Description
stringlengths
9
105
Link
stringlengths
45
135
Code
stringlengths
10
26.8k
Test_Case
stringlengths
9
202
Merge
stringlengths
63
27k
Find the most frequent value in a NumPy array
https://www.geeksforgeeks.org/find-the-most-frequent-value-in-a-numpy-array/
import numpy as np # create array x = np.array([1, 2, 3, 4, 5, 1, 2, 1, 1, 1]) print("Original array:") print(x) print("Most frequent value in the above array:") print(np.bincount(x).argmax())
#Output : 1
Find the most frequent value in a NumPy array import numpy as np # create array x = np.array([1, 2, 3, 4, 5, 1, 2, 1, 1, 1]) print("Original array:") print(x) print("Most frequent value in the above array:") print(np.bincount(x).argmax()) #Output : 1 [END]
Find the most frequent value in a NumPy array
https://www.geeksforgeeks.org/find-the-most-frequent-value-in-a-numpy-array/
import numpy as np x = np.array( [ 1, 1, 1, 2, 3, 4, 2, 4, 3, 3, ] ) print("Original array:") print(x) print("Most frequent value in above array") y = np.bincount(x) maximum = max(y) for i in range(len(y)): if y[i] == maximum: print(i, end=" ")
#Output : 1
Find the most frequent value in a NumPy array import numpy as np x = np.array( [ 1, 1, 1, 2, 3, 4, 2, 4, 3, 3, ] ) print("Original array:") print(x) print("Most frequent value in above array") y = np.bincount(x) maximum = max(y) for i in range(len(y)): if y[i] == maximum: print(i, end=" ") #Output : 1 [END]
Combining a one and a two-dimensional NumPy Array
https://www.geeksforgeeks.org/combining-a-one-and-a-two-dimensional-numpy-array/
# importing Numpy package import numpy as np num_1d = np.arange(5) print("One dimensional array:") print(num_1d) num_2d = np.arange(10).reshape(2, 5) print("\nTwo dimensional array:") print(num_2d) # Combine 1-D and 2-D arrays and display # their elements using numpy.nditer() for a, b in np.nditer([num_1d, num_2d]): print( "%d:%d" % (a, b), )
#Output : One dimensional array:
Combining a one and a two-dimensional NumPy Array # importing Numpy package import numpy as np num_1d = np.arange(5) print("One dimensional array:") print(num_1d) num_2d = np.arange(10).reshape(2, 5) print("\nTwo dimensional array:") print(num_2d) # Combine 1-D and 2-D arrays and display # their elements using numpy.nditer() for a, b in np.nditer([num_1d, num_2d]): print( "%d:%d" % (a, b), ) #Output : One dimensional array: [END]
Combining a one and a two-dimensional NumPy Array
https://www.geeksforgeeks.org/combining-a-one-and-a-two-dimensional-numpy-array/
# importing Numpy package import numpy as np num_1d = np.arange(7) print("One dimensional array:") print(num_1d) num_2d = np.arange(21).reshape(3, 7) print("\nTwo dimensional array:") print(num_2d) # Combine 1-D and 2-D arrays and display # their elements using numpy.nditer() for a, b in np.nditer([num_1d, num_2d]): print( "%d:%d" % (a, b), )
#Output : One dimensional array:
Combining a one and a two-dimensional NumPy Array # importing Numpy package import numpy as np num_1d = np.arange(7) print("One dimensional array:") print(num_1d) num_2d = np.arange(21).reshape(3, 7) print("\nTwo dimensional array:") print(num_2d) # Combine 1-D and 2-D arrays and display # their elements using numpy.nditer() for a, b in np.nditer([num_1d, num_2d]): print( "%d:%d" % (a, b), ) #Output : One dimensional array: [END]
Combining a one and a two-dimensional NumPy Array
https://www.geeksforgeeks.org/combining-a-one-and-a-two-dimensional-numpy-array/
# importing Numpy package import numpy as np num_1d = np.arange(2) print("One dimensional array:") print(num_1d) num_2d = np.arange(12).reshape(6, 2) print("\nTwo dimensional array:") print(num_2d) # Combine 1-D and 2-D arrays and display # their elements using numpy.nditer() for a, b in np.nditer([num_1d, num_2d]): print( "%d:%d" % (a, b), )
#Output : One dimensional array:
Combining a one and a two-dimensional NumPy Array # importing Numpy package import numpy as np num_1d = np.arange(2) print("One dimensional array:") print(num_1d) num_2d = np.arange(12).reshape(6, 2) print("\nTwo dimensional array:") print(num_2d) # Combine 1-D and 2-D arrays and display # their elements using numpy.nditer() for a, b in np.nditer([num_1d, num_2d]): print( "%d:%d" % (a, b), ) #Output : One dimensional array: [END]
How to build an array of all combinations of two NumPy arrays?
https://www.geeksforgeeks.org/how-to-build-an-array-of-all-combinations-of-two-numpy-arrays/
# importing Numpy package import numpy as np # creating 2 numpy arrays array_1 = np.array([1, 2]) array_2 = np.array([4, 6]) print("Array-1") print(array_1) print("\nArray-2") print(array_2) # combination of elements of array_1 and array_2 # using numpy.meshgrid().T.reshape() comb_array = np.array(np.meshgrid(array_1, array_2)).T.reshape(-1, 2) print("\nCombine array:") print(comb_array)
#Output : numpy.meshgrid(*xi, copy=True, sparse=False, indexing='xy')
How to build an array of all combinations of two NumPy arrays? # importing Numpy package import numpy as np # creating 2 numpy arrays array_1 = np.array([1, 2]) array_2 = np.array([4, 6]) print("Array-1") print(array_1) print("\nArray-2") print(array_2) # combination of elements of array_1 and array_2 # using numpy.meshgrid().T.reshape() comb_array = np.array(np.meshgrid(array_1, array_2)).T.reshape(-1, 2) print("\nCombine array:") print(comb_array) #Output : numpy.meshgrid(*xi, copy=True, sparse=False, indexing='xy') [END]
How to build an array of all combinations of two NumPy arrays?
https://www.geeksforgeeks.org/how-to-build-an-array-of-all-combinations-of-two-numpy-arrays/
# importing Numpy package import numpy as np # creating 3 numpy arrays array_1 = np.array([1, 2, 3]) array_2 = np.array([4, 6, 4]) array_3 = np.array([3, 6]) print("Array-1") print(array_1) print("Array-2") print(array_2) print("Array-3") print(array_3) # combination of elements of array_1, # array_2 and array_3 using # numpy.meshgrid().T.reshape() comb_array = np.array(np.meshgrid(array_1, array_2, array_3)).T.reshape(-1, 3) print("\nCombine array:") print(comb_array)
#Output : numpy.meshgrid(*xi, copy=True, sparse=False, indexing='xy')
How to build an array of all combinations of two NumPy arrays? # importing Numpy package import numpy as np # creating 3 numpy arrays array_1 = np.array([1, 2, 3]) array_2 = np.array([4, 6, 4]) array_3 = np.array([3, 6]) print("Array-1") print(array_1) print("Array-2") print(array_2) print("Array-3") print(array_3) # combination of elements of array_1, # array_2 and array_3 using # numpy.meshgrid().T.reshape() comb_array = np.array(np.meshgrid(array_1, array_2, array_3)).T.reshape(-1, 3) print("\nCombine array:") print(comb_array) #Output : numpy.meshgrid(*xi, copy=True, sparse=False, indexing='xy') [END]
How to build an array of all combinations of two NumPy arrays?
https://www.geeksforgeeks.org/how-to-build-an-array-of-all-combinations-of-two-numpy-arrays/
# importing Numpy package import numpy as np # creating 4 numpy arrays array_1 = np.array([50, 21]) array_2 = np.array([4, 4]) array_3 = np.array([1, 10]) array_4 = np.array([7, 14]) print("Array-1") print(array_1) print("Array-2") print(array_2) print("Array-3") print(array_3) print("Array-4") print(array_4) # combination of elements of array_1, # array_2, array_3 and array_4 # using numpy.meshgrid().T.reshape() comb_array = np.array(np.meshgrid(array_1, array_2, array_3, array_4)).T.reshape(-1, 4) print("\nCombine array:") print(comb_array)
#Output : numpy.meshgrid(*xi, copy=True, sparse=False, indexing='xy')
How to build an array of all combinations of two NumPy arrays? # importing Numpy package import numpy as np # creating 4 numpy arrays array_1 = np.array([50, 21]) array_2 = np.array([4, 4]) array_3 = np.array([1, 10]) array_4 = np.array([7, 14]) print("Array-1") print(array_1) print("Array-2") print(array_2) print("Array-3") print(array_3) print("Array-4") print(array_4) # combination of elements of array_1, # array_2, array_3 and array_4 # using numpy.meshgrid().T.reshape() comb_array = np.array(np.meshgrid(array_1, array_2, array_3, array_4)).T.reshape(-1, 4) print("\nCombine array:") print(comb_array) #Output : numpy.meshgrid(*xi, copy=True, sparse=False, indexing='xy') [END]
How to add a border around a NumPy array?
https://www.geeksforgeeks.org/how-to-add-a-border-around-a-numpy-array/
# importing Numpy package import numpy as np # Creating a 2X2 Numpy matrix array = np.ones((2, 2)) print("Original array") print(array) print("\n0 on the border and 1 inside the array") # constructing border of 0 around 2D identity matrix # using np.pad() array = np.pad(array, pad_width=1, mode="constant", constant_values=0) print(array)
#Output : numpy.pad(array, pad_width, mode='constant', **kwargs)
How to add a border around a NumPy array? # importing Numpy package import numpy as np # Creating a 2X2 Numpy matrix array = np.ones((2, 2)) print("Original array") print(array) print("\n0 on the border and 1 inside the array") # constructing border of 0 around 2D identity matrix # using np.pad() array = np.pad(array, pad_width=1, mode="constant", constant_values=0) print(array) #Output : numpy.pad(array, pad_width, mode='constant', **kwargs) [END]
How to add a border around a NumPy array?
https://www.geeksforgeeks.org/how-to-add-a-border-around-a-numpy-array/
# importing Numpy package import numpy as np # Creating a 3X3 Numpy matrix array = np.ones((3, 3)) print("Original array") print(array) print("\n0 on the border and 1 inside the array") # constructing border of 0 around 3D identity matrix # using np.pad() array = np.pad(array, pad_width=1, mode="constant", constant_values=0) print(array)
#Output : numpy.pad(array, pad_width, mode='constant', **kwargs)
How to add a border around a NumPy array? # importing Numpy package import numpy as np # Creating a 3X3 Numpy matrix array = np.ones((3, 3)) print("Original array") print(array) print("\n0 on the border and 1 inside the array") # constructing border of 0 around 3D identity matrix # using np.pad() array = np.pad(array, pad_width=1, mode="constant", constant_values=0) print(array) #Output : numpy.pad(array, pad_width, mode='constant', **kwargs) [END]
How to add a border around a NumPy array?
https://www.geeksforgeeks.org/how-to-add-a-border-around-a-numpy-array/
# importing Numpy package import numpy as np # Creating a 4X4 Numpy matrix array = np.ones((4, 4)) print("Original array") print(array) print("\n0 on the border and 1 inside the array") # constructing border of 0 around 4D identity matrix # using np.pad() array = np.pad(array, pad_width=1, mode="constant", constant_values=0) print(array)
#Output : numpy.pad(array, pad_width, mode='constant', **kwargs)
How to add a border around a NumPy array? # importing Numpy package import numpy as np # Creating a 4X4 Numpy matrix array = np.ones((4, 4)) print("Original array") print(array) print("\n0 on the border and 1 inside the array") # constructing border of 0 around 4D identity matrix # using np.pad() array = np.pad(array, pad_width=1, mode="constant", constant_values=0) print(array) #Output : numpy.pad(array, pad_width, mode='constant', **kwargs) [END]
How to compare two NumPy arrays?
https://www.geeksforgeeks.org/how-to-compare-two-numpy-arrays/
import numpy as np an_array = np.array([[1, 2], [3, 4]]) another_array = np.array([[1, 2], [3, 4]]) comparison = an_array == another_array equal_arrays = comparison.all() print(equal_arrays)
#Output : True
How to compare two NumPy arrays? import numpy as np an_array = np.array([[1, 2], [3, 4]]) another_array = np.array([[1, 2], [3, 4]]) comparison = an_array == another_array equal_arrays = comparison.all() print(equal_arrays) #Output : True [END]
How to compare two NumPy arrays?
https://www.geeksforgeeks.org/how-to-compare-two-numpy-arrays/
import numpy as np a = np.array([101, 99, 87]) b = np.array([897, 97, 111]) print("Array a: ", a) print("Array b: ", b) print("a > b") print(np.greater(a, b)) print("a >= b") print(np.greater_equal(a, b)) print("a < b") print(np.less(a, b)) print("a <= b") print(np.less_equal(a, b))
#Output : True
How to compare two NumPy arrays? import numpy as np a = np.array([101, 99, 87]) b = np.array([897, 97, 111]) print("Array a: ", a) print("Array b: ", b) print("a > b") print(np.greater(a, b)) print("a >= b") print(np.greater_equal(a, b)) print("a < b") print(np.less(a, b)) print("a <= b") print(np.less_equal(a, b)) #Output : True [END]
How to compare two NumPy arrays?
https://www.geeksforgeeks.org/how-to-compare-two-numpy-arrays/
import numpy as np arr1 = np.array([[1, 2], [3, 4]]) arr2 = np.array([[1, 2], [3, 4]]) # Comparing the arrays if np.array_equal(arr1, arr2): print("Equal") else: print("Not Equal")
#Output : True
How to compare two NumPy arrays? import numpy as np arr1 = np.array([[1, 2], [3, 4]]) arr2 = np.array([[1, 2], [3, 4]]) # Comparing the arrays if np.array_equal(arr1, arr2): print("Equal") else: print("Not Equal") #Output : True [END]
How to check whether specified values are present in NumPy array?
https://www.geeksforgeeks.org/how-to-check-whether-specified-values-are-present-in-numpy-array/
# importing Numpy package import numpy as np # creating a Numpy array n_array = np.array([[2, 3, 0], [4, 1, 6]]) print("Given array:") print(n_array) # Checking whether specific values # are present in "n_array" or not print(2 in n_array) print(0 in n_array) print(6 in n_array) print(50 in n_array) print(10 in n_array)
#Output : Given array:
How to check whether specified values are present in NumPy array? # importing Numpy package import numpy as np # creating a Numpy array n_array = np.array([[2, 3, 0], [4, 1, 6]]) print("Given array:") print(n_array) # Checking whether specific values # are present in "n_array" or not print(2 in n_array) print(0 in n_array) print(6 in n_array) print(50 in n_array) print(10 in n_array) #Output : Given array: [END]
How to check whether specified values are present in NumPy array?
https://www.geeksforgeeks.org/how-to-check-whether-specified-values-are-present-in-numpy-array/
# importing Numpy package import numpy as np # creating a Numpy array n_array = np.array([[2.14, 3, 0.5], [4.5, 1.2, 6.2], [20.2, 5.9, 8.8]]) print("Given array:") print(n_array) # Checking whether specific values # are present in "n_array" or not print(2.14 in n_array) print(5.28 in n_array) print(6.2 in n_array) print(5.9 in n_array) print(8.5 in n_array)
#Output : Given array:
How to check whether specified values are present in NumPy array? # importing Numpy package import numpy as np # creating a Numpy array n_array = np.array([[2.14, 3, 0.5], [4.5, 1.2, 6.2], [20.2, 5.9, 8.8]]) print("Given array:") print(n_array) # Checking whether specific values # are present in "n_array" or not print(2.14 in n_array) print(5.28 in n_array) print(6.2 in n_array) print(5.9 in n_array) print(8.5 in n_array) #Output : Given array: [END]
How to check whether specified values are present in NumPy array?
https://www.geeksforgeeks.org/how-to-check-whether-specified-values-are-present-in-numpy-array/
# importing Numpy package import numpy as np # creating a Numpy array n_array = np.array( [ [4, 5.5, 7, 6.9, 10], [7.1, 5.3, 40, 8.8, 1], [4.4, 9.3, 6, 2.2, 11], [7.1, 4, 5, 9, 10.5], ] ) print("Given array:") print(n_array) # Checking whether specific values # are present in "n_array" or not print(2.14 in n_array) print(5.28 in n_array) print(8.5 in n_array)
#Output : Given array:
How to check whether specified values are present in NumPy array? # importing Numpy package import numpy as np # creating a Numpy array n_array = np.array( [ [4, 5.5, 7, 6.9, 10], [7.1, 5.3, 40, 8.8, 1], [4.4, 9.3, 6, 2.2, 11], [7.1, 4, 5, 9, 10.5], ] ) print("Given array:") print(n_array) # Checking whether specific values # are present in "n_array" or not print(2.14 in n_array) print(5.28 in n_array) print(8.5 in n_array) #Output : Given array: [END]
How to get all 2D diagonals of a 3D NumPy array?
https://www.geeksforgeeks.org/how-to-get-all-2d-diagonals-of-a-3d-numpy-array/
# Import the numpy package import numpy as np # Create 3D-numpy array # of 4 rows and 4 columns arr = np.arange(3 * 4 * 4).reshape(3, 4, 4) print("Original 3d array:\n", arr) # Create 2D diagonal array diag_arr = np.diagonal(arr, axis1=1, axis2=2) print("2d diagonal array:\n", diag_arr)
#Output : Original 3d array:
How to get all 2D diagonals of a 3D NumPy array? # Import the numpy package import numpy as np # Create 3D-numpy array # of 4 rows and 4 columns arr = np.arange(3 * 4 * 4).reshape(3, 4, 4) print("Original 3d array:\n", arr) # Create 2D diagonal array diag_arr = np.diagonal(arr, axis1=1, axis2=2) print("2d diagonal array:\n", diag_arr) #Output : Original 3d array: [END]
How to get all 2D diagonals of a 3D NumPy array?
https://www.geeksforgeeks.org/how-to-get-all-2d-diagonals-of-a-3d-numpy-array/
# Import the numpy package import numpy as np # Create 3D numpy array # of 3 rows and 4 columns arr = np.arange(3 * 3 * 4).reshape(3, 3, 4) print("Original 3d array:\n", arr) # Create 2D diagonal array diag_arr = np.diagonal(arr, axis1=1, axis2=2) print("2d diagonal array:\n", diag_arr)
#Output : Original 3d array:
How to get all 2D diagonals of a 3D NumPy array? # Import the numpy package import numpy as np # Create 3D numpy array # of 3 rows and 4 columns arr = np.arange(3 * 3 * 4).reshape(3, 3, 4) print("Original 3d array:\n", arr) # Create 2D diagonal array diag_arr = np.diagonal(arr, axis1=1, axis2=2) print("2d diagonal array:\n", diag_arr) #Output : Original 3d array: [END]
How to get all 2D diagonals of a 3D NumPy array?
https://www.geeksforgeeks.org/how-to-get-all-2d-diagonals-of-a-3d-numpy-array/
# Import the numpy package import numpy as np # Create 3D numpy array # of 5 rows and 6 columns arr = np.arange(3 * 5 * 6).reshape(3, 5, 6) print("Original 3d array:\n", arr) # Create 2D diagonal array diag_arr = np.diagonal(arr, axis1=1, axis2=2) print("2d diagonal array:\n", diag_arr)
#Output : Original 3d array:
How to get all 2D diagonals of a 3D NumPy array? # Import the numpy package import numpy as np # Create 3D numpy array # of 5 rows and 6 columns arr = np.arange(3 * 5 * 6).reshape(3, 5, 6) print("Original 3d array:\n", arr) # Create 2D diagonal array diag_arr = np.diagonal(arr, axis1=1, axis2=2) print("2d diagonal array:\n", diag_arr) #Output : Original 3d array: [END]
Flatten a Matrix Rowix in Python using NumPy
https://www.geeksforgeeks.org/flatten-a-matrix-in-python-using-numpy/
# importing numpy as np import numpy as np # declare matrix with np gfg = np.array([[2, 3], [4, 5]]) # using array.flatten() method flat_gfg = gfg.flatten() print(flat_gfg)
#Output : [2 3 4 5]
Flatten a Matrix Rowix in Python using NumPy # importing numpy as np import numpy as np # declare matrix with np gfg = np.array([[2, 3], [4, 5]]) # using array.flatten() method flat_gfg = gfg.flatten() print(flat_gfg) #Output : [2 3 4 5] [END]
Flatten a Matrix Rowix in Python using NumPy
https://www.geeksforgeeks.org/flatten-a-matrix-in-python-using-numpy/
# importing numpy as np import numpy as np # declare matrix with np gfg = np.array([[6, 9], [8, 5], [18, 21]]) # using array.flatten() method gfg.flatten()
#Output : [2 3 4 5]
Flatten a Matrix Rowix in Python using NumPy # importing numpy as np import numpy as np # declare matrix with np gfg = np.array([[6, 9], [8, 5], [18, 21]]) # using array.flatten() method gfg.flatten() #Output : [2 3 4 5] [END]
Flatten a Matrix Rowix in Python using NumPy
https://www.geeksforgeeks.org/flatten-a-matrix-in-python-using-numpy/
# importing numpy as np import numpy as np # declare matrix with np gfg = np.array([[6, 9, 12], [8, 5, 2], [18, 21, 24]]) # using array.flatten() method flat_gfg = gfg.flatten(order="A") print(flat_gfg)
#Output : [2 3 4 5]
Flatten a Matrix Rowix in Python using NumPy # importing numpy as np import numpy as np # declare matrix with np gfg = np.array([[6, 9, 12], [8, 5, 2], [18, 21, 24]]) # using array.flatten() method flat_gfg = gfg.flatten(order="A") print(flat_gfg) #Output : [2 3 4 5] [END]
Flatten a 2d numpy array into 1d array
https://www.geeksforgeeks.org/python-flatten-a-2d-numpy-array-into-1d-array/
# Python code to demonstrate # flattening a 2d numpy array # into 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = ini_array1.flatten() # printing result print("New resulting array: ", result)
#Output : initial array [[1 2 3]
Flatten a 2d numpy array into 1d array # Python code to demonstrate # flattening a 2d numpy array # into 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = ini_array1.flatten() # printing result print("New resulting array: ", result) #Output : initial array [[1 2 3] [END]
Flatten a 2d numpy array into 1d array
https://www.geeksforgeeks.org/python-flatten-a-2d-numpy-array-into-1d-array/
# Python code to demonstrate # flattening a 2d numpy array # into 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = ini_array1.ravel() # printing result print("New resulting array: ", result)
#Output : initial array [[1 2 3]
Flatten a 2d numpy array into 1d array # Python code to demonstrate # flattening a 2d numpy array # into 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = ini_array1.ravel() # printing result print("New resulting array: ", result) #Output : initial array [[1 2 3] [END]
Flatten a 2d numpy array into 1d array
https://www.geeksforgeeks.org/python-flatten-a-2d-numpy-array-into-1d-array/
# Python code to demonstrate # flattening a 2d numpy array # into 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = ini_array1.reshape([1, 9]) # printing result print("New resulting array: ", result)
#Output : initial array [[1 2 3]
Flatten a 2d numpy array into 1d array # Python code to demonstrate # flattening a 2d numpy array # into 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = ini_array1.reshape([1, 9]) # printing result print("New resulting array: ", result) #Output : initial array [[1 2 3] [END]
Move axes of an array to new positions
https://www.geeksforgeeks.org/numpy-moveaxis-function-python/
# Python program explaining # numpy.moveaxis() function # importing numpy as geek import numpy as geek arr = geek.zeros((1, 2, 3, 4)) gfg = geek.moveaxis(arr, 0, -1).shape print(gfg)
#Output :
Move axes of an array to new positions # Python program explaining # numpy.moveaxis() function # importing numpy as geek import numpy as geek arr = geek.zeros((1, 2, 3, 4)) gfg = geek.moveaxis(arr, 0, -1).shape print(gfg) #Output : [END]
Move axes of an array to new positions
https://www.geeksforgeeks.org/numpy-moveaxis-function-python/
# Python program explaining # numpy.moveaxis() function # importing numpy as geek import numpy as geek arr = geek.zeros((1, 2, 3, 4)) gfg = geek.moveaxis(arr, -1, 0).shape print(gfg)
#Output :
Move axes of an array to new positions # Python program explaining # numpy.moveaxis() function # importing numpy as geek import numpy as geek arr = geek.zeros((1, 2, 3, 4)) gfg = geek.moveaxis(arr, -1, 0).shape print(gfg) #Output : [END]
Intercharacternge two axes of an array
https://www.geeksforgeeks.org/numpy-swapaxes-function-python/
# Python program explaining # numpy.swapaxes() function # importing numpy as geek import numpy as geek arr = geek.array([[2, 4, 6]]) gfg = geek.swapaxes(arr, 0, 1) print(gfg)
#Output :
Intercharacternge two axes of an array # Python program explaining # numpy.swapaxes() function # importing numpy as geek import numpy as geek arr = geek.array([[2, 4, 6]]) gfg = geek.swapaxes(arr, 0, 1) print(gfg) #Output : [END]
Intercharacternge two axes of an array
https://www.geeksforgeeks.org/numpy-swapaxes-function-python/
# Python program explaining # numpy.swapaxes() function # importing numpy as geek import numpy as geek arr = geek.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) gfg = geek.swapaxes(arr, 0, 2) print(gfg)
#Output :
Intercharacternge two axes of an array # Python program explaining # numpy.swapaxes() function # importing numpy as geek import numpy as geek arr = geek.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) gfg = geek.swapaxes(arr, 0, 2) print(gfg) #Output : [END]
NumPy - Fibonacci Series using Binet Fomula
https://www.geeksforgeeks.org/numpy-fibonacci-series-using-binet-formula/
import numpy as np # We are creating an array contains n = 10 elements # for getting first 10 Fibonacci numbers a = np.arange(1, 11) lengthA = len(a) # splitting of terms for easiness sqrtFive = np.sqrt(5) alpha = (1 + sqrtFive) / 2 beta = (1 - sqrtFive) / 2 # Implementation of formula # np.rint is used for rounding off to integer Fn = np.rint(((alpha**a) - (beta**a)) / (sqrtFive)) print("The first {} numbers of Fibonacci series are {} . ".format(lengthA, Fn))
#Output : # Here user input was 10
NumPy - Fibonacci Series using Binet Fomula import numpy as np # We are creating an array contains n = 10 elements # for getting first 10 Fibonacci numbers a = np.arange(1, 11) lengthA = len(a) # splitting of terms for easiness sqrtFive = np.sqrt(5) alpha = (1 + sqrtFive) / 2 beta = (1 - sqrtFive) / 2 # Implementation of formula # np.rint is used for rounding off to integer Fn = np.rint(((alpha**a) - (beta**a)) / (sqrtFive)) print("The first {} numbers of Fibonacci series are {} . ".format(lengthA, Fn)) #Output : # Here user input was 10 [END]
NumPy - Fibonacci Series using Binet Fomula
https://www.geeksforgeeks.org/numpy-fibonacci-series-using-binet-formula/
import numpy as np # We are creating an array contains n elements # for getting first 'n' Fibonacci numbers fNumber = int(input("Enter the value of n + 1'th number : ")) a = np.arange(1, fNumber) length_a = len(a) # splitting of terms for easiness sqrt_five = np.sqrt(5) alpha = (1 + sqrt_five) / 2 beta = (1 - sqrt_five) / 2 # Implementation of formula # np.rint is used for rounding off to integer Fn = np.rint(((alpha**a) - (beta**a)) / (sqrt_five)) print("The first {} numbers of Fibonacci series are {} . ".format(length_a, Fn))
#Output : # Here user input was 10
NumPy - Fibonacci Series using Binet Fomula import numpy as np # We are creating an array contains n elements # for getting first 'n' Fibonacci numbers fNumber = int(input("Enter the value of n + 1'th number : ")) a = np.arange(1, fNumber) length_a = len(a) # splitting of terms for easiness sqrt_five = np.sqrt(5) alpha = (1 + sqrt_five) / 2 beta = (1 - sqrt_five) / 2 # Implementation of formula # np.rint is used for rounding off to integer Fn = np.rint(((alpha**a) - (beta**a)) / (sqrt_five)) print("The first {} numbers of Fibonacci series are {} . ".format(length_a, Fn)) #Output : # Here user input was 10 [END]
Counts the number of non-zero values in the array
https://www.geeksforgeeks.org/numpy-count_nonzero-method-python/
# Python program explaining # numpy.count_nonzero() function # importing numpy as geek import numpy as geek arr = [[0, 1, 2, 3, 0], [0, 5, 6, 0, 7]] gfg = geek.count_nonzero(arr) print(gfg)
#Output :
Counts the number of non-zero values in the array # Python program explaining # numpy.count_nonzero() function # importing numpy as geek import numpy as geek arr = [[0, 1, 2, 3, 0], [0, 5, 6, 0, 7]] gfg = geek.count_nonzero(arr) print(gfg) #Output : [END]
Counts the number of non-zero values in the array
https://www.geeksforgeeks.org/numpy-count_nonzero-method-python/
# Python program explaining # numpy.count_nonzero() function # importing numpy as geek import numpy as geek arr = [[0, 1, 2, 3, 4], [5, 0, 6, 0, 7]] gfg = geek.count_nonzero(arr, axis=0) print(gfg)
#Output :
Counts the number of non-zero values in the array # Python program explaining # numpy.count_nonzero() function # importing numpy as geek import numpy as geek arr = [[0, 1, 2, 3, 4], [5, 0, 6, 0, 7]] gfg = geek.count_nonzero(arr, axis=0) print(gfg) #Output : [END]
Count the number of elements along a given axis
https://www.geeksforgeeks.org/numpy-size-function-python/
# Python program explaining # numpy.size() method # importing numpy import numpy as np # Making a random array arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) # By default, give the total number of elements. print(np.size(arr))
#Output : 8
Count the number of elements along a given axis # Python program explaining # numpy.size() method # importing numpy import numpy as np # Making a random array arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) # By default, give the total number of elements. print(np.size(arr)) #Output : 8 [END]
Count the number of elements along a given axis
https://www.geeksforgeeks.org/numpy-size-function-python/
# Python program explaining # numpy.size() method # importing numpy import numpy as np # Making a random array arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) # count the number of elements along the axis. # Here rows and columns are being treated # as elements # gives no. of rows along x-axis print(np.size(arr, 0)) # gives no. of columns along y-axis print(np.size(arr, 1))
#Output : 8
Count the number of elements along a given axis # Python program explaining # numpy.size() method # importing numpy import numpy as np # Making a random array arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) # count the number of elements along the axis. # Here rows and columns are being treated # as elements # gives no. of rows along x-axis print(np.size(arr, 0)) # gives no. of columns along y-axis print(np.size(arr, 1)) #Output : 8 [END]
Trim the leading and/or trailing zeros from a 1-D array
https://www.geeksforgeeks.org/numpy-trim_zeros-in-python/
import numpy as geek gfg = geek.array((0, 0, 0, 0, 1, 5, 7, 0, 6, 2, 9, 0, 10, 0, 0)) # without trim parameter # returns an array without leading and trailing zeros res = geek.trim_zeros(gfg) print(res)
#Output :
Trim the leading and/or trailing zeros from a 1-D array import numpy as geek gfg = geek.array((0, 0, 0, 0, 1, 5, 7, 0, 6, 2, 9, 0, 10, 0, 0)) # without trim parameter # returns an array without leading and trailing zeros res = geek.trim_zeros(gfg) print(res) #Output : [END]
Trim the leading and/or trailing zeros from a 1-D array
https://www.geeksforgeeks.org/numpy-trim_zeros-in-python/
import numpy as geek gfg = geek.array((0, 0, 0, 0, 1, 5, 7, 0, 6, 2, 9, 0, 10, 0, 0)) # without trim parameter # returns an array without any leading zeros res = geek.trim_zeros(gfg, "f") print(res)
#Output :
Trim the leading and/or trailing zeros from a 1-D array import numpy as geek gfg = geek.array((0, 0, 0, 0, 1, 5, 7, 0, 6, 2, 9, 0, 10, 0, 0)) # without trim parameter # returns an array without any leading zeros res = geek.trim_zeros(gfg, "f") print(res) #Output : [END]
Trim the leading and/or trailing zeros from a 1-D array
https://www.geeksforgeeks.org/numpy-trim_zeros-in-python/
import numpy as geek gfg = geek.array((0, 0, 0, 0, 1, 5, 7, 0, 6, 2, 9, 0, 10, 0, 0)) # without trim parameter # returns an array without any trailing zeros res = geek.trim_zeros(gfg, "b") print(res)
#Output :
Trim the leading and/or trailing zeros from a 1-D array import numpy as geek gfg = geek.array((0, 0, 0, 0, 1, 5, 7, 0, 6, 2, 9, 0, 10, 0, 0)) # without trim parameter # returns an array without any trailing zeros res = geek.trim_zeros(gfg, "b") print(res) #Output : [END]
Reverse a numpy array
https://www.geeksforgeeks.org/python-reverse-a-numpy-array/
import numpy as np # initialising numpy array ini_array = np.array([1, 2, 3, 6, 4, 5]) # using shortcut method to reverse res = np.flip(ini_array) # printing result print("final array", str(res))
#Output : final array [5 4 6 3 2 1]
Reverse a numpy array import numpy as np # initialising numpy array ini_array = np.array([1, 2, 3, 6, 4, 5]) # using shortcut method to reverse res = np.flip(ini_array) # printing result print("final array", str(res)) #Output : final array [5 4 6 3 2 1] [END]
Reverse a numpy array
https://www.geeksforgeeks.org/python-reverse-a-numpy-array/
import numpy as np # initialising numpy array ini_array = np.array([1, 2, 3, 6, 4, 5]) # printing initial ini_array print("initial array", str(ini_array)) # printing type of ini_array print("type of ini_array", type(ini_array)) # using shortcut method to reverse res = ini_array[::-1] # printing result print("final array", str(res))
#Output : final array [5 4 6 3 2 1]
Reverse a numpy array import numpy as np # initialising numpy array ini_array = np.array([1, 2, 3, 6, 4, 5]) # printing initial ini_array print("initial array", str(ini_array)) # printing type of ini_array print("type of ini_array", type(ini_array)) # using shortcut method to reverse res = ini_array[::-1] # printing result print("final array", str(res)) #Output : final array [5 4 6 3 2 1] [END]
Reverse a numpy array
https://www.geeksforgeeks.org/python-reverse-a-numpy-array/
import numpy as np # initialising numpy array ini_array = np.array([1, 2, 3, 6, 4, 5]) # printing initial ini_array print("initial array", str(ini_array)) # printing type of ini_array print("type of ini_array", type(ini_array)) # using flipud method to reverse res = np.flipud(ini_array) # printing result print("final array", str(res))
#Output : final array [5 4 6 3 2 1]
Reverse a numpy array import numpy as np # initialising numpy array ini_array = np.array([1, 2, 3, 6, 4, 5]) # printing initial ini_array print("initial array", str(ini_array)) # printing type of ini_array print("type of ini_array", type(ini_array)) # using flipud method to reverse res = np.flipud(ini_array) # printing result print("final array", str(res)) #Output : final array [5 4 6 3 2 1] [END]
How to make a NumPy array read-only?
https://www.geeksforgeeks.org/how-to-make-a-numpy-array-read-only/
import numpy as np a = np.zeros(11) print("Before any change ") print(a) a[1] = 2 print("Before after first change ") print(a) a.setflags(write=False) print("After making array immutable on attempting second change ") a[1] = 7
#Output : array.flags.writable=False
How to make a NumPy array read-only? import numpy as np a = np.zeros(11) print("Before any change ") print(a) a[1] = 2 print("Before after first change ") print(a) a.setflags(write=False) print("After making array immutable on attempting second change ") a[1] = 7 #Output : array.flags.writable=False [END]
Get the maximum value from given matrix
https://www.geeksforgeeks.org/python-numpy-matrix-max/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[64, 1; 12, 3]") # applying matrix.max() method geeks = gfg.max() print(geeks)
#Output :
Get the maximum value from given matrix # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[64, 1; 12, 3]") # applying matrix.max() method geeks = gfg.max() print(geeks) #Output : [END]
Get the maximum value from given matrix
https://www.geeksforgeeks.org/python-numpy-matrix-max/
# import the important module in python import numpy as np # make a matrix with numpy gfg = np.matrix("[1, 2, 3; 4, 5, 6; 7, 8, 9]") # applying matrix.max() method geeks = gfg.max() print(geeks)
#Output :
Get the maximum value from given matrix # import the important module in python import numpy as np # make a matrix with numpy gfg = np.matrix("[1, 2, 3; 4, 5, 6; 7, 8, 9]") # applying matrix.max() method geeks = gfg.max() print(geeks) #Output : [END]
Get the minimum value from given matrix
https://www.geeksforgeeks.org/python-numpy-matrix-min/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[64, 1; 12, 3]") # applying matrix.min() method geeks = gfg.min() print(geeks)
#Output :
Get the minimum value from given matrix # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[64, 1; 12, 3]") # applying matrix.min() method geeks = gfg.min() print(geeks) #Output : [END]
Get the minimum value from given matrix
https://www.geeksforgeeks.org/python-numpy-matrix-min/
# import the important module in python import numpy as np # make a matrix with numpy gfg = np.matrix("[1, 2, 3; 4, 5, 6; 7, 8, -9]") # applying matrix.min() method geeks = gfg.min() print(geeks)
#Output :
Get the minimum value from given matrix # import the important module in python import numpy as np # make a matrix with numpy gfg = np.matrix("[1, 2, 3; 4, 5, 6; 7, 8, -9]") # applying matrix.min() method geeks = gfg.min() print(geeks) #Output : [END]
Find the number of rows and columns of a given matrix using NumPy
https://www.geeksforgeeks.org/find-the-number-of-rows-and-columns-of-a-given-matrix-using-numpy/
import numpy as np matrix = np.arange(1, 9).reshape((3, 3)) # Original matrix print(matrix) # Number of rows and columns of the said matrix print(matrix.shape)
#Output : shape()
Find the number of rows and columns of a given matrix using NumPy import numpy as np matrix = np.arange(1, 9).reshape((3, 3)) # Original matrix print(matrix) # Number of rows and columns of the said matrix print(matrix.shape) #Output : shape() [END]
Find the number of rows and columns of a given matrix using NumPy
https://www.geeksforgeeks.org/find-the-number-of-rows-and-columns-of-a-given-matrix-using-numpy/
import numpy as np matrix = np.arange(10, 15).reshape((3, 2)) # Original matrix: print(matrix) # Number of rows and columns of the said matrix print(matrix.shape)
#Output : shape()
Find the number of rows and columns of a given matrix using NumPy import numpy as np matrix = np.arange(10, 15).reshape((3, 2)) # Original matrix: print(matrix) # Number of rows and columns of the said matrix print(matrix.shape) #Output : shape() [END]
Selementsect the elements from a given matrix
https://www.geeksforgeeks.org/python-numpy-matrix-take/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 12, 3, 4, 6, 7]") # applying matrix.take() method geek = gfg.take(2) print(geek)
#Output :
Selementsect the elements from a given matrix # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 12, 3, 4, 6, 7]") # applying matrix.take() method geek = gfg.take(2) print(geek) #Output : [END]
Selementsect the elements from a given matrix
https://www.geeksforgeeks.org/python-numpy-matrix-take/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 9; 12, 3, 1; 4, 5, 6]") # applying matrix.take() method geek = gfg.take(0, 1) print(geek)
#Output :
Selementsect the elements from a given matrix # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 9; 12, 3, 1; 4, 5, 6]") # applying matrix.take() method geek = gfg.take(0, 1) print(geek) #Output : [END]
Find the sum of values in a matrix
https://www.geeksforgeeks.org/python-numpy-matrix-sum/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1; 12, 3]") # applying matrix.sum() method geek = gfg.sum() print(geek)
#Output :
Find the sum of values in a matrix # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1; 12, 3]") # applying matrix.sum() method geek = gfg.sum() print(geek) #Output : [END]
Find the sum of values in a matrix
https://www.geeksforgeeks.org/python-numpy-matrix-sum/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 9; 12, 3, 1; 4, 5, 6]") # applying matrix.sum() method geek = gfg.sum(axis=1) print(geek)
#Output :
Find the sum of values in a matrix # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 9; 12, 3, 1; 4, 5, 6]") # applying matrix.sum() method geek = gfg.sum(axis=1) print(geek) #Output : [END]
Calculate the sum of the diagonal elements of a NumPy array
https://www.geeksforgeeks.org/calculate-the-sum-of-the-diagonal-elements-of-a-numpy-array/
# importing Numpy package import numpy as np # creating a 3X3 Numpy matrix n_array = np.array([[55, 25, 15], [30, 44, 2], [11, 45, 77]]) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # calculating the Trace of a matrix trace = np.trace(n_array) print("\nTrace of given 3X3 matrix:") print(trace)
#Output : numpy.diagonal(a, offset=0, axis1=0, axis2=1
Calculate the sum of the diagonal elements of a NumPy array # importing Numpy package import numpy as np # creating a 3X3 Numpy matrix n_array = np.array([[55, 25, 15], [30, 44, 2], [11, 45, 77]]) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # calculating the Trace of a matrix trace = np.trace(n_array) print("\nTrace of given 3X3 matrix:") print(trace) #Output : numpy.diagonal(a, offset=0, axis1=0, axis2=1 [END]
Calculate the sum of the diagonal elements of a NumPy array
https://www.geeksforgeeks.org/calculate-the-sum-of-the-diagonal-elements-of-a-numpy-array/
# importing Numpy package import numpy as np # creating a 4X4 Numpy matrix n_array = np.array( [[55, 25, 15, 41], [30, 44, 2, 54], [11, 45, 77, 11], [11, 212, 4, 20]] ) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # calculating the Trace of a matrix trace = np.trace(n_array) print("\nTrace of given 4X4 matrix:") print(trace)
#Output : numpy.diagonal(a, offset=0, axis1=0, axis2=1
Calculate the sum of the diagonal elements of a NumPy array # importing Numpy package import numpy as np # creating a 4X4 Numpy matrix n_array = np.array( [[55, 25, 15, 41], [30, 44, 2, 54], [11, 45, 77, 11], [11, 212, 4, 20]] ) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # calculating the Trace of a matrix trace = np.trace(n_array) print("\nTrace of given 4X4 matrix:") print(trace) #Output : numpy.diagonal(a, offset=0, axis1=0, axis2=1 [END]
Calculate the sum of the diagonal elements of a NumPy array
https://www.geeksforgeeks.org/calculate-the-sum-of-the-diagonal-elements-of-a-numpy-array/
# importing Numpy package import numpy as np # creating a 3X3 Numpy matrix n_array = np.array([[55, 25, 15], [30, 44, 2], [11, 45, 77]]) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # Finding the diagonal elements of a matrix diag = np.diagonal(n_array) print("\nDiagonal elements are:") print(diag) print("\nSum of Diagonal elements is:") print(sum(diag))
#Output : numpy.diagonal(a, offset=0, axis1=0, axis2=1
Calculate the sum of the diagonal elements of a NumPy array # importing Numpy package import numpy as np # creating a 3X3 Numpy matrix n_array = np.array([[55, 25, 15], [30, 44, 2], [11, 45, 77]]) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # Finding the diagonal elements of a matrix diag = np.diagonal(n_array) print("\nDiagonal elements are:") print(diag) print("\nSum of Diagonal elements is:") print(sum(diag)) #Output : numpy.diagonal(a, offset=0, axis1=0, axis2=1 [END]
Calculate the sum of the diagonal elements of a NumPy array
https://www.geeksforgeeks.org/calculate-the-sum-of-the-diagonal-elements-of-a-numpy-array/
# importing Numpy package import numpy as np # creating a 5X5 Numpy matrix n_array = np.array( [ [5, 2, 1, 4, 6], [9, 4, 2, 5, 2], [11, 5, 7, 3, 9], [5, 6, 6, 7, 2], [7, 5, 9, 3, 3], ] ) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # Finding the diagonal elements of a matrix diag = np.diagonal(n_array) print("\nDiagonal elements are:") print(diag) print("\nSum of Diagonal elements is:") print(sum(diag))
#Output : numpy.diagonal(a, offset=0, axis1=0, axis2=1
Calculate the sum of the diagonal elements of a NumPy array # importing Numpy package import numpy as np # creating a 5X5 Numpy matrix n_array = np.array( [ [5, 2, 1, 4, 6], [9, 4, 2, 5, 2], [11, 5, 7, 3, 9], [5, 6, 6, 7, 2], [7, 5, 9, 3, 3], ] ) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # Finding the diagonal elements of a matrix diag = np.diagonal(n_array) print("\nDiagonal elements are:") print(diag) print("\nSum of Diagonal elements is:") print(sum(diag)) #Output : numpy.diagonal(a, offset=0, axis1=0, axis2=1 [END]
Adding and Subtracting Matrix Rowices in Python
https://www.geeksforgeeks.org/adding-and-subtracting-matrices-in-python/
# importing numpy as np import numpy as np # creating first matrix A = np.array([[1, 2], [3, 4]]) # creating second matrix B = np.array([[4, 5], [6, 7]]) print("Printing elements of first matrix") print(A) print("Printing elements of second matrix") print(B) # adding two matrix print("Addition of two matrix") print(np.add(A, B))
#Output : Suppose we have two matrices A and B.
Adding and Subtracting Matrix Rowices in Python # importing numpy as np import numpy as np # creating first matrix A = np.array([[1, 2], [3, 4]]) # creating second matrix B = np.array([[4, 5], [6, 7]]) print("Printing elements of first matrix") print(A) print("Printing elements of second matrix") print(B) # adding two matrix print("Addition of two matrix") print(np.add(A, B)) #Output : Suppose we have two matrices A and B. [END]
Adding and Subtracting Matrix Rowices in Python
https://www.geeksforgeeks.org/adding-and-subtracting-matrices-in-python/
# importing numpy as np import numpy as np # creating first matrix A = np.array([[1, 2], [3, 4]]) # creating second matrix B = np.array([[4, 5], [6, 7]]) print("Printing elements of first matrix") print(A) print("Printing elements of second matrix") print(B) # subtracting two matrix print("Subtraction of two matrix") print(np.subtract(A, B))
#Output : Suppose we have two matrices A and B.
Adding and Subtracting Matrix Rowices in Python # importing numpy as np import numpy as np # creating first matrix A = np.array([[1, 2], [3, 4]]) # creating second matrix B = np.array([[4, 5], [6, 7]]) print("Printing elements of first matrix") print(A) print("Printing elements of second matrix") print(B) # subtracting two matrix print("Subtraction of two matrix") print(np.subtract(A, B)) #Output : Suppose we have two matrices A and B. [END]
Adding and Subtracting Matrix Rowices in Python
https://www.geeksforgeeks.org/adding-and-subtracting-matrices-in-python/
# Input matrices matrix1 = [[1, 2], [3, 4]] matrix2 = [[4, 5], [6, 7]] # Printing elements of matrix1 print("Printing elements of first matrix") for row in matrix1: for element in row: print(element, end=" ") print() # Printing elements of matrix2 print("Printing elements of second matrix") for row in matrix2: for element in row: print(element, end=" ") print() # Subtracting two matrices result = [[0, 0], [0, 0]] for i in range(len(matrix1)): for j in range(len(matrix1[0])): result[i][j] = matrix1[i][j] - matrix2[i][j] # Printing the result print("Subtraction of two matrix") for row in result: for element in row: print(element, end=" ") print()
#Output : Suppose we have two matrices A and B.
Adding and Subtracting Matrix Rowices in Python # Input matrices matrix1 = [[1, 2], [3, 4]] matrix2 = [[4, 5], [6, 7]] # Printing elements of matrix1 print("Printing elements of first matrix") for row in matrix1: for element in row: print(element, end=" ") print() # Printing elements of matrix2 print("Printing elements of second matrix") for row in matrix2: for element in row: print(element, end=" ") print() # Subtracting two matrices result = [[0, 0], [0, 0]] for i in range(len(matrix1)): for j in range(len(matrix1[0])): result[i][j] = matrix1[i][j] - matrix2[i][j] # Printing the result print("Subtraction of two matrix") for row in result: for element in row: print(element, end=" ") print() #Output : Suppose we have two matrices A and B. [END]
Ways to add row/columns in numpy array
https://www.geeksforgeeks.org/python-ways-to-add-row-columns-in-numpy-array/
import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # printing initial array print("initial_array : ", str(ini_array)) # Array to be added as column column_to_be_added = np.array([[1], [2], [3]]) # Adding column to array using append() method arr = np.append(ini_array, column_to_be_added, axis=1) # printing result print("resultant array", str(arr))
#Output : initial_array : [[ 1 2 3]
Ways to add row/columns in numpy array import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # printing initial array print("initial_array : ", str(ini_array)) # Array to be added as column column_to_be_added = np.array([[1], [2], [3]]) # Adding column to array using append() method arr = np.append(ini_array, column_to_be_added, axis=1) # printing result print("resultant array", str(arr)) #Output : initial_array : [[ 1 2 3] [END]
Ways to add row/columns in numpy array
https://www.geeksforgeeks.org/python-ways-to-add-row-columns-in-numpy-array/
import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as column column_to_be_added = np.array([[1], [2], [3]]) # Adding column to array using append() method arr = np.concatenate([ini_array, column_to_be_added], axis=1) # printing result print("resultant array", str(arr))
#Output : initial_array : [[ 1 2 3]
Ways to add row/columns in numpy array import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as column column_to_be_added = np.array([[1], [2], [3]]) # Adding column to array using append() method arr = np.concatenate([ini_array, column_to_be_added], axis=1) # printing result print("resultant array", str(arr)) #Output : initial_array : [[ 1 2 3] [END]
Ways to add row/columns in numpy array
https://www.geeksforgeeks.org/python-ways-to-add-row-columns-in-numpy-array/
import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as column column_to_be_added = np.array([[1], [2], [3]]) # Adding column to array using append() method arr = np.insert(ini_array, 0, column_to_be_added, axis=1) # printing result print("resultant array", str(arr))
#Output : initial_array : [[ 1 2 3]
Ways to add row/columns in numpy array import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as column column_to_be_added = np.array([[1], [2], [3]]) # Adding column to array using append() method arr = np.insert(ini_array, 0, column_to_be_added, axis=1) # printing result print("resultant array", str(arr)) #Output : initial_array : [[ 1 2 3] [END]
Ways to add row/columns in numpy array
https://www.geeksforgeeks.org/python-ways-to-add-row-columns-in-numpy-array/
import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as column column_to_be_added = np.array([1, 2, 3]) # Adding column to numpy array result = np.hstack((ini_array, np.atleast_2d(column_to_be_added).T)) # printing result print("resultant array", str(result))
#Output : initial_array : [[ 1 2 3]
Ways to add row/columns in numpy array import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as column column_to_be_added = np.array([1, 2, 3]) # Adding column to numpy array result = np.hstack((ini_array, np.atleast_2d(column_to_be_added).T)) # printing result print("resultant array", str(result)) #Output : initial_array : [[ 1 2 3] [END]
Ways to add row/columns in numpy array
https://www.geeksforgeeks.org/python-ways-to-add-row-columns-in-numpy-array/
import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as column column_to_be_added = np.array([1, 2, 3]) # Adding column to numpy array result = np.column_stack((ini_array, column_to_be_added)) # printing result print("resultant array", str(result))
#Output : initial_array : [[ 1 2 3]
Ways to add row/columns in numpy array import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as column column_to_be_added = np.array([1, 2, 3]) # Adding column to numpy array result = np.column_stack((ini_array, column_to_be_added)) # printing result print("resultant array", str(result)) #Output : initial_array : [[ 1 2 3] [END]
Ways to add row/columns in numpy array
https://www.geeksforgeeks.org/python-ways-to-add-row-columns-in-numpy-array/
import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # printing initial array print("initial_array : ", str(ini_array)) # Array to be added as row row_to_be_added = np.array([1, 2, 3]) # Adding row to numpy array result = np.r_[ini_array, [row_to_be_added]] # printing result print("resultant array", str(result))
#Output : initial_array : [[ 1 2 3]
Ways to add row/columns in numpy array import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # printing initial array print("initial_array : ", str(ini_array)) # Array to be added as row row_to_be_added = np.array([1, 2, 3]) # Adding row to numpy array result = np.r_[ini_array, [row_to_be_added]] # printing result print("resultant array", str(result)) #Output : initial_array : [[ 1 2 3] [END]
Ways to add row/columns in numpy array
https://www.geeksforgeeks.org/python-ways-to-add-row-columns-in-numpy-array/
import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as row row_to_be_added = np.array([1, 2, 3]) # last row row_n = arr.shape[0] arr = np.insert(ini_array, row_n, [row_to_be_added], axis=0) # printing result print("resultant array", str(arr))
#Output : initial_array : [[ 1 2 3]
Ways to add row/columns in numpy array import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as row row_to_be_added = np.array([1, 2, 3]) # last row row_n = arr.shape[0] arr = np.insert(ini_array, row_n, [row_to_be_added], axis=0) # printing result print("resultant array", str(arr)) #Output : initial_array : [[ 1 2 3] [END]
Ways to add row/columns in numpy array
https://www.geeksforgeeks.org/python-ways-to-add-row-columns-in-numpy-array/
import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as row row_to_be_added = np.array([1, 2, 3]) # Adding row to numpy array result = np.vstack((ini_array, row_to_be_added)) # printing result print("resultant array", str(result))
#Output : initial_array : [[ 1 2 3]
Ways to add row/columns in numpy array import numpy as np ini_array = np.array([[1, 2, 3], [45, 4, 7], [9, 6, 10]]) # Array to be added as row row_to_be_added = np.array([1, 2, 3]) # Adding row to numpy array result = np.vstack((ini_array, row_to_be_added)) # printing result print("resultant array", str(result)) #Output : initial_array : [[ 1 2 3] [END]
Ways to add row/columns in numpy array
https://www.geeksforgeeks.org/python-ways-to-add-row-columns-in-numpy-array/
# importing Numpy package import numpy as np # creating an empty 2d array of int type empt_array = np.empty((0, 2), int) print("Empty array:") print(empt_array) # adding two new rows to empt_array # using np.append() empt_array = np.append(empt_array, np.array([[10, 20]]), axis=0) empt_array = np.append(empt_array, np.array([[40, 50]]), axis=0) print("\nNow array is:") print(empt_array)
#Output : initial_array : [[ 1 2 3]
Ways to add row/columns in numpy array # importing Numpy package import numpy as np # creating an empty 2d array of int type empt_array = np.empty((0, 2), int) print("Empty array:") print(empt_array) # adding two new rows to empt_array # using np.append() empt_array = np.append(empt_array, np.array([[10, 20]]), axis=0) empt_array = np.append(empt_array, np.array([[40, 50]]), axis=0) print("\nNow array is:") print(empt_array) #Output : initial_array : [[ 1 2 3] [END]
Ways to add row/columns in numpy array
https://www.geeksforgeeks.org/python-ways-to-add-row-columns-in-numpy-array/
# importing Numpy package import numpy as np # creating an empty 3d array of int type empt_array = np.empty((0, 3), int) print("Empty array:") print(empt_array) # adding three new rows to empt_array # using np.append() empt_array = np.append(empt_array, np.array([[10, 20, 40]]), axis=0) empt_array = np.append(empt_array, np.array([[40, 50, 55]]), axis=0) empt_array = np.append(empt_array, np.array([[40, 50, 55]]), axis=0) print("\nNow array is:") print(empt_array)
#Output : initial_array : [[ 1 2 3]
Ways to add row/columns in numpy array # importing Numpy package import numpy as np # creating an empty 3d array of int type empt_array = np.empty((0, 3), int) print("Empty array:") print(empt_array) # adding three new rows to empt_array # using np.append() empt_array = np.append(empt_array, np.array([[10, 20, 40]]), axis=0) empt_array = np.append(empt_array, np.array([[40, 50, 55]]), axis=0) empt_array = np.append(empt_array, np.array([[40, 50, 55]]), axis=0) print("\nNow array is:") print(empt_array) #Output : initial_array : [[ 1 2 3] [END]
Ways to add row/columns in numpy array
https://www.geeksforgeeks.org/python-ways-to-add-row-columns-in-numpy-array/
# importing Numpy package import numpy as np # creating an empty 4d array of int type empt_array = np.empty((0, 4), int) print("Empty array:") print(empt_array) # adding four new rows to empt_array # using np.append() empt_array = np.append(empt_array, np.array([[100, 200, 400, 888]]), axis=0) empt_array = np.append(empt_array, np.array([[405, 500, 550, 558]]), axis=0) empt_array = np.append(empt_array, np.array([[404, 505, 555, 145]]), axis=0) empt_array = np.append(empt_array, np.array([[44, 55, 550, 150]]), axis=0) print("\nNow array is:") print(empt_array)
#Output : initial_array : [[ 1 2 3]
Ways to add row/columns in numpy array # importing Numpy package import numpy as np # creating an empty 4d array of int type empt_array = np.empty((0, 4), int) print("Empty array:") print(empt_array) # adding four new rows to empt_array # using np.append() empt_array = np.append(empt_array, np.array([[100, 200, 400, 888]]), axis=0) empt_array = np.append(empt_array, np.array([[405, 500, 550, 558]]), axis=0) empt_array = np.append(empt_array, np.array([[404, 505, 555, 145]]), axis=0) empt_array = np.append(empt_array, np.array([[44, 55, 550, 150]]), axis=0) print("\nNow array is:") print(empt_array) #Output : initial_array : [[ 1 2 3] [END]
Matrix Rowix Multiplication in NumPy
https://www.geeksforgeeks.org/matrix-multiplication-in-numpy/
# importing the module import numpy as np # creating two matrices p = [[1, 2], [2, 3]] q = [[4, 5], [6, 7]] print("Matrix p :") print(p) print("Matrix q :") print(q) # computing product result = np.dot(p, q) # printing the result print("The matrix multiplication is :") print(result)
#Output :
Matrix Rowix Multiplication in NumPy # importing the module import numpy as np # creating two matrices p = [[1, 2], [2, 3]] q = [[4, 5], [6, 7]] print("Matrix p :") print(p) print("Matrix q :") print(q) # computing product result = np.dot(p, q) # printing the result print("The matrix multiplication is :") print(result) #Output : [END]
Matrix Rowix Multiplication in NumPy
https://www.geeksforgeeks.org/matrix-multiplication-in-numpy/
# importing the module import numpy as np # creating two matrices p = [[1, 2], [2, 3], [4, 5]] q = [[4, 5, 1], [6, 7, 2]] print("Matrix p :") print(p) print("Matrix q :") print(q) # computing product result = np.dot(p, q) # printing the result print("The matrix multiplication is :") print(result)
#Output :
Matrix Rowix Multiplication in NumPy # importing the module import numpy as np # creating two matrices p = [[1, 2], [2, 3], [4, 5]] q = [[4, 5, 1], [6, 7, 2]] print("Matrix p :") print(p) print("Matrix q :") print(q) # computing product result = np.dot(p, q) # printing the result print("The matrix multiplication is :") print(result) #Output : [END]
How to Calculate the determinant of a matrix using NumPy?
https://www.geeksforgeeks.org/how-to-calculate-the-determinant-of-a-matrix-using-numpy/
# importing Numpy package import numpy as np # creating a 2X2 Numpy matrix n_array = np.array([[50, 29], [30, 44]]) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # calculating the determinant of matrix det = np.linalg.det(n_array) print("\nDeterminant of given 2X2 matrix:") print(int(det))
#Output : numpy.linalg.det(array)
How to Calculate the determinant of a matrix using NumPy? # importing Numpy package import numpy as np # creating a 2X2 Numpy matrix n_array = np.array([[50, 29], [30, 44]]) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # calculating the determinant of matrix det = np.linalg.det(n_array) print("\nDeterminant of given 2X2 matrix:") print(int(det)) #Output : numpy.linalg.det(array) [END]
How to Calculate the determinant of a matrix using NumPy?
https://www.geeksforgeeks.org/how-to-calculate-the-determinant-of-a-matrix-using-numpy/
# importing Numpy package import numpy as np # creating a 3X3 Numpy matrix n_array = np.array([[55, 25, 15], [30, 44, 2], [11, 45, 77]]) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # calculating the determinant of matrix det = np.linalg.det(n_array) print("\nDeterminant of given 3X3 square matrix:") print(int(det))
#Output : numpy.linalg.det(array)
How to Calculate the determinant of a matrix using NumPy? # importing Numpy package import numpy as np # creating a 3X3 Numpy matrix n_array = np.array([[55, 25, 15], [30, 44, 2], [11, 45, 77]]) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # calculating the determinant of matrix det = np.linalg.det(n_array) print("\nDeterminant of given 3X3 square matrix:") print(int(det)) #Output : numpy.linalg.det(array) [END]
How to Calculate the determinant of a matrix using NumPy?
https://www.geeksforgeeks.org/how-to-calculate-the-determinant-of-a-matrix-using-numpy/
# importing Numpy package import numpy as np # creating a 5X5 Numpy matrix n_array = np.array( [ [5, 2, 1, 4, 6], [9, 4, 2, 5, 2], [11, 5, 7, 3, 9], [5, 6, 6, 7, 2], [7, 5, 9, 3, 3], ] ) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # calculating the determinant of matrix det = np.linalg.det(n_array) print("\nDeterminant of given 5X5 square matrix:") print(int(det))
#Output : numpy.linalg.det(array)
How to Calculate the determinant of a matrix using NumPy? # importing Numpy package import numpy as np # creating a 5X5 Numpy matrix n_array = np.array( [ [5, 2, 1, 4, 6], [9, 4, 2, 5, 2], [11, 5, 7, 3, 9], [5, 6, 6, 7, 2], [7, 5, 9, 3, 3], ] ) # Displaying the Matrix print("Numpy Matrix is:") print(n_array) # calculating the determinant of matrix det = np.linalg.det(n_array) print("\nDeterminant of given 5X5 square matrix:") print(int(det)) #Output : numpy.linalg.det(array) [END]
How to inverse a matrix using NumPy
https://www.geeksforgeeks.org/how-to-inverse-a-matrix-using-numpy/
# Import required package import numpy as np # Taking a 3 * 3 matrix A = np.array([[6, 1, 1], [4, -2, 5], [2, 8, 7]]) # Calculating the inverse of the matrix print(np.linalg.inv(A))
#Output : if det(A) != 0
How to inverse a matrix using NumPy # Import required package import numpy as np # Taking a 3 * 3 matrix A = np.array([[6, 1, 1], [4, -2, 5], [2, 8, 7]]) # Calculating the inverse of the matrix print(np.linalg.inv(A)) #Output : if det(A) != 0 [END]
How to inverse a matrix using NumPy
https://www.geeksforgeeks.org/how-to-inverse-a-matrix-using-numpy/
# Import required package import numpy as np # Taking a 4 * 4 matrix A = np.array([[6, 1, 1, 3], [4, -2, 5, 1], [2, 8, 7, 6], [3, 1, 9, 7]]) # Calculating the inverse of the matrix print(np.linalg.inv(A))
#Output : if det(A) != 0
How to inverse a matrix using NumPy # Import required package import numpy as np # Taking a 4 * 4 matrix A = np.array([[6, 1, 1, 3], [4, -2, 5, 1], [2, 8, 7, 6], [3, 1, 9, 7]]) # Calculating the inverse of the matrix print(np.linalg.inv(A)) #Output : if det(A) != 0 [END]
How to inverse a matrix using NumPy
https://www.geeksforgeeks.org/how-to-inverse-a-matrix-using-numpy/
# Import required package import numpy as np # Inverses of several matrices can # be computed at once A = np.array([[[1.0, 2.0], [3.0, 4.0]], [[1, 3], [3, 5]]]) # Calculating the inverse of the matrix print(np.linalg.inv(A))
#Output : if det(A) != 0
How to inverse a matrix using NumPy # Import required package import numpy as np # Inverses of several matrices can # be computed at once A = np.array([[[1.0, 2.0], [3.0, 4.0]], [[1, 3], [3, 5]]]) # Calculating the inverse of the matrix print(np.linalg.inv(A)) #Output : if det(A) != 0 [END]
How to count the frequency of unique values in NumPy array?
https://www.geeksforgeeks.org/how-to-count-the-frequency-of-unique-values-in-numpy-array/
# import library import numpy as np ini_array = np.array([10, 20, 5, 10, 8, 20, 8, 9]) # Get a tuple of unique values # and their frequency in # numpy array unique, frequency = np.unique(ini_array, return_counts=True) # print unique values array print("Unique Values:", unique) # print frequency array print("Frequency Values:", frequency)
#Output : Unique Values: [ 5 8 9 10 20]
How to count the frequency of unique values in NumPy array? # import library import numpy as np ini_array = np.array([10, 20, 5, 10, 8, 20, 8, 9]) # Get a tuple of unique values # and their frequency in # numpy array unique, frequency = np.unique(ini_array, return_counts=True) # print unique values array print("Unique Values:", unique) # print frequency array print("Frequency Values:", frequency) #Output : Unique Values: [ 5 8 9 10 20] [END]
How to count the frequency of unique values in NumPy array?
https://www.geeksforgeeks.org/how-to-count-the-frequency-of-unique-values-in-numpy-array/
# import library import numpy as np # create a 1d-array ini_array = np.array([10, 20, 5, 10, 8, 20, 8, 9]) # Get a tuple of unique values # and their frequency # in numpy array unique, frequency = np.unique(ini_array, return_counts=True) # convert both into one numpy array count = np.asarray((unique, frequency)) print("The values and their frequency are:\n", count)
#Output : Unique Values: [ 5 8 9 10 20]
How to count the frequency of unique values in NumPy array? # import library import numpy as np # create a 1d-array ini_array = np.array([10, 20, 5, 10, 8, 20, 8, 9]) # Get a tuple of unique values # and their frequency # in numpy array unique, frequency = np.unique(ini_array, return_counts=True) # convert both into one numpy array count = np.asarray((unique, frequency)) print("The values and their frequency are:\n", count) #Output : Unique Values: [ 5 8 9 10 20] [END]
How to count the frequency of unique values in NumPy array?
https://www.geeksforgeeks.org/how-to-count-the-frequency-of-unique-values-in-numpy-array/
# import library import numpy as np # create a 1d-array ini_array = np.array([10, 20, 5, 10, 8, 20, 8, 9]) # Get a tuple of unique values # and their frequency in # numpy array unique, frequency = np.unique(ini_array, return_counts=True) # convert both into one numpy array # and then transpose it count = np.asarray((unique, frequency)).T print("The values and their frequency are in transpose form:\n", count)
#Output : Unique Values: [ 5 8 9 10 20]
How to count the frequency of unique values in NumPy array? # import library import numpy as np # create a 1d-array ini_array = np.array([10, 20, 5, 10, 8, 20, 8, 9]) # Get a tuple of unique values # and their frequency in # numpy array unique, frequency = np.unique(ini_array, return_counts=True) # convert both into one numpy array # and then transpose it count = np.asarray((unique, frequency)).T print("The values and their frequency are in transpose form:\n", count) #Output : Unique Values: [ 5 8 9 10 20] [END]
Multiply matrices of complex numbers using NumPy in Python
https://www.geeksforgeeks.org/multiply-matrices-of-complex-numbers-using-numpy-in-python/
# importing numpy as library import numpy as np # creating matrix of complex number x = np.array([2 + 3j, 4 + 5j]) print("Printing First matrix:") print(x) y = np.array([8 + 7j, 5 + 6j]) print("Printing Second matrix:") print(y) # vector dot product of two matrices z = np.vdot(x, y) print("Product of first and second matrices are:") print(z)
#Output : numpy.vdot(vector_a, vector_b)
Multiply matrices of complex numbers using NumPy in Python # importing numpy as library import numpy as np # creating matrix of complex number x = np.array([2 + 3j, 4 + 5j]) print("Printing First matrix:") print(x) y = np.array([8 + 7j, 5 + 6j]) print("Printing Second matrix:") print(y) # vector dot product of two matrices z = np.vdot(x, y) print("Product of first and second matrices are:") print(z) #Output : numpy.vdot(vector_a, vector_b) [END]
Multiply matrices of complex numbers using NumPy in Python
https://www.geeksforgeeks.org/multiply-matrices-of-complex-numbers-using-numpy-in-python/
# importing numpy as library import numpy as np # creating matrix of complex number x = np.array([[2 + 3j, 4 + 5j], [4 + 5j, 6 + 7j]]) print("Printing First matrix:") print(x) y = np.array([[8 + 7j, 5 + 6j], [9 + 10j, 1 + 2j]]) print("Printing Second matrix:") print(y) # vector dot product of two matrices z = np.vdot(x, y) print("Product of first and second matrices are:") print(z)
#Output : numpy.vdot(vector_a, vector_b)
Multiply matrices of complex numbers using NumPy in Python # importing numpy as library import numpy as np # creating matrix of complex number x = np.array([[2 + 3j, 4 + 5j], [4 + 5j, 6 + 7j]]) print("Printing First matrix:") print(x) y = np.array([[8 + 7j, 5 + 6j], [9 + 10j, 1 + 2j]]) print("Printing Second matrix:") print(y) # vector dot product of two matrices z = np.vdot(x, y) print("Product of first and second matrices are:") print(z) #Output : numpy.vdot(vector_a, vector_b) [END]
Compute the outer product of two given vectors using NumPy in Python
https://www.geeksforgeeks.org/compute-the-outer-product-of-two-given-vectors-using-numpy-in-python/
# Importing library import numpy as np # Creating two 1-D arrays array1 = np.array([6, 2]) array2 = np.array([2, 5]) print("Original 1-D arrays:") print(array1) print(array2) # Output print("Outer Product of the two array is:") result = np.outer(array1, array2) print(result)
#Output : Original 1-D arrays:
Compute the outer product of two given vectors using NumPy in Python # Importing library import numpy as np # Creating two 1-D arrays array1 = np.array([6, 2]) array2 = np.array([2, 5]) print("Original 1-D arrays:") print(array1) print(array2) # Output print("Outer Product of the two array is:") result = np.outer(array1, array2) print(result) #Output : Original 1-D arrays: [END]
Compute the outer product of two given vectors using NumPy in Python
https://www.geeksforgeeks.org/compute-the-outer-product-of-two-given-vectors-using-numpy-in-python/
# Importing library import numpy as np # Creating two 2-D matrix matrix1 = np.array([[1, 3], [2, 6]]) matrix2 = np.array([[0, 1], [1, 9]]) print("Original 2-D matrix:") print(matrix1) print(matrix2) # Output print("Outer Product of the two matrix is:") result = np.outer(matrix1, matrix2) print(result)
#Output : Original 1-D arrays:
Compute the outer product of two given vectors using NumPy in Python # Importing library import numpy as np # Creating two 2-D matrix matrix1 = np.array([[1, 3], [2, 6]]) matrix2 = np.array([[0, 1], [1, 9]]) print("Original 2-D matrix:") print(matrix1) print(matrix2) # Output print("Outer Product of the two matrix is:") result = np.outer(matrix1, matrix2) print(result) #Output : Original 1-D arrays: [END]
Compute the outer product of two given vectors using NumPy in Python
https://www.geeksforgeeks.org/compute-the-outer-product-of-two-given-vectors-using-numpy-in-python/
# Importing library import numpy as np # Creating two 3-D matrix matrix1 = np.array([[2, 8, 2], [3, 4, 8], [0, 2, 1]]) matrix2 = np.array([[2, 1, 1], [0, 1, 0], [2, 3, 0]]) print("Original 3-D matrix:") print(matrix1) print(matrix2) # Output print("Outer Product of the two matrix is:") result = np.outer(matrix1, matrix2) print(result)
#Output : Original 1-D arrays:
Compute the outer product of two given vectors using NumPy in Python # Importing library import numpy as np # Creating two 3-D matrix matrix1 = np.array([[2, 8, 2], [3, 4, 8], [0, 2, 1]]) matrix2 = np.array([[2, 1, 1], [0, 1, 0], [2, 3, 0]]) print("Original 3-D matrix:") print(matrix1) print(matrix2) # Output print("Outer Product of the two matrix is:") result = np.outer(matrix1, matrix2) print(result) #Output : Original 1-D arrays: [END]
Calculate inner, outer, and cross products of matrices and vectors using NumPy
https://www.geeksforgeeks.org/calculate-inner-outer-and-cross-products-of-matrices-and-vectors-using-numpy/
# Python Program illustrating # numpy.inner() method import numpy as np # Vectors a = np.array([2, 6]) b = np.array([3, 10]) print("Vectors :") print("a = ", a) print("\nb = ", b) # Inner Product of Vectors print("\nInner product of vectors a and b =") print(np.inner(a, b)) print("---------------------------------------") # Matrices x = np.array([[2, 3, 4], [3, 2, 9]]) y = np.array([[1, 5, 0], [5, 10, 3]]) print("\nMatrices :") print("x =", x) print("\ny =", y) # Inner product of matrices print("\nInner product of matrices x and y =") print(np.inner(x, y))
#Output : numpy.inner(arr1, arr2)
Calculate inner, outer, and cross products of matrices and vectors using NumPy # Python Program illustrating # numpy.inner() method import numpy as np # Vectors a = np.array([2, 6]) b = np.array([3, 10]) print("Vectors :") print("a = ", a) print("\nb = ", b) # Inner Product of Vectors print("\nInner product of vectors a and b =") print(np.inner(a, b)) print("---------------------------------------") # Matrices x = np.array([[2, 3, 4], [3, 2, 9]]) y = np.array([[1, 5, 0], [5, 10, 3]]) print("\nMatrices :") print("x =", x) print("\ny =", y) # Inner product of matrices print("\nInner product of matrices x and y =") print(np.inner(x, y)) #Output : numpy.inner(arr1, arr2) [END]
Calculate inner, outer, and cross products of matrices and vectors using NumPy
https://www.geeksforgeeks.org/calculate-inner-outer-and-cross-products-of-matrices-and-vectors-using-numpy/
# Python Program illustrating # numpy.outer() method import numpy as np # Vectors a = np.array([2, 6]) b = np.array([3, 10]) print("Vectors :") print("a = ", a) print("\nb = ", b) # Outer product of vectors print("\nOuter product of vectors a and b =") print(np.outer(a, b)) print("------------------------------------") # Matrices x = np.array([[3, 6, 4], [9, 4, 6]]) y = np.array([[1, 15, 7], [3, 10, 8]]) print("\nMatrices :") print("x =", x) print("\ny =", y) # Outer product of matrices print("\nOuter product of matrices x and y =") print(np.outer(x, y))
#Output : numpy.inner(arr1, arr2)
Calculate inner, outer, and cross products of matrices and vectors using NumPy # Python Program illustrating # numpy.outer() method import numpy as np # Vectors a = np.array([2, 6]) b = np.array([3, 10]) print("Vectors :") print("a = ", a) print("\nb = ", b) # Outer product of vectors print("\nOuter product of vectors a and b =") print(np.outer(a, b)) print("------------------------------------") # Matrices x = np.array([[3, 6, 4], [9, 4, 6]]) y = np.array([[1, 15, 7], [3, 10, 8]]) print("\nMatrices :") print("x =", x) print("\ny =", y) # Outer product of matrices print("\nOuter product of matrices x and y =") print(np.outer(x, y)) #Output : numpy.inner(arr1, arr2) [END]
Calculate inner, outer, and cross products of matrices and vectors using NumPy
https://www.geeksforgeeks.org/calculate-inner-outer-and-cross-products-of-matrices-and-vectors-using-numpy/
# Python Program illustrating # numpy.cross() method import numpy as np # Vectors a = np.array([3, 6]) b = np.array([9, 10]) print("Vectors :") print("a = ", a) print("\nb = ", b) # Cross product of vectors print("\nCross product of vectors a and b =") print(np.cross(a, b)) print("------------------------------------") # Matrices x = np.array([[2, 6, 9], [2, 7, 3]]) y = np.array([[7, 5, 6], [3, 12, 3]]) print("\nMatrices :") print("x =", x) print("\ny =", y) # Cross product of matrices print("\nCross product of matrices x and y =") print(np.cross(x, y))
#Output : numpy.inner(arr1, arr2)
Calculate inner, outer, and cross products of matrices and vectors using NumPy # Python Program illustrating # numpy.cross() method import numpy as np # Vectors a = np.array([3, 6]) b = np.array([9, 10]) print("Vectors :") print("a = ", a) print("\nb = ", b) # Cross product of vectors print("\nCross product of vectors a and b =") print(np.cross(a, b)) print("------------------------------------") # Matrices x = np.array([[2, 6, 9], [2, 7, 3]]) y = np.array([[7, 5, 6], [3, 12, 3]]) print("\nMatrices :") print("x =", x) print("\ny =", y) # Cross product of matrices print("\nCross product of matrices x and y =") print(np.cross(x, y)) #Output : numpy.inner(arr1, arr2) [END]
Compute the covariance matrix of two given NumPy arrays
https://www.geeksforgeeks.org/compute-the-covariance-matrix-of-two-given-numpy-arrays/
import numpy as np array1 = np.array([0, 1, 1]) array2 = np.array([2, 2, 1]) # Original array1 print(array1) # Original array2 print(array2) # Covariance matrix print("\nCovariance matrix of the said arrays:\n", np.cov(array1, array2))
#Output : [0 1 1]
Compute the covariance matrix of two given NumPy arrays import numpy as np array1 = np.array([0, 1, 1]) array2 = np.array([2, 2, 1]) # Original array1 print(array1) # Original array2 print(array2) # Covariance matrix print("\nCovariance matrix of the said arrays:\n", np.cov(array1, array2)) #Output : [0 1 1] [END]
Compute the covariance matrix of two given NumPy arrays
https://www.geeksforgeeks.org/compute-the-covariance-matrix-of-two-given-numpy-arrays/
import numpy as np array1 = np.array([2, 1, 1, 4]) array2 = np.array([2, 2, 1, 1]) # Original array1 print(array1) # Original array2 print(array2) # Covariance matrix print("\nCovariance matrix of the said arrays:\n", np.cov(array1, array2))
#Output : [0 1 1]
Compute the covariance matrix of two given NumPy arrays import numpy as np array1 = np.array([2, 1, 1, 4]) array2 = np.array([2, 2, 1, 1]) # Original array1 print(array1) # Original array2 print(array2) # Covariance matrix print("\nCovariance matrix of the said arrays:\n", np.cov(array1, array2)) #Output : [0 1 1] [END]
Compute the covariance matrix of two given NumPy arrays
https://www.geeksforgeeks.org/compute-the-covariance-matrix-of-two-given-numpy-arrays/
import numpy as np array1 = np.array([1, 2]) array2 = np.array([1, 2]) # Original array1 print(array1) # Original array2 print(array2) # Covariance matrix print("\nCovariance matrix of the said arrays:\n", np.cov(array1, array2))
#Output : [0 1 1]
Compute the covariance matrix of two given NumPy arrays import numpy as np array1 = np.array([1, 2]) array2 = np.array([1, 2]) # Original array1 print(array1) # Original array2 print(array2) # Covariance matrix print("\nCovariance matrix of the said arrays:\n", np.cov(array1, array2)) #Output : [0 1 1] [END]
Compute the covariance matrix of two given NumPy arrays
https://www.geeksforgeeks.org/compute-the-covariance-matrix-of-two-given-numpy-arrays/
import numpy as np x = [1.23, 2.12, 3.34, 4.5] y = [2.56, 2.89, 3.76, 3.95] # find out covariance with respect # rows cov_mat = np.stack((x, y), axis=1) print("shape of matrix x and y:", np.shape(cov_mat)) print("shape of covariance matrix:", np.shape(np.cov(cov_mat))) print(np.cov(cov_mat))
#Output : [0 1 1]
Compute the covariance matrix of two given NumPy arrays import numpy as np x = [1.23, 2.12, 3.34, 4.5] y = [2.56, 2.89, 3.76, 3.95] # find out covariance with respect # rows cov_mat = np.stack((x, y), axis=1) print("shape of matrix x and y:", np.shape(cov_mat)) print("shape of covariance matrix:", np.shape(np.cov(cov_mat))) print(np.cov(cov_mat)) #Output : [0 1 1] [END]
Compute the Kronecker product of two mulitdimension NumPy arrays
https://www.geeksforgeeks.org/compute-the-kronecker-product-of-two-mulitdimension-numpy-arrays/
# Importing required modules import numpy # Creating arrays array1 = numpy.array([[1, 2], [3, 4]]) print("Array1:\n", array1) array2 = numpy.array([[5, 6], [7, 8]]) print("\nArray2:\n", array2) # Computing the Kronecker Product kroneckerProduct = numpy.kron(array1, array2) print("\nArray1 ????????? A") print(kroneckerProduct)
#Output : A = |?????????(a00)?????????
Compute the Kronecker product of two mulitdimension NumPy arrays # Importing required modules import numpy # Creating arrays array1 = numpy.array([[1, 2], [3, 4]]) print("Array1:\n", array1) array2 = numpy.array([[5, 6], [7, 8]]) print("\nArray2:\n", array2) # Computing the Kronecker Product kroneckerProduct = numpy.kron(array1, array2) print("\nArray1 ????????? A") print(kroneckerProduct) #Output : A = |?????????(a00)????????? [END]
Compute the Kronecker product of two mulitdimension NumPy arrays
https://www.geeksforgeeks.org/compute-the-kronecker-product-of-two-mulitdimension-numpy-arrays/
# Importing required modules import numpy # Creating arrays array1 = numpy.array([[1, 2, 3]]) print("Array1:\n", array1) array2 = numpy.array([[3, 2, 1]]) print("\nArray2:\n", array2) # Computing the Kronecker Product kroneckerProduct = numpy.kron(array1, array2) print("\nArray1 ????????? A") print(kroneckerProduct)
#Output : A = |?????????(a00)?????????
Compute the Kronecker product of two mulitdimension NumPy arrays # Importing required modules import numpy # Creating arrays array1 = numpy.array([[1, 2, 3]]) print("Array1:\n", array1) array2 = numpy.array([[3, 2, 1]]) print("\nArray2:\n", array2) # Computing the Kronecker Product kroneckerProduct = numpy.kron(array1, array2) print("\nArray1 ????????? A") print(kroneckerProduct) #Output : A = |?????????(a00)????????? [END]
Compute the Kronecker product of two mulitdimension NumPy arrays
https://www.geeksforgeeks.org/compute-the-kronecker-product-of-two-mulitdimension-numpy-arrays/
# Importing required modules import numpy # Creating arrays array1 = numpy.array([[1, 2, 3], [4, 5, 6]]) print("Array1:\n", array1) array2 = numpy.array([[1, 2], [3, 4], [5, 6]]) print("\nArray2:\n", array2) # Computing the Kronecker Product kroneckerProduct = numpy.kron(array1, array2) print("\nArray1 ????????? A") print(kroneckerProduct)
#Output : A = |?????????(a00)?????????
Compute the Kronecker product of two mulitdimension NumPy arrays # Importing required modules import numpy # Creating arrays array1 = numpy.array([[1, 2, 3], [4, 5, 6]]) print("Array1:\n", array1) array2 = numpy.array([[1, 2], [3, 4], [5, 6]]) print("\nArray2:\n", array2) # Computing the Kronecker Product kroneckerProduct = numpy.kron(array1, array2) print("\nArray1 ????????? A") print(kroneckerProduct) #Output : A = |?????????(a00)????????? [END]
Convert the matrix into a list
https://www.geeksforgeeks.org/python-numpy-matrix-tolist/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 12, 3]") # applying matrix.tolist() method geek = gfg.tolist() print(geek)
#Output :
Convert the matrix into a list # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 12, 3]") # applying matrix.tolist() method geek = gfg.tolist() print(geek) #Output : [END]
Convert the matrix into a list
https://www.geeksforgeeks.org/python-numpy-matrix-tolist/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 9; 12, 3, 1; 4, 5, 6]") # applying matrix.tolist() method geek = gfg.tolist() print(geek)
#Output :
Convert the matrix into a list # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 9; 12, 3, 1; 4, 5, 6]") # applying matrix.tolist() method geek = gfg.tolist() print(geek) #Output : [END]
Return the indices of elements where the given condition is satisfied
https://www.geeksforgeeks.org/numpy-where-in-python/
# Python program explaining # where() function import numpy as np np.where([[True, False], [True, True]], [[1, 2], [3, 4]], [[5, 6], [7, 8]])
#Output : array([[1, 6],
Return the indices of elements where the given condition is satisfied # Python program explaining # where() function import numpy as np np.where([[True, False], [True, True]], [[1, 2], [3, 4]], [[5, 6], [7, 8]]) #Output : array([[1, 6], [END]