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. however, heavy fuel oil may only be burned in international waters due to the pollution created. it is commercially advantageous due to the cost effectiveness compared to other marine fuels. it is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 ( smith, 2018 ). = = = = oil and water discharge = = = = water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm ( parts per million ) of oil to be discharged. water is tested
". = = extraction = = extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. in order to convert a metal oxide or sulphide to a purer metal, the ore must be reduced physically, chemically, or electrolytically. extractive metallurgists are interested in three primary streams : feed, concentrate ( metal oxide / sulphide ) and tailings ( waste ). after mining, large pieces of the ore feed are broken through crushing or grinding in order to obtain particles small enough, where each particle is either mostly valuable or mostly waste. concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products. mining may not be necessary, if the ore body and physical environment are conducive to leaching. leaching dissolves minerals in an ore body and results in an enriched solution. the solution is collected and processed to extract valuable metals. ore bodies often contain more than one valuable metal. tailings of a previous process may be used as a feed in another process to extract a secondary product from the original ore. additionally, a concentrate may contain more than one valuable metal. that concentrate would then be processed to separate the valuable metals into individual constituents. = = metal and its alloys = = much effort has been placed on understanding iron β carbon alloy system, which includes steels and cast irons. plain carbon steels ( those that contain essentially only carbon as an alloying element ) are used in low - cost, high - strength applications, where neither weight nor corrosion are a major concern. cast irons, including ductile iron, are also part of the iron - carbon system. iron - manganese - chromium alloys ( hadfield - type steels ) are also used in non - magnetic applications such as directional drilling. other engineering metals include aluminium, chromium, copper, magnesium, nickel, titanium, zinc, and silicon. these metals are most often used as alloys with the noted exception of silicon, which is not a metal. other forms include : stainless steel, particularly austenitic stainless steels, galvanized steel, nickel alloys, titanium alloys, or occasionally copper alloys are used, where resistance to corrosion is important. aluminium alloys and magnesium alloys are commonly used, when a lightweight strong part is required such as in automotive and aerospace applications. copper - nickel alloys ( such as monel ) are used in highly corrosive environments and for non - magnetic applications
use less energy than conventional thermal separation processes such as distillation, sublimation or crystallization. the separation process is purely physical and both fractions ( permeate and retentate ) can be obtained as useful products. cold separation using membrane technology is widely used in the food technology, biotechnology and pharmaceutical industries. furthermore, using membranes enables separations to take place that would be impossible using thermal separation methods. for example, it is impossible to separate the constituents of azeotropic liquids or solutes which form isomorphic crystals by distillation or recrystallization but such separations can be achieved using membrane technology. depending on the type of membrane, the selective separation of certain individual substances or substance mixtures is possible. important technical applications include the production of drinking water by reverse osmosis. in waste water treatment, membrane technology is becoming increasingly important. ultra / microfiltration can be very effective in removing colloids and macromolecules from wastewater. this is needed if wastewater is discharged into sensitive waters especially those designated for contact water sports and recreation. about half of the market is in medical applications such as artificial kidneys to remove toxic substances by hemodialysis and as artificial lung for bubble - free supply of oxygen in the blood. the importance of membrane technology is growing in the field of environmental protection ( nano - mem - pro ippc database ). even in modern energy recovery techniques, membranes are increasingly used, for example in fuel cells and in osmotic power plants. = = mass transfer = = two basic models can be distinguished for mass transfer through the membrane : the solution - diffusion model and the hydrodynamic model. in real membranes, these two transport mechanisms certainly occur side by side, especially during ultra - filtration. = = = solution - diffusion model = = = in the solution - diffusion model, transport occurs only by diffusion. the component that needs to be transported must first be dissolved in the membrane. the general approach of the solution - diffusion model is to assume that the chemical potential of the feed and permeate fluids are in equilibrium with the adjacent membrane surfaces such that appropriate expressions for the chemical potential in the fluid and membrane phases can be equated at the solution - membrane interface. this principle is more important for dense membranes without natural pores such as those used for reverse osmosis and in fuel cells. during the filtration process a boundary layer forms on the membrane. this concentration gradient is created by molecules which cannot pass through the membrane. the
you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ),
often called physicians. these terms, internist or physician ( in the narrow sense, common outside north america ), generally exclude practitioners of gynecology and obstetrics, pathology, psychiatry, and especially surgery and its subspecialities. because their patients are often seriously ill or require complex investigations, internists do much of their work in hospitals. formerly, many internists were not subspecialized ; such general physicians would see any complex nonsurgical problem ; this style of practice has become much less common. in modern urban practice, most internists are subspecialists : that is, they generally limit their medical practice to problems of one organ system or to one particular area of medical knowledge. for example, gastroenterologists and nephrologists specialize respectively in diseases of the gut and the kidneys. in the commonwealth of nations and some other countries, specialist pediatricians and geriatricians are also described as specialist physicians ( or internists ) who have subspecialized by age of patient rather than by organ system. elsewhere, especially in north america, general pediatrics is often a form of primary care. there are many subspecialities ( or subdisciplines ) of internal medicine : training in internal medicine ( as opposed to surgical training ), varies considerably across the world : see the articles on medical education for more details. in north america, it requires at least three years of residency training after medical school, which can then be followed by a one - to three - year fellowship in the subspecialties listed above. in general, resident work hours in medicine are less than those in surgery, averaging about 60 hours per week in the us. this difference does not apply in the uk where all doctors are now required by law to work less than 48 hours per week on average. = = = = diagnostic specialties = = = = clinical laboratory sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. in the united states, these services are supervised by a pathologist. the personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. subspecialties include transfusion medicine, cellular pathology, clinical chemistry, hematology, clinical microbiology and clinical immunology. clinical neurophysiology is concerned with testing the physiology or function of the central and peripheral aspects of
Question: Excretion is the process of removing excess water and wastes from the body. what are the main organs of excretion?
A) brains
B) lungs
C) eyes
D) kidneys
|
D) kidneys
|
Context:
covid - 19, also known as novel coronavirus disease, is a highly contagious disease that first surfaced in china in late 2019. sars - cov - 2 is a coronavirus that belongs to the vast family of coronaviruses that causes this disease. the sickness originally appeared in wuhan, china in december 2019 and quickly spread to over 213 nations, becoming a global pandemic. fever, dry cough, and tiredness are the most typical covid - 19 symptoms. aches, pains, and difficulty breathing are some of the other symptoms that patients may face. the majority of these symptoms are indicators of respiratory infections and lung abnormalities, which radiologists can identify. chest x - rays of covid - 19 patients seem similar, with patchy and hazy lungs rather than clear and healthy lungs. on x - rays, however, pneumonia and other chronic lung disorders can resemble covid - 19. trained radiologists must be able to distinguish between covid - 19 and an illness that is less contagious. our ai algorithm seeks to give doctors a quantitative estimate of the risk of deterioration. so that patients at high risk of deterioration can be triaged and treated efficiently. the method could be particularly useful in pandemic hotspots when screening upon admission is important for allocating limited resources like hospital beds.
a pomeron phenomenon remains a mystery. a short review of the experimental situation in diffractive physics and an account of some spectacular manifestations of the pomeron are given.
erroneous submission in violation of copyright removed by arxiv admin.
include the manufacturing of drugs, creation of model animals that mimic human conditions and gene therapy. one of the earliest uses of genetic engineering was to mass - produce human insulin in bacteria. this application has now been applied to human growth hormones, follicle stimulating hormones ( for treating infertility ), human albumin, monoclonal antibodies, antihemophilic factors, vaccines and many other drugs. mouse hybridomas, cells fused together to create monoclonal antibodies, have been adapted through genetic engineering to create human monoclonal antibodies. genetically engineered viruses are being developed that can still confer immunity, but lack the infectious sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous,
monoclonal antibodies, antihemophilic factors, vaccines and many other drugs. mouse hybridomas, cells fused together to create monoclonal antibodies, have been adapted through genetic engineering to create human monoclonal antibodies. genetically engineered viruses are being developed that can still confer immunity, but lack the infectious sequences. genetic engineering is also used to create animal models of human diseases. genetically modified mice are the most common genetically engineered animal model. they have been used to study and model cancer ( the oncomouse ), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and parkinson disease. potential cures can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of
we construct examples of variational bivectors that are not poissonian.
there is a profound analogy between inhomogeneous magnetoelectric effect in multiferroics and flexoelectric effect in liquid crystals. this similarity gives rise to the flexomagnetoelectric polarization induced by spin modulation. the theoretical estimations of flexomagnetoelectric polarization agree with the value of jumps of polarization in magnetoelectric dependences ( ~ 20muc / m ^ 2 ) observed at spin cycloid suppression at critical magnetic field 200koe.
##fer the validity of a general statement from a number of specific instances or infer the truth of a theory from a series of successful tests. for example, a chicken observes that each morning the farmer comes and gives it food, for hundreds of days in a row. the chicken may therefore use inductive reasoning to infer that the farmer will bring food every morning. however, one morning, the farmer comes and kills the chicken. how is scientific reasoning more trustworthy than the chicken ' s reasoning? one approach is to acknowledge that induction cannot achieve certainty, but observing more instances of a general statement can at least make the general statement more probable. so the chicken would be right to conclude from all those mornings that it is likely the farmer will come with food again the next morning, even if it cannot be certain. however, there remain difficult questions about the process of interpreting any given evidence into a probability that the general statement is true. one way out of these particular difficulties is to declare that all beliefs about scientific theories are subjective, or personal, and correct reasoning is merely about how evidence should change one ' s subjective beliefs over time. some argue that what scientists do is not inductive reasoning at all but rather abductive reasoning, or inference to the best explanation. in this account, science is not about generalizing specific instances but rather about hypothesizing explanations for what is observed. as discussed in the previous section, it is not always clear what is meant by the " best explanation ". ockham ' s razor, which counsels choosing the simplest available explanation, thus plays an important role in some versions of this approach. to return to the example of the chicken, would it be simpler to suppose that the farmer cares about it and will continue taking care of it indefinitely or that the farmer is fattening it up for slaughter? philosophers have tried to make this heuristic principle more precise regarding theoretical parsimony or other measures. yet, although various measures of simplicity have been brought forward as potential candidates, it is generally accepted that there is no such thing as a theory - independent measure of simplicity. in other words, there appear to be as many different measures of simplicity as there are theories themselves, and the task of choosing between measures of simplicity appears to be every bit as problematic as the job of choosing between theories. nicholas maxwell has argued for some decades that unity rather than simplicity is the key non - empirical factor in influencing the choice of theory in science, persistent preference for unified theories in effect committing science to the
let $ p \ in ( 1, n ) $. if $ \ omega $ is a convex domain in $ \ rn $ whose $ p $ - capacitary potential function $ u $ is $ ( 1 - p ) / ( n - p ) $ - concave ( i. e. $ u ^ { ( 1 - p ) / ( n - p ) } $ is convex ), then $ \ omega $ is a ball.
i consider a simple model where the graviton mass and the cosmological constant depend on a scalar field with appropriate couplings and i calculate the graviton propagator and the resulting effective potential for the scalar field in order to examine issues of stability and symmetry breaking.
Question: What is caused by the same virus that causes chicken pox?
A) boils
B) mumps
C) blisters
D) shingles
|
D) shingles
|
Context:
are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its
the physio - chemical properties of nafion 115 and a composite nafion 115 / zirconium phosphate ( 25wt % ) membranes are compared. the composite membrane takes up more water than nafion at the same water activity. however, the proton conductivity of the composite membrane is slightly less than that for nafion 115. small angle x - ray scattering shows the hydrophilic phase domains in the composite membrane are spaced further apart than in nafion 115, and the composite membrane shows less restructuring with water uptake. despite the lower proton conductivity of the composite membranes they display better fuel cell performance than nafion 115 when the fuel cell is operated under - humidified. it is suggested that the composite membrane has a greater rigidity that accounts for its improved fuel cell performance.
a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectrometry facilitates screening and ranking of clones which bind to the native ( non - denaturated ) forms of antigen proteins. flow cytometry screening has been used for primary screening of a large number ( ~ 1000 ) of hybridoma clones recognizing the native form of the antigen on the cell surface. in the flow cytometry - based screening, a mixture of antigen - negative cells and antigen - positive cells is used as the antigen to be tested for each hybridoma supernatant sample. the b cell that produces the desired antibodies can be cloned to produce many identical daughter clones. supplemental media containing interleukin - 6 ( such as briclone ) are essential for this step. once a hybridoma colony is established, it will continually grow in culture medium like rpmi - 1640 ( with antibiotics and fetal bovine serum ) and produce antibodies. multiwell plates are used initially to grow the hybridomas, and after selection, are changed to larger tissue culture flasks. this maintains the well - being of the hybridomas and provides enough cells for cryopreservation and supernatant for subsequent investigations. the culture supernatant can yield 1 to 60 ΞΌg / ml of monoclonal antibody, which is maintained at - 20 Β°c or lower until required. by using culture supernatant or a purified immunoglobulin preparation, further analysis of a potential monoclonal antibody producing hybridoma can be made in terms of reactivity, specificity, and cross - reactivity. = = applications = = the use of mono
problem - solving and inventive skills. such an ai is referred to as seed ai because if an ai were created with engineering capabilities that matched or surpassed those of its human creators, it would have the potential to autonomously improve its own software and hardware to design an even more capable machine, which could repeat the process in turn. this recursive self - improvement could accelerate, potentially allowing enormous qualitative change before any upper limits imposed by the laws of physics or theoretical computation set in. it is speculated that over many iterations, such an ai would far surpass human cognitive abilities. i. j. good speculated that superhuman intelligence might bring about an intelligence explosion : let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines ; there would then unquestionably be an ' intelligence explosion ', and the intelligence of man would be left far behind. thus the first ultraintelligent machine is the last invention that man need ever make, provided that the machine is docile enough to tell us how to keep it under control. one version of intelligence explosion is where computing power approaches infinity in a finite amount of time. in this version, once ais are performing the research to improve themselves, speed doubles e. g. after 2 years, then 1 year, then 6 months, then 3 months, then 1. 5 months, etc., where the infinite sum of the doubling periods is 4 years. unless prevented by physical limits of computation and time quantization, this process would achieve infinite computing power in 4 years, properly earning the name " singularity " for the final state. this form of intelligence explosion is described in yudkowsky ( 1996 ). = = emergence of superintelligence = = a superintelligence, hyperintelligence, or superhuman intelligence is a hypothetical agent that possesses intelligence far surpassing that of the brightest and most gifted human minds. " superintelligence " may also refer to the form or degree of intelligence possessed by such an agent. john von neumann, vernor vinge and ray kurzweil define the concept in terms of the technological creation of super intelligence, arguing that it is difficult or impossible for present - day humans to predict what human beings ' lives would be like in a post - singularity world. the related concept " speed superintelligence " describes an
be only either positive, negative, or zero. the word " sign " is also often used to indicate binary aspects of mathematical or scientific objects, such as odd and even ( sign of a permutation ), sense of orientation or rotation ( cw / ccw ), one sided limits, and other concepts described in Β§ other meanings below. = = sign of a number = = numbers from various number systems, like integers, rationals, complex numbers, quaternions, octonions,... may have multiple attributes, that fix certain properties of a number. a number system that bears the structure of an ordered ring contains a unique number that when added with any number leaves the latter unchanged. this unique number is known as the system ' s additive identity element. for example, the integers has the structure of an ordered ring. this number is generally denoted as 0. because of the total order in this ring, there are numbers greater than zero, called the positive numbers. another property required for a ring to be ordered is that, for each positive number, there exists a unique corresponding number less than 0 whose sum with the original positive number is 0. these numbers less than 0 are called the negative numbers. the numbers in each such pair are their respective additive inverses. this attribute of a number, being exclusively either zero ( 0 ), positive ( + ), or negative ( β ), is called its sign, and is often encoded to the real numbers 0, 1, and β1, respectively ( similar to the way the sign function is defined ). since rational and real numbers are also ordered rings ( in fact ordered fields ), the sign attribute also applies to these number systems. when a minus sign is used in between two numbers, it represents the binary operation of subtraction. when a minus sign is written before a single number, it represents the unary operation of yielding the additive inverse ( sometimes called negation ) of the operand. abstractly then, the difference of two number is the sum of the minuend with the additive inverse of the subtrahend. while 0 is its own additive inverse ( β0 = 0 ), the additive inverse of a positive number is negative, and the additive inverse of a negative number is positive. a double application of this operation is written as β ( β3 ) = 3. the plus sign is predominantly used in algebra to denote the binary operation of addition, and only rarely to emphasize the positivity of an expression. in common numeral notation (
the hun tian theory ), or as being without substance while the heavenly bodies float freely ( the hsuan yeh theory ), the earth was at all times flat, although perhaps bulging up slightly. the model of an egg was often used by chinese astronomers such as zhang heng ( 78 β 139 ad ) to describe the heavens as spherical : the heavens are like a hen ' s egg and as round as a crossbow bullet ; the earth is like the yolk of the egg, and lies in the centre. this analogy with a curved egg led some modern historians, notably joseph needham, to conjecture that chinese astronomers were, after all, aware of the earth ' s sphericity. the egg reference, however, was rather meant to clarify the relative position of the flat earth to the heavens : in a passage of zhang heng ' s cosmogony not translated by needham, zhang himself says : " heaven takes its body from the yang, so it is round and in motion. earth takes its body from the yin, so it is flat and quiescent ". the point of the egg analogy is simply to stress that the earth is completely enclosed by heaven, rather than merely covered from above as the kai tian describes. chinese astronomers, many of them brilliant men by any standards, continued to think in flat - earth terms until the seventeenth century ; this surprising fact might be the starting - point for a re - examination of the apparent facility with which the idea of a spherical earth found acceptance in fifth - century bc greece. further examples cited by needham supposed to demonstrate dissenting voices from the ancient chinese consensus actually refer without exception to the earth being square, not to it being flat. accordingly, the 13th - century scholar li ye, who argued that the movements of the round heaven would be hindered by a square earth, did not advocate a spherical earth, but rather that its edge should be rounded off so as to be circular. however, needham disagrees, affirming that li ye believed the earth to be spherical, similar in shape to the heavens but much smaller. this was preconceived by the 4th - century scholar yu xi, who argued for the infinity of outer space surrounding the earth and that the latter could be either square or round, in accordance to the shape of the heavens. when chinese geographers of the 17th century, influenced by european cartography and astronomy, showed the earth as a sphere that could be circumnavigated by sailing around the globe, they
. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support
, airline baggage tags and are implanted under the skin in pets and livestock ( microchip implant ) and even people. privacy concerns have been addressed with tags that use encrypted signals and authenticate the reader before responding. passive tags use 125 β 134 khz, 13, 900 mhz and 2. 4 and 5 ghz ism bands and have a short range. active tags, powered by a battery, are larger but can transmit a stronger signal, giving them a range of hundreds of meters. submarine communication β when submerged, submarines are cut off from all ordinary radio communication with their military command authorities by the conductive seawater. however radio waves of low enough frequencies, in the vlf ( 30 to 3 khz ) and elf ( below 3 khz ) bands are able to penetrate seawater. navies operate large shore transmitting stations with power output in the megawatt range to transmit encrypted messages to their submarines in the world ' s oceans. due to the small bandwidth, these systems cannot transmit voice, only text messages at a slow data rate. the communication channel is one - way, since the long antennas needed to transmit vlf or elf waves cannot fit on a submarine. vlf transmitters use miles long wire antennas like umbrella antennas. a few nations use elf transmitters operating around 80 hz, which can communicate with submarines at lower depths. these use even larger antennas called ground dipoles, consisting of two ground ( earth ) connections 23 β 60 km ( 14 β 37 miles ) apart, linked by overhead transmission lines to a power plant transmitter. = = = space communication = = = this is radio communication between a spacecraft and an earth - based ground station, or another spacecraft. communication with spacecraft involves the longest transmission distances of any radio links, up to billions of kilometers for interplanetary spacecraft. in order to receive the weak signals from distant spacecraft, satellite ground stations use large parabolic " dish " antennas up to 25 metres ( 82 ft ) in diameter and extremely sensitive receivers. high frequencies in the microwave band are used, since microwaves pass through the ionosphere without refraction, and at microwave frequencies the high - gain antennas needed to focus the radio energy into a narrow beam pointed at the receiver are small and take up a minimum of space in a satellite. portions of the uhf, l, c, s, ku and ka band are allocated for space communication. a radio link that transmits data from the earth ' s surface to a spacecraft is called an uplink, while a link that transmits data from the spacecraft
. considered as a ring, however, it has only the trivial automorphism. generally speaking, negation is an automorphism of any abelian group, but not of a ring or field. a group automorphism is a group isomorphism from a group to itself. informally, it is a permutation of the group elements such that the structure remains unchanged. for every group g there is a natural group homomorphism g β aut ( g ) whose image is the group inn ( g ) of inner automorphisms and whose kernel is the center of g. thus, if g has trivial center it can be embedded into its own automorphism group. in linear algebra, an endomorphism of a vector space v is a linear operator v β v. an automorphism is an invertible linear operator on v. when the vector space is finite - dimensional, the automorphism group of v is the same as the general linear group, gl ( v ). a field automorphism is a bijective ring homomorphism from a field to itself. in the cases of the rational numbers ( q ) and the real numbers ( r ) there are no nontrivial field automorphisms. some subfields of r have nontrivial field automorphisms, which however do not extend to all of r ( because they cannot preserve the property of a number having a square root in r ). in the case of the complex numbers, c, there is a unique nontrivial automorphism that sends r into r : complex conjugation, but there are infinitely ( uncountably ) many " wild " automorphisms ( assuming the axiom of choice ). field automorphisms are important to the theory of field extensions, in particular galois extensions. in the case of a galois extension l / k the subgroup of all automorphisms of l fixing k pointwise is called the galois group of the extension. = = symmetry in representation theory = = = = = symmetry in quantum mechanics : bosons and fermions = = = in quantum mechanics, bosons have representatives that are symmetric under permutation operators, and fermions have antisymmetric representatives. this implies the pauli exclusion principle for fermions. in fact, the pauli exclusion principle with a single - valued many - particle wavefunction is equivalent to requiring the wavefunction to be antisymmetric. an antisymmetric two - particle state is represented as a sum of states in which one particle
Β§ other meanings below. = = sign of a number = = numbers from various number systems, like integers, rationals, complex numbers, quaternions, octonions,... may have multiple attributes, that fix certain properties of a number. a number system that bears the structure of an ordered ring contains a unique number that when added with any number leaves the latter unchanged. this unique number is known as the system ' s additive identity element. for example, the integers has the structure of an ordered ring. this number is generally denoted as 0. because of the total order in this ring, there are numbers greater than zero, called the positive numbers. another property required for a ring to be ordered is that, for each positive number, there exists a unique corresponding number less than 0 whose sum with the original positive number is 0. these numbers less than 0 are called the negative numbers. the numbers in each such pair are their respective additive inverses. this attribute of a number, being exclusively either zero ( 0 ), positive ( + ), or negative ( β ), is called its sign, and is often encoded to the real numbers 0, 1, and β1, respectively ( similar to the way the sign function is defined ). since rational and real numbers are also ordered rings ( in fact ordered fields ), the sign attribute also applies to these number systems. when a minus sign is used in between two numbers, it represents the binary operation of subtraction. when a minus sign is written before a single number, it represents the unary operation of yielding the additive inverse ( sometimes called negation ) of the operand. abstractly then, the difference of two number is the sum of the minuend with the additive inverse of the subtrahend. while 0 is its own additive inverse ( β0 = 0 ), the additive inverse of a positive number is negative, and the additive inverse of a negative number is positive. a double application of this operation is written as β ( β3 ) = 3. the plus sign is predominantly used in algebra to denote the binary operation of addition, and only rarely to emphasize the positivity of an expression. in common numeral notation ( used in arithmetic and elsewhere ), the sign of a number is often made explicit by placing a plus or a minus sign before the number. for example, + 3 denotes " positive three ", and β3 denotes " negative three " ( algebraically : the additive inverse of 3 ). without specific context ( or when
Question: Amniotes are animals that produce eggs with membranes possessing what property, which allowed them to lay eggs on land?
A) absorbent
B) waterproof
C) heavy
D) hard
|
B) waterproof
|
Context:
another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o β h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen
nuclear jets containing relativistic ` ` hot ' ' particles close to the central engine cool dramatically by producing high energy radiation. the radiative dissipation is similar to the famous compton drag acting upon ` ` cold ' ' thermal particles in a relativistic bulk flow. highly relativistic protons induce anisotropic showers raining electromagnetic power down onto the putative accretion disk. thus, the radiative signature of hot hadronic jets is x - ray irradiation of cold thermal matter. the synchrotron radio emission of the accelerated electrons is self - absorbed due to the strong magnetic fields close to the magnetic nozzle.
the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o β h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such
the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. = = = water = = = life arose from the earth ' s first ocean, which formed some 3. 8 billion years ago. since then, water continues to be the most abundant molecule in every organism. water is important to life because it is an effective solvent, capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution. once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. in terms of its molecular structure, water is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen ( h ) atoms to one oxygen ( o ) atom ( h2o ). because the o β h bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a
which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first, heat removes water. this step needs careful control, as rapid heating causes cracks and surface defects. the dried part is smaller than the green part, and is brittle, necessitating careful handling, since a small impact will cause crumbling and breaking. sintering is where the dried parts pass through a controlled heating process, and the oxides are chemically changed to cause bonding and densification. the fired part will be smaller than the dried part. = = forming methods = = ceramic forming techniques include throwing, slipcasting, tape casting, freeze - casting, injection molding, dry pressing, isostatic pressing, hot isostatic pressing
temperature changes up to 1000 Β°c. = = processing steps = = the traditional ceramic process generally follows this sequence : milling β batching β mixing β forming β drying β firing β assembly. milling is the process by which materials are reduced from a large size to a smaller size. milling may involve breaking up cemented material ( in which case individual particles retain their shape ) or pulverization ( which involves grinding the particles themselves to a smaller size ). milling is generally done by mechanical means, including attrition ( which is particle - to - particle collision that results in agglomerate break up or particle shearing ), compression ( which applies a forces that results in fracturing ), and impact ( which employs a milling medium or the particles themselves to cause fracturing ). attrition milling equipment includes the wet scrubber ( also called the planetary mill or wet attrition mill ), which has paddles in water creating vortexes in which the material collides and break up. compression mills include the jaw crusher, roller crusher and cone crusher. impact mills include the ball mill, which has media that tumble and fracture the material, or the resonantacoustic mixer. shaft impactors cause particle - to particle attrition and compression. batching is the process of weighing the oxides according to recipes, and preparing them for mixing and drying. mixing occurs after batching and is performed with various machines, such as dry mixing ribbon mixers ( a type of cement mixer ), resonantacoustic mixers, mueller mixers, and pug mills. wet mixing generally involves the same equipment. forming is making the mixed material into shapes, ranging from toilet bowls to spark plug insulators. forming can involve : ( 1 ) extrusion, such as extruding " slugs " to make bricks, ( 2 ) pressing to make shaped parts, ( 3 ) slip casting, as in making toilet bowls, wash basins and ornamentals like ceramic statues. forming produces a " green " part, ready for drying. green parts are soft, pliable, and over time will lose shape. handling the green product will change its shape. for example, a green brick can be " squeezed ", and after squeezing it will stay that way. drying is removing the water or binder from the formed material. spray drying is widely used to prepare powder for pressing operations. other dryers are tunnel dryers and periodic dryers. controlled heat is applied in this two - stage process. first,
##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids,
10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is
, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. this polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive. surface tension results from the cohesive force due to the attraction between molecules at the surface of the liquid. water is also adhesive as it is able to adhere to the surface of any polar or charged non - water molecules. water is denser as a liquid than it is as a solid ( or ice ). this unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six
or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for
Question: When water particles become hot enough to overcome the force of attraction between them, what happens to the water?
A) it freezes
B) it evaporates
C) it pools
D) it boils
|
D) it boils
|
Context:
safety security assurance framework applied to two standards iec 61508 and common criteria - iso 15408
the hun tian theory ), or as being without substance while the heavenly bodies float freely ( the hsuan yeh theory ), the earth was at all times flat, although perhaps bulging up slightly. the model of an egg was often used by chinese astronomers such as zhang heng ( 78 β 139 ad ) to describe the heavens as spherical : the heavens are like a hen ' s egg and as round as a crossbow bullet ; the earth is like the yolk of the egg, and lies in the centre. this analogy with a curved egg led some modern historians, notably joseph needham, to conjecture that chinese astronomers were, after all, aware of the earth ' s sphericity. the egg reference, however, was rather meant to clarify the relative position of the flat earth to the heavens : in a passage of zhang heng ' s cosmogony not translated by needham, zhang himself says : " heaven takes its body from the yang, so it is round and in motion. earth takes its body from the yin, so it is flat and quiescent ". the point of the egg analogy is simply to stress that the earth is completely enclosed by heaven, rather than merely covered from above as the kai tian describes. chinese astronomers, many of them brilliant men by any standards, continued to think in flat - earth terms until the seventeenth century ; this surprising fact might be the starting - point for a re - examination of the apparent facility with which the idea of a spherical earth found acceptance in fifth - century bc greece. further examples cited by needham supposed to demonstrate dissenting voices from the ancient chinese consensus actually refer without exception to the earth being square, not to it being flat. accordingly, the 13th - century scholar li ye, who argued that the movements of the round heaven would be hindered by a square earth, did not advocate a spherical earth, but rather that its edge should be rounded off so as to be circular. however, needham disagrees, affirming that li ye believed the earth to be spherical, similar in shape to the heavens but much smaller. this was preconceived by the 4th - century scholar yu xi, who argued for the infinity of outer space surrounding the earth and that the latter could be either square or round, in accordance to the shape of the heavens. when chinese geographers of the 17th century, influenced by european cartography and astronomy, showed the earth as a sphere that could be circumnavigated by sailing around the globe, they
acid rain. climatology studies the climate and climate change. the troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up earth ' s atmosphere. 75 % of the mass in the atmosphere is located within the troposphere, the lowest layer. in all, the atmosphere is made up of about 78. 0 % nitrogen, 20. 9 % oxygen, and 0. 92 % argon, and small amounts of other gases including co2 and water vapor. water vapor and co2 cause the earth ' s atmosphere to catch and hold the sun ' s energy through the greenhouse effect. this makes earth ' s surface warm enough for liquid water and life. in addition to trapping heat, the atmosphere also protects living organisms by shielding the earth ' s surface from cosmic rays. the magnetic field β created by the internal motions of the core β produces the magnetosphere which protects earth ' s atmosphere from the solar wind. as the earth is 4. 5 billion years old, it would have lost its atmosphere by now if there were no protective magnetosphere. = = earth ' s magnetic field = = = = hydrology = = hydrology is the study of the hydrosphere and the movement of water on earth. it emphasizes the study of how humans use and interact with freshwater supplies. study of water ' s movement is closely related to geomorphology and other branches of earth science. applied hydrology involves engineering to maintain aquatic environments and distribute water supplies. subdisciplines of hydrology include oceanography, hydrogeology, ecohydrology, and glaciology. oceanography is the study of oceans. hydrogeology is the study of groundwater. it includes the mapping of groundwater supplies and the analysis of groundwater contaminants. applied hydrogeology seeks to prevent contamination of groundwater and mineral springs and make it available as drinking water. the earliest exploitation of groundwater resources dates back to 3000 bc, and hydrogeology as a science was developed by hydrologists beginning in the 17th century. ecohydrology is the study of ecological systems in the hydrosphere. it can be divided into the physical study of aquatic ecosystems and the biological study of aquatic organisms. ecohydrology includes the effects that organisms and aquatic ecosystems have on one another as well as how these ecoystems are affected by humans. glaciology is the study of the cryosphere, including glaciers and coverage of the earth by ice and snow. concerns of gla
to sustain innovation and safeguard national security, the u. s. must strengthen domestic pathways to computing phds by engaging talented undergraduates early - before they are committed to industry - with research experiences, mentorship, and financial support for graduate studies.
the characteristics of the star with the " prescribed " density distribution $ \ rho = \ rho _ c [ 1 - ( r / r ) ^ \ alpha ] $ are analytically studied.
we calculate the transmission coefficient for electrons passing through the helically shaped potential barrier, which can be, for example, produced by dna molecules.
water, plaster and epoxy β most of which will be eliminated upon firing. a ceramic - filled epoxy, such as martyte, is sometimes used to protect structural steel under conditions of rocket exhaust impingement. these forming techniques are well known for providing tools and other components with dimensional stability, surface quality, high ( near theoretical ) density and microstructural uniformity. the increasing use and diversity of specialty forms of ceramics adds to the diversity of process technologies to be used. thus, reinforcing fibers and filaments are mainly made by polymer, sol - gel, or cvd processes, but melt processing also has applicability. the most widely used specialty form is layered structures, with tape casting for electronic substrates and packages being pre - eminent. photo - lithography is of increasing interest for precise patterning of conductors and other components for such packaging. tape casting or forming processes are also of increasing interest for other applications, ranging from open structures such as fuel cells to ceramic composites. the other major layer structure is coating, where thermal spraying is very important, but chemical and physical vapor deposition and chemical ( e. g., sol - gel and polymer pyrolysis ) methods are all seeing increased use. besides open structures from formed tape, extruded structures, such as honeycomb catalyst supports, and highly porous structures, including various foams, for example, reticulated foam, are of increasing use. densification of consolidated powder bodies continues to be achieved predominantly by ( pressureless ) sintering. however, the use of pressure sintering by hot pressing is increasing, especially for non - oxides and parts of simple shapes where higher quality ( mainly microstructural homogeneity ) is needed, and larger size or multiple parts per pressing can be an advantage. = = the sintering process = = the principles of sintering - based methods are simple ( " sinter " has roots in the english " cinder " ). the firing is done at a temperature below the melting point of the ceramic. once a roughly - held - together object called a " green body " is made, it is fired in a kiln, where atomic and molecular diffusion processes give rise to significant changes in the primary microstructural features. this includes the gradual elimination of porosity, which is typically accompanied by a net shrinkage and overall densification of the component. thus, the pores in the object may close up, resulting in a denser product of
describe the heavens as spherical : the heavens are like a hen ' s egg and as round as a crossbow bullet ; the earth is like the yolk of the egg, and lies in the centre. this analogy with a curved egg led some modern historians, notably joseph needham, to conjecture that chinese astronomers were, after all, aware of the earth ' s sphericity. the egg reference, however, was rather meant to clarify the relative position of the flat earth to the heavens : in a passage of zhang heng ' s cosmogony not translated by needham, zhang himself says : " heaven takes its body from the yang, so it is round and in motion. earth takes its body from the yin, so it is flat and quiescent ". the point of the egg analogy is simply to stress that the earth is completely enclosed by heaven, rather than merely covered from above as the kai tian describes. chinese astronomers, many of them brilliant men by any standards, continued to think in flat - earth terms until the seventeenth century ; this surprising fact might be the starting - point for a re - examination of the apparent facility with which the idea of a spherical earth found acceptance in fifth - century bc greece. further examples cited by needham supposed to demonstrate dissenting voices from the ancient chinese consensus actually refer without exception to the earth being square, not to it being flat. accordingly, the 13th - century scholar li ye, who argued that the movements of the round heaven would be hindered by a square earth, did not advocate a spherical earth, but rather that its edge should be rounded off so as to be circular. however, needham disagrees, affirming that li ye believed the earth to be spherical, similar in shape to the heavens but much smaller. this was preconceived by the 4th - century scholar yu xi, who argued for the infinity of outer space surrounding the earth and that the latter could be either square or round, in accordance to the shape of the heavens. when chinese geographers of the 17th century, influenced by european cartography and astronomy, showed the earth as a sphere that could be circumnavigated by sailing around the globe, they did so with formulaic terminology previously used by zhang heng to describe the spherical shape of the sun and moon ( i. e. that they were as round as a crossbow bullet ). as noted in the book huainanzi, in the 2nd century bc, chinese astronomers effectively inverted eratosthenes ' calculation
spherical layer of ideal gas is considered. the layer is in the sphere ' s gravity field. existence possibility of steady 1d stationary currents of this layer is studied. this problem simulates zonal winds taking place in the atmospheres of some planets such as venus, titan, jupiter and saturn.
let $ p \ in ( 1, n ) $. if $ \ omega $ is a convex domain in $ \ rn $ whose $ p $ - capacitary potential function $ u $ is $ ( 1 - p ) / ( n - p ) $ - concave ( i. e. $ u ^ { ( 1 - p ) / ( n - p ) } $ is convex ), then $ \ omega $ is a ball.
Question: In mammals, what layer protects the egg?
A) zona pellucida
B) Germinal Disc
C) Choloza
D) Albumen
|
A) zona pellucida
|
Context:
consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. over 1. 5 million living animal species have been described β of which around 1 million are insects β but it has been estimated there are over 7 million animal species in total. they have complex interactions with each other and their environments, forming intricate food webs. = = = viruses = = = viruses are submicroscopic infectious agents that replicate inside the cells of organisms. viruses infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea. more than 6, 000 virus species have been described in detail. viruses are found in almost every ecosystem on earth and are the most numerous type of biological entity. the origins of viruses in the evolutionary history of life are unclear : some may have evolved from plasmids β pieces of dna that can move between cells β while others may have evolved from bacteria. in evolution, viruses are an important means of horizontal gene transfer, which increases genetic diversity in a way analogous to sexual reproduction. because viruses possess some but not all characteristics of life, they have been described as " organisms at the edge of life ", and as self - replicators. = = ecology = = ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment. = = = ecosystems = = = the community of living ( biotic ) organisms in conjunction with the nonliving ( abiotic ) components ( e. g., water, light, radiation, temperature, humidity, atmosphere, acidity, and soil ) of their environment is called an ecosystem. these biotic and abiotic components are linked together through nutrient cycles and energy flows. energy from the sun enters the system through photosynthesis and is incorporated into plant tissue. by feeding on plants and on one another, animals move matter and energy through the system. they also influence the quantity of plant and microbial biomass present. by breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and other microbes. = = = populations = = = a population is the group of organisms of the same species that occupies an area and reproduce from generation to generation. population size can be estimated by multiplying population density by the area or volume. the carrying capacity of an environment
erroneous submission in violation of copyright removed by arxiv admin.
covid - 19, also known as novel coronavirus disease, is a highly contagious disease that first surfaced in china in late 2019. sars - cov - 2 is a coronavirus that belongs to the vast family of coronaviruses that causes this disease. the sickness originally appeared in wuhan, china in december 2019 and quickly spread to over 213 nations, becoming a global pandemic. fever, dry cough, and tiredness are the most typical covid - 19 symptoms. aches, pains, and difficulty breathing are some of the other symptoms that patients may face. the majority of these symptoms are indicators of respiratory infections and lung abnormalities, which radiologists can identify. chest x - rays of covid - 19 patients seem similar, with patchy and hazy lungs rather than clear and healthy lungs. on x - rays, however, pneumonia and other chronic lung disorders can resemble covid - 19. trained radiologists must be able to distinguish between covid - 19 and an illness that is less contagious. our ai algorithm seeks to give doctors a quantitative estimate of the risk of deterioration. so that patients at high risk of deterioration can be triaged and treated efficiently. the method could be particularly useful in pandemic hotspots when screening upon admission is important for allocating limited resources like hospital beds.
qualitative evidence suggests that heresy within the medieval catholic church had many of the characteristics of a scale - free network. from the perspective of the church, heresy can be seen as a virus. the virus persisted for long periods of time, breaking out again even when the church believed it to have been eradicated. a principal mechanism of heresy was through a small number of individuals with very large numbers of social contacts. initial attempts by the inquisition to suppress the virus by general persecution, or even mass slaughtering, of populations thought to harbour the " disease " failed. gradually, however, the inquisition learned about the nature of the social networks by which heresy both spread and persisted. eventually, a policy of targeting key individuals was implemented, which proved to be much more successful.
with the lambda virus. as well as inserting genes, the process can be used to remove, or " knock out ", genes. the new dna can be inserted randomly, or targeted to a specific part of the genome. an organism that is generated through genetic engineering is considered to be genetically modified ( gm ) and the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products. the rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. this has been present since its early use ; the first field trials were destroyed by anti - gm activists. although there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, critics consider gm food safety a leading concern. gene flow, impact on non - target organisms, control of the food supply and intellectual property rights have also been raised as potential
the aftermath of influenza infection is determined by a complex set of host - pathogen interactions, where genomic variability on both viral and host sides influences the final outcome. although there exists large body of literature describing influenza virus variability, only a very small fraction covers the issue of host variance. the goal of this review is to explore the variability of host genes responsible for host - pathogen interactions, paying particular attention to genes responsible for the presence of sialylated glycans in the host endothelial membrane, mucus, genes used by viral immune escape mechanisms, and genes particularly expressed after vaccination, since they are more likely to have a direct influence on the infection outcome.
multi - strain diseases are diseases that consist of several strains, or serotypes. the serotypes may interact by antibody - dependent enhancement ( ade ), in which infection with a single serotype is asymptomatic, but infection with a second serotype leads to serious illness accompanied by greater infectivity. it has been observed from serotype data of dengue hemorrhagic fever that outbreaks of the four serotypes occur asynchronously. both autonomous and seasonally driven outbreaks were studied in a model containing ade. for sufficiently small ade, the number of infectives of each serotype synchronizes, with outbreaks occurring in phase. when the ade increases past a threshold, the system becomes chaotic, and infectives of each serotype desynchronize. however, certain groupings of the primary and second ary infectives remain synchronized even in the chaotic regime.
. additionally, there are more sophisticated vr systems being developed which allow the user to use their entire body in their recovery. it also has sophisticated sensors that would allow medical professionals to collect data on muscle engagement and tension. it uses electrical impedance tomography, a form of noninvasive imaging to view muscle usage. another concern is the lack of major funding by big companies and the government into the field. many of these vr sets are off the shelf items, and not properly made for medical use. external add - ones are usually 3d printed or made from spare parts from other electronics. this lack of support means that patients who want to try this method have to be technically savvy, which is unlikely as many ailments only appear later in life. additionally, certain parts of vr like haptic feedback and tracking are still not advanced enough to be used reliably in a medical setting. another issue is the amount of vr devices that are available for purchase. while this does increase the options available, the differences between vr systems could impact patient recovery. the vast number of vr devices also makes it difficult for medical professionals to give and interpret information, as they might not have had practice with the specific model, which could lead to faulty advice being given out. = = = applications = = = currently other applications within healthcare are being explored, such as : applications for monitoring of glucose, alcohol, and lactate or blood oxygen, breath monitoring, heartbeat, heart rate and its variability, electromyography ( emg ), electrocardiogram ( ecg ) and electroencephalogram ( eeg ), body temperature, pressure ( e. g. in shoes ), sweat rate or sweat loss, levels of uric acid and ions β e. g. for preventing fatigue or injuries or for optimizing training patterns, including via " human - integrated electronics " forecasting changes in mood, stress, and health measuring blood alcohol content measuring athletic performance monitoring how sick the user is detecting early signs of infection long - term monitoring of patients with heart and circulatory problems that records an electrocardiogram and is self - moistening health risk assessment applications, including measures of frailty and risks of age - dependent diseases automatic documentation of care activities days - long continuous imaging of diverse organs via a wearable bioadhesive stretchable high - resolution ultrasound imaging patch or e. g. a wearable continuous heart ultrasound imager. ( potential novel diagnostic and monitoring tools ) sleep tracking cortisol monitoring for measuring stress measuring relaxation or alert
disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool for natural scientists, with the creation of transgenic organisms one of the most important tools for analysis of gene function. genes and other genetic information from a wide range of organisms can be inserted into bacteria for storage and modification, creating genetically modified bacteria in the process. bacteria are cheap, easy to grow, clonal, multiply quickly, relatively easy to transform and can be stored at - 80 Β°c almost indefinitely. once a gene is isolated it can be stored inside the bacteria providing an unlimited supply for research. organisms are genetically engineered to discover the functions of certain genes. this could be the effect on the phenotype of the organism, where
and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool for natural scientists, with the creation of transgenic organisms one of the most important tools for analysis of gene function. genes and other genetic information from a wide range of organisms can be inserted into bacteria for storage and modification, creating genetically modified bacteria in the process. bacteria are cheap, easy to grow, clonal, multiply quickly, relatively easy to transform and can be stored at - 80 Β°c almost indefinitely. once a gene is isolated it can be stored inside the bacteria providing an unlimited supply for research. organisms are genetically engineered to discover the functions of certain genes. this could be the effect on the phenotype of the organism, where the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy
Question: After infecting a host, what inactive state do some viruses enter?
A) immunity
B) potency
C) latency
D) hibernation
|
C) latency
|
Context:
listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves,
) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation ( listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice,
a legal document in many jurisdictions. follow - ups may be shorter but follow the same general procedure, and specialists follow a similar process. the diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue. the components of the medical interview and encounter are : chief complaint ( cc ) : the reason for the current medical visit. these are the symptoms. they are in the patient ' s own words and are recorded along with the duration of each one. also called chief concern or presenting complaint. current activity : occupation, hobbies, what the patient actually does. family history ( fh ) : listing of diseases in the family that may impact the patient. a family tree is sometimes used. history of present illness ( hpi ) : the chronological order of events of symptoms and further clarification of each symptom. distinguishable from history of previous illness, often called past medical history ( pmh ). medical history comprises hpi and pmh. medications ( rx ) : what drugs the patient takes including prescribed, over - the - counter, and home remedies, as well as alternative and herbal medicines or remedies. allergies are also recorded. past medical history ( pmh / pmhx ) : concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies. review of systems ( ros ) or systems inquiry : a set of additional questions to ask, which may be missed on hpi : a general enquiry ( have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc. ), followed by questions on the body ' s main organ systems ( heart, lungs, digestive tract, urinary tract, etc. ). social history ( sh ) : birthplace, residences, marital history, social and economic status, habits ( including diet, medications, tobacco, alcohol ). the physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. the healthcare provider uses sight, hearing, touch, and sometimes smell ( e. g., in infection, uremia, diabetic ketoacidosis ). four actions are the basis of physical examination : inspection, palpation ( feel ), percussion ( tap to determine resonance characteristics ), and auscultation (
in the old age, few people need special care if they are suffering from specific diseases as they can get stroke while they are in normal life routine. also patients of any age, who are not able to walk, need to be taken care of personally but for this, either they have to be in hospital or someone like nurse should be with them for better care. this is costly in terms of money and man power. a person is needed for 24x7 care of these people. to help in this aspect we purposes a vision based system which will take input from the patient and will provide information to the specified person, who is currently may not in the patient room. this will reduce the need of man power, also a continuous monitoring would not be needed. the system is using ms kinect for gesture detection for better accuracy and this system can be installed at home or hospital easily. the system provides gui for simple usage and gives visual and audio feedback to user. this system work on natural hand interaction and need no training before using and also no need to wear any glove or color strip.
and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool for natural scientists, with the creation of transgenic organisms one of the most important tools for analysis of gene function. genes and other genetic information from a wide range of organisms can be inserted into bacteria for storage and modification, creating genetically modified bacteria in the process. bacteria are cheap, easy to grow, clonal, multiply quickly, relatively easy to transform and can be stored at - 80 Β°c almost indefinitely. once a gene is isolated it can be stored inside the bacteria providing an unlimited supply for research. organisms are genetically engineered to discover the functions of certain genes. this could be the effect on the phenotype of the organism, where the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy
in mathematics, a degenerate case is a limiting case of a class of objects which appears to be qualitatively different from ( and usually simpler than ) the rest of the class ; " degeneracy " is the condition of being a degenerate case. the definitions of many classes of composite or structured objects often implicitly include inequalities. for example, the angles and the side lengths of a triangle are supposed to be positive. the limiting cases, where one or several of these inequalities become equalities, are degeneracies. in the case of triangles, one has a degenerate triangle if at least one side length or angle is zero. equivalently, it becomes a " line segment ". often, the degenerate cases are the exceptional cases where changes to the usual dimension or the cardinality of the object ( or of some part of it ) occur. for example, a triangle is an object of dimension two, and a degenerate triangle is contained in a line, which makes its dimension one. this is similar to the case of a circle, whose dimension shrinks from two to zero as it degenerates into a point. as another example, the solution set of a system of equations that depends on parameters generally has a fixed cardinality and dimension, but cardinality and / or dimension may be different for some exceptional values, called degenerate cases. in such a degenerate case, the solution set is said to be degenerate. for some classes of composite objects, the degenerate cases depend on the properties that are specifically studied. in particular, the class of objects may often be defined or characterized by systems of equations. in most scenarios, a given class of objects may be defined by several different systems of equations, and these different systems of equations may lead to different degenerate cases, while characterizing the same non - degenerate cases. this may be the reason for which there is no general definition of degeneracy, despite the fact that the concept is widely used and defined ( if needed ) in each specific situation. a degenerate case thus has special features which makes it non - generic, or a special case. however, not all non - generic or special cases are degenerate. for example, right triangles, isosceles triangles and equilateral triangles are non - generic and non - degenerate. in fact, degenerate cases often correspond to singularities, either in the object
pushes more individuals to take part. wearable technology also helps with chronic disease development and monitoring physical activity in terms of context. for example, according to the american journal of preventive medicine, " wearables can be used across different chronic disease trajectory phases ( e. g., pre - versus post - surgery ) and linked to medical record data to obtain granular data on how activity frequency, intensity, and duration changes over the disease course and with different treatments. " wearable technology can be beneficial in tracking and helping analyze data in terms of how one is performing as time goes on, and how they may be performing with different changes in their diet, workout routine, or sleep patterns. also, not only can wearable technology be helpful in measuring results pre and post surgery, but it can also help measure results as someone may be rehabbing from a chronic disease such as cancer, or heart disease, etc. wearable technology has the potential to create new and improved ways of how we look at health and how we actually interpret that science behind our health. it can propel us into higher levels of medicine and has already made a significant impact on how patients are diagnosed, treated, and rehabbed over time. however, extensive research still needs to be continued on how to properly integrate wearable technology into health care and how to best utilize it. in addition, despite the reaping benefits of wearable technology, a lot of research still also has to be completed in order to start transitioning wearable technology towards very sick high risk patients. = = = sense - making of the data = = = while wearables can collect data in aggregate form, most of them are limited in their ability to analyze or make conclusions based on this data β thus, most are used primarily for general health information. end user perception of how their data is used plays a big role in how such datasets can be fully optimized. exception include seizure - alerting wearables, which continuously analyze the wearer ' s data and make a decision about calling for help β the data collected can then provide doctors with objective evidence that they may find useful in diagnoses. wearables can account for individual differences, although most just collect data and apply one - size - fits - all algorithms. software on the wearables may analyze the data directly or send the data to a nearby device ( s ), such as a smartphone, which processes, displays or uses the data for analysis. for analysis and real - term sense - making, machine
process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing, translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon, found mainly in prokaryotes and some lower eukaryotes ( e. g., caenorhabditis elegans ). in positive regulation of gene expression, the activator is the transcription factor that stimulates transcription when it binds to the sequence near or at the promoter. negative regulation occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem
##ally, because the natural shapes of crystals reflect the atomic structure. further, physical properties are often controlled by crystalline defects. the understanding of crystal structures is an important prerequisite for understanding crystallographic defects. examples of crystal defects consist of dislocations including edges, screws, vacancies, self inter - stitials, and more that are linear, planar, and three dimensional types of defects. new and advanced materials that are being developed include nanomaterials, biomaterials. mostly, materials do not occur as a single crystal, but in polycrystalline form, as an aggregate of small crystals or grains with different orientations. because of this, the powder diffraction method, which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. most materials have a crystalline structure, but some important materials do not exhibit regular crystal structure. polymers display varying degrees of crystallinity, and many are completely non - crystalline. glass, some ceramics, and many natural materials are amorphous, not possessing any long - range order in their atomic arrangements. the study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic and mechanical descriptions of physical properties. = = = = nanostructure = = = = materials, which atoms and molecules form constituents in the nanoscale ( i. e., they form nanostructures ) are called nanomaterials. nanomaterials are the subject of intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 β 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm. nanotubes have two dimensions on the nanoscale, i. e., the diameter of the tube is between 0. 1 and 100 nm ; its length could be much greater. finally, spherical nanoparticles have three dimensions on the nanoscale, i. e., the particle is between
in this talk a number of broad issues are raised about the origins of cp violation and how to test the ideas.
Question: Changes in the number of what can lead to disorders like down syndrome?
A) dna
B) genes
C) prokaryotes
D) chromosomes
|
D) chromosomes
|
Context:
##drate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of
all christian authors held that the earth was round. athenagoras, an eastern christian writing around the year 175 ad, said that the earth was spherical. methodius ( c. 290 ad ), an eastern christian writing against " the theory of the chaldeans and the egyptians " said : " let us first lay bare... the theory of the chaldeans and the egyptians. they say that the circumference of the universe is likened to the turnings of a well - rounded globe, the earth being a central point. they say that since its outline is spherical,... the earth should be the center of the universe, around which the heaven is whirling. " arnobius, another eastern christian writing sometime around 305 ad, described the round earth : " in the first place, indeed, the world itself is neither right nor left. it has neither upper nor lower regions, nor front nor back. for whatever is round and bounded on every side by the circumference of a solid sphere, has no beginning or end... " other advocates of a round earth included eusebius, hilary of poitiers, irenaeus, hippolytus of rome, firmicus maternus, ambrose, jerome, prudentius, favonius eulogius, and others. the only exceptions to this consensus up until the mid - fourth century were theophilus of antioch and lactantius, both of whom held anti - hellenistic views and associated the round - earth view with pagan cosmology. lactantius, a western christian writer and advisor to the first christian roman emperor, constantine, writing sometime between 304 and 313 ad, ridiculed the notion of antipodes and the philosophers who fancied that " the universe is round like a ball. they also thought that heaven revolves in accordance with the motion of the heavenly bodies.... for that reason, they constructed brass globes, as though after the figure of the universe. " the influential theologian and philosopher saint augustine, one of the four great church fathers of the western church, similarly objected to the " fable " of antipodes : but as to the fable that there are antipodes, that is to say, men on the opposite side of the earth, where the sun rises when it sets to us, men who walk with their feet opposite ours that is on no ground credible. and, indeed, it is not affirmed that this has been learned by historical knowledge, but by scientific conjecture
used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of plant ecology are to understand the causes of their distribution patterns, productivity, environmental impact, evolution, and responses to environmental change. plants depend on certain edaphic ( soil ) and climatic factors in their environment but can modify these factors too. for example, they can change their environment ' s albedo, increase runoff interception
so on. these plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile butadiene styrene ( abs ) in which calcium carbonate chalk, talc, glass fibers or carbon fibers have been added for added strength, bulk, or electrostatic dispersion. these additions may be termed reinforcing fibers, or dispersants, depending on their purpose. = = = polymers = = = polymers are chemical compounds made up of a large number of identical components linked together like chains. polymers are the raw materials ( the resins ) used to make what are commonly called plastics and rubber. plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. plastics in former and in current widespread use include polyethylene, polypropylene, polyvinyl chloride ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium -
chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts )
- people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table
the curvature radiation is applied to the explain the circular polarization of frbs. significant circular polarization is reported in both apparently non - repeating and repeating frbs. curvature radiation can produce significant circular polarization at the wing of the radiation beam. in the curvature radiation scenario, in order to see significant circular polarization in frbs ( 1 ) more energetic bursts, ( 2 ) burst with electrons having higher lorentz factor, ( 3 ) a slowly rotating neutron star at the centre are required. different rotational period of the central neutron star may explain why some frbs have high circular polarization, while others don ' t. considering possible difference in refractive index for the parallel and perpendicular component of electric field, the position angle may change rapidly over the narrow pulse window of the radiation beam. the position angle swing in frbs may also be explained by this non - geometric origin, besides that of the rotating vector model.
industry is making composite materials. these are structured materials composed of two or more macroscopic phases. applications range from structural elements such as steel - reinforced concrete, to the thermal insulating tiles, which play a key and integral role in nasa ' s space shuttle thermal protection system, which is used to protect the surface of the shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap. rcc is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. after curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfuryl alcohol in a vacuum chamber, and cured - pyrolized to convert the furfuryl alcohol to carbon. to provide oxidation resistance for reusability, the outer layers of the rcc are converted to silicon carbide. other examples can be seen in the " plastic " casings of television sets, cell - phones and so on. these plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile butadiene styrene ( abs ) in which calcium carbonate chalk, talc, glass fibers or carbon fibers have been added for added strength, bulk, or electrostatic dispersion. these additions may be termed reinforcing fibers, or dispersants, depending on their purpose. = = = polymers = = = polymers are chemical compounds made up of a large number of identical components linked together like chains. polymers are the raw materials ( the resins ) used to make what are commonly called plastics and rubber. plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. plastics in former and in current widespread use include polyethylene, polypropylene, polyvinyl chloride ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity
pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant β people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. the energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy - rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen ( o2 ) as a by - product. the light energy captured by chlorophyll a is initially in the form of electrons ( and later a proton gradient ) that is used to make molecules of atp and nadph which temporarily store and transport energy. their energy is used in the light - independent reactions of the calvin cycle by the enzyme rubisco to produce molecules of the 3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to star
cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose,
Question: What are centrioles made from?
A) short particles
B) carbon
C) short filaments
D) short microtubules
|
D) short microtubules
|
Context:
from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable
weakly established hybridomas. unfused b cells die as they have a short life span. in this way, only the b cell - myeloma hybrids survive, since the hgprt gene coming from the b cells is functional. these cells produce antibodies ( a property of b cells ) and are immortal ( a property of myeloma cells ). the incubated medium is then diluted into multi - well plates to such an extent that each well contains only one cell. since the antibodies in a well are produced by the same b cell, they will be directed towards the same epitope, and are thus monoclonal antibodies. the next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. the first screening technique used is called elisa. the hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. alternatively, immunocytochemical, western blot, and immunoprecipitation - mass spectrometry. unlike western blot assays, immunoprecipitation - mass spectrometry facilitates screening and ranking of clones which bind to the native ( non - denaturated ) forms of antigen proteins. flow cytometry screening has been used for primary screening of a large number ( ~ 1000 ) of hybridoma clones recognizing the native form of the antigen on the cell surface. in the flow cytometry - based screening, a mixture of antigen - negative cells and antigen - positive cells is used as the antigen to be tested for each hybridoma supernatant sample. the b cell that produces the desired antibodies can be cloned to produce many identical daughter clones. supplemental media containing interleukin - 6 ( such as briclone ) are essential for this step. once a hybridoma colony is established, it will continually grow in culture medium like rpmi - 1640 ( with antibiotics and fetal bovine serum ) and produce antibodies. multiwell plates are used initially to grow the hybridomas, and after selection, are changed to larger tissue culture flasks. this maintains the well - being of the hybridomas and provides enough cells for cryopreservation and supernatant for subsequent investigations. the culture supernatant can yield 1 to 60 ΞΌg / ml of monoclonal antibody, which is maintained at -
cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short
. species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. a familiar example is peppermint, mentha Γ piperita, a sterile hybrid between mentha aquatica and spearmint, mentha spicata. the many cultivated varieties of wheat are the result of multiple inter - and intra - specific crosses between wild species and their hybrids. angiosperms with monoecious flowers often have self - incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male gametes. this is one of several methods used by plants to promote outcrossing. in many land plants the male and female gametes are produced by separate individuals. these species are said to be dioecious when referring to vascular plant sporophytes and dioicous when referring to bryophyte gametophytes. charles darwin in his 1878 book the effects of cross and self - fertilization in the vegetable kingdom at the start of chapter xii noted " the first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross - fertilisation is beneficial and self - fertilisation often injurious, at least with the plants on which i experimented. " an important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. this beneficial effect is also known as hybrid vigor or heterosis. once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in
sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabino
paper has been withdrawn due to non - compliance with ijcsi terms and conditions.
young plant cells, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid dna. as only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. in plants this is accomplished through the use of tissue culture. in animals it is necessary to ensure that the inserted dna is present in the embryonic stem cells. bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. selectable markers are used to easily differentiate transformed from untransformed cells. these markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant. further testing using pcr, southern hybridization, and dna sequencing is conducted to confirm that an organism contains the new gene. these tests can also confirm the chromosomal location and copy number of the inserted gene. the presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products ( rna and protein ) are also used. these include northern hybridisation, quantitative rt - pcr, western blot, immunofluorescence, elisa and phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations
, lightning strikes, tornadoes, building fires, wildfires, and mass shootings disabling most of the system if not the entirety of it. geographic redundancy locations can be more than 621 miles ( 999 km ) continental, more than 62 miles apart and less than 93 miles ( 150 km ) apart, less than 62 miles apart, but not on the same campus, or different buildings that are more than 300 feet ( 91 m ) apart on the same campus. the following methods can reduce the risks of damage by a fire conflagration : large buildings at least 80 feet ( 24 m ) to 110 feet ( 34 m ) apart, but sometimes a minimum of 210 feet ( 64 m ) apart. : 9 high - rise buildings at least 82 feet ( 25 m ) apart : 12 open spaces clear of flammable vegetation within 200 feet ( 61 m ) on each side of objects different wings on the same building, in rooms that are separated by more than 300 feet ( 91 m ) different floors on the same wing of a building in rooms that are horizontally offset by a minimum of 70 feet ( 21 m ) with fire walls between the rooms that are on different floors two rooms separated by another room, leaving at least a 70 - foot gap between the two rooms there should be a minimum of two separated fire walls and on opposite sides of a corridor geographic redundancy is used by amazon web services ( aws ), google cloud platform ( gcp ), microsoft azure, netflix, dropbox, salesforce, linkedin, paypal, twitter, facebook, apple icloud, cisco meraki, and many others to provide geographic redundancy, high availability, fault tolerance and to ensure availability and reliability for their cloud services. as another example, to minimize risk of damage from severe windstorms or water damage, buildings can be located at least 2 miles ( 3. 2 km ) away from the shore, with an elevation of at least 5 feet ( 1. 5 m ) above sea level. for additional protection, they can be located at least 100 feet ( 30 m ) away from flood plain areas. = = functions of redundancy = = the two functions of redundancy are passive redundancy and active redundancy. both functions prevent performance decline from exceeding specification limits without human intervention using extra capacity. passive redundancy uses excess capacity to reduce the impact of component failures. one common form of passive redundancy is the extra strength of cabling and struts used in bridges.
background : african swine fever is among the most devastating viral diseases of pigs. despite nearly a century of research, there is still no safe and effective vaccine available. the current situation is that either vaccines are safe but not effective, or they are effective but not safe. findings : the asf vaccine prepared using the inactivation method with propiolactone provided 98. 6 % protection within 100 days after three intranasal immunizations, spaced 7 days apart. conclusions : an inactivated vaccine made from complete african swine fever virus particles using propiolactone is safe and effective for controlling asf through mucosal immunity.
, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression. unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. the formation of stem tubers in potato is one example. particularly in arctic or alpine habitats, where opportunities for fertilisation of flowers by animals are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to clonal populations genetically identical to the parent. this is one of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from
Question: What of most species are resistant cells that can survive harsh conditions?
A) zygotes
B) subtypes
C) gonads
D) phenotypes
|
A) zygotes
|
Context:
best - known and controversial applications of genetic engineering is the creation and use of genetically modified crops or genetically modified livestock to produce genetically modified food. crops have been developed to increase production, increase tolerance to abiotic stresses, alter the composition of the food, or to produce novel products. the first crops to be released commercially on a large scale provided protection from insect pests or tolerance to herbicides. fungal and virus resistant crops have also been developed or are in development. this makes the insect and weed management of crops easier and can indirectly increase crop yield. gm crops that directly improve yield by accelerating growth or making the plant more hardy ( by improving salt, cold or drought tolerance ) are also under development. in 2016 salmon have been genetically modified with growth hormones to reach normal adult size much faster. gmos have been developed that modify the quality of produce by increasing the nutritional value or providing more industrially useful qualities or quantities. the amflora potato produces a more industrially useful blend of starches. soybeans and canola have been genetically modified to produce more healthy oils. the first commercialised gm food was a tomato that had delayed ripening, increasing its shelf life. plants and animals have been engineered to produce materials they do not normally make. pharming uses crops and animals as bioreactors to produce vaccines, drug intermediates, or the drugs themselves ; the useful product is purified from the harvest and then used in the standard pharmaceutical production process. cows and goats have been engineered to express drugs and other proteins in their milk, and in 2009 the fda approved a drug produced in goat milk. = = = other applications = = = genetic engineering has potential applications in conservation and natural area management. gene transfer through viral vectors has been proposed as a means of controlling invasive species as well as vaccinating threatened fauna from disease. transgenic trees have been suggested as a way to confer resistance to pathogens in wild populations. with the increasing risks of maladaptation in organisms as a result of climate change and other perturbations, facilitated adaptation through gene tweaking could be one solution to reducing extinction risks. applications of genetic engineering in conservation are thus far mostly theoretical and have yet to be put into practice. genetic engineering is also being used to create microbial art. some bacteria have been genetically engineered to create black and white photographs. novelty items such as lavender - colored carnations, blue roses, and glowing fish, have also been produced through genetic engineering. = = regulation = = the regulation of genetic engineering
##tion, and pasteurization in order to become products that can be sold. there are three levels of food processing : primary, secondary, and tertiary. primary food processing involves turning agricultural products into other products that can be turned into food, secondary food processing is the making of food from readily available ingredients, and tertiary food processing is commercial production of ready - to eat or heat - and - serve foods. drying, pickling, salting, and fermenting foods were some of the oldest food processing techniques used to preserve food by preventing yeasts, molds, and bacteria to cause spoiling. methods for preserving food have evolved to meet current standards of food safety but still use the same processes as the past. biochemical engineers also work to improve the nutritional value of food products, such as in golden rice, which was developed to prevent vitamin a deficiency in certain areas where this was an issue. efforts to advance preserving technologies can also ensure lasting retention of nutrients as foods are stored. packaging plays a key role in preserving as well as ensuring the safety of the food by protecting the product from contamination, physical damage, and tampering. packaging can also make it easier to transport and serve food. a common job for biochemical engineers working in the food industry is to design ways to perform all these processes on a large scale in order to meet the demands of the population. responsibilities for this career path include designing and performing experiments, optimizing processes, consulting with groups to develop new technologies, and preparing project plans for equipment and facilities. = = = pharmaceuticals = = = in the pharmaceutical industry, bioprocess engineering plays a crucial role in the large - scale production of biopharmaceuticals, such as monoclonal antibodies, vaccines, and therapeutic proteins. the development and optimization of bioreactors and fermentation systems are essential for the mass production of these products, ensuring consistent quality and high yields. for example, recombinant proteins like insulin and erythropoietin are produced through cell culture systems using genetically modified cells. the bioprocess engineer β s role is to optimize variables like temperature, ph, nutrient availability, and oxygen levels to maximize the efficiency of these systems. the growing field of gene therapy also relies on bioprocessing techniques to produce viral vectors, which are used to deliver therapeutic genes to patients. this involves scaling up processes from laboratory to industrial scale while maintaining safety and regulatory compliance. as the demand for biopharmaceutical products increases, advancements
the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form
and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states
. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer
do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal
the broad definition of " utilizing a biotechnological system to make products ". indeed, the cultivation of plants may be viewed as the earliest biotechnological enterprise. agriculture has been theorized to have become the dominant way of producing food since the neolithic revolution. through early biotechnology, the earliest farmers selected and bred the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united
process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer ( univ. calif. at san francisco ) and stanley n. cohen ( stanford ) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. the commercial viability of a biotechnology industry was significantly expanded on june 16, 1980, when the united states supreme court ruled that a genetically modified microorganism could be patented in the case of diamond v. chakrabarty. indian - born ananda chakrabarty, working for general electric, had modified a bacterium ( of the genus pseudomonas ) capable of breaking down crude oil, which he proposed to
the creation of your own reality and your own world. the metaphor i used was humans being like magic markers. for so long, they painted black and white pictures in their life because that ' s all they thought they could do. but they can paint with a different color and make a very vibrant and beautiful picture if they take control. on the single " new skin ", he further elaborated : in " new skin ", i attribute a scab to the present state of society. the way the scab looks in its worst state is gross and chaotic and horrible, that ' s now, but when it breaks away, there ' s a brand new piece of skin that ' s stronger than before. it ' s like creation out of chaos. the song " favorite things ", according to boyd, related to the topic of religion : " my favorite things " is my personal beliefs about religion and how it oppresses the things i enjoy the most. unfortunately, the simplest things, such as thinking for myself, creating my own reality and being whatever the hell i want to be each day of my life, are a sin. to be a good christian basically means to give up the reigns of your life and let some unseen force do it for you. " favorite things " also includes a sample of the 1959 track " flamenco fantasy ", by easy listening group the 101 strings orchestra. the song has a similar title to " my favorite things ", from the mary poppins musical and film, with both songs repeatedly mentioning their titles in the lyrics. however, it does not musically reference " my favorite things ". the single " a certain shade of green " has been described as being a song about procrastination. the line " are you gonna stand around till 2012 a. d.? " is a reference to an interpretation of the mayan calendar which dictated that the world would end on december 21, 2012. boyd did not believe this to be true, but it was on his mind as his mother was researching it for a book called maya memory : the glory that was palenque. while recording " nebula ", boyd said in 1997, " we found out what it ' s like to actually plug a phaser pedal into the wall while it ' s on. it sounds like a laser gun, and that ' s the first sound you hear in ' nebula '. " he added that for the song, " we used these walkie - talkies for children that have this slinky - like coil between them. when
kilometers ( 4, 200, 000 to 395, 400, 000 acres ). 10 % of the world ' s crop lands were planted with gm crops in 2010. as of 2011, 11 different transgenic crops were grown commercially on 395 million acres ( 160 million hectares ) in 29 countries such as the us, brazil, argentina, india, canada, china, paraguay, pakistan, south africa, uruguay, bolivia, australia, philippines, myanmar, burkina faso, mexico and spain. genetically modified foods are foods produced from organisms that have had specific changes introduced into their dna with the methods of genetic engineering. these techniques have allowed for the introduction of new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in
Question: Animals can not produce their own food making them _________.
A) photoreliant
B) omnivores
C) autotrophs
D) heterotrophs
|
D) heterotrophs
|
Context:
effective and rapid detection of lesions in the gastrointestinal tract is critical to gastroenterologist ' s response to some life - threatening diseases. wireless capsule endoscopy ( wce ) has revolutionized traditional endoscopy procedure by allowing gastroenterologists visualize the entire gi tract non - invasively. once the tiny capsule is swallowed, it sequentially capture images of the gi tract at about 2 to 6 frames per second ( fps ). a single video can last up to 8 hours producing between 30, 000 to 100, 000 images. automating the detection of frames containing specific lesion in wce video would relieve gastroenterologists the arduous task of reviewing the entire video before making diagnosis. while the wce produces large volume of images, only about 5 \ % of the frames contain lesions that aid the diagnosis process. convolutional neural network ( cnn ) based models have been very successful in various image classification tasks. however, they suffer excessive parameters, are sample inefficient and rely on very large amount of training data. deploying a cnn classifier for lesion detection task will require time - to - time fine - tuning to generalize to any unforeseen category. in this paper, we propose a metric - based learning framework followed by a few - shot lesion recognition in wce data. metric - based learning is a meta - learning framework designed to establish similarity or dissimilarity between concepts while few - shot learning ( fsl ) aims to identify new concepts from only a small number of examples. we train a feature extractor to learn a representation for different small bowel lesions using metric - based learning. at the testing stage, the category of an unseen sample is predicted from only a few support examples, thereby allowing the model to generalize to a new category that has never been seen before. we demonstrated the efficacy of this method on real patient capsule endoscopy data.
the film is developed and it shows any internal defects of the material. gauges - gauges use the exponential absorption law of gamma rays level indicators : source and detector are placed at opposite sides of a container, indicating the presence or absence of material in the horizontal radiation path. beta or gamma sources are used, depending on the thickness and the density of the material to be measured. the method is used for containers of liquids or of grainy substances thickness gauges : if the material is of constant density, the signal measured by the radiation detector depends on the thickness of the material. this is useful for continuous production, like of paper, rubber, etc. electrostatic control - to avoid the build - up of static electricity in production of paper, plastics, synthetic textiles, etc., a ribbon - shaped source of the alpha emitter 241am can be placed close to the material at the end of the production line. the source ionizes the air to remove electric charges on the material. radioactive tracers - since radioactive isotopes behave, chemically, mostly like the inactive element, the behavior of a certain chemical substance can be followed by tracing the radioactivity. examples : adding a gamma tracer to a gas or liquid in a closed system makes it possible to find a hole in a tube. adding a tracer to the surface of the component of a motor makes it possible to measure wear by measuring the activity of the lubricating oil. oil and gas exploration - nuclear well logging is used to help predict the commercial viability of new or existing wells. the technology involves the use of a neutron or gamma - ray source and a radiation detector which are lowered into boreholes to determine the properties of the surrounding rock such as porosity and lithography. [ 1 ] road construction - nuclear moisture / density gauges are used to determine the density of soils, asphalt, and concrete. typically a cesium - 137 source is used. = = = commercial applications = = = radioluminescence tritium illumination : tritium is used with phosphor in rifle sights to increase nighttime firing accuracy. some runway markers and building exit signs use the same technology, to remain illuminated during blackouts. betavoltaics. smoke detector : an ionization smoke detector includes a tiny mass of radioactive americium - 241, which is a source of alpha radiation. two ionisation chambers are placed next to each other. both contain a small source of 241am that gives rise to a small constant current. one is closed and serves for comparison
as for precipitation - toughened, partially stabilized zirconia. similarly, it is known that one can directionally solidify ceramic eutectic mixtures and hence obtain uniaxially aligned fiber composites. such composite processing has typically been limited to very simple shapes and thus suffers from serious economic problems due to high machining costs. there is a possibility for melt casting to be used for many of these approaches. potentially even more desirable is using melt - derived particles. in this method, quenching is done in a solid solution or in a fine eutectic structure, in which the particles are then processed by more typical ceramic powder processing methods into a useful body. there have also been preliminary attempts to use melt spraying as a means of forming composites by introducing the dispersed particulate, whisker, or fiber phase in conjunction with the melt spraying process. other methods besides melt infiltration to manufacture ceramic composites with long fiber reinforcement are chemical vapor infiltration and the infiltration of fiber preforms with organic precursor, which after pyrolysis yield an amorphous ceramic matrix, initially with a low density. with repeated cycles of infiltration and pyrolysis one of those types of ceramic matrix composites is produced. chemical vapor infiltration is used to manufacture carbon / carbon and silicon carbide reinforced with carbon or silicon carbide fibers. besides many process improvements, the first of two major needs for fiber composites is lower fiber costs. the second major need is fiber compositions or coatings, or composite processing, to reduce degradation that results from high - temperature composite exposure under oxidizing conditions. = = applications = = the products of technical ceramics include tiles used in the space shuttle program, gas burner nozzles, ballistic protection, nuclear fuel uranium oxide pellets, bio - medical implants, jet engine turbine blades, and missile nose cones. its products are often made from materials other than clay, chosen for their particular physical properties. these may be classified as follows : oxides : silica, alumina, zirconia non - oxides : carbides, borides, nitrides, silicides composites : particulate or whisker reinforced matrices, combinations of oxides and non - oxides ( e. g. polymers ). ceramics can be used in many technological industries. one application is the ceramic tiles on nasa ' s space shuttle, used to protect it and the future supersonic space planes from the searing heat of re - entry into
and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is not the only deadly component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. civilian nuclear and radiological accidents primarily involve nuclear power plants. most common are nuclear leaks that expose workers to hazardous material. a nuclear meltdown refers to the more serious hazard of releasing nuclear material into the surrounding environment. the most significant meltdowns occurred at three mile island in pennsylvania and chernobyl in the soviet ukraine. the earthquake and tsunami on march 11, 2011 caused serious damage to three nuclear reactors and a spent fuel storage pond at the fukushima daiichi nuclear power plant in japan. military reactors that experienced similar accidents were windscale in the united kingdom and sl - 1 in the united states. military accidents usually involve the loss or unexpected detonation of nuclear weapons. the castle bravo test in 1954 produced a larger yield than expected, which contaminated nearby islands, a japanese fishing boat ( with one fatality ), and raised concerns about contaminated fish in japan. in the 1950s through 1970s, several nuclear bombs were lost from submarines and aircraft, some of which have never been recovered. the last twenty years have seen a marked decline in such accidents. = = examples of environmental benefits = = proponents of nuclear energy note that annually, nuclear - generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels. additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed / recycled for other energy uses. proponents of nuclear energy also bring to attention the opportunity cost of utilizing other forms of electricity. for example, the environmental protection agency estimates that coal kills 30, 000 people a year, as a result of its environmental impact, while 60 people died in the chernobyl disaster. a real world example of impact provided by proponents of nuclear energy is
; however, a successful large - scale industrial application of the process was the development of continuous freeze drying of coffee. high - temperature short time processing β these processes, for the most part, are characterized by rapid heating and cooling, holding for a short time at a relatively high temperature and filling aseptically into sterile containers. decaffeination of coffee and tea β decaffeinated coffee and tea was first developed on a commercial basis in europe around 1900. the process is described in u. s. patent 897, 763. green coffee beans are treated with water, heat and solvents to remove the caffeine from the beans. process optimization β food technology now allows production of foods to be more efficient, oil saving technologies are now available on different forms. production methods and methodology have also become increasingly sophisticated. aseptic packaging β the process of filling a commercially sterile product into a sterile container and hermetically sealing the containers so that re - infection is prevented. thus, this results into a shelf stable product at ambient conditions. food irradiation β the process of exposing food and food packaging to ionizing radiation can effectively destroy organisms responsible for spoilage and foodborne illness and inhibit sprouting, extending shelf life. commercial fruit ripening rooms using ethylene as a plant hormone. food delivery β an order is typically made either through a restaurant or grocer ' s website or mobile app, or through a food ordering company. the ordered food is typically delivered in boxes or bags to the customer ' s doorsteps. = = categories = = technology has innovated these categories from the food industry : agricultural technology β or agtech, it is the use of technology in agriculture, horticulture, and aquaculture with the aim of improving yield, efficiency, and profitability. agricultural technology can be products, services or applications derived from agriculture that improve various input / output processes. food science β technology in this sector focuses on the development of new functional ingredients and alternative proteins. foodservice β technology innovated the way establishments prepare, supply, and serve food outside the home. there ' s a tendency to create the conditions for the restaurant of the future with robotics and cloudkitchens. consumer tech β technology allows what we call consumer electronics, which is the equipment of consumers with devices that facilitates the cooking process. food delivery β as the food delivery market is growing, companies and startups are rapidly revolutionizing the communication process between consumers and food establishments, with platform - to - consumer delivery as the
listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to
in 2013, using a 3 - d scaffolding of matrigel in various configurations, substantial pancreatic organoids was produced in vitro. clusters of small numbers of cells proliferated into 40, 000 cells within one week. the clusters transform into cells that make either digestive enzymes or hormones like insulin, self - organizing into branched pancreatic organoids that resemble the pancreas. the cells are sensitive to the environment, such as gel stiffness and contact with other cells. individual cells do not thrive ; a minimum of four proximate cells was required for subsequent organoid development. modifications to the medium composition produced either hollow spheres mainly composed of pancreatic progenitors, or complex organoids that spontaneously undergo pancreatic morphogenesis and differentiation. maintenance and expansion of pancreatic progenitors require active notch and fgf signaling, recapitulating in vivo niche signaling interactions. the organoids were seen as potentially offering mini - organs for drug testing and for spare insulin - producing cells. aside from matrigel 3 - d scaffolds, other collagen gel systems have been developed. collagen / hyaluronic acid scaffolds have been used for modeling the mammary gland in vitro while co - coculturing epithelial and adipocyte cells. the hystem kit is another 3 - d platform containing ecm components and hyaluronic acid that has been used for cancer research. additionally, hydrogel constituents can be chemically modified to assist in crosslinking and enhance their mechanical properties. = = tissue culture = = in many cases, creation of functional tissues and biological structures in vitro requires extensive culturing to promote survival, growth and inducement of functionality. in general, the basic requirements of cells must be maintained in culture, which include oxygen, ph, humidity, temperature, nutrients and osmotic pressure maintenance. tissue engineered cultures also present additional problems in maintaining culture conditions. in standard cell culture, diffusion is often the sole means of nutrient and metabolite transport. however, as a culture becomes larger and more complex, such as the case with engineered organs and whole tissues, other mechanisms must be employed to maintain the culture, such as the creation of capillary networks within the tissue. another issue with tissue culture is introducing the proper factors or stimuli required to induce functionality. in many cases, simple maintenance culture is not sufficient. growth factors, hormones, specific metabolites or nutrients, chemical and physical stimuli are sometimes
delay of ripening, increase of juice yield, and improvement of re - hydration. irradiation is a more general term of deliberate exposure of materials to radiation to achieve a technical goal ( in this context ' ionizing radiation ' is implied ). as such it is also used on non - food items, such as medical hardware, plastics, tubes for gas - pipelines, hoses for floor - heating, shrink - foils for food packaging, automobile parts, wires and cables ( isolation ), tires, and even gemstones. compared to the amount of food irradiated, the volume of those every - day applications is huge but not noticed by the consumer. the genuine effect of processing food by ionizing radiation relates to damages to the dna, the basic genetic information for life. microorganisms can no longer proliferate and continue their malignant or pathogenic activities. spoilage causing micro - organisms cannot continue their activities. insects do not survive or become incapable of procreation. plants cannot continue the natural ripening or aging process. all these effects are beneficial to the consumer and the food industry, likewise. the amount of energy imparted for effective food irradiation is low compared to cooking the same ; even at a typical dose of 10 kgy most food, which is ( with regard to warming ) physically equivalent to water, would warm by only about 2. 5 Β°c ( 4. 5 Β°f ). the specialty of processing food by ionizing radiation is the fact, that the energy density per atomic transition is very high, it can cleave molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more
molecules and induce ionization ( hence the name ) which cannot be achieved by mere heating. this is the reason for new beneficial effects, however at the same time, for new concerns. the treatment of solid food by ionizing radiation can provide an effect similar to heat pasteurization of liquids, such as milk. however, the use of the term, cold pasteurization, to describe irradiated foods is controversial, because pasteurization and irradiation are fundamentally different processes, although the intended end results can in some cases be similar. detractors of food irradiation have concerns about the health hazards of induced radioactivity. a report for the industry advocacy group american council on science and health entitled " irradiated foods " states : " the types of radiation sources approved for the treatment of foods have specific energy levels well below that which would cause any element in food to become radioactive. food undergoing irradiation does not become any more radioactive than luggage passing through an airport x - ray scanner or teeth that have been x - rayed. " food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500, 000 metric tons ( 490, 000 long tons ; 550, 000 short tons ) annually worldwide. food irradiation is essentially a non - nuclear technology ; it relies on the use of ionizing radiation which may be generated by accelerators for electrons and conversion into bremsstrahlung, but which may use also gamma - rays from nuclear decay. there is a worldwide industry for processing by ionizing radiation, the majority by number and by processing power using accelerators. food irradiation is only a niche application compared to medical supplies, plastic materials, raw materials, gemstones, cables and wires, etc. = = accidents = = nuclear accidents, because of the powerful forces involved, are often very dangerous. historically, the first incidents involved fatal radiation exposure. marie curie died from aplastic anemia which resulted from her high levels of exposure. two scientists, an american and canadian respectively, harry daghlian and louis slotin, died after mishandling the same plutonium mass. unlike conventional weapons, the intense light, heat, and explosive force is not the only deadly component to a nuclear weapon. approximately half of the deaths from hiroshima and nagasaki died two to five years afterward from radiation exposure. civilian nuclear and radiological accidents primarily involve nuclear power plants. most common are nuclear leaks that expose workers to hazardous material. a nuclear meltdown refers to the more serious hazard of
stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has no adverse effect on pilot vision. = = = = ships = = = = ships have also adopted similar methods. though the earlier american arleigh burke - class destroyers incorporated some signature - reduction features. the norwegian skjold - class corvettes was the first coastal defence and the french la fayette - class frigates the first ocean - going stealth ships to enter service. other examples are the dutch de zeven provincien - class frigates, the taiwanese tuo chiang - class corvettes, german sachsen - class frigates, the swedish visby - class corvette, the american san antonio - class amphibious transport docks, and most modern
Question: In the stomach, which material's arrival triggers churning and the release of gastric juices?
A) bile
B) hair
C) food
D) acid
|
C) food
|
Context:
stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomial nomenclature. the nomenclature of botanical organisms is codified in the international code of nomenclature for algae, fungi, and plants ( icn ) and administered by the international botanical congress. kingdom plantae belongs to domain eukaryota and is broken down recursively until each species is separately classified. the order is :
the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen - free, reducing, atmosphere to one in which free oxygen has been abundant for more than 2 billion years. among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life ' s basic ingredients : energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, human food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability. = = = human nutrition = = = virtually all staple foods come either directly from primary production by plants, or indirectly from animals that
soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both the internal functions and processes within plant organelles, cells, tissues, whole plants, plant populations and plant communities. at each of these levels, a botanist may be concerned with the classification ( taxonomy ), phylogeny and evolution, structure ( anatomy and morphology ), or function ( physiology ) of plant life. the strictest definition of " plant " includes only the " land plants " or embryophytes, which include seed plants ( gymnosperms, including the pines, and flowering plants ) and the free - sporing cryptogams including ferns, clubmosses, liverworts, hornworts and mosses. embryophytes are multicellular eukaryotes descended from an ancestor that obtained its energy from sunlight by photosynthesis. they have life cycles with alternating haploid and diploid phases. the sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. other groups of organisms that were previously studied by botanists include bacteria ( now studied in bacteriology ), fungi ( mycology ) β including lichen - forming fungi ( lichenology ), non - chlorophyte algae ( phycology ), and viruses ( virology ). however, attention is still given to these groups by botanists, and fungi ( including lichens ) and photosynthetic protists are usually covered in introductory botany courses. palaeobotanists study ancient plants in the fossil record to provide information about the evolutionary history of plants. cyanobacteria, the first oxygen - releasing photosynthetic organisms on earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the chloroplasts in plant cells. the new photosynthetic plants ( along with their algal relatives ) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the
of embryophytes ( land plants ) is called phytology. bryology is the study of mosses ( and in the broader sense also liverworts and hornworts ). pteridology ( or filicology ) is the study of ferns and allied plants. a number of other taxa of ranks varying from family to subgenus have terms for their study, including agrostology ( or graminology ) for the study of grasses, synantherology for the study of composites, and batology for the study of brambles. study can also be divided by guild rather than clade or grade. for example, dendrology is the study of woody plants. many divisions of biology have botanical subfields. these are commonly denoted by prefixing the word plant ( e. g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics ), or prefixing or substituting the prefix phyto - ( e. g. phytochemistry, phytogeography ). the study of fossil plants is called palaeobotany. other fields are denoted by adding or substituting the word botany ( e. g. systematic botany ). phytosociology is a subfield of plant ecology that classifies and studies communities of plants. the intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses. different parts of plants also give rise to their own subfields, including xylology, carpology ( or fructology ), and palynology, these being the study of wood, fruit and pollen / spores respectively. botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in
of several types of apomixis that occur in plants. apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent. most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. this can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid ( endopolyploidy ), or during gamete formation. an allopolyploid plant may result from a hybridisation event between two different species. both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross - breed successfully with the parent population because there is a mismatch in chromosome numbers. these plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. durum wheat is a fertile tetraploid allopolyploid, while bread wheat is a fertile hexaploid. the commercial banana is an example of a sterile, seedless triploid hybrid. common dandelion is a triploid that produces viable seeds by apomictic seed. as in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and chloroplasts in plants is non - mendelian. chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants. = = = molecular genetics = = = a considerable amount of new knowledge about plant function comes from studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics,
, dendrology is the study of woody plants. many divisions of biology have botanical subfields. these are commonly denoted by prefixing the word plant ( e. g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics ), or prefixing or substituting the prefix phyto - ( e. g. phytochemistry, phytogeography ). the study of fossil plants is called palaeobotany. other fields are denoted by adding or substituting the word botany ( e. g. systematic botany ). phytosociology is a subfield of plant ecology that classifies and studies communities of plants. the intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses. different parts of plants also give rise to their own subfields, including xylology, carpology ( or fructology ), and palynology, these being the study of wood, fruit and pollen / spores respectively. botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing soil erosion. plants are crucial to the future of human society as they provide food, oxygen, biochemicals, and products for people, as well as creating and preserving soil. historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. botanists examine both
unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms by ancestry rather than superficial characteristics. while scientists do not always agree on how to classify organisms, molecular phylogenetics, which uses dna sequences as data, has driven many recent revisions along evolutionary lines and is likely to continue to do so. the dominant classification system is called linnaean taxonomy. it includes ranks and binomi
ranks varying from family to subgenus have terms for their study, including agrostology ( or graminology ) for the study of grasses, synantherology for the study of composites, and batology for the study of brambles. study can also be divided by guild rather than clade or grade. for example, dendrology is the study of woody plants. many divisions of biology have botanical subfields. these are commonly denoted by prefixing the word plant ( e. g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics ), or prefixing or substituting the prefix phyto - ( e. g. phytochemistry, phytogeography ). the study of fossil plants is called palaeobotany. other fields are denoted by adding or substituting the word botany ( e. g. systematic botany ). phytosociology is a subfield of plant ecology that classifies and studies communities of plants. the intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses. different parts of plants also give rise to their own subfields, including xylology, carpology ( or fructology ), and palynology, these being the study of wood, fruit and pollen / spores respectively. botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology. = = scope and importance = = the study of plants is vital because they underpin almost all animal life on earth by generating a large proportion of the oxygen and food that provide humans and other organisms with aerobic respiration with the chemical energy they need to exist. plants, algae and cyanobacteria are the major groups of organisms that carry out photosynthesis, a process that uses the energy of sunlight to convert water and carbon dioxide into sugars that can be used both as a source of chemical energy and of organic molecules that are used in the structural components of cells. as a by - product of photosynthesis, plants release oxygen into the atmosphere, a gas that is required by nearly all living things to carry out cellular respiration. in addition, they are influential in the global carbon and water cycles and plant roots bind and stabilise soils, preventing
, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of unspecialised cells ) that can grow into a new plant. in vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. roots are often adapted to store food such as sugars or starch, as in sugar beets and carrots. stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as cacti, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. leaves gather sunlight and carry out photosynthesis. large, flat, flexible, green leaves are called foliage leaves. gymnosperms, such as conifers, cycads, ginkgo, and gnetophytes are seed - producing plants with open seeds. angiosperms are seed - producing plants that produce flowers and have enclosed seeds. woody plants, such as azaleas and oaks, undergo a secondary growth phase resulting in two additional types of tissues : wood ( secondary xylem ) and bark ( secondary phloem and cork ). all gymnosperms and many angiosperms are woody plants. some plants reproduce sexually, some asexually, and some via both means. although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. furthermore, structures can be seen as processes, that is, process combinations. = = systematic botany = = systematic botany is part of systematic biology, which is concerned with the range and diversity of organisms and their relationships, particularly as determined by their evolutionary history. it involves, or is related to, biological classification, scientific taxonomy and phylogenetics. biological classification is the method by which botanists group organisms into categories such as genera or species. biological classification is a form of scientific taxonomy. modern taxonomy is rooted in the work of carl linnaeus, who grouped species according to shared physical characteristics. these groupings have since been revised to align better with the darwinian principle of common descent β grouping organisms
studies of the molecular genetics of model plants such as the thale cress, arabidopsis thaliana, a weedy species in the mustard family ( brassicaceae ). the genome or hereditary information contained in the genes of this species is encoded by about 135 million base pairs of dna, forming one of the smallest genomes among flowering plants. arabidopsis was the first plant to have its genome sequenced, in 2000. the sequencing of some other relatively small genomes, of rice ( oryza sativa ) and brachypodium distachyon, has made them important model species for understanding the genetics, cellular and molecular biology of cereals, grasses and monocots generally. model plants such as arabidopsis thaliana are used for studying the molecular biology of plant cells and the chloroplast. ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short generation times. corn has been used to study mechanisms of photosynthesis and phloem loading of sugar in c4 plants. the single celled green alga chlamydomonas reinhardtii, while not an embryophyte itself, contains a green - pigmented chloroplast related to that of land plants, making it useful for study. a red alga cyanidioschyzon merolae has also been used to study some basic chloroplast functions. spinach, peas, soybeans and a moss physcomitrella patens are commonly used to study plant cell biology. agrobacterium tumefaciens, a soil rhizosphere bacterium, can attach to plant cells and infect them with a callus - inducing ti plasmid by horizontal gene transfer, causing a callus infection called crown gall disease. schell and van montagu ( 1977 ) hypothesised that the ti plasmid could be a natural vector for introducing the nif gene responsible for nitrogen fixation in the root nodules of legumes and other plant species. today, genetic modification of the ti plasmid is one of the main techniques for introduction of transgenes to plants and the creation of genetically modified crops. = = = epigenetics = = = epigenetics is the study of heritable changes in gene function that cannot be explained by changes in the underlying dna sequence but cause the organism ' s genes to behave ( or " express themselves " ) differently. one example
Question: What is the term for seed plants?
A) spermatophytes
B) sporozoans
C) proteins
D) germospores
|
A) spermatophytes
|
Context:
, 400 km from the persian gulf to the mediterranean sea, but was not paved and was only partially maintained. in around 2, 000 bce, the minoans on the greek island of crete built a 50 km road leading from the palace of gortyn on the south side of the island, through the mountains, to the palace of knossos on the north side of the island. unlike the earlier road, the minoan road was completely paved. ancient minoan private homes had running water. a bathtub virtually identical to modern ones was unearthed at the palace of knossos. several minoan private homes also had toilets, which could be flushed by pouring water down the drain. the ancient romans had many public flush toilets, which emptied into an extensive sewage system. the primary sewer in rome was the cloaca maxima ; construction began on it in the sixth century bce and it is still in use today. the ancient romans also had a complex system of aqueducts, which were used to transport water across long distances. the first roman aqueduct was built in 312 bce. the eleventh and final ancient roman aqueduct was built in 226 ce. put together, the roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches. = = = pre - modern = = = innovations continued through the middle ages with the introduction of silk production ( in asia and later europe ), the horse collar, and horseshoes. simple machines ( such as the lever, the screw, and the pulley ) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. a system of universities developed and spread scientific ideas and practices, including oxford and cambridge. the renaissance era produced many innovations, including the introduction of the movable type printing press to europe, which facilitated the communication of knowledge. technology became increasingly influenced by science, beginning a cycle of mutual advancement. = = = modern = = = starting in the united kingdom in the 18th century, the discovery of steam power set off the industrial revolution, which saw wide - ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the widespread application of the factory system. this was followed a century later by the second industrial revolution which led to rapid scientific discovery, standardization, and mass production. new technologies were developed, including sewage systems, electricity, light bulbs, electric motors, railroads, automobiles, and airplanes. these technological advances led to significant developments in medicine
participates as a consumer, resource, or both in consumer β resource interactions, which form the core of food chains or food webs. there are different trophic levels within any food web, with the lowest level being the primary producers ( or autotrophs ) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community. at the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms. heterotrophs that consume plants are primary consumers ( or herbivores ) whereas heterotrophs that consume herbivores are secondary consumers ( or carnivores ). and those that eat secondary consumers are tertiary consumers and so on. omnivorous heterotrophs are able to consume at multiple levels. finally, there are decomposers that feed on the waste products or dead bodies of organisms. on average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one - tenth of the energy of the trophic level that it consumes. waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level. = = = biosphere = = = in the global ecosystem or biosphere, matter exists as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations. for example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. a biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic ( biosphere ) and the abiotic ( lithosphere, atmosphere, and hydrosphere ) compartments of earth. there are biogeochemical cycles for nitrogen, carbon, and water. = = = conservation = = = conservation biology is the study of the conservation of earth ' s biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. it is concerned with factors that influence the maintenance, loss, and restoration of biodiversity and the science of sustaining evolutionary processes that engender genetic, population, species, and ecosystem diversity. the concern stems from estimates suggesting that up to 50 % of all species on the planet
three of what is called the six simple machines, from which all machines are based. these machines are the inclined plane, the wedge, and the lever, which allowed the ancient egyptians to move millions of limestone blocks which weighed approximately 3. 5 tons ( 7, 000 lbs. ) each into place to create structures like the great pyramid of giza, which is 481 feet ( 147 meters ) high. they also made writing medium similar to paper from papyrus, which joshua mark states is the foundation for modern paper. papyrus is a plant ( cyperus papyrus ) which grew in plentiful amounts in the egyptian delta and throughout the nile river valley during ancient times. the papyrus was harvested by field workers and brought to processing centers where it was cut into thin strips. the strips were then laid - out side by side and covered in plant resin. the second layer of strips was laid on perpendicularly, then both pressed together until the sheet was dry. the sheets were then joined to form a roll and later used for writing. egyptian society made several significant advances during dynastic periods in many areas of technology. according to hossam elanzeery, they were the first civilization to use timekeeping devices such as sundials, shadow clocks, and obelisks and successfully leveraged their knowledge of astronomy to create a calendar model that society still uses today. they developed shipbuilding technology that saw them progress from papyrus reed vessels to cedar wood ships while also pioneering the use of rope trusses and stem - mounted rudders. the egyptians also used their knowledge of anatomy to lay the foundation for many modern medical techniques and practiced the earliest known version of neuroscience. elanzeery also states that they used and furthered mathematical science, as evidenced in the building of the pyramids. ancient egyptians also invented and pioneered many food technologies that have become the basis of modern food technology processes. based on paintings and reliefs found in tombs, as well as archaeological artifacts, scholars like paul t nicholson believe that the ancient egyptians established systematic farming practices, engaged in cereal processing, brewed beer and baked bread, processed meat, practiced viticulture and created the basis for modern wine production, and created condiments to complement, preserve and mask the flavors of their food. = = = = indus valley = = = = the indus valley civilization, situated in a resource - rich area ( in modern pakistan and northwestern india ), is notable for its early application of city planning, sanitation technologies, and plumbing. indus valley construction and architecture, called ' vaastu
. forensic histopathology is the application of histological techniques and examination to forensic pathology practice. forensic limnology is the analysis of evidence collected from crime scenes in or around fresh - water sources. examination of biological organisms, in particular diatoms, can be useful in connecting suspects with victims. forensic linguistics deals with issues in the legal system that requires linguistic expertise. forensic meteorology is a site - specific analysis of past weather conditions for a point of loss. forensic metrology is the application of metrology to assess the reliability of scientific evidence obtained through measurements forensic microbiology is the study of the necrobiome. forensic nursing is the application of nursing sciences to abusive crimes, like child abuse, or sexual abuse. categorization of wounds and traumas, collection of bodily fluids and emotional support are some of the duties of forensic nurses. forensic odontology is the study of the uniqueness of dentition, better known as the study of teeth. forensic optometry is the study of glasses and other eyewear relating to crime scenes and criminal investigations. forensic pathology is a field in which the principles of medicine and pathology are applied to determine a cause of death or injury in the context of a legal inquiry. forensic podiatry is an application of the study of feet footprint or footwear and their traces to analyze scene of crime and to establish personal identity in forensic examinations. forensic psychiatry is a specialized branch of psychiatry as applied to and based on scientific criminology. forensic psychology is the study of the mind of an individual, using forensic methods. usually it determines the circumstances behind a criminal ' s behavior. forensic seismology is the study of techniques to distinguish the seismic signals generated by underground nuclear explosions from those generated by earthquakes. forensic serology is the study of the body fluids. forensic social work is the specialist study of social work theories and their applications to a clinical, criminal justice or psychiatric setting. practitioners of forensic social work connected with the criminal justice system are often termed social supervisors, whilst the remaining use the interchangeable titles forensic social worker, approved mental health professional or forensic practitioner and they conduct specialist assessments of risk, care planning and act as an officer of the court. forensic toxicology is the study of the effect of drugs and poisons on / in the human body. forensic video analysis is the scientific examination, comparison and evaluation of video in legal matters. mobile device forensics is the scientific examination and evaluation of evidence found in mobile phones, e. g. call history and deleted sms, and includes sim card forensics
or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. a stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has no adverse effect on pilot vision. = = = = ships = = = = ships have also adopted similar methods. though the earlier american arleigh burke - class destroyers incorporated some signature - reduction features. the norwegian skjold - class corvettes was the first coastal defence and the french la fayette - class frigates the
symbiotic and syntrophic communities, for example. = = = eukaryotes = = = eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria ( or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern - day eukaryotic cells. the major lineages of eukaryotes diversified in the precambrian about 1. 5 billion years ago and can be classified into eight major clades : alveolates, excavates, stramenopiles, plants, rhizarians, amoebozoans, fungi, and animals. five of these clades are collectively known as protists, which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. while it is likely that protists share a common ancestor ( the last eukaryotic common ancestor ), protists by themselves do not constitute a separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. like groupings such as algae, invertebrates, or protozoans, the protist grouping is not a formal taxonomic group but is used for convenience. most protists are unicellular ; these are called microbial eukaryotes. plants are mainly multicellular organisms, predominantly photosynthetic eukaryotes of the kingdom plantae, which would exclude fungi and some algae. plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. the first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which is a term of convenience as not all algae are closely related. algae comprise several distinct clades such as glaucophytes, which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of plantae. unlike glaucophytes, the other algal clades such as red and green algae are multicellular. green algae comprise three major clades : chlorophytes, coleochaetophytes, and stoneworts. fungi are eukaryotes that
eat them. plants and other photosynthetic organisms are at the base of most food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be used by animals. this is what ecologists call the first trophic level. the modern forms of the major staple foods, such as hemp, teff, maize, rice, wheat and other cereal grasses, pulses, bananas and plantains, as well as hemp, flax and cotton grown for their fibres, are the outcome of prehistoric selection over thousands of years from among wild ancestral plants with the most desirable characteristics. botanists study how plants produce food and how to increase yields, for example through plant breeding, making their work important to humanity ' s ability to feed the world and provide food security for future generations. botanists also study weeds, which are a considerable problem in agriculture, and the biology and control of plant pathogens in agriculture and natural ecosystems. ethnobotany is the study of the relationships between plants and people. when applied to the investigation of historical plant β people relationships ethnobotany may be referred to as archaeobotany or palaeoethnobotany. some of the earliest plant - people relationships arose between the indigenous people of canada in identifying edible plants from inedible plants. this relationship the indigenous people had with plants was recorded by ethnobotanists. = = plant biochemistry = = plant biochemistry is the study of the chemical processes used by plants. some of these processes are used in their primary metabolism like the photosynthetic calvin cycle and crassulacean acid metabolism. others make specialised materials like the cellulose and lignin used to build their bodies, and secondary products like resins and aroma compounds. plants and various other groups of photosynthetic eukaryotes collectively known as " algae " have unique organelles known as chloroplasts. chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. chloroplasts and cyanobacteria contain the blue - green pigment chlorophyll a. chlorophyll a ( as well as its plant and green algal - specific cousin chlorophyll b ) absorbs light in the blue - violet and orange / red parts of the spectrum while reflecting and transmitting the green light that we see as the characteristic colour
stores must not be carried externally. any stealthy vehicle becomes un - stealthy when a door or hatch opens. parallel alignment of edges or even surfaces is also often used in stealth designs. the technique involves using a small number of edge orientations in the shape of the structure. for example, on the f - 22a raptor, the leading edges of the wing and the tail planes are set at the same angle. other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. the effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. the effect is sometimes called " glitter " after the very brief signal seen when the reflected beam passes across a detector. it can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system. stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. the yf - 23 has such serrations on the exhaust ports. this is another example in the parallel alignment of features, this time on the external airframe. the shaping requirements detracted greatly from the f - 117 ' s aerodynamic properties. it is inherently unstable, and cannot be flown without a fly - by - wire control system. similarly, coating the cockpit canopy with a thin film transparent conductor ( vapor - deposited gold or indium tin oxide ) helps to reduce the aircraft ' s radar profile, because radar waves would normally enter the cockpit, reflect off objects ( the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return ), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. the coating is thin enough that it has no adverse effect on pilot vision. = = = = ships = = = = ships have also adopted similar methods. though the earlier american arleigh burke - class destroyers incorporated some signature - reduction features. the norwegian skjold - class corvettes was the first coastal defence and the french la fayette - class frigates the first ocean - going stealth ships to enter service. other examples are the dutch de zeven provincien - class frigates, the taiwanese tuo chiang - class corvettes, german sachsen - class frigates, the swedish visby - class corvette, the american san antonio - class amphibious transport docks, and most modern
regge - pole calculated low - energy electron elastic total cross sections ( tcss ) for complex heavy atoms and fullerene molecules are characterized generally by ground, metastable, and excited negative - ion formation, shape resonances and ramsauer - townsend minima. here the extracted anionic binding energies ( bes ) from the tcss of various atoms and fullerenes are used to highlight the ambiguous meaning of some current electron affinities ( eas ) of heavy complex atomic systems. the crucial question is : does the ea correspond to the be of the attached electron in the ground or excited state of the formed anion during the collision?
river - beds ), but not for where there may be large obstructions in the ground. an open caisson that is used in soft grounds or high water tables, where open trench excavations are impractical, can also be used to install deep manholes, pump stations and reception / launch pits for microtunnelling, pipe jacking and other operations. a caisson is sunk by self - weight, concrete or water ballast placed on top, or by hydraulic jacks. the leading edge ( or cutting shoe ) of the caisson is sloped out at a sharp angle to aid sinking in a vertical manner ; it is usually made of steel. the shoe is generally wider than the caisson to reduce friction, and the leading edge may be supplied with pressurised bentonite slurry, which swells in water, stabilizing settlement by filling depressions and voids. an open caisson may fill with water during sinking. the material is excavated by clamshell excavator bucket on crane. the formation level subsoil may still not be suitable for excavation or bearing capacity. the water in the caisson ( due to a high water table ) balances the upthrust forces of the soft soils underneath. if dewatered, the base may " pipe " or " boil ", causing the caisson to sink. to combat this problem, piles may be driven from the surface to act as : load - bearing walls, in that they transmit loads to deeper soils. anchors, in that they resist flotation because of the friction at the interface between their surfaces and the surrounding earth into which they have been driven. h - beam sections ( typical column sections, due to resistance to bending in all axis ) may be driven at angles " raked " to rock or other firmer soils ; the h - beams are left extended above the base. a reinforced concrete plug may be placed under the water, a process known as tremie concrete placement. when the caisson is dewatered, this plug acts as a pile cap, resisting the upward forces of the subsoil. = = = monolithic = = = a monolithic caisson ( or simply a monolith ) is larger than the other types of caisson, but similar to open caissons. such caissons are often found in quay walls, where resistance to impact from ships is required. = = = pneumatic = = = shallow caissons may be open to the air, whereas pneumatic caisson
Question: Cnidarians have a simple digestive system with a single opening surrounded by what type of structures, which are used to capture prey?
A) tentacles
B) claws
C) spines
D) antennae
|
A) tentacles
|
Context:
other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit
that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is
set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature.
ion or cation. when an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion. cations and anions can form a crystalline lattice of neutral salts, such as the na + and clβ ions forming sodium chloride, or nacl. examples of polyatomic ions that do not split up during acid β base reactions are hydroxide ( ohβ ) and phosphate ( po43β ). plasma is composed of gaseous matter that has been completely ionized, usually through high temperature. = = = acidity and basicity = = = a substance can often be classified as an acid or a base. there are several different theories which explain acid β base behavior. the simplest is arrhenius theory, which states that an acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. according to brΓΈnsted β lowry acid β base theory, acids are substances that donate a positive hydrogen ion to another substance in a chemical reaction ; by extension, a base is the substance which receives that hydrogen ion. a third common theory is lewis acid β base theory, which is based on the formation of new chemical bonds. lewis theory explains that an acid is a substance which is capable of accepting a pair of electrons from another substance during the process of bond formation, while a base is a substance which can provide a pair of electrons to form a new bond. there are several other ways in which a substance may be classified as an acid or a base, as is evident in the history of this concept. acid strength is commonly measured by two methods. one measurement, based on the arrhenius definition of acidity, is ph, which is a measurement of the hydronium ion concentration in a solution, as expressed on a negative logarithmic scale. thus, solutions that have a low ph have a high hydronium ion concentration and can be said to be more acidic. the other measurement, based on the brΓΈnsted β lowry definition, is the acid dissociation constant ( ka ), which measures the relative ability of a substance to act as an acid under the brΓΈnsted β lowry definition of an acid. that is, substances with a higher ka are more likely to donate hydrogen ions in chemical reactions than those with lower ka values. = = = redox = = = redox ( reduction - oxidation ) reactions include all chemical reactions in which atoms have their
has rest mass and volume ( it takes up space ) and is made up of particles. the particles that make up matter have rest mass as well β not all particles have rest mass, such as the photon. matter can be a pure chemical substance or a mixture of substances. = = = = atom = = = = the atom is the basic unit of chemistry. it consists of a dense core called the atomic nucleus surrounded by a space occupied by an electron cloud. the nucleus is made up of positively charged protons and uncharged neutrons ( together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. in a neutral atom, the negatively charged electrons balance out the positive charge of the protons. the nucleus is dense ; the mass of a nucleon is approximately 1, 836 times that of an electron, yet the radius of an atom is about 10, 000 times that of its nucleus. the atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state ( s ), coordination number, and preferred types of bonds to form ( e. g., metallic, ionic, covalent ). = = = = element = = = = a chemical element is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol z. the mass number is the sum of the number of protons and neutrons in a nucleus. although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have the same mass number ; atoms of an element which have different mass numbers are known as isotopes. for example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, but atoms of carbon may have mass numbers of 12 or 13. the standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number. the periodic table is arranged in groups, or columns, and periods, or rows. the periodic table is useful in identifying periodic trends. = = = = compound = = = = a compound is a pure chemical substance composed of more than one element. the properties of a compound bear little similarity to those of its elements. the standard nomenclature of compounds is set by the international union of pure and applied chemistry ( iupac ). organic compounds are named
10 mpa ). it bombards the wafer with energetic ions of noble gases, often ar +, which knock atoms from the substrate by transferring momentum. because the etching is performed by ions, which approach the wafer approximately from one direction, this process is highly anisotropic. on the other hand, it tends to display poor selectivity. reactive - ion etching ( rie ) operates under conditions intermediate between sputter and plasma etching ( between 10β3 and 10β1 torr ). deep reactive - ion etching ( drie ) modifies the rie technique to produce deep, narrow features. in reactive - ion etching ( rie ), the substrate is placed inside a reactor, and several gases are introduced. a plasma is struck in the gas mixture using an rf power source, which breaks the gas molecules into ions. the ions accelerate towards, and react with, the surface of the material being etched, forming another gaseous material. this is known as the chemical part of reactive ion etching. there is also a physical part, which is similar to the sputtering deposition process. if the ions have high enough energy, they can knock atoms out of the material to be etched without a chemical reaction. it is a very complex task to develop dry etch processes that balance chemical and physical etching, since there are many parameters to adjust. by changing the balance it is possible to influence the anisotropy of the etching, since the chemical part is isotropic and the physical part highly anisotropic the combination can form sidewalls that have shapes from rounded to vertical. deep reactive ion etching ( drie ) is a special subclass of rie that is growing in popularity. in this process, etch depths of hundreds of micrometers are achieved with almost vertical sidewalls. the primary technology is based on the so - called " bosch process ", named after the german company robert bosch, which filed the original patent, where two different gas compositions alternate in the reactor. currently, there are two variations of the drie. the first variation consists of three distinct steps ( the original bosch process ) while the second variation only consists of two steps. in the first variation, the etch cycle is as follows : ( i ) sf6 isotropic etch ; ( ii ) c4f8 passivation ; ( iii ) sf6 anisotropic etch for floor cleaning. in the 2nd variation, steps ( i ) and ( iii
possible states of energy for electrons, atoms and molecules. these are determined by the rules of quantum mechanics, which require quantization of energy of a bound system. the atoms / molecules in a higher energy state are said to be excited. the molecules / atoms of substance in an excited energy state are often much more reactive ; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as
electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry often called its structure. while the structure of diatomic, triatomic or tetra - atomic molecules may be trivial, ( linear, angular pyramidal etc. ) the structure of polyatomic molecules, that are constituted of more than six atoms ( of several elements ) can be crucial for its chemical nature. = = = = substance and mixture = = = = a chemical substance is a kind of matter with a definite composition and set of properties. a collection of substances is called a mixture. examples of mixtures are air and alloys. = = = = mole and amount of substance = = = = the mole is a unit of measurement that denotes an amount of substance ( also called chemical amount ). one mole is defined to contain exactly 6. 02214076Γ1023 particles ( atoms, molecules, ions, or electrons ), where the number of particles per mole is known as the avogadro constant. molar concentration is the amount of a particular substance per volume of solution, and is commonly reported in mol / dm3. = = = phase = = = in addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. for the most part, the chemical classifications are independent of these bulk phase
forming another gaseous material. this is known as the chemical part of reactive ion etching. there is also a physical part, which is similar to the sputtering deposition process. if the ions have high enough energy, they can knock atoms out of the material to be etched without a chemical reaction. it is a very complex task to develop dry etch processes that balance chemical and physical etching, since there are many parameters to adjust. by changing the balance it is possible to influence the anisotropy of the etching, since the chemical part is isotropic and the physical part highly anisotropic the combination can form sidewalls that have shapes from rounded to vertical. deep reactive ion etching ( drie ) is a special subclass of rie that is growing in popularity. in this process, etch depths of hundreds of micrometers are achieved with almost vertical sidewalls. the primary technology is based on the so - called " bosch process ", named after the german company robert bosch, which filed the original patent, where two different gas compositions alternate in the reactor. currently, there are two variations of the drie. the first variation consists of three distinct steps ( the original bosch process ) while the second variation only consists of two steps. in the first variation, the etch cycle is as follows : ( i ) sf6 isotropic etch ; ( ii ) c4f8 passivation ; ( iii ) sf6 anisotropic etch for floor cleaning. in the 2nd variation, steps ( i ) and ( iii ) are combined. both variations operate similarly. the c4f8 creates a polymer on the surface of the substrate, and the second gas composition ( sf6 and o2 ) etches the substrate. the polymer is immediately sputtered away by the physical part of the etching, but only on the horizontal surfaces and not the sidewalls. since the polymer only dissolves very slowly in the chemical part of the etching, it builds up on the sidewalls and protects them from etching. as a result, etching aspect ratios of 50 to 1 can be achieved. the process can easily be used to etch completely through a silicon substrate, and etch rates are 3 β 6 times higher than wet etching. after preparing a large number of mems devices on a silicon wafer, individual dies have to be separated, which is called die preparation in semiconductor technology. for some applications, the separation is preceded by wafer backgrin
in reactive - ion etching ( rie ), the substrate is placed inside a reactor, and several gases are introduced. a plasma is struck in the gas mixture using an rf power source, which breaks the gas molecules into ions. the ions accelerate towards, and react with, the surface of the material being etched, forming another gaseous material. this is known as the chemical part of reactive ion etching. there is also a physical part, which is similar to the sputtering deposition process. if the ions have high enough energy, they can knock atoms out of the material to be etched without a chemical reaction. it is a very complex task to develop dry etch processes that balance chemical and physical etching, since there are many parameters to adjust. by changing the balance it is possible to influence the anisotropy of the etching, since the chemical part is isotropic and the physical part highly anisotropic the combination can form sidewalls that have shapes from rounded to vertical. deep reactive ion etching ( drie ) is a special subclass of rie that is growing in popularity. in this process, etch depths of hundreds of micrometers are achieved with almost vertical sidewalls. the primary technology is based on the so - called " bosch process ", named after the german company robert bosch, which filed the original patent, where two different gas compositions alternate in the reactor. currently, there are two variations of the drie. the first variation consists of three distinct steps ( the original bosch process ) while the second variation only consists of two steps. in the first variation, the etch cycle is as follows : ( i ) sf6 isotropic etch ; ( ii ) c4f8 passivation ; ( iii ) sf6 anisotropic etch for floor cleaning. in the 2nd variation, steps ( i ) and ( iii ) are combined. both variations operate similarly. the c4f8 creates a polymer on the surface of the substrate, and the second gas composition ( sf6 and o2 ) etches the substrate. the polymer is immediately sputtered away by the physical part of the etching, but only on the horizontal surfaces and not the sidewalls. since the polymer only dissolves very slowly in the chemical part of the etching, it builds up on the sidewalls and protects them from etching. as a result, etching aspect ratios of 50 to 1 can be achieved. the process can easily be used to etch completely
Question: What is the state of matter that resembles a gas, but is made of ions, giving it different properties than a typical gas?
A) vapor
B) gamma
C) plasma
D) acid
|
C) plasma
|
Context:
new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in animal agriculture. additionally, agricultural biotechnology can expedite breeding processes in order to yield faster results and provide greater quantities of food. transgenic biofortification in cereals has been considered as a promising method to combat malnutrition in india and other countries. = = = industrial = = = industrial biotechnology ( known mainly in europe as white biotechnology ) is the application of biotechnology for industrial purposes, including industrial fermentation. it includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper
phenotypic analysis. the new genetic material can be inserted randomly within the host genome or targeted to a specific location. the technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. this tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. the frequency of gene targeting can be greatly enhanced through genome editing. genome editing uses artificially engineered nucleases that create specific double - stranded breaks at desired locations in the genome, and use the cell ' s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end - joining. there are four families of engineered nucleases : meganucleases, zinc finger nucleases, transcription activator - like effector nucleases ( talens ), and the cas9 - guiderna system ( adapted from crispr ). talen and crispr are the two most commonly used and each has its own advantages. talens have greater target specificity, while crispr is easier to design and more efficient. in addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations at endogenous genes that generate a gene knockout. = = applications = = genetic engineering has applications in medicine, research, industry and agriculture and can be used on a wide range of plants, animals and microorganisms. bacteria, the first organisms to be genetically modified, can have plasmid dna inserted containing new genes that code for medicines or enzymes that process food and other substrates. plants have been modified for insect protection, herbicide resistance, virus resistance, enhanced nutrition, tolerance to environmental pressures and the production of edible vaccines. most commercialised gmos are insect resistant or herbicide tolerant crop plants. genetically modified animals have been used for research, model animals and the production of agricultural or pharmaceutical products. the genetically modified animals include animals with genes knocked out, increased susceptibility to disease, hormones for extra growth and the ability to express proteins in their milk. = = = medicine = = = genetic engineering has many applications to medicine that include the manufacturing of drugs, creation of model animals that mimic human conditions and gene therapy. one of the earliest uses of genetic engineering was to mass - produce human insulin in bacteria. this application has now been applied to human growth hormones, follicle stimulating hormones ( for treating infertility ), human albumin,
process by which a genotype encoded in dna gives rise to an observable phenotype in the proteins of an organism ' s body. this process is summarized by the central dogma of molecular biology, which was formulated by francis crick in 1958. according to the central dogma, genetic information flows from dna to rna to protein. there are two gene expression processes : transcription ( dna to rna ) and translation ( rna to protein ). = = = gene regulation = = = the regulation of gene expression by environmental factors and during different stages of development can occur at each step of the process such as transcription, rna splicing, translation, and post - translational modification of a protein. gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the dna sequence close to or at a promoter. a cluster of genes that share the same promoter is called an operon, found mainly in prokaryotes and some lower eukaryotes ( e. g., caenorhabditis elegans ). in positive regulation of gene expression, the activator is the transcription factor that stimulates transcription when it binds to the sequence near or at the promoter. negative regulation occurs when another transcription factor called a repressor binds to a dna sequence called an operator, which is part of an operon, to prevent transcription. repressors can be inhibited by compounds called inducers ( e. g., allolactose ), thereby allowing transcription to occur. specific genes that can be activated by inducers are called inducible genes, in contrast to constitutive genes that are almost constantly active. in contrast to both, structural genes encode proteins that are not involved in gene regulation. in addition to regulatory events involving the promoter, gene expression can also be regulated by epigenetic changes to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem
##ply quickly, relatively easy to transform and can be stored at - 80 Β°c almost indefinitely. once a gene is isolated it can be stored inside the bacteria providing an unlimited supply for research. organisms are genetically engineered to discover the functions of certain genes. this could be the effect on the phenotype of the organism, where the gene is expressed or what other genes it interacts with. these experiments generally involve loss of function, gain of function, tracking and expression. loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. in a simple knockout a copy of the desired gene has been altered to make it non - functional. embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. these stem cells are injected into blastocysts, which are implanted into surrogate mothers. this allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. it is used especially frequently in developmental biology. when this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called " scanning mutagenesis ". the simplest method, and the first to be used, is " alanine scanning ", where every position in turn is mutated to the unreactive amino acid alanine. gain of function experiments, the logical counterpart of knockouts. these are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. the process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it is required, especially when dealing with genetic or functional redundancy. tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. one way to do this is to replace the wild - type gene with a ' fusion ' gene, which is a juxtaposition of the wild - type gene with a reporting element such as green fluorescent protein ( gfp ) that will allow easy visualisation of the products of the genetic modification. while this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment.
kilometers ( 4, 200, 000 to 395, 400, 000 acres ). 10 % of the world ' s crop lands were planted with gm crops in 2010. as of 2011, 11 different transgenic crops were grown commercially on 395 million acres ( 160 million hectares ) in 29 countries such as the us, brazil, argentina, india, canada, china, paraguay, pakistan, south africa, uruguay, bolivia, australia, philippines, myanmar, burkina faso, mexico and spain. genetically modified foods are foods produced from organisms that have had specific changes introduced into their dna with the methods of genetic engineering. these techniques have allowed for the introduction of new crop traits as well as a far greater control over a food ' s genetic structure than previously afforded by methods such as selective breeding and mutation breeding. commercial sale of genetically modified foods began in 1994, when calgene first marketed its flavr savr delayed ripening tomato. to date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. these have been engineered for resistance to pathogens and herbicides and better nutrient profiles. gm livestock have also been experimentally developed ; in november 2013 none were available on the market, but in 2015 the fda approved the first gm salmon for commercial production and consumption. there is a scientific consensus that currently available food derived from gm crops poses no greater risk to human health than conventional food, but that each gm food needs to be tested on a case - by - case basis before introduction. nonetheless, members of the public are much less likely than scientists to perceive gm foods as safe. the legal and regulatory status of gm foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. gm crops also provide a number of ecological benefits, if not used in excess. insect - resistant crops have proven to lower pesticide usage, therefore reducing the environmental impact of pesticides as a whole. however, opponents have objected to gm crops per se on several grounds, including environmental concerns, whether food produced from gm crops is safe, whether gm crops are needed to address the world ' s food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law. biotechnology has several applications in the realm of food security. crops like golden rice are engineered to have higher nutritional content, and there is potential for food products with longer shelf lives. though not a form of agricultural biotechnology, vaccines can help prevent diseases found in
, e. g. by error - prone pcr or sequence saturation mutagenesis, is applied to a protein, and a selection regime is used to select variants having desired traits. further rounds of mutation and selection are then applied. this method mimics natural evolution and, in general, produces superior results to rational design. an added process, termed dna shuffling, mixes and matches pieces of successful variants to produce better results. such processes mimic the recombination that occurs naturally during sexual reproduction. advantages of directed evolution are that it requires no prior structural knowledge of a protein, nor is it necessary to be able to predict what effect a given mutation will have. indeed, the results of directed evolution experiments are often surprising in that desired changes are often caused by mutations that were not expected to have some effect. the drawback is that they require high - throughput screening, which is not feasible for all proteins. large amounts of recombinant dna must be mutated and the products screened for desired traits. the large number of variants often requires expensive robotic equipment to automate the process. further, not all desired activities can be screened for easily. natural darwinian evolution can be effectively imitated in the lab toward tailoring protein properties for diverse applications, including catalysis. many experimental technologies exist to produce large and diverse protein libraries and for screening or selecting folded, functional variants. folded proteins arise surprisingly frequently in random sequence space, an occurrence exploitable in evolving selective binders and catalysts. while more conservative than direct selection from deep sequence space, redesign of existing proteins by random mutagenesis and selection / screening is a particularly robust method for optimizing or altering extant properties. it also represents an excellent starting point for achieving more ambitious engineering goals. allying experimental evolution with modern computational methods is likely the broadest, most fruitful strategy for generating functional macromolecules unknown to nature. the main challenges of designing high quality mutant libraries have shown significant progress in the recent past. this progress has been in the form of better descriptions of the effects of mutational loads on protein traits. also computational approaches have shown large advances in the innumerably large sequence space to more manageable screenable sizes, thus creating smart libraries of mutants. library size has also been reduced to more screenable sizes by the identification of key beneficial residues using algorithms for systematic recombination. finally a significant step forward toward efficient reengineering of enzymes has been made with the development of more accurate statistical models and algorithms quantifying
##s can be tested against these mouse models. gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. clinical research using somatic gene therapy has been conducted with several diseases, including x - linked scid, chronic lymphocytic leukemia ( cll ), and parkinson ' s disease. in 2012, alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use. in 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy ' s body which was affected by the illness. germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community. in 2015, crispr was used to edit the dna of non - viable human embryos, leading scientists of major world academies to call for a moratorium on inheritable human genome edits. there are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings ' appearance, adaptability, intelligence, character or behavior. the distinction between cure and enhancement can also be difficult to establish. in november 2018, he jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the ccr5 gene, which codes for a receptor that hiv uses to enter cells. the work was widely condemned as unethical, dangerous, and premature. currently, germline modification is banned in 40 countries. scientists that do this type of research will often let embryos grow for a few days without allowing it to develop into a baby. researchers are altering the genome of pigs to induce the growth of human organs, with the aim of increasing the success of pig to human organ transplantation. scientists are creating " gene drives ", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease. = = = research = = = genetic engineering is an important tool for natural scientists, with the creation of transgenic organisms one of the most important tools for analysis of gene function. genes and other genetic information from a wide range of organisms can be inserted into bacteria for storage and modification, creating genetically modified bacteria in the process. bacteria are cheap, easy to grow, clonal, multi
united states and europe. = = overview = = genetic engineering is a process that alters the genetic structure of an organism by either removing or introducing dna, or modifying existing genetic material in situ. unlike traditional animal and plant breeding, which involves doing multiple crosses and then selecting for the organism with the desired phenotype, genetic engineering takes the gene directly from one organism and delivers it to the other. this is much faster, can be used to insert any genes from any organism ( even ones from different domains ) and prevents other undesirable genes from also being added. genetic engineering could potentially fix severe genetic disorders in humans by replacing the defective gene with a functioning one. it is an important tool in research that allows the function of specific genes to be studied. drugs, vaccines and other products have been harvested from organisms engineered to produce them. crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses. the dna can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host. this relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro - injection, macro - injection or micro - encapsulation. genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. however, some broad definitions of genetic engineering include selective breeding. cloning and stem cell research, although not considered genetic engineering, are closely related and genetic engineering can be used within them. synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism. plants, animals or microorganisms that have been changed through genetic engineering are termed genetically modified organisms or gmos. if genetic material from another species is added to the host, the resulting organism is called transgenic. if genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic. if genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism. in europe genetic modification is synonymous with genetic engineering while within the united states of america and canada genetic modification can also be used to refer to more conventional breeding methods. = = history = = humans have altered the
is the scientific study of inheritance. mendelian inheritance, specifically, is the process by which genes and traits are passed on from parents to offspring. it has several principles. the first is that genetic characteristics, alleles, are discrete and have alternate forms ( e. g., purple vs. white or tall vs. dwarf ), each inherited from one of two parents. based on the law of dominance and uniformity, which states that some alleles are dominant while others are recessive ; an organism with at least one dominant allele will display the phenotype of that dominant allele. during gamete formation, the alleles for each gene segregate, so that each gamete carries only one allele for each gene. heterozygotic individuals produce gametes with an equal frequency of two alleles. finally, the law of independent assortment, states that genes of different traits can segregate independently during the formation of gametes, i. e., genes are unlinked. an exception to this rule would include traits that are sex - linked. test crosses can be performed to experimentally determine the underlying genotype of an organism with a dominant phenotype. a punnett square can be used to predict the results of a test cross. the chromosome theory of inheritance, which states that genes are found on chromosomes, was supported by thomas morgans ' s experiments with fruit flies, which established the sex linkage between eye color and sex in these insects. = = = genes and dna = = = a gene is a unit of heredity that corresponds to a region of deoxyribonucleic acid ( dna ) that carries genetic information that controls form or function of an organism. dna is composed of two polynucleotide chains that coil around each other to form a double helix. it is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. the set of chromosomes in a cell is collectively known as its genome. in eukaryotes, dna is mainly in the cell nucleus. in prokaryotes, the dna is held within the nucleoid. the genetic information is held within genes, and the complete assemblage in an organism is called its genotype. dna replication is a semiconservative process whereby each strand serves as a template for a new strand of dna. mutations are heritable changes in dna. they can arise spontaneously as a result of replication errors that were not corrected by proofreading or can
genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism ' s genes using technology. it is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. new dna is obtained by either isolating and copying the genetic material of interest using recombinant dna methods or by artificially synthesising the dna. a construct is usually created and used to insert this dna into the host organism. the first recombinant dna molecule was made by paul berg in 1972 by combining dna from the monkey virus sv40 with the lambda virus. as well as inserting genes, the process can be used to remove, or " knock out ", genes. the new dna can be inserted randomly, or targeted to a specific part of the genome. an organism that is generated through genetic engineering is considered to be genetically modified ( gm ) and the resulting entity is a genetically modified organism ( gmo ). the first gmo was a bacterium generated by herbert boyer and stanley cohen in 1973. rudolf jaenisch created the first gm animal when he inserted foreign dna into a mouse in 1974. the first company to focus on genetic engineering, genentech, was founded in 1976 and started the production of human proteins. genetically engineered human insulin was produced in 1978 and insulin - producing bacteria were commercialised in 1982. genetically modified food has been sold since 1994, with the release of the flavr savr tomato. the flavr savr was engineered to have a longer shelf life, but most current gm crops are modified to increase resistance to insects and herbicides. glofish, the first gmo designed as a pet, was sold in the united states in december 2003. in 2016 salmon modified with a growth hormone were sold. genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. in research, gmos are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. by knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. as well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. chinese hamster ovary ( cho ) cells are used in industrial genetic engineering. additionally mrna vaccines are made through genetic engineering to prevent infections by viruses such as covid - 19. the same techniques that are used to produce drugs can also have industrial applications such
Question: Natural selection for what type of trait changes the distribution of phenotypes?
A) polygenic trait
B) maladaptive trait
C) major trait
D) parent trait
|
A) polygenic trait
|
Context:
this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic
listen ), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments. the clinical examination involves the study of : abdomen and rectum cardiovascular ( heart and blood vessels ) general appearance of the patient and specific indicators of disease ( nutritional status, presence of jaundice, pallor or clubbing ) genitalia ( and pregnancy if the patient is or could be pregnant ) head, eye, ear, nose, and throat ( heent ) musculoskeletal ( including spine and extremities ) neurological ( consciousness, awareness, brain, vision, cranial nerves, spinal cord and peripheral nerves ) psychiatric ( orientation, mental state, mood, evidence of abnormal perception or thought ). respiratory ( large airways and lungs ) skin vital signs including height, weight, body temperature, blood pressure, pulse, respiration rate, and hemoglobin oxygen saturation it is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above. the treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. a follow - up may be advised. depending upon the health insurance plan and the managed care system, various forms of " utilization review ", such as prior authorization of tests, may place barriers on accessing expensive services. the medical decision - making ( mdm ) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses ( the differential diagnoses ), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient ' s problem. on subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations. = = institutions = = contemporary medicine is, in general, conducted within health care systems. legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. the characteristics of any given health care system have a significant impact on the way medical care is provided. from ancient times, christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the catholic church today remains the largest non - government provider of medical services in the world. advanced industrial countries ( with the exception of the united states ) and many developing countries provide medical services through a system of universal health care that aims to
##ilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with
cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches. tissue engineering uses cells as strategies for creation / replacement of new tissue. examples include fibroblasts used for skin repair or renewal, chondrocytes used for cartilage repair ( maci β fda approved product ), and hepatocytes used in liver support systems cells can be used alone or with support matrices for tissue engineering applications. an adequate environment for promoting cell growth, differentiation, and integration with the existing tissue is a critical factor for cell - based building blocks. manipulation of any of these cell processes create alternative avenues for the development of new tissue ( e. g., cell reprogramming - somatic cells, vascularization ). = = = isolation = = = techniques for cell isolation depend on the cell source. centrifugation and apheresis are techniques used for extracting cells from biofluids ( e. g., blood ). whereas digestion processes, typically using enzymes to remove the extra
blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the bioreactor chamber is part of a larger device that rotates to ensure equal cell growth in each direction across three dimensions. quinxell technologies now under quintech life sciences from singapore has developed a bioreactor known as the tisxell biaxial bioreactor which is specially designed for the purpose of
the clinical symptoms of pulmonary embolism ( pe ) are very diverse and non - specific, which makes it difficult to diagnose. in addition, pulmonary embolism has multiple triggers and is one of the major causes of vascular death. therefore, if it can be detected and treated quickly, it can significantly reduce the risk of death in hospitalized patients. in the detection process, the cost of computed tomography pulmonary angiography ( ctpa ) is high, and angiography requires the injection of contrast agents, which increase the risk of damage to the patient. therefore, this study will use a deep learning approach to detect pulmonary embolism in all patients who take a ct image of the chest using a convolutional neural network. with the proposed pulmonary embolism detection system, we can detect the possibility of pulmonary embolism at the same time as the patient ' s first ct image, and schedule the ctpa test immediately, saving more than a week of ct image screening time and providing timely diagnosis and treatment to the patient.
, characterizing organs as predominantly yin or yang, and understood the relationship between the pulse, the heart, and the flow of blood in the body centuries before it became accepted in the west. little evidence survives of how ancient indian cultures around the indus river understood nature, but some of their perspectives may be reflected in the vedas, a set of sacred hindu texts. they reveal a conception of the universe as ever - expanding and constantly being recycled and reformed. surgeons in the ayurvedic tradition saw health and illness as a combination of three humors : wind, bile and phlegm. a healthy life resulted from a balance among these humors. in ayurvedic thought, the body consisted of five elements : earth, water, fire, wind, and space. ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy. pre - socratic philosophers in ancient greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 bc. however, an element of magic and mythology remained. natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. thales of miletus, an early philosopher who lived from 625 to 546 bc, explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. in the 5th century bc, leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. pythagoras applied greek innovations in mathematics to astronomy and suggested that the earth was spherical. = = = aristotelian natural philosophy ( 400 bc β 1100 ad ) = = = later socratic and platonic thought focused on ethics, morals, and art and did not attempt an investigation of the physical world ; plato criticized pre - socratic thinkers as materialists and anti - religionists. aristotle, however, a student of plato who lived from 384 to 322 bc, paid closer attention to the natural world in his philosophy. in his history of animals, he described the inner workings of 110 species, including the stingray, catfish and bee. he investigated chick embryos by breaking open eggs and observing them at various stages of development. aristotle ' s works were influential through the 16th century, and he is considered to be the father of biology for his pioneering work in that science. he also presented philosophies about physics, nature, and astronomy using
into seven out of approximately 20 human test subjects as part of a long - term experiment. cartilage : lab - grown cartilage, cultured in vitro on a scaffold, was successfully used as an autologous transplant to repair patients ' knees. scaffold - free cartilage : cartilage generated without the use of exogenous scaffold material. in this methodology, all material in the construct is cellular produced directly by the cells. bioartificial heart : doris taylor ' s lab constructed a biocompatible rat heart by re - cellularising a de - cellularised rat heart. this scaffold and cells were placed in a bioreactor, where it matured to become a partially or fully transplantable organ. the work was called a " landmark ". the lab first stripped the cells away from a rat heart ( a process called " decellularization " ) and then injected rat stem cells into the decellularized rat heart. tissue - engineered blood vessels : blood vessels that have been grown in a lab and can be used to repair damaged blood vessels without eliciting an immune response. tissue engineered blood vessels have been developed by many different approaches. they could be implanted as pre - seeded cellularized blood vessels, as acellular vascular grafts made with decellularized vessels or synthetic vascular grafts. artificial skin constructed from human skin cells embedded in a hydrogel, such as in the case of bio - printed constructs for battlefield burn repairs. artificial bone marrow : bone marrow cultured in vitro to be transplanted serves as a " just cells " approach to tissue engineering. tissue engineered bone : a structural matrix can be composed of metals such as titanium, polymers of varying degradation rates, or certain types of ceramics. materials are often chosen to recruit osteoblasts to aid in reforming the bone and returning biological function. various types of cells can be added directly into the matrix to expedite the process. laboratory - grown penis : decellularized scaffolds of rabbit penises were recellularised with smooth muscle and endothelial cells. the organ was then transplanted to live rabbits and functioned comparably to the native organ, suggesting potential as treatment for genital trauma. oral mucosa tissue engineering uses a cells and scaffold approach to replicate the 3 dimensional structure and function of oral mucosa. = = cells as building blocks = = cells are one of the main components for the success of tissue engineering approaches
required. for example, certain cells respond to changes in oxygen tension as part of their normal development, such as chondrocytes, which must adapt to low oxygen conditions or hypoxia during skeletal development. others, such as endothelial cells, respond to shear stress from fluid flow, which is encountered in blood vessels. mechanical stimuli, such as pressure pulses seem to be beneficial to all kind of cardiovascular tissue such as heart valves, blood vessels or pericardium. = = = bioreactors = = = in tissue engineering, a bioreactor is a device that attempts to simulate a physiological environment in order to promote cell or tissue growth in vitro. a physiological environment can consist of many different parameters such as temperature, pressure, oxygen or carbon dioxide concentration, or osmolality of fluid environment, and it can extend to all kinds of biological, chemical or mechanical stimuli. therefore, there are systems that may include the application of forces such as electromagnetic forces, mechanical pressures, or fluid pressures to the tissue. these systems can be two - or three - dimensional setups. bioreactors can be used in both academic and industry applications. general - use and application - specific bioreactors are also commercially available, which may provide static chemical stimulation or a combination of chemical and mechanical stimulation. cell proliferation and differentiation are largely influenced by mechanical and biochemical cues in the surrounding extracellular matrix environment. bioreactors are typically developed to replicate the specific physiological environment of the tissue being grown ( e. g., flex and fluid shearing for heart tissue growth ). this can allow specialized cell lines to thrive in cultures replicating their native environments, but it also makes bioreactors attractive tools for culturing stem cells. a successful stem - cell - based bioreactor is effective at expanding stem cells with uniform properties and / or promoting controlled, reproducible differentiation into selected mature cell types. there are a variety of bioreactors designed for 3d cell cultures. there are small plastic cylindrical chambers, as well as glass chambers, with regulated internal humidity and moisture specifically engineered for the purpose of growing cells in three dimensions. the bioreactor uses bioactive synthetic materials such as polyethylene terephthalate membranes to surround the spheroid cells in an environment that maintains high levels of nutrients. they are easy to open and close, so that cell spheroids can be removed for testing, yet the chamber is able to maintain 100 % humidity throughout. this humidity is important to achieve maximum cell growth and function. the
numerical model of the peripheral circulation and dynamical model of the large vessels and the heart are discussed in this paper. they combined together into the global model of blood circulation. some results of numerical simulations concerning matter transport through the human organism and heart diseases are represented in the end.
Question: Systemic veins return blood low in what to the right atrium?
A) oxygen
B) nitrogen
C) nutrients
D) dioxide
|
A) oxygen
|
Context:
28 size spectra of extensive air showers from 7 different experiments are analysed consistently. they are fitted by adjusting either 4 or 5 parameters : knee position, power law exponents above and below the knee, overall intensity and, in addition, a parameter describing the smoothness of the bend. the residuals are then normalized to the same knee position and averaged. when 5 parameters are employed no systematic deviation from a single smooth knee is apparent at the 1 % level up to a factor of 4 above the knee. at larger shower sizes a moderately significant deviation can be seen whose shape and position are compatible with a second knee caused by iron group nuclei.
##tronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently
as a traditional tool of external assistance, crutches play an important role in society. they have a wide range of applications to help either the elderly and disabled to walk or to treat certain illnesses or for post - operative rehabilitation. but there are many different types of crutches, including shoulder crutches and elbow crutches. how to choose has become an issue that deserves to be debated. because while crutches help people walk, they also have an impact on the body. inappropriate choice of crutches or long - term misuse can lead to problems such as scoliosis. previous studies were mainly experimental measurements or the construction of dynamic models to calculate the load on joints with crutches. these studies focus only on the level of the joints, ignoring the role that muscles play in this process. although some also take into account the degree of muscle activation, there is still a lack of quantitative analysis. the traditional dynamic model can be used to calculate the load on each joint. however, due to the activation of the muscle, this situation only causes part of the load transmitted to the joint, and the work of the chair will compensate the other part of the load. analysis at the muscle level allows a better understanding of the impact of crutches on the body. by comparing the levels of activation of the trunk muscles, it was found that the use of crutches for walking, especially a single crutch, can cause a large difference in the activation of the back muscles on the left and right sides, and this difference will cause muscle degeneration for a long time, leading to scoliosis. in this article taking scoliosis as an example, by analyzing the muscles around the spine, we can better understand the pathology and can better prevent diseases. the objective of this article is to analyze normal walking compared to walking with one or two crutches using opensim software to obtain the degree of activation of different muscles in order to analyze the impact of crutches on the body.
defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the gears. the exoskeleton supports the shoulder, waist and thigh, and assists movement for lifting and holding heavy items, while lowering back stress. = = = adaptive seating and positioning = = = people with balance and motor function challenges often need specialized equipment to sit or stand safely and securely. this equipment is frequently specialized for specific settings such as in a classroom or nursing home. positioning is often important in seating arrangements to ensure that user ' s body pressure is distributed equally without inhibiting movement in a desired way. positioning devices have been developed to aid in allowing people to stand and bear weight on their legs without risk of a fall.
is the science / subject of measuring and modelling the process of care in health and social care systems. nosology is the classification of diseases for various purposes. occupational medicine is the provision of health advice to organizations and individuals to ensure that the highest standards of health and safety at work can be achieved and maintained. pain management ( also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a
the space station is established in intergovernmental treaties and agreements, which divide the station into two areas and allow russia to retain full ownership of the russian orbital segment ( with the exception of zarya ), with the us orbital segment allocated between the other international partners. long - duration missions to the iss are referred to as iss expeditions. expedition crew members typically spend approximately six months on the iss. the initial expedition crew size was three, temporarily decreased to two following the columbia disaster. between may 2009 and until the retirement of the space shuttle, the expedition crew size has been six crew members. as of 2024, though the commercial program ' s crew capsules can allow a crew of up to seven, expeditions using them typically consist of a crew of four. the iss has been continuously occupied for the past 24 years and 202 days, having exceeded the previous record held by mir ; and has been visited by astronauts and cosmonauts from 15 different nations. the station can be seen from the earth with the naked eye and, as of 2025, is the largest artificial satellite in earth orbit with a mass and volume greater than that of any previous space station. the russian soyuz and american dragon and starliner spacecraft are used to send astronauts to and from the iss. several uncrewed cargo spacecraft provide service to the iss ; they are the russian progress spacecraft which has done so since 2000, the european automated transfer vehicle ( atv ) since 2008, the japanese h - ii transfer vehicle ( htv ) since 2009, the ( uncrewed ) dragon since 2012, and the american cygnus spacecraft since 2013. the space shuttle, before its retirement, was also used for cargo transfer and would often switch out expedition crew members, although it did not have the capability to remain docked for the duration of their stay. between the retirement of the shuttle in 2011 and the commencement of crewed dragon flights in 2020, american astronauts exclusively used the soyuz for crew transport to and from the iss the highest number of people occupying the iss has been thirteen ; this occurred three times during the late shuttle iss assembly missions. the iss program is expected to continue until 2030, after which the space station will be retired and destroyed in a controlled de - orbit. = = = = commercial resupply services ( 2008 β present ) = = = = commercial resupply services ( crs ) are a contract solution to deliver cargo and supplies to the international space station on a commercial basis by private companies. nasa signed its first crs contracts in 2008 and awarded $ 1
if a fintie group g acts topologically and faithfully on r ^ 3, then g is a subgroup of o ( 3 )
like it, assist physical therapists by providing task - specific practice of walking in people following neurological injury. = = = prosthesis = = = a prosthesis, prosthetic, or prosthetic limb is a device that replaces a missing body part. it is part of the field of biomechatronics, the science of using mechanical devices with human muscular, musculoskeletal, and nervous systems to assist or enhance motor control lost by trauma, disease, or defect. prostheses are typically used to replace parts lost by injury ( traumatic ) or missing from birth ( congenital ) or to supplement defective body parts. inside the body, artificial heart valves are in common use with artificial hearts and lungs seeing less common use but under active technology development. other medical devices and aids that can be considered prosthetics include hearing aids, artificial eyes, palatal obturator, gastric bands, and dentures. prostheses are specifically not orthoses, although given certain circumstances a prosthesis might end up performing some or all of the same functionary benefits as an orthosis. prostheses are technically the complete finished item. for instance, a c - leg knee alone is not a prosthesis, but only a prosthetic component. the complete prosthesis would consist of the attachment system to the residual limb β usually a " socket ", and all the attachment hardware components all the way down to and including the terminal device. despite the technical difference, the terms are often used interchangeably. the terms " prosthetic " and " orthotic " are adjectives used to describe devices such as a prosthetic knee. the terms " prosthetics " and " orthotics " are used to describe the respective allied health fields. an occupational therapist ' s role in prosthetics include therapy, training and evaluations. prosthetic training includes orientation to prosthetics components and terminology, donning and doffing, wearing schedule, and how to care for residual limb and the prosthesis. = = = exoskeletons = = = a powered exoskeleton is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. its design aims to provide back support, sense the user ' s motion, and send a signal to motors which manage the
also called pain medicine, or algiatry ) is the medical discipline concerned with the relief of pain. pharmacogenomics is a form of individualized medicine. podiatric medicine is the study of, diagnosis, and medical treatment of disorders of the foot, ankle, lower limb, hip and lower back. sexual medicine is concerned with diagnosing, assessing and treating all disorders related to sexuality. sports medicine deals with the treatment and prevention and rehabilitation of sports / exercise injuries such as muscle spasms, muscle tears, injuries to ligaments ( ligament tears or ruptures ) and their repair in athletes, amateur and professional. therapeutics is the field, more commonly referenced in earlier periods of history, of the various remedies that can be used to treat disease and promote health. travel medicine or emporiatrics deals with health problems of international travelers or travelers across highly different environments. tropical medicine deals with the prevention and treatment of tropical diseases. it is studied separately in temperate climates where those diseases are quite unfamiliar to medical practitioners and their local clinical needs. urgent care focuses on delivery of unscheduled, walk - in care outside of the hospital emergency department for injuries and illnesses that are not severe enough to require care in an emergency department. in some jurisdictions this function is combined with the emergency department. veterinary medicine ; veterinarians apply similar techniques as physicians to the care of non - human animals. wilderness medicine entails the practice of medicine in the wild, where conventional medical facilities may not be available. = = education and legal controls = = medical education and training varies around the world. it typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. this can be followed by postgraduate vocational training. a variety of teaching methods have been employed in medical education, still itself a focus of active research. in canada and the united states of america, a doctor of medicine degree, often abbreviated m. d., or a doctor of osteopathic medicine degree, often abbreviated as d. o. and unique to the united states, must be completed in and delivered from a recognized university. since knowledge, techniques, and medical technology continue to evolve at a rapid rate, many regulatory authorities require continuing medical education. medical practitioners upgrade their knowledge in various ways, including medical journals, seminars, conferences, and online programs. a database of objectives covering medical knowledge, as suggested by national societies across the united states, can be searched at http : / / data. medobjectives
neo - assyrian period ( 911 β 609 ) bc. the egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever, to create structures like the great pyramid of giza. the earliest civil engineer known by name is imhotep. as one of the officials of the pharaoh, djoser, he probably designed and supervised the construction of the pyramid of djoser ( the step pyramid ) at saqqara in egypt around 2630 β 2611 bc. the earliest practical water - powered machines, the water wheel and watermill, first appeared in the persian empire, in what are now iraq and iran, by the early 4th century bc. kush developed the sakia during the 4th century bc, which relied on animal power instead of human energy. hafirs were developed as a type of reservoir in kush to store and contain water as well as boost irrigation. sappers were employed to build causeways during military campaigns. kushite ancestors built speos during the bronze age between 3700 and 3250 bc. bloomeries and blast furnaces were also created during the 7th centuries bc in kush. ancient greece developed machines in both civilian and military domains. the antikythera mechanism, an early known mechanical analog computer, and the mechanical inventions of archimedes, are examples of greek mechanical engineering. some of archimedes ' inventions, as well as the antikythera mechanism, required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the industrial revolution, and are widely used in fields such as robotics and automotive engineering. ancient chinese, greek, roman and hunnic armies employed military machines and inventions such as artillery which was developed by the greeks around the 4th century bc, the trireme, the ballista and the catapult, the trebuchet by chinese circa 6th - 5th century bce. = = = middle ages = = = the earliest practical wind - powered machines, the windmill and wind pump, first appeared in the muslim world during the islamic golden age, in what are now iran, afghanistan, and pakistan, by the 9th century ad. the earliest practical steam - powered machine was a steam jack driven by a steam turbine, described in 1551 by taqi al - din muhammad ibn ma ' ruf in ottoman egypt. the cotton gin was invented in india by the 6th century ad, and the spinning wheel was invented in the islamic
Question: The three long muscles on the back of the knee are part of which group?
A) hamstring group
B) synovial joint
C) adductors
D) patella
|
A) hamstring group
|
Context:
shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration
oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and
chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock. others, such as the essential oils peppermint oil and lemon oil are useful for their aroma, as flavourings and spices ( e. g., capsaicin ), and in medicine as pharmaceuticals as in opium from opium poppies. many medicinal and recreational drugs, such as tetrahydrocannabinol ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and
. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support
, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which
plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. stolons and tubers are examples of shoots that can grow roots. roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. in the event that one of the systems is lost, the other can often regrow it. in fact it is possible to grow an entire plant from a single leaf, as is the case with plants in streptocarpus sect. saintpaulia, or even a single cell β which can dedifferentiate into a callus ( a mass of
are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its
the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with other strands of proteins. = = = metabolism = = = all cells require energy to sustain cellular processes. metabolism is the set of chemical reactions in an organism. the three main purposes of metabolism are : the conversion of food to energy to run cellular processes ; the conversion of food / fuel to monomer building blocks ; and the elimination of metabolic wastes. these enzyme - catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. metabolic reactions may be categorized as catabolic β the breaking down of compounds ( for example, the breaking down of glucose to pyruvate by cellular respiration ) ; or anabolic β the building up ( synthesis ) of compounds ( such as proteins, carbohydrates, lipids, and nucleic acids ). usually, catabolism releases energy, and anabolism consumes energy. the chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme. enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. enzymes act as catalysts β they allow a
within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. eukaryotic cells also have cytoskeleton that is made up of microtubules, intermediate filaments, and microfilaments, all of which provide support for the cell and are involved in the movement of the cell and its organelles. in terms of their structural composition, the microtubules are made up of tubulin ( e. g., Ξ± - tubulin and Ξ² - tubulin ) whereas intermediate filaments are made up of fibrous proteins. microfilaments are made up of actin molecules that interact with
from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. this can result in adaptive changes in a process known as photomorphogenesis. phytochromes are the photoreceptors in a plant that are sensitive to light. = = plant anatomy and morphology = = plant anatomy is the study of the structure of plant cells and tissues, whereas plant morphology is the study of their external form. all plants are multicellular eukaryotes, their dna stored in nuclei. the characteristic features of plant cells that distinguish them from those of animals and fungi include a primary cell wall composed of the polysaccharides cellulose, hemicellulose and pectin, larger vacuoles than in animal cells and the presence of plastids with unique photosynthetic and biosynthetic functions as in the chloroplasts. other plastids contain storage products such as starch ( amyloplasts ) or lipids ( elaioplasts ). uniquely, streptophyte cells and those of the green algal order trentepohliales divide by construction of a phragmoplast as a template for building a cell plate late in cell division. the bodies of vascular plants including clubmosses, ferns and seed plants ( gymnosperms and angiosperms ) generally have aerial and subterranean subsystems. the shoots consist of stems bearing green photosynthesising leaves and reproductive structures. the underground vascularised roots bear root hairs at their tips and generally lack chlorophyll. non - vascular plants, the liverworts, hornworts and mosses do not produce ground - penetrating vascular roots and most of the plant participates in photosynthesis. the sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts. the root system and the shoot system are interdependent β the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. cells in each system are capable
Question: What shapes, supports, and protects the cell?
A) the chloroplast
B) the epithelium
C) the cell wall
D) the mesothelium
|
C) the cell wall
|
Context:
the mechanism of stabilization of neutron - excess nuclei in stars is considered. this mechanism must produce the neutronisation process in hot stars in the same way as it occurs in the dwarfs.
while the modern stellar imf shows a rapid decline with increasing mass, theoretical investigations suggest that very massive stars ( > 100 solar masses ) may have been abundant in the early universe. other calculations also indicate that, lacking metals, these same stars reach their late evolutionary stages without appreciable mass loss. after central helium burning, they encounter the electron - positron pair instability, collapse, and burn oxygen and silicon explosively. if sufficient energy is released by the burning, these stars explode as brilliant supernovae with energies up to 100 times that of an ordinary core collapse supernova. they also eject up to 50 solar masses of radioactive ni56. stars less massive than 140 solar masses or more massive than 260 solar masses should collapse into black holes instead of exploding, thus bounding the pair - creation supernovae with regions of stellar mass that are nucleosynthetically sterile. pair - instability supernovae might be detectable in the near infrared out to redshifts of 20 or more and their ashes should leave a distinctive nucleosynthetic pattern.
this process may release or absorb energy. when the resulting nucleus is lighter than that of iron, energy is normally released ; when the nucleus is heavier than that of iron, energy is generally absorbed. this process of fusion occurs in stars, which derive their energy from hydrogen and helium. they form, through stellar nucleosynthesis, the light elements ( lithium to calcium ) as well as some of the heavy elements ( beyond iron and nickel, via the s - process ). the remaining abundance of heavy elements, from nickel to uranium and beyond, is due to supernova nucleosynthesis, the r - process. of course, these natural processes of astrophysics are not examples of nuclear " technology ". because of the very strong repulsion of nuclei, fusion is difficult to achieve in a controlled fashion. hydrogen bombs, formally known as thermonuclear weapons, obtain their enormous destructive power from fusion, but their energy cannot be controlled. controlled fusion is achieved in particle accelerators ; this is how many synthetic elements are produced. a fusor can also produce controlled fusion and is a useful neutron source. however, both of these devices operate at a net energy loss. controlled, viable fusion power has proven elusive, despite the occasional hoax. technical and theoretical difficulties have hindered the development of working civilian fusion technology, though research continues to this day around the world. nuclear fusion was initially pursued only in theoretical stages during world war ii, when scientists on the manhattan project ( led by edward teller ) investigated it as a method to build a bomb. the project abandoned fusion after concluding that it would require a fission reaction to detonate. it took until 1952 for the first full hydrogen bomb to be detonated, so - called because it used reactions between deuterium and tritium. fusion reactions are much more energetic per unit mass of fuel than fission reactions, but starting the fusion chain reaction is much more difficult. = = nuclear weapons = = a nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion. both reactions release vast quantities of energy from relatively small amounts of matter. even small nuclear devices can devastate a city by blast, fire and radiation. nuclear weapons are considered weapons of mass destruction, and their use and control has been a major aspect of international policy since their debut. the design of a nuclear weapon is more complicated than it might seem. such a weapon must hold one or more subcritical fissile masses stable for deployment, then induce criticality
there are a few different mechanisms that can cause white dwarf stars to vary in brightness, providing opportunities to probe the physics, structures, and formation of these compact stellar remnants. the observational characteristics of the three most common types of white dwarf variability are summarized : stellar pulsations, rotation, and ellipsoidal variations from tidal distortion in binary systems. stellar pulsations are emphasized as the most complex type of variability, which also has the greatest potential to reveal the conditions of white dwarf interiors.
winds from agn and quasars will form large amounts of dust, as the cool gas in these winds passes through the ( pressure, temperature ) region where dust is formed in agb stars. conditions in the gas are benign to dust at these radii. as a result quasar winds may be a major source of dust at high redshifts, obviating a difficulty with current observations, and requiring far less dust to exist at early epochs.
two types of stars are known to have strong, large scale magnetic fields : the main sequence ap stars and the magnetic white dwarfs. this suggest that the former might be the progenitors of the latter. in order to test this idea, i have carried out a search for large scale magnetic fields in stars with evolutionary states which are intermediate, i. e. in horizontal branch stars and in hot subdwarfs.
planetary nebulae retain the signature of the nucleosynthesis and mixing events that occurred during the previous agb phase. observational signatures complement observations of agb and post - agb stars and their binary companions. the abundances of the elements heavier than iron such as kr and xe in planetary nebulae can be used to complement abundances of sr / y / zr and ba / la / ce in agb stars, respectively, to determine the operation of the slow neutron - capture process ( the s process ) in agb stars. additionally, observations of the rb abundance in type i planetary nebulae may allow us to infer the initial mass of the central star. several noble gas components present in meteoritic stardust silicon carbide ( sic ) grains are associated with implantation into the dust grains in the high - energy environment connected to the fast winds from the central stars during the planetary nebulae phase.
galactic nuclei are unique laboratories for the study of processes connected with the accretion of gas onto supermassive black holes. at the same time, they represent challenging environments from the point of view of stellar dynamics due to their extreme densities and masses involved. there is a growing evidence about the importance of the mutual interaction of stars with gas in galactic nuclei. gas rich environment may lead to stellar formation which, on the other hand, may regulate accretion onto the central mass. gas in the form of massive torus or accretion disc further influences stellar dynamics in the central parsec either via gravitational or hydrodynamical interaction. eccentricity oscillations on one hand and energy dissipation on the other hand lead to increased rate of infall of stars into the supermassive black hole. last, but not least, processes related to the stellar dynamics may be detectable with forthcoming gravitational waves detectors.
in the present - day universe, it appears that most, and perhaps all, massive stars are born in star clusters. it also appears that all star clusters contain stars drawn from an approximately universal initial mass function, so that almost all rich young star clusters contain massive stars. in this review i discuss the physical processes associated with both massive star formation and with star cluster formation. first i summarize the observed properties of star - forming gas clumps, then address the following questions. how do these clumps emerge from giant molecular clouds? in these clustered environments, how do individual stars form and gain mass? can a forming star cluster be treated as an equilibrium system or is this process too rapid for equilibrium to be established? how does feedback affect the formation process?
i will discuss the presence of massive star clusters in starburst galaxies with an emphasis on low mass galaxies outside the local group. i will show that such galaxies, with respect to their mass and luminosity, may be very rich in young luminous clusters.
Question: What process, which results because of great pressure at the center of a star, causes stars to shine?
A) energy fusion
B) gravitational pull
C) nuclear fusion
D) electric fusion
|
C) nuclear fusion
|
Context:
in this article i explain in detail a method for making small amounts of liquid oxygen in the classroom if there is no access to a cylinder of compressed oxygen gas. i also discuss two methods for identifying the fact that it is liquid oxygen as opposed to liquid nitrogen.
or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds. oxidation, reduction, dissociation, acid β base neutralization and molecular rearrangement are some examples of common chemical reactions. a chemical reaction can be symbolically depicted through a chemical equation. while in a non - nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for
; that is, more amenable to chemical reactions. the phase of a substance is invariably determined by its energy and the energy of its surroundings. when the intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water ( h2o ) ; a liquid at room temperature because its molecules are bound by hydrogen bonds. whereas hydrogen sulfide ( h2s ) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole β dipole interactions. the transfer of energy from one chemical substance to another depends on the size of energy quanta emitted from one substance. however, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat is more easily transferred between substances relative to light or other forms of electronic energy. for example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. the existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines. different kinds of spectra are often used in chemical spectroscopy, e. g. ir, microwave, nmr, esr, etc. spectroscopy is also used to identify the composition of remote objects β like stars and distant galaxies β by analyzing their radiation spectra. the term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. = = = reaction = = = when a chemical substance is transformed as a result of its interaction with another substance or with energy, a chemical reaction is said to have occurred. a chemical reaction is therefore a concept related to the " reaction " of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. it results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels β often laboratory glassware. chemical reactions can result in the formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. chemical reactions usually involve the making or breaking of chemical bonds
building block. ceramics β not to be confused with raw, unfired clay β are usually seen in crystalline form. the vast majority of commercial glasses contain a metal oxide fused with silica. at the high temperatures used to prepare glass, the material is a viscous liquid which solidifies into a disordered state upon cooling. windowpanes and eyeglasses are important examples. fibers of glass are also used for long - range telecommunication and optical transmission. scratch resistant corning gorilla glass is a well - known example of the application of materials science to drastically improve the properties of common components. engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. hot pressing provides higher density material. chemical vapor deposition can place a film of a ceramic on another material. cermets are ceramic particles containing some metals. the wear resistance of tools is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties. ceramics can be significantly strengthened for engineering applications using the principle of crack deflection. this process involves the strategic addition of second - phase particles within a ceramic matrix, optimizing their shape, size, and distribution to direct and control crack propagation. this approach enhances fracture toughness, paving the way for the creation of advanced, high - performance ceramics in various industries. = = = composites = = = another application of materials science in industry is making composite materials. these are structured materials composed of two or more macroscopic phases. applications range from structural elements such as steel - reinforced concrete, to the thermal insulating tiles, which play a key and integral role in nasa ' s space shuttle thermal protection system, which is used to protect the surface of the shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap. rcc is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. after curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfuryl alcohol in a
an electron inside liquid helium forms a bubble of 17 \ aa in radius. in an external magnetic field, the two - level system of a spin 1 / 2 electron is ideal for the implementation of a qubit for quantum computing. the electron spin is well isolated from other thermal reservoirs so that the qubit should have very long coherence time. by confining a chain of single electron bubbles in a linear rf quadrupole trap, a multi - bit quantum register can be implemented. all spins in the register can be initialized to the ground state either by establishing thermal equilibrium at a temperature around 0. 1 k and at a magnetic field of 1 t or by sorting the bubbles to be loaded into the trap with magnetic separation. schemes are designed to address individual spins and to do two - qubit cnot operations between the neighboring spins. the final readout can be carried out through a measurement similar to the stern - gerlach experiment.
high machining costs. there is a possibility for melt casting to be used for many of these approaches. potentially even more desirable is using melt - derived particles. in this method, quenching is done in a solid solution or in a fine eutectic structure, in which the particles are then processed by more typical ceramic powder processing methods into a useful body. there have also been preliminary attempts to use melt spraying as a means of forming composites by introducing the dispersed particulate, whisker, or fiber phase in conjunction with the melt spraying process. other methods besides melt infiltration to manufacture ceramic composites with long fiber reinforcement are chemical vapor infiltration and the infiltration of fiber preforms with organic precursor, which after pyrolysis yield an amorphous ceramic matrix, initially with a low density. with repeated cycles of infiltration and pyrolysis one of those types of ceramic matrix composites is produced. chemical vapor infiltration is used to manufacture carbon / carbon and silicon carbide reinforced with carbon or silicon carbide fibers. besides many process improvements, the first of two major needs for fiber composites is lower fiber costs. the second major need is fiber compositions or coatings, or composite processing, to reduce degradation that results from high - temperature composite exposure under oxidizing conditions. = = applications = = the products of technical ceramics include tiles used in the space shuttle program, gas burner nozzles, ballistic protection, nuclear fuel uranium oxide pellets, bio - medical implants, jet engine turbine blades, and missile nose cones. its products are often made from materials other than clay, chosen for their particular physical properties. these may be classified as follows : oxides : silica, alumina, zirconia non - oxides : carbides, borides, nitrides, silicides composites : particulate or whisker reinforced matrices, combinations of oxides and non - oxides ( e. g. polymers ). ceramics can be used in many technological industries. one application is the ceramic tiles on nasa ' s space shuttle, used to protect it and the future supersonic space planes from the searing heat of re - entry into the earth ' s atmosphere. they are also used widely in electronics and optics. in addition to the applications listed here, ceramics are also used as a coating in various engineering cases. an example would be a ceramic bearing coating over a titanium frame used for an aircraft. recently the field has come to include the studies of single
assuming only statistical mechanics and general relativity, we calculate the maximal temperature of gas of particles placed in ads space - time. if two particles with a given center of mass energy come close enough, according to classical gravity they will form a black hole. we focus only on the black holes with hawking temperature lower than the environment, because they do not disappear. the number density of such black holes grows with the temperature in the system. at a certain finite temperature, the thermodynamical system will be dominated by black holes. this critical temperature is lower than the planck temperature for the values of the ads vacuum energy density below the planck density. this result might be interesting from the ads / cft correspondence point of view, since it is different from the hawking - page phase transition, and it is not immediately clear what effect dynamically limits the maximal temperature of the thermal state on the cft side of the correspondence.
grain sizes are a product of the thermal processing parameters as well as the initial particle size, or possibly the sizes of aggregates or particle clusters which arise during the initial stages of processing. the ultimate microstructure ( and thus the physical properties ) of the final product will be limited by and subject to the form of the structural template or precursor which is created in the initial stages of chemical synthesis and physical forming. hence the importance of chemical powder and polymer processing as it pertains to the synthesis of industrial ceramics, glasses and glass - ceramics. there are numerous possible refinements of the sintering process. some of the most common involve pressing the green body to give the densification a head start and reduce the sintering time needed. sometimes organic binders such as polyvinyl alcohol are added to hold the green body together ; these burn out during the firing ( at 200 β 350 Β°c ). sometimes organic lubricants are added during pressing to increase densification. it is common to combine these, and add binders and lubricants to a powder, then press. ( the formulation of these organic chemical additives is an art in itself. this is particularly important in the manufacture of high performance ceramics such as those used by the billions for electronics, in capacitors, inductors, sensors, etc. ) a slurry can be used in place of a powder, and then cast into a desired shape, dried and then sintered. indeed, traditional pottery is done with this type of method, using a plastic mixture worked with the hands. if a mixture of different materials is used together in a ceramic, the sintering temperature is sometimes above the melting point of one minor component β a liquid phase sintering. this results in shorter sintering times compared to solid state sintering. such liquid phase sintering involves in faster diffusion processes and may result in abnormal grain growth. = = strength of ceramics = = a material ' s strength is dependent on its microstructure. the engineering processes to which a material is subjected can alter its microstructure. the variety of strengthening mechanisms that alter the strength of a material include the mechanism of grain boundary strengthening. thus, although yield strength is maximized with decreasing grain size, ultimately, very small grain sizes make the material brittle. considered in tandem with the fact that the yield strength is the parameter that predicts plastic deformation in the material, one can make informed decisions on how to increase the strength of a material depending on its microstructural
context. water together with o2 are important gas phase ingredients to cool dense gas in order to form stars. on dust grains, h2 o is an important constituent of the icy mantle in which a complex chemistry is taking place, as revealed by hot core observations. the formation of water can occur on dust grain surfaces, and can impact gas phase composition. aims. the formation of molecules such as oh, h2 o, ho2, h2 o2, as well as their deuterated forms and o2 and o3 is studied in order to assess how the chemistry varies in different astrophysical environments, and how the gas phase is affected by grain surface chemistry. methods. we use monte carlo simulations to follow the formation of molecules on bare grains as well as the fraction of molecules released into the gas phase. we consider a surface reaction network, based on gas phase reactions, as well as uv photo - dissociation of the chemical species. results. we show that grain surface chemistry has a strong impact on gas phase chemistry, and that this chemistry is very different for different dust grain temperatures. low temperatures favor hydrogenation, while higher temperatures favor oxygenation. also, uv photons dissociate the molecules on the surface, that can reform subsequently. the formation - destruction cycle increases the amount of species released into the gas phase. we also determine the time scales to form ices in diffuse and dense clouds, and show that ices are formed only in shielded environments, as supported by observations.
a minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0. 1 bar in the atmospheres of earth, titan, jupiter, saturn, uranus and neptune, despite great differences in atmospheric composition, gravity, internal heat and sunlight. in all these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of shortwave solar radiation, from a region below characterised by convection, weather, and clouds. however, it is not obvious why the tropopause occurs at the specific pressure near 0. 1 bar. here we use a physically - based model to demonstrate that, at atmospheric pressures lower than 0. 1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. at higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. a common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets the 0. 1 bar tropopause. we hypothesize that a tropopause at a pressure of approximately 0. 1 bar is characteristic of many thick atmospheres, including exoplanets and exomoons in our galaxy and beyond. judicious use of this rule could help constrain the atmospheric structure, and thus the surface environments and habitability, of exoplanets.
Question: What do we call the formation of a gas from a liquid at temperatures below the boiling point?
A) steaming
B) evaporation
C) pulverization
D) melting
|
B) evaporation
|
Context:
##l ( active ingredient in cannabis ), caffeine, morphine and nicotine come directly from plants. others are simple derivatives of botanical natural products. for example, the pain killer aspirin is the acetyl ester of salicylic acid, originally isolated from the bark of willow trees, and a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol
the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form
3 - carbon sugar glyceraldehyde 3 - phosphate ( g3p ). glyceraldehyde 3 - phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. some of the glucose is converted to starch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway
. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united kingdom desperately needed to manufacture explosives during world war i. biotechnology has also led to the development of antibiotics. in 1928, alexander fleming discovered the mold penicillium. his work led to the purification of the antibiotic formed by the mold by howard florey, ernst boris chain and norman heatley β to form what we today know as penicillin. in 1940, penicillin became available for medicinal use to treat bacterial infections in humans. the field of modern biotechnology is generally thought of as having been born in 1971 when paul berg ' s ( stanford ) experiments in gene splicing had early success. herbert w. boyer
a wide range of opiate painkillers like heroin are obtained by chemical modification of morphine obtained from the opium poppy. popular stimulants come from plants, such as caffeine from coffee, tea and chocolate, and nicotine from tobacco. most alcoholic beverages come from fermentation of carbohydrate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment,
frits went. the first known auxin, indole - 3 - acetic acid ( iaa ), which promotes cell growth, was only isolated from plants about 50 years later. this compound mediates the tropic responses of shoots and roots towards light and gravity. the finding in 1939 that plant callus could be maintained in culture containing iaa, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification. cytokinins are a class of plant hormones named for their control of cell division ( especially cytokinesis ). the natural cytokinin zeatin was discovered in corn, zea mays, and is a derivative of the purine adenine. zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. the gibberelins, such as gibberelic acid are diterpenes synthesised from acetyl coa via the mevalonate pathway. they are involved in the promotion of germination and dormancy - breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. abscisic acid ( aba ) occurs in all land plants except liverworts, and is synthesised from carotenoids in the chloroplasts and other plastids. it inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. it was so named because it was originally thought to control abscission. ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. it is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, pineapples and other climacteric crops. another class of phytohormones is the jasmonates, first isolated from the oil of jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack. in addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how
##ch which is stored in the chloroplast. starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family asteraceae. some of the glucose is converted to sucrose ( common table sugar ) for export to the rest of the plant. unlike in animals ( which lack chloroplasts ), plants and their eukaryote relatives have delegated many biochemical roles to their chloroplasts, including synthesising all their fatty acids, and most amino acids. the fatty acids that chloroplasts make are used for many things, such as providing material to build cell membranes out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out. plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. it is widely regarded as a marker for the start of land plant evolution during the ordovician period. the concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the ordovician and silurian periods. many monocots like maize and the pineapple and some dicots like the asteraceae have since independently evolved pathways like crassulacean acid metabolism and the c4 carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common c3 carbon fixation pathway. these biochemical strategies are unique to land plants. = = = medicine and materials = = = phytochemistry is a branch of plant biochemistry primarily concerned with the chemical substances produced by plants during secondary metabolism. some of these compounds are toxins such as the alkaloid coniine from hemlock.
##drate - rich plant products such as barley ( beer ), rice ( sake ) and grapes ( wine ). native americans have used various plants as ways of treating illness or disease for thousands of years. this knowledge native americans have on plants has been recorded by enthnobotanists and then in turn has been used by pharmaceutical companies as a way of drug discovery. plants can synthesise coloured dyes and pigments such as the anthocyanins responsible for the red colour of red wine, yellow weld and blue woad used together to produce lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist ' s pigments gamboge and rose madder. sugar, starch, cotton, linen, hemp, some types of rope, wood and particle boards, papyrus and paper, vegetable oils, wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal - smelting fuel, as a filter material and adsorbent and as an artist ' s material and is one of the three ingredients of gunpowder. cellulose, the world ' s most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. products made from cellulose include rayon and cellophane, wallpaper paste, biobutanol and gun cotton. sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of biofuels, important alternatives to fossil fuels, such as biodiesel. sweetgrass was used by native americans to ward off bugs like mosquitoes. these bug repelling properties of sweetgrass were later found by the american chemical society in the molecules phytol and coumarin. = = plant ecology = = plant ecology is the science of the functional relationships between plants and their habitats β the environments where they complete their life cycles. plant ecologists study the composition of local and regional floras, their biodiversity, genetic diversity and fitness, the adaptation of plants to their environment, and their competitive or mutualistic interactions with other species. some ecologists even rely on empirical data from indigenous people that is gathered by ethnobotanists. this information can relay a great deal of information on how the land once was thousands of years ago and how it has changed over that time. the goals of
the broad definition of " utilizing a biotechnological system to make products ". indeed, the cultivation of plants may be viewed as the earliest biotechnological enterprise. agriculture has been theorized to have become the dominant way of producing food since the neolithic revolution. through early biotechnology, the earliest farmers selected and bred the best - suited crops ( e. g., those with the highest yields ) to produce enough food to support a growing population. as crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by - products could effectively fertilize, restore nitrogen, and control pests. throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants β one of the first forms of biotechnology. these processes also were included in early fermentation of beer. these processes were introduced in early mesopotamia, egypt, china and india, and still use the same basic biological methods. in brewing, malted grains ( containing enzymes ) convert starch from grains into sugar and then adding specific yeasts to produce beer. in this process, carbohydrates in the grains broke down into alcohols, such as ethanol. later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. fermentation was also used in this time period to produce leavened bread. although the process of fermentation was not fully understood until louis pasteur ' s work in 1857, it is still the first use of biotechnology to convert a food source into another form. before the time of charles darwin ' s work and life, animal and plant scientists had already used selective breeding. darwin added to that body of work with his scientific observations about the ability of science to change species. these accounts contributed to darwin ' s theory of natural selection. for thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. in selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. for example, this technique was used with corn to produce the largest and sweetest crops. in the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. in 1917, chaim weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using clostridium acetobutylicum, to produce acetone, which the united
and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell
Question: What is a sugar that is found in fruits?
A) glucose
B) fructose
C) sucrose
D) ethanol
|
B) fructose
|
Context:
single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids are polymers of nucleotides. their function is to store, transmit, and express hereditary information. = = cells = = cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division
not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic (
##ulating the liquid below from the cold air above. water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol. thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor. as a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into a water molecule again. in pure water, the number of hydrogen ions balances ( or equals ) the number of hydroxyl ions, resulting in a ph that is neutral. = = = organic compounds = = = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids,
= = organic compounds are molecules that contain carbon bonded to another element such as hydrogen. with the exception of water, nearly all the molecules that make up each organism contain carbon. carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. for example, a single carbon atom can form four single covalent bonds such as in methane, two double covalent bonds such as in carbon dioxide ( co2 ), or a triple covalent bond such as in carbon monoxide ( co ). moreover, carbon can form very long chains of interconnecting carbon β carbon bonds such as octane or ring - like structures such as glucose. the simplest form of an organic molecule is the hydrocarbon, which is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. a hydrocarbon backbone can be substituted by other elements such as oxygen ( o ), hydrogen ( h ), phosphorus ( p ), and sulfur ( s ), which can change the chemical behavior of that compound. groups of atoms that contain these elements ( o -, h -, p -, and s - ) and are bonded to a central carbon atom or skeleton are called functional groups. there are six prominent functional groups that can be found in organisms : amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. in 1953, the miller β urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early earth, thus suggesting that complex organic molecules could have arisen spontaneously in early earth ( see abiogenesis ). = = = macromolecules = = = macromolecules are large molecules made up of smaller subunits or monomers. monomers include sugars, amino acids, and nucleotides. carbohydrates include monomers and polymers of sugars. lipids are the only class of macromolecules that are not made up of polymers. they include steroids, phospholipids, and fats, largely nonpolar and hydrophobic ( water - repelling ) substances. proteins are the most diverse of the macromolecules. they include enzymes, transport proteins, large signaling molecules, antibodies, and structural proteins. the basic unit ( or monomer ) of a protein is an amino acid. twenty amino acids are used in proteins. nucleic acids
##spersion. these additions may be termed reinforcing fibers, or dispersants, depending on their purpose. = = = polymers = = = polymers are chemical compounds made up of a large number of identical components linked together like chains. polymers are the raw materials ( the resins ) used to make what are commonly called plastics and rubber. plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. plastics in former and in current widespread use include polyethylene, polypropylene, polyvinyl chloride ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip
( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established. the versatility of pvc is due to the wide range of plasticisers and other additives that it accepts. the term " additives " in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. polycarbonate would be normally considered an engineering plastic ( other examples include peek, abs ). such plastics are valued for their superior strengths and other special material properties. they are usually not used for disposable applications, unlike commodity plastics. specialty plastics are materials with unique characteristics, such as ultra - high strength, electrical conductivity, electro - fluorescence, high thermal stability, etc. the dividing lines between the various types of plastics is not based on material but rather on their properties and applications. for example, polyethylene ( pe ) is a cheap, low friction polymer commonly used to make disposable bags for shopping and trash, and is considered a commodity plastic, whereas medium - density polyethylene ( mdpe ) is used for underground gas and water pipes, and another variety called ultra - high - molecular - weight polyethylene ( uhmwpe ) is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low - friction socket in implanted hip joints. = = = metal alloys = = = the alloys of iron ( steel, stainless steel, cast iron, tool steel, alloy steels ) make up the largest proportion of metals today both by quantity and commercial value. iron alloyed with various proportions of carbon gives low, mid and high carbon steels. an iron - carbon alloy is only considered steel if the carbon level is between 0. 01 % and 2. 00 % by weight. for steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. heat treatment
with curved sidewalls as with isotropic etching. hydrofluoric acid is commonly used as an aqueous etchant for silicon dioxide ( sio2, also known as box for soi ), usually in 49 % concentrated form, 5 : 1, 10 : 1 or 20 : 1 boe ( buffered oxide etchant ) or bhf ( buffered hf ). they were first used in medieval times for glass etching. it was used in ic fabrication for patterning the gate oxide until the process step was replaced by rie. hydrofluoric acid is considered one of the more dangerous acids in the cleanroom. electrochemical etching ( ece ) for dopant - selective removal of silicon is a common method to automate and to selectively control etching. an active p β n diode junction is required, and either type of dopant can be the etch - resistant ( " etch - stop " ) material. boron is the most common etch - stop dopant. in combination with wet anisotropic etching as described above, ece has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon. = = = = dry etching = = = = xenon difluoride ( xef2 ) is a dry vapor phase isotropic etch for silicon originally applied for mems in 1995 at university of california, los angeles. primarily used for releasing metal and dielectric structures by undercutting silicon, xef2 has the advantage of a stiction - free release unlike wet etchants. its etch selectivity to silicon is very high, allowing it to work with photoresist, sio2, silicon nitride, and various metals for masking. its reaction to silicon is " plasmaless ", is purely chemical and spontaneous and is often operated in pulsed mode. models of the etching action are available, and university laboratories and various commercial tools offer solutions using this approach. modern vlsi processes avoid wet etching, and use plasma etching instead. plasma etchers can operate in several modes by adjusting the parameters of the plasma. ordinary plasma etching operates between 0. 1 and 5 torr. ( this unit of pressure, commonly used in vacuum engineering, equals approximately 133. 3 pascal
index chemical substances. in this scheme each chemical substance is identifiable by a number known as its cas registry number. = = = = molecule = = = = a molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. however, this definition only works well for substances that are composed of molecules, which is not true of many substances ( see below ). molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs. thus, molecules exist as electrically neutral units, unlike ions. when this rule is broken, giving the " molecule " a charge, the result is sometimes named a molecular ion or a polyatomic ion. however, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well - separated form, such as a directed beam in a vacuum in a mass spectrometer. charged polyatomic collections residing in solids ( for example, common sulfate or nitrate ions ) are generally not considered " molecules " in chemistry. some molecules contain one or more unpaired electrons, creating radicals. most radicals are comparatively reactive, but some, such as nitric oxide ( no ) can be stable. the " inert " or noble gas elements ( helium, neon, argon, krypton, xenon and radon ) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals. however, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up the solid crust, mantle, and core of the earth are chemical compounds without molecules. these other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. examples of such substances are mineral salts ( such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. one of the main characteristics of a molecule is its geometry
shuttle from the heat of re - entry into the earth ' s atmosphere. one example is reinforced carbon - carbon ( rcc ), the light gray material, which withstands re - entry temperatures up to 1, 510 Β°c ( 2, 750 Β°f ) and protects the space shuttle ' s wing leading edges and nose cap. rcc is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. after curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfuryl alcohol in a vacuum chamber, and cured - pyrolized to convert the furfuryl alcohol to carbon. to provide oxidation resistance for reusability, the outer layers of the rcc are converted to silicon carbide. other examples can be seen in the " plastic " casings of television sets, cell - phones and so on. these plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile butadiene styrene ( abs ) in which calcium carbonate chalk, talc, glass fibers or carbon fibers have been added for added strength, bulk, or electrostatic dispersion. these additions may be termed reinforcing fibers, or dispersants, depending on their purpose. = = = polymers = = = polymers are chemical compounds made up of a large number of identical components linked together like chains. polymers are the raw materials ( the resins ) used to make what are commonly called plastics and rubber. plastics and rubber are the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. plastics in former and in current widespread use include polyethylene, polypropylene, polyvinyl chloride ( pvc ), polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. rubbers include natural rubber, styrene - butadiene rubber, chloroprene, and butadiene rubber. plastics are generally classified as commodity, specialty and engineering plastics. polyvinyl chloride ( pvc ) is widely used, inexpensive, and annual production quantities are large. it lends itself to a vast array of applications, from artificial leather to electrical insulation and cabling, packaging, and containers. its fabrication and processing are simple and well - established.
we prove that all 2 - bridge ribbon knots are symmetric unions.
Question: What are unsaturated hydrocarbons with at least one triple bond between carbon atoms?
A) alkynes
B) ketones
C) amines
D) lipids
|
A) alkynes
|
Context:
. most cells are very small, with diameters ranging from 1 to 100 micrometers and are therefore only visible under a light or electron microscope. there are generally two types of cells : eukaryotic cells, which contain a nucleus, and prokaryotic cells, which do not. prokaryotes are single - celled organisms such as bacteria, whereas eukaryotes can be single - celled or multicellular. in multicellular organisms, every cell in the organism ' s body is derived ultimately from a single cell in a fertilized egg. = = = cell structure = = = every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space. a cell membrane consists of a lipid bilayer, including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. cell membranes are semipermeable, allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions. cell membranes also contain membrane proteins, including integral membrane proteins that go across the membrane serving as membrane transporters, and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. cell membranes are involved in various cellular processes such as cell adhesion, storing electrical energy, and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall, glycocalyx, and cytoskeleton. within the cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids. in addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. these organelles include the cell nucleus, which contains most of the cell ' s dna, or mitochondria, which generate adenosine triphosphate ( atp ) to power cellular processes. other organelles such as endoplasmic reticulum and golgi apparatus play a role in the synthesis and packaging of proteins, respectively. biomolecules such as proteins can be engulfed by lysosomes, another specialized organelle. plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support
to chromatin, which is a complex of dna and protein found in eukaryotic cells. = = = genes, development, and evolution = = = development is the process by which a multicellular organism ( plant or animal ) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. there are four key processes that underlie development : determination, differentiation, morphogenesis, and growth. determination sets the developmental fate of a cell, which becomes more restrictive during development. differentiation is the process by which specialized cells arise from less specialized cells such as stem cells. stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. cellular differentiation dramatically changes a cell ' s size, shape, membrane potential, metabolic activity, and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics. with a few exceptions, cellular differentiation almost never involves a change in the dna sequence itself. thus, different cells can have very different physical characteristics despite having the same genome. morphogenesis, or the development of body form, is the result of spatial differences in gene expression. a small fraction of the genes in an organism ' s genome called the developmental - genetic toolkit control the development of that organism. these toolkit genes are highly conserved among phyla, meaning that they are ancient and very similar in widely separated groups of animals. differences in deployment of toolkit genes affect the body plan and the number, identity, and pattern of body parts. among the most important toolkit genes are the hox genes. hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. = = evolution = = = = = evolutionary processes = = = evolution is a central organizing concept in biology. it is the change in heritable characteristics of populations over successive generations. in artificial selection, animals were selectively bred for specific traits. given that traits are inherited, populations contain a varied mix of traits, and reproduction is able to increase any population, darwin argued that in the natural world, it was nature that played the role of humans in selecting for specific traits. darwin inferred that individuals who possessed heritable traits better adapted to their environments are more likely to survive and produce more offspring than other individuals. he further inferred that this would lead to the
the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants. brown biotechnology is related to the management of arid lands and deserts. one application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources. violet biotechnology is related to law, ethical and philosophical issues around biotechnology. micro
intense research in the materials science community due to the unique properties that they exhibit. nanostructure deals with objects and structures that are in the 1 β 100 nm range. in many materials, atoms or molecules agglomerate to form objects at the nanoscale. this causes many interesting electrical, magnetic, optical, and mechanical properties. in describing nanostructures, it is necessary to differentiate between the number of dimensions on the nanoscale. nanotextured surfaces have one dimension on the nanoscale, i. e., only the thickness of the surface of an object is between 0. 1 and 100 nm. nanotubes have two dimensions on the nanoscale, i. e., the diameter of the tube is between 0. 1 and 100 nm ; its length could be much greater. finally, spherical nanoparticles have three dimensions on the nanoscale, i. e., the particle is between 0. 1 and 100 nm in each spatial dimension. the terms nanoparticles and ultrafine particles ( ufp ) often are used synonymously although ufp can reach into the micrometre range. the term ' nanostructure ' is often used, when referring to magnetic technology. nanoscale structure in biology is often called ultrastructure. = = = = microstructure = = = = microstructure is defined as the structure of a prepared surface or thin foil of material as revealed by a microscope above 25Γ magnification. it deals with objects from 100 nm to a few cm. the microstructure of a material ( which can be broadly classified into metallic, polymeric, ceramic and composite ) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high / low temperature behavior, wear resistance, and so on. most of the traditional materials ( such as metals and ceramics ) are microstructured. the manufacture of a perfect crystal of a material is physically impossible. for example, any crystalline material will contain defects such as precipitates, grain boundaries ( hall β petch relationship ), vacancies, interstitial atoms or substitutional atoms. the microstructure of materials reveals these larger defects and advances in simulation have allowed an increased understanding of how defects can be used to enhance material properties. = = = = macrostructure = = = = macrostructure is the appearance of a material in the scale millimeters to meters, it is the structure of
wave, carrying an information signal, occupies a range of frequencies. the information in a radio signal is usually concentrated in narrow frequency bands called sidebands ( sb ) just above and below the carrier frequency. the width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth ( bw ). for any given signal - to - noise ratio, a given bandwidth can carry the same amount of information regardless of where in the radio frequency spectrum it is located ; bandwidth is a measure of information - carrying capacity. the bandwidth required by a radio transmission depends on the data rate of the information being sent, and the spectral efficiency of the modulation method used ; how much data it can transmit in each unit of bandwidth. different types of information signals carried by radio have different data rates. for example, a television signal has a greater data rate than an audio signal. the radio spectrum, the total range of radio frequencies that can be used for communication in a given area, is a limited resource. each radio transmission occupies a portion of the total bandwidth available. radio bandwidth is regarded as an economic good which has a monetary cost and is in increasing demand. in some parts of the radio spectrum, the right to use a frequency band or even a single radio channel is bought and sold for millions of dollars. so there is an incentive to employ technology to minimize the bandwidth used by radio services. a slow transition from analog to digital radio transmission technologies began in the late 1990s. part of the reason for this is that digital modulation can often transmit more information ( a greater data rate ) in a given bandwidth than analog modulation, by using data compression algorithms, which reduce redundancy in the data to be sent, and more efficient modulation. other reasons for the transition is that digital modulation has greater noise immunity than analog, digital signal processing chips have more power and flexibility than analog circuits, and a wide variety of types of information can be transmitted using the same digital modulation. because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to use it more effectively is driving many additional radio innovations such as trunked radio systems, spread spectrum ( ultra - wideband ) transmission, frequency reuse, dynamic spectrum management, frequency pooling, and cognitive radio. = = = itu frequency bands = = = the itu arbitrarily divides the radio spectrum into 12 bands, each beginning at a wavelength which is a power
industrial applications. this branch of biotechnology is the most used for the industries of refining and combustion principally on the production of bio - oils with photosynthetic micro - algae. green biotechnology is biotechnology applied to agricultural processes. an example would be the selection and domestication of plants via micropropagation. another example is the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects. this includes biotechnology - based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches. gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of poll
classes according to pore size : the form and shape of the membrane pores are highly dependent on the manufacturing process and are often difficult to specify. therefore, for characterization, test filtrations are carried out and the pore diameter refers to the diameter of the smallest particles which could not pass through the membrane. the rejection can be determined in various ways and provides an indirect measurement of the pore size. one possibility is the filtration of macromolecules ( often dextran, polyethylene glycol or albumin ), another is measurement of the cut - off by gel permeation chromatography. these methods are used mainly to measure membranes for ultrafiltration applications. another testing method is the filtration of particles with defined size and their measurement with a particle sizer or by laser induced breakdown spectroscopy ( libs ). a vivid characterization is to measure the rejection of dextran blue or other colored molecules. the retention of bacteriophage and bacteria, the so - called " bacteria challenge test ", can also provide information about the pore size. to determine the pore diameter, physical methods such as porosimeter ( mercury, liquid - liquid porosimeter and bubble point test ) are also used, but a certain form of the pores ( such as cylindrical or concatenated spherical holes ) is assumed. such methods are used for membranes whose pore geometry does not match the ideal, and we get " nominal " pore diameter, which characterizes the membrane, but does not necessarily reflect its actual filtration behavior and selectivity. the selectivity is highly dependent on the separation process, the composition of the membrane and its electrochemical properties in addition to the pore size. with high selectivity, isotopes can be enriched ( uranium enrichment ) in nuclear engineering or industrial gases like nitrogen can be recovered ( gas separation ). ideally, even racemics can be enriched with a suitable membrane. when choosing membranes selectivity has priority over a high permeability, as low flows can easily be offset by increasing the filter surface with a modular structure. in gas phase filtration different deposition mechanisms are operative, so that particles having sizes below the pore size of the membrane can be retained as well. = = membrane classification = = bio - membrane is classified in two categories, synthetic membrane and natural membrane. synthetic membranes further classified in organic and inorganic membranes. organic membrane sub classified polymeric membranes and inorganic membrane sub classified ceramic polymers. = = synthesis of biomass membrane
the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the smart shoe. in 2019 german footwear company puma was recognized as one of the " 100 best inventions of 2019 " by time for its fi laceless shoe that uses micro - motors to adjust the fit from an iphone. nike also introduced a smart shoe in 2019 known as adapt bb. the shoe featured buttons on the side to loosen or tighten the fit with a custom motor and gear, which could also be controlled by a smartphone. = = modern technologies = = on april 16, 2013, google invited " glass explorers " who had pre - ordered its wearable glasses at the 2012 google i / o conference to pick up their devices.
associated with these molecules, on a large scale ". bioinformatics plays a key role in various areas, such as functional genomics, structural genomics, and proteomics, and forms a key component in the biotechnology and pharmaceutical sector. blue biotechnology is based on the exploitation of sea resources to create products and industrial applications. this branch of biotechnology is the most used for the industries of refining and combustion principally on the production of bio - oils with photosynthetic micro - algae. green biotechnology is biotechnology applied to agricultural processes. an example would be the selection and domestication of plants via micropropagation. another example is the designing of transgenic plants to grow under specific environments in the presence ( or absence ) of chemicals. one hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. an example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. an example of this would be bt corn. whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. it is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. on the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste. red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. this branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. as well as the development of hormones, stem cells, antibodies, sirna and diagnostic tests. white biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. an example is the designing of an organism to produce a useful chemical. another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous / polluting chemicals. white biotechnology tends to consume less in resources than traditional processes used to produce industrial goods. yellow biotechnology refers to the use of biotechnology in food production ( food industry ), for example in making wine ( winemaking ), cheese ( cheesemaking ), and beer ( brewing ) by fermentation. it has also been used to refer to biotechnology applied to insects
##idermal electronics mirror those of skin to allow them to perform in this same way. like skin, epidermal electronics are ultrathin ( h < 100 ΞΌm ), low - modulus ( e β70 kpa ), and lightweight ( < 10 mg / cm2 ), enabling them to conform to the skin without applying strain. conformal contact and proper adhesion enable the device to bend and stretch without delaminating, deforming or failing, thereby eliminating the challenges with conventional, bulky wearables, including measurement artifacts, hysteresis, and motion - induced irritation to the skin. with this inherent ability to take the shape of skin, epidermal electronics can accurately acquire data without altering the natural motion or behavior of skin. the thin, soft, flexible design of epidermal electronics resembles that of temporary tattoos laminated on the skin. essentially, these devices are " mechanically invisible " to the wearer. epidermal electronics devices may adhere to the skin via van der waals forces or elastomeric substrates. with only van der waals forces, an epidermal device has the same thermal mass per unit area ( 150 mj / cm2k ) as skin, when the skin ' s thickness is < 500 nm. along with van der waals forces, the low values of e and thickness are effective in maximizing adhesion because they prevent deformation - induced detachment due to tension or compression. introducing an elastomeric substrate can improve adhesion but will raise the thermal mass per unit area slightly. several materials have been studied to produce these skin - like properties, including photolithography patterned serpentine gold nanofilm and patterned doping of silicon nanomembranes. = = = foot - worn = = = smart shoes are an example of wearable technology that incorporate smart features into shoes. smart shoes often work with smartphone applications to support tasks cannot be done with standard footwear. the uses include vibrating of the smart phone to tell users when and where to turn to reach their destination via google maps or self - lacing. self - lacing sneaker technology, similar to the nike mag in back to the future part ii, is another use of the smart shoe. in 2019 german footwear company puma was recognized as one of the " 100 best inventions of 2019 " by time for its fi laceless shoe that uses micro - motors to adjust the fit from an iphone. nike also introduced a smart shoe in 2019 known as adapt bb. the shoe featured buttons on the
Question: Are ecotones wide or narrow?
A) wide
B) can be both
C) somewhere in between
D) narrow
|
B) can be both
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.